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CoM during time period t1, t2. At the end of the cycle, velocities are reset by a second
plastic collision (represented by two arrows). . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Schematic representation of the mechanical model with a swapping mechanism. x, y, z
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2.6 Position of m, M and ∆m vs. time within a cycle. We plotted these for the one mass
moving regime (top, F = 12N) and two masses moving regime (bottom F = 20N).
The dynamic friction coefficient was µ = 1. Figure shows the position of m (dashed
line, x), M (solid line, y) and ∆m (dotted line, z) plotted with time and position
starting at the Lmin collision. We plotted four cycles, illustrating the rapid convergence
to a limit cycle. To facilitate comparison, we plotted all conditions in each subplot
with one condition highlighted (darker, with markers) and the others rendered de-
emphasized (grey). We compared the instantaneous swap model (left column) and
values of α = 1, 5, 10 (second to fourth columns). Note that m − m keeps its position
during ∆m swapping when α = 1, whereas it moves backwards when α = 5, 10. . . . 15

2.7 Actuation force vs. steady state velocity under Coulomb friction model with constant
swapping forces. We plotted the simulation results for friction coefficient µ = 1
(black), µ = 0.6 (thicker grey), and µ = 1.0 (grey). For each µ, we plotted swapping
forces α = 1 (· marker), α = 5 (+ marker), α = 10 (? marker), and instant swap
(dashed lines). We also plotted the new “stop during swap” motion regimes (larger
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3.1 A 1-dimensional multi-legged example. Consider two or more equal-height legs, with
identical friction properties moving at different horizontal velocities relative to a body
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3.2 Visualization of a 2D case. Consider a 4-legged robot (right plot) whose feet move
relative to the body with known velocities (arrows, right plot). We plotted contours
of the magnitude of the total force on the body under the assumption that the body
is moving at body velocity (Vx,Vy) without rotating, both under Coulomb friction
(top left) and our viscous-Coulomb ansatz (bottom left). For Coulomb friction,
this function has point discontinuities at those velocities that put any of the feet into
static friction (colored dots, color matched across sub-figures). For each friction
model, we also indicated the body velocity at force-moment balance (red stars). The
plots demonstrate that the viscous-Coulomb ansatz gives rise to a simple quadratic,
whereas Coulomb friction produces an almost everywhere smooth function with point
discontinuities, yet both produce very similar solutions. . . . . . . . . . . . . . . . . 22
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(number label in (a)), there is a closed-form solution of the force equilibrium, which
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same contact state the algorithm terminates (star; step 3). Otherwise, the portion of the
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we switch to the new contact state and solve it again. Each such transition between
contact states lies on a plane corresponding to the leg that made contact (black dot in
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3.6 Individual leg contact forces measurement and prediction for BigANT robot with
tripod gait. We plotted the ground contact force in x, y-axis, and supporting force
ratio in z-axis of each individual leg. We used force torque sensor measurements as
ground truth for forces (red). We plotted the estimated z-axis force ratio (purple),
estimated xy-axis friction forces (viscous-Coulomb: orange, Coulomb friction: blue).
(leg names are: HL hind left, ML mid left, FL front left, HR hind right, MR mid right,
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3.7 Prediction error distributions for BigANT robot with tripod gait. We plotted the
distribution of measurement residuals from the mean (red) to compare with residuals
of the predictions of the spring supported model (purple), or residuals of predictions
from viscous-Coulomb (orange) and Coulomb friction (blue). . . . . . . . . . . . . . 38

3.8 We plotted: (A) Metachronal gait phase vs. motor shaft angle for all six legs. (B)
Magnitude of slipping velocity vs. magnitude of planar force divided by normal force,
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3.9 Individual leg contact forces measurement and prediction for BigANT robot with
metachronal gait. We plotted the ground contact force in x, y-axis, and supporting
force ratio in z-axis of each individual leg. We used force torque sensor measurements
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ABSTRACT

Multi-legged robots with six or more legs have designs with great stability and maneuverability
using a low number of actuators. With more legs in contact with the ground, it becomes harder
and unnecessary to ensure that they all move in compatible ways to ensure non-slip contact, and
slipping becomes inevitable in these robots. Modeling multi-legged motion with slipping and
producing reliable predictions of body velocity is challenging and computationally expensive. In
this work, we investigated an algorithm that allows us to efficiently model body velocity and ground
contact forces given robot shape and shape changing velocity. This algorithm relies on previous
experimental observations showing that even while slipping, multi-legged robots are principally
kinematic, where body velocity could be computed through a linear local connection from the shape
changing velocity. This tool scaled well with an increasing number of legs without losing accuracy.
We applied our algorithm towardsmodelingmultiple robots with differentmorphology and different
gaits, together with predicting 3-dimensional ground contact forces. Further extension of this model
enabled its usage on stairs or slopes. The simplicity of the model led to easy parallelization and
motion planning of the robot’s behaviors on GPU. Analysis of the modeling residual term led to a
simple and data-efficient sim-to-real transfer to unmodeled robot dynamics.
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CHAPTER 1

Introduction

1.1 Motivation and background

Whether it is animals navigating their natural habitats or robots exploring unknown terrain, the
ability to move through space is essential for both biological and artificial entities. Wheels have
been developed for efficient land transportation for thousands of years in human civilizations, yet
have rarely evolved as a means of terrestrial locomotion. Although wheel-based transportation is
energy efficient on flat surfaces, it soon loses its advantage in uneven, muddy, or sandy terrain [1].
On the other hand, terrestrial animals have evolved legs as a means of locomotion on land, allowing
them to navigate and interact with their environment. Legs provide support, stability, propulsion,
and maneuverability, enabling animals to move efficiently across various terrains, whether it be
crawling, walking, running, or jumping.

Among all legged animals, arthropods, usually with six or more legs are incredibly successful
and abundant, with over a million described species, making up the largest phylum in the animal
kingdom. Arthropods are highly adaptable to various environments, ranging from terrestrial to
freshwater and marine habitats. Their exoskeleton provides protection and support, allowing them
to inhabit diverse ecological niches. Such “multi-legged” systems – a term we refrain from using
for quadrupeds and bipeds – have extra robustness over complex terrain [2]. They can achieve
stability more easily with three or more points of contact and tolerate more slipping. Arthropods
not only exist in decimeter or smaller scale, as fossil evidence shows there are giant myriapods
(Arthropleura, 2 meters long, 0.5 meters wide, 50 kilograms weight) from the early Carboniferous
to Early Permian [3]. The reasons they are much larger than modern arthropods partially lie in the
higher oxygen concentration and lack of large terrestrial vertebrates. Since robots do not depend on
respiration for power, insect-inspired robots should not have size limitations as biological insects
do.

Much of the work on meter-sized multi-legged robots has focused on hexapedal robots, starting
with [4, 5]. Hexapods are appealing because they can have a tripod of supporting legs while moving
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another tripod into place for support on the next step. This static stability allows for the possibility
of easier control, and usable motion even when the robot is slipping. Significant prior work was
done on the hexapedal robots of the RHex family [6, 7], many variations of which have been built
over the past 20 years. The BigAnt robot is a low-cost fast-fabricated hexapedal robot with 1 degree
of freedom (DoF) four-bar linkage legs [8]. Additional families of multi-legged robots include the
RoACH robots of [9], the Sprawl robots of [10], various multi-legged robots that used “whegs”
from [11] and e.g.[12], and several studies of multi-legged robots with larger numbers of legs such
as [13, 14]. Bipedal and quadrupedal robots usually use articulated legs with many DoF, i.e. Atlas
(6 DoF per leg), Spot (3 DoF per leg), whereas multi-legged robots usually use low-DoF legs with
an average of 1 or even less DoF per leg [8]. This substantially lowers the cost of multi-legged
robots, since a quadrupedal robot like Spot uses 12 motors, whereas Rhex or BigAnt only uses 6.
Although multi-legged robots might not be as agile as quadrupedal or bipedal robots in executing
dynamic behaviors, such as jumping or back flipping, they have the same capability of traversing
rough terrain. This makes them a great candidate as a transportation platform for exploration,
construction, search and rescue, and disaster relief.

Thanks to having many simultaneous points of contact rather than the single point of contact
that bipeds often have, multi-legged animals can tolerate significant slipping on the ground. As an
example of that, previous research shows that the feet (tarsi) of Blaberus discoidalis cockroaches
running on a paper surface (Elmer’s 900803 Foam Board, Elmer’s Products Inc., Atlanta GA.)
spend about 20% of their entire motion in the lab frame slipping backward while in contact with
the ground [15]. It quickly becomes clear to us that as more and more legs are in contact with
the ground it becomes harder to ensure that they all move in compatible ways to ensure non-slip
contact, and slipping becomes inevitable in our robots. As the modeling complexity increases
combinatorially with the number of legs when considering multiple contacts and slipping, a natural
question to ask is: how to efficiently model multiple sliding contacts?

Template models help researchers understand the mechanisms and strategies in legged locomo-
tion by reducing the complexity [16]. Templates and anchors were first developed to study the
rhythmic movements of biological organisms, where a template uses a smaller number of variables
to describe the behavior of interest, while an anchor turns it into a more biologically realistic
model. For example, spring-loaded inverted pendulum (SLIP) model [17] and lateral leg spring
(LLS) model [18, 19] are widely known template models for studying vertical and horizontal mo-
tion respectively. The template models facilitate many studies to design, optimize, and control for
legged robots [6, 20, 21]. However, the template models usually ignore slipping, and the interplay
between the contacting legs.

On the other hand, simulators or physics engines, such as PyBullet [22], MuJoCo[23] can take
in the robot full body design and integrate robot dynamics together with contacts. These models
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usually involve a large number of parameters that need to be fine-tuned before transferring to
the physical robots. Recent researches on reinforcement learning using such simulators enable
quadrupedal robots to improve the simulation accuracy while learning a robust policy [24, 25].
These learning methods are quite successful in deploying real-world applications, yet they are com-
putationally expensive and require billions of iterations with many hours of training. When moving
towards multi-legged robots with slipping, the computation time of evaluating each simulation step
would probably increase linearly or even combinatorially with more legs.

As the number of legs increases and the relative size of each leg becomes smaller, the locomotion
of a multi-legged robot converges to that of a slithering snake robot. Slithering can be understood
using geometric mechanics, and is “principally kinematic” in the sense of admitting equations of
motion that do not require momentum or velocity states. Instead, the equations of motion can be
expressed as a “local connection”: a linear relationship between the rate of shape change Ûr and
the body velocity vb: vb = A(r) Ûr (see e.g. [26, 27]). It is natural to ask how this transition to
momentum-free equations of motion occurs with increasing numbers of legs, and whether we can
obtain a model for multi-legged locomotion without momentum.

Somewhat to our surprise, we found that three slipping point contacts represent the minimal
number required to remove momentum and describe motion using local connections. This is
because, with this number of contacts, all degrees of freedom are either rigidly constrained or
subject to sliding friction. The work in [28] presented a data-driven method to efficiently construct
this local connection model for systems with no momentum. The work in [29] extended the no-
momentum case to the quickly decaying momentum case which appears in high friction sliding
contact. Furthermore, [30] showed that such local connection models are effective for multi-legged
animals and robots with and without slipping, at the predicted level of three or more contacts. The
simple structure makes modeling the body motion of multi-legged robots much easier, as despite
the complexity of additional contacts and a combinatorial number of contact states, the resulting
simplification, with momentum being ignorable, more than compensates.

In this thesis, we approach modeling multi-legged locomotion by constructing a simple connec-
tion model which accurately estimates the body velocities given the body shape movements, and
also captures the internal loading and slipping among all legs. We hope this work could demonstrate
to the community that the body motion of multi-legged robots – typically hexapods and octopods –
is much easier to model than is often assumed. Even if each leg ends in a multi-toed foot, leading
to a total of a few dozen possible contact points, the simulation models remain eminently tractable.
This simple and efficient model can be easily extended to uneven terrain, and allows multi-legged
robots to do motion planning by searching through their entire configuration space.
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1.2 Contributions and overview

The contributions of this thesis are to:

1. Present a simple inchworm crawling model and show a linear relationship between averaged
body velocity and propulsion force under Coulomb friction slipping,

2. Present a fast algorithm for modeling multi-legged systems, that accurately estimates the
body velocities given the body shape movements, and provides accurate foot contact force
estimates under slipping,

3. Present an experimental setup and calibration method for a hexapod with force/torque sensors
measuring ground contact forces of each foot and thereby validate the predictions of our
model,

4. Provide an open source dataset of the kinematic and force/torque measurements on BigAnt
robot in [31],

5. Extend the proposed model to uneven terrain, transfer the model to robots with unmodeled
dynamics, and apply it to motion planning.

1.2.1 Chapter 2: Coulomb friction crawling yields linear force-velocity pro-
file

We used an over-simplified inchworm crawling model to analyze the relationship between averaged
body velocity and the legged propulsion with slipping under Coulomb friction. We found the
averaged velocity versus input force inCoulomb friction dominatedmotion is a linear relationship, at
least for the parameter range governing small robots and animals (several kilograms with propulsion
forces generating up to 2g acceleration). This discovery was quite surprising because conventional
wisdom would have it that moving mechanical systems that dissipate energy by Coulomb friction
have no relationship between force and average speed. Our numerical model, amenable to the exact
solution, exhibited nearly linear (R2 > 0.96) relationships between actuator force and average speed
over its entire range of parameters in both motion regimes it supported. This suggested that the
interactions inherent in multi-legged locomotion may lead to governing equations more reminiscent
of viscous friction than would be immediately obvious.

1.2.2 Chapter 3: efficient multi-legged locomotion model

Wepresented a fast algorithm formodelingmulti-legged systems, that accurately estimated the body
velocities given the body shape movements, and provided accurate foot contact force estimates.
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Based upon the previous work in chapter 4 of [8], in this work, we further improved the spring-
supported model by allowing pitch and roll to better model the turning behavior, and allowed the
friction to have an anisotropic direction. We validated this model against several multi-legged
robot datasets, including one with force-torque sensors measuring the ground contact forces of
each foot. We demonstrated that it scales favorably with the number of legs, which only doubles
the computation time when the leg number increases from 3 to 50.

1.2.3 Chapter 4: experimental setup and calibration of hexapodBigAntwith
force/torque sensors measuring individual ground contact wrenches

We presented an experiment setup that simultaneously measured the ground reaction force on
each individual foot of a multi-legged robot with low DoF legs, BigAnt. We installed each leg
with one 6-DoF force/torque transducer at the hip of the hexapod, enabling us to measure the
wrench (forces and torque) interacting between the leg and robot chassis, while still maintaining
the lightweight, fast-swinging nature of the legs. We presented an in-situ calibration procedure
enabling simultaneous measurement of all 6-dimensional foot contact wrenches. Our calibration,
without disassembling the setup, was able to calibrate (1) constant transducer offset, (2) phase-
dependent leg gravity offset, (3) frame transformation error between the transducer frame and robot
frame, and (4) unknown robot center of mass location. After calibration, the RSME was reduced
by 63% for forces and 90% for torques in the residuals of the robot standing in different poses,
compared with naive constant offset removal.

1.2.4 Chapter 5: model extensions and applications

In this chapter, we show some preliminary results for futurework extending and applying thismodel.
We presented the initial results of extending the model presented in Chapter 3 to uneven terrain,
doing sim-to-real transfer, and applying it to motion planning. We relaxed the model assumption
of a flat surface, and allowed the robot pitch and roll to vary around non-zero constant angles. This
allowed the model to apply to slopes and staircases. We used a data-driven connection residual
term to capture the unmodeled dynamics, and improved the motion prediction on side velocities
for Multipod with leaf-spring legs using undulatory gait. We further implemented this model on
GPU to plan the robot’s gait with a large number of possible motions computed in parallel. We
showed that simple brute-force motion planning can generate gaits that are not intuitive to design
on a multi-legged robot with low-DoF legs.
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CHAPTER 2

Inchworm Crawling Model

This chapter closely reproduces our paper [32].

2.1 Motivation

Conventional wisdom often believed that mechanical systems employing Coulomb friction for
energy dissipation exhibit no correlation between force and average speed. The work done by
friction is the product of the frictional force and the displacement over which the force acts. If
propulsion forces exceed friction, the net work is positive and the system accumulates kinetic
energy without bound. This is true for wheeled vehicles; when ignoring energy limit and other
drag or resistance, a car can keep accelerating. On the other hand, legged animals use their limbs
to move, through intermittent contacts with the substrate. The motion of the legs is restricted to a
finite length range. It is not immediately clear what is the governing relationship between friction,
actuation, and finite body size.

In this chapter, we seek to use a minimalistic model to study how to model legged systems with
slipping under Coulomb friction. Rather than confounding the effects of slipping with those of
intermittent contact, we chose to model the uniaxial motion of a two-mass system in continuous
sliding contact. Our model was inspired by the shuffling gait people sometimes employ on ice
or other slippery surfaces, whereby they shift their weight over one leg, slide the other leg to a
new position, and repeat, alternating the weight-bearing leg. Alternatively, this can be thought
of as an inchworm gait on a slippery surface. A similar two-mass model without mass shifting
was used in [33] to show locomotion is possible when friction forces on two bodies and the
contraction-extension phases are both asymmetric.

Our model, scaled to parameters representative of single kilogram robots and animals, exhibits
nearly linear (R2 > 0.96) relationships between actuator force and average speed over its entire
range of parameters, and in bothmotion regimes, it supports. This suggests that evenwhen frictional
contacts are well modeled by the classical Coulomb friction model [34, 35], the average relationship
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between actuation force and body velocity can look remarkably similar to viscous friction [36].
We demonstrate this result with an overly simplistic model of locomotion with slipping, which
is simple enough to allow us to analyze its solutions exhaustively. We also compare this model
with a slightly more elaborate and physically plausible model, the results of which we only study
numerically.

We begin by describing and motivating our sliding locomotion model in §2.2. In §2.3 we
present the results of simulating the model over a range of parameters surrounding those applicable
to small robots and animals. In §2.4 we solve for average force and velocity in closed form.
The instantaneous mass-swapping of §2.2 is somewhat physically implausible, and so in §2.5 we
present the results from a more physical model of mass swapping, which we analyze numerically.
We follow by discussing these results in §2.6, where we hazard some guesses as to the cause and
broader implications of having a force-velocity rather than a force-acceleration relationship.

2.2 Sliding Locomotion Model

2.2.1 Mechanical Model

Consider two point masses with an actuator of finite length between them (see figure 2.1) operating
at constant force pushing them apart. Each of these masses represents a single leg, with the
magnitude of the mass representing the loading on that leg. When the distance between two masses
reaches a predetermined maximum, a perfectly plastic collision occurs. The positions of the two
masses are swapped, representing a reversal of the leg loading, and the force flips sign to pull the
masses together. Once they reach a minimal distance, they collide a plastic collision again, swap

Figure 2.1: Schematic representation of the mechanical model. M and m are the larger and smaller
point masses respectively, with y and x their positions. The friction forces acting on the point
masses are fm, fM . Ft is actuator force, which is positive when pushing the masses apart, and
negative when pulling them together. g is gravitational acceleration.
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positions, the direction of force switches, and the cycle repeats. (A discussion of a more physical
model of mass-swapping can be found in §2.5.)

The equation of motion of the system from Newton’s law is:

m Üx = Ft sgn(x − y) − fm (2.1)

M Üy = −Ft sgn(x − y) − fM (2.2)

We assume the Coulomb friction model for the contact forces [37]. In the Coulomb friction
model, the friction force is proportional to the normal load when velocity is not 0. When velocity
is 0, the friction force can take any value between 0 and a static friction force proportional to the
normal load.

This can be modeled using equations below:

f =

µNsgn(v) slipping (dynamic friction)

Fe non-slip; (static friction); |Fe | < µsN;
(2.3)

where µ is dynamic friction coefficient, µs is static friction coefficient, Fe is external force, and N is
normal force. Both masses are taken as point mass with state vector [x, Ûx]T and [y, Ûy]T respectively.
The distance between the masses is bounded above and below by Lmax and Lmin respectively. When
either distance limit is reached, it is enforced by a perfectly plastic collision which renders equal
the velocity of both masses:

Ûx+ = Ûy+ =
m Ûx− + M Ûy−

m + M
(2.4)

Immediately after the masses collide, they instantaneously swap positions, i.e. the pre-collision
state [x, Ûx−, y, Ûy−]T gives rise to a post-collision state [y, Ûy+, x, Ûx+]T

This last model assumption factors out the details of exactly how the moving system redistributes
load over its legs, andmerely captures the notion that the leg load alternates between the two possible
configurations.

2.2.2 Dynamic Analysis

Holding actuation force at constant magnitude, alternately extending and contracting the actuator
through its full stroke length, the system seems to approach a periodic motion and asymptote to
a limiting average speed (see figure 2.2) in the entire parameter range we explored. Although the
system is easy to define in terms of the states of the point masses, it is easier to analyze in terms of
the Center of Mass (CoM) position c := (mx+My)/(m+M) and the position difference d := y− x.
In these coordinates it is evident that the actuator does no work on c – it is an “internal force” – and
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Figure 2.2: Position of m, M , and the center of mass vs. time in an example simulation. Parameter
choices followed §2.3. Force Ft = 45sgn(x − y) N; dynamic friction coefficient was µ = 1. Figure
shows positions of m (dashed line), M (solid line), and center of mass (mx +My)/(m+M) (dotted
line) over time. The graph at left-upper corner shows an enlarged cycle starting at y − x = Lmin.
The accelerations of m and M are always opposite to each other. They accelerate until the length
constraint at Lmin and Lmax stops them and they instantly swap their positions. The position swap
causes a jump of the center of mass. Note that for the first two cycles of motion the CoM is
noticeably changing average speed, which quickly asymptotes to its limiting value.

all work on the CoM is done by the friction forces. Since we are using the Coulomb friction model,
once the actuator force is sufficient to get the smaller mass m out of static friction, the actuator will
successfully expand and contract to its full extent at any CoM speed. If the motion approaches a
limit cycle in [d, Ûd]T, the average speed of the CoM over a long simulation will converge to the
speed at the limit cycle, vss of (2.5).

vss :=
Distance traveled in one steady cycle

Duration of one steady cycle
(2.5)

For our numerical simulations, we ran the simulations until relative difference of averaged vss

between two consecutive cycles decreased to within 10−4.

2.3 Numerical Simulation Results

We chose simulation parameters appropriate for a small robot ormid-size vertebrate such as a rabbit.
We took the masses to be m = 1 kg, M = 1.5 kg. The mass ratio M/m specifies the instantaneous
center of mass displacement when masses are swapped, which becomes 0.2d for these values.
The minimum and maximum distance between two masses were taken to be Lmin = 0.02m, and
Lmax = 0.5m respectively. The range of dynamic friction coefficient µ we explored was 0.05 to 1.
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Figure 2.3: Constant force v.s. steady state velocity under Coulomb friction model, µ = 1 and
µ = 0.2. We plotted simulation results for Regime I where F < µMg, with µ = 1 (black dots)
and with µ = 0.2 (grey dots). These are close to their regression lines µ = 1 (dashed black line)
R2 = 0.99 and µ = 0.2 (dashed grey line) R2 = 0.99. For Regime II where F > µMg, we plotted
simulations for µ = 1 (black dots) and µ = 0.2 (grey dots). Each of these follows a nearly linear
relationship different from that of the other force regime (µ = 1 dashed black regression R2 = 1.0,
µ = 0.2 dashed grey regression R2 = 0.99). We also plotted the exact solution as calculated in §2.4
when µ = 1 (black solid line), µ = 0.2 (grey solid line) for the entire motion regime. Our notable
result is that in each regime, the F to vss relationship can be described fairly accurately as linear, as
demonstrated by the high values of regression R2. Note that intermediate values of µ interpolate
those plotted, and were omitted for clarity.

The range of input force F was set from µmg – the minimal force needed to escape static friction –
up to 5Mg – enough to produce a greater than 2g acceleration on the CoM.

In our simulation, we fix the actuator force to be a constant force with periodically changing
directions, i.e. Ft = F sgn(x − y), where F is a constant input force, and x, y are positions of m

and M respectively1. Without loss of generality, we start at d = Lmin > 0 and thus m is to the right
of M , and the masses are pushed apart. Because the masses swap their positions, the actuator is
always either pushing or pulling the smaller mass m to right (positive direction), and pushing or

1 Attempting to allow the force to depend on d always lead to the highest vss with the force identically maximal, so
this was added as an assumption.
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pulling the larger mass M to the left (negative direction). Mass M has better traction than m by
having larger friction forces, due to its larger normal force on the substrate. Thus, the net friction
force generated in this way can move the system in the positive direction.

2.3.1 Two motion regimes arise

Wefixed all of the parameters and only change the absolute value of actuator force, F, examining the
changes induced in vss. Two fundamentally differentmotion regimes arose. Regime I when actuator
force is only large enough to take small mass m out of its static friction cone, i.e. fm < F ≤ fM ,
leading to the small mass moving against a static support offered by the large mass. Regime II
when actuator force is large enough to move both small and large masses F > fM , leading to the
large mass sliding in the opposite direction of the small mass.

For each input actuator force F, we observed a corresponding final steady state velocity vss

of the system. The figure 2.3 shows the relationship for µ = 1 and µ = 0.2, although a similar
qualitative relationship exists for the entire range we explored 0.05 ≤ µ ≤ 1.

For Regime II we explored forces in the range [µMg, 5Mg], which represent a reasonable range
of mass specific actuator force density for animals[38, 39, 40], electrically powered autonomous
robots, and internal combustion engines[41, 42].

Writing vss = kF + b, we also explored the relationship of k and b with µ following parameter
choices in §2.3. The quadratic regression equation for k vs. µ is: k = −1.9 · 10−3µ2 + 11 · 10−3,
with R2 = 0.99. The linear regression equation for b vs. µ is b = 0.24µ + 0.46, with R2 = 0.99.

2.3.1.1 Governing relationship

Combining our numerical results, we found that the averaged steady state velocity versus actuator
force model for the system Regime II can be empirically described by a single governing equation
correct for actuator forces less than 5Mg, and 0.05 ≤ µ ≤ 1.

Since the model we used has physical units, to obtain a more principled governing relationship
we first switched to non-dimensional form. Let F := f̃ µMg and vss := ṽ

√
Lg, where f̃ is the

non-dimensional force, in units of friction for the large mass, and ṽ is the non-dimensional velocity,
in units of the velocity reached in free-fall over the maximal length of the actuator.

The non-dimensional model is shown in (2.6), to two digits precision, and was constructed for
f̃ between 1 and 5/µ.

ṽ = 0.073µ
(
1 − 0.178µ2

)
f̃ + 0.11µ + 0.20 (2.6)
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2.4 Exact solution

Assuming the system will achieve a steady state averaged velocity vss, we solved a closed form
solution for vss versus µ and F. We start from the dynamic motion equations (2.1), (2.2), and recall
d := x − y. The equations become:

m Üx = F sgn(d) − µmg sgn( Ûx)

M Üy = −F sgn(d) − µMg sgn( Ûy)

Suppose, as we empirically observed, that each cycle starts from d = Lmin, and account for the
fact that this state appears immediately after a plastic collision, making the velocities of m and M

equal. We obtain Ûx0 = Ûy0 = Ûc0, where Ûc0 is the velocity of CoM. We define, w.l.o.g., that this
velocity’s direction is positive. Due to the negative force on the large mass M , it first decelerates
until its velocity goes to zero, and then accelerates towards negative the direction, or remains zero
if F is not large enough to push it out of static friction. The motion is shown schematically in
figure 2.4.

m Üx = F − µmg (2.7)

Figure 2.4: Schematic of velocities within a cycle of Regime II motion. We plotted the velocity
of m (dashed line), M (solid line) and CoM (dotted line) in one velocity cycle. The initial value
of these velocities are Ûx0 = Ûy0 = Ûc0. t1 is the time it takes for the velocity of M starting from Ûy0
to decrease to 0. The velocity of the CoM at t1 is Ûc1. t2 is the remaining time needed for distance
between m and M to achieve maximum length bound. Üx is the constant acceleration of m, and
Üy1, Üc1, Üy2, Üc2 are acceleration of M and CoM during time period t1, t2. At the end of the cycle,
velocities are reset by a second plastic collision (represented by two arrows).
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M Üy =

−F − µMg Ûy > 0

min(−F + µMg, 0) Ûy ≤ 0
(2.8)

The equation of motion for the CoM of the system in the first stage of figure 2.4 is Üc1 = −µg. The
time spent at first stage can be calculated from the time needed for M to achieve zero velocity, t1 =

T1( Ûc0) = Ûc0/(F/M + µg). When Ûy = 0, the center of mass velocity becomes: Ûc1 = Ûc0F/(F + µMg).
Time t2 is the time needed for the distance between m and M to reach the maximum length

bound. It can be determined by a second order equation (2.9), and the result of t2 = T2( Ûc0) is a
function of initial CoM velocity.

Lmax − Lmin −
1
2
( Üx − Üy1)t2

1 = Ûxt1t2 + ( Üx − Üy2)t2
2 (2.9)

Here Üy1 is the acceleration of M when Ûy > 0, and Üy2 is the acceleration of M when Ûy < 0 as shown
in figure 2.4 (the slope of solid line). They are calculated from (2.8).

Thus, the update rule for CoM velocity after each velocity cycle is:

Ûc2 =
F

F + µMg
Ûc0 +

M − m
M + m

µg + T2( Ûc0) (2.10)

By solving for the fixed point of this equation, we can get Ûc0 as a function of F and µ, ÛC0(F, µ).
The averaged steady state CoM velocity vss can be calculated by (2.11). The second term is the
CoM position shift due to instantaneous swaps of two masses at Lmin and Lmax .

Vss(F, µ) =
2F + µMg

2(F + µMg)
ÛC0 +

M − m
m + M

Lmax − Lmin

2(T1 + T2)
(2.11)

The symbolic calculations were done in Mathematica.

2.4.1 Comparison with governing relationship

We compared our empirically derived governing relationship of §2.3.1.1 with the analytical solution
of §2.4. The relative error of the model is below 5% except for small forces and low friction, where
it grows to 11%.

Our results are best summarized by the examples in figure 2.3, showing vss vs. F regressions,
numerical model simulation results, and exact algebraic results for both motion regimes. One
puzzling observation regarding this figure is the separation between exact and numerical curves.
Decreasing integrator time-steps, and requiring more stringent convergence from the numerical
simulations does bring these curves closer together— an observation that suggests that convergence
to the limit cycle may be quite slow. However, these differences still remain somewhat puzzling.
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Figure 2.5: Schematic representation of the mechanical model with a swapping mechanism. x, y, z
represent the position of each point mass.

2.5 Realistic swapping yields similar results

To make the model more realistic in mimicking an inchworm or a legged robot/animal shuffling,
we modeled a mechanistic means for transferring the mass difference ∆m := M − m between the
two point masses of the previous model. To do so we postulated an internal force pushing ∆m from
one side to the other side, while the distance between the two end-point masses is held constant.
This is illustrated in figure 2.5. When the ∆m mass reaches its destination it collides in a plastic
collision, and all three masses have zero relative velocity post-collision.

The equation of motion remains the same as (2.1) and (2.2) when the system is slipping and
∆m is fixed on one of m. As our notation convention, we take the mass m with ∆m as M and
write its position as y. We denote the other m mass by x, and when ∆m is in motion, it is always
moving from x to y. From here on we will refer to the two end-point masses, while they are held
at constant distance, as the m − m system. The relative movement between ∆m and m − m system
can be described as follows. Taking m − m as one object, its center is c := (x + y)/2. Supposing a
force of F∆m is used to push ∆m (whose position is denoted by z) against m − m, the equations of
motion for the exchange of ∆m are:

2m Üc =


0 if Ûc = 0 and |F∆m | < µg(2m + ∆m)

−F∆m − sgn( Ûc)µg(2m + ∆m) else
∆mÜz = F∆m

2.5.1 Numerical simulation

Following the same choice of parameters in §2.3, we use a non-dimensional parameter α to give
F∆m := αF sgn(z − x) as the force pushing ∆m from M to m, where F the actuation force between
m and M . In figure 2.6, we compare the cycle behaviour between instant swap model and constant
swapping force models with α = 1, 5, 10, in both one mass moving and two mass moving regimes.
The models are still asymptotic to a limiting periodic cycle, which vary slightly with α.
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2.5.2 Four motion regimes arise

With the parameters selected in §2.3, we found four motion regimes arising from two independent
conditions. The first condition was discussed in §2.3.1, namely comparing actuation force F with
µmg and µMg. It leads to either one or two masses in dynamic friction during the times x − y

changes. The second condition was comparing the total friction force of the system µ(2m + ∆m)g

with swapping force F∆m. When moving sufficiently slowly, if |F∆m | ≤ µg(2m + ∆m), the m − m

system first slowed down to a stand-still and stayed in that position until the end of ∆m motion. If
|F∆m | > µg(2m+∆m), the reaction force for moving ∆m was large enough to pull the m−m system
out of friction cone during swapping and pushed it backwards. For example, in figure 2.6, when
α = 1, m−m slowed down and stopped during ∆m swapping. When α = 5, 10, m−m slowed down
and was eventually accelerating towards the negative direction during ∆m swapping.

In figure 2.7 we plotted the relationships for µ = 0.1, 0.6, 1.0, and swapping force coefficients
α = 1, 5, 10. The figure shows that a new “swap with stop” motion regime appears. Outside this
new motion regime, the F to v relationship follows the same qualitatively nearly linear relationship
that it did for the instantaneous swap model.

Time
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Instant swap α= 1 α= 5 α= 10
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Figure 2.6: Position of m, M and ∆m vs. time within a cycle. We plotted these for the one mass
moving regime (top, F = 12N) and two masses moving regime (bottom F = 20N). The dynamic
friction coefficient was µ = 1. Figure shows the position of m (dashed line, x), M (solid line, y)
and ∆m (dotted line, z) plotted with time and position starting at the Lmin collision. We plotted
four cycles, illustrating the rapid convergence to a limit cycle. To facilitate comparison, we plotted
all conditions in each subplot with one condition highlighted (darker, with markers) and the others
rendered de-emphasized (grey). We compared the instantaneous swap model (left column) and
values of α = 1, 5, 10 (second to fourth columns). Note that m − m keeps its position during ∆m
swapping when α = 1, whereas it moves backwards when α = 5, 10.
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Figure 2.7: Actuation force vs. steady state velocity under Coulomb friction model with constant
swapping forces. We plotted the simulation results for friction coefficient µ = 1 (black), µ = 0.6
(thicker grey), and µ = 1.0 (grey). For each µ, we plotted swapping forces α = 1 (· marker), α = 5
(+ marker), α = 10 (? marker), and instant swap (dashed lines). We also plotted the new “stop
during swap” motion regimes (larger round markers with dotted lines). All models are linear to an
R2 > 0.99 (single mass moving regime) and R2 > 0.96 (two masses moving regime).
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2.6 Discussion

Our simulations and our analytic studies of the models we described brought us to a surprising con-
clusion: we conclude that the averaged velocity versus input force in Coulomb friction dominated
motion is a linear relationship, at least for the parameter range governing small robots and animals.
We observed this qualitative relationship to hold both in a simplified “instant-swap” model (§2.2)
and a more physical weight redistribution model (§2.5).

The very existence of a functional relationship between force and velocity in a Coulomb friction
governed system should come as a surprise, because once static friction is compensated for the
Coulomb friction model predicts a speed-independent dynamic friction. Thus, for example, in an
idealized wheeled system without air resistance or lubricant viscosity modeled, no upper limit on
speed exists. Once the drive motor is strong enough to overcome internal friction, the wheeled
system has a constant acceleration rather than a limiting velocity.

The appearance of a viscosity-like relationship out of simple dry friction interactions is some-
what reminiscent of the appearance of viscosity in statistical mechanics, where thermodynamic
equilibrium and the associated viscous dissipation appear after only a small number of particle
collisions.

It may also be that our observation can be understood in light of a fundamental limit of friction-
based locomotion: the CoM can never move faster relative to the ground than the body can change
shape. If it did, all points of contact would be slipping in the direction of motion and therefore
producing braking forces. Broadly speaking, the speed of shape change is associated with a kinetic
energy which must be developed by an actuation force acting over the length of the body. The
relationship mv2 ∝ F · l suggests that v should scale as F0.5 — which is not whoely incompatible
with the lower limit of friction µ = 0.1 that we explored. However, if instead we assumed that the
duration of force action is bounded, then ∆(mv) ∝ F∆t, and the shape change speed is linear with
F. As both these limitations play a role in practice, a close to linear relationship may be inevitable
regardless of the specifics of the friction model.
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CHAPTER 3

Multi-legged Locomotion Model

3.1 Introduction

Multi-legged locomotion has achieved great success with its mobility and stability. Multi-legged
robots have the potential to navigate diverse and challenging terrains that are difficult for wheeled
or tracked robots. By emulating the legged locomotion of animals, these robots can traverse uneven
surfaces, climb stairs, overcome obstacles, and explore environments that are inaccessible to other
types of robots. They can achieve increased stability and redundancy in their locomotion, using
multiple contacts at the same time. Comparing to bipedal robots, for example Atlas (28 DoF,
6DoF per leg), and quadrupedal robots, MIT cheetah and Boston Dynamics Spot (12 DoF, 3 DoF
per leg), multi-legged robots could achieve similar maneuverability and stability using even less
actuators. For example, the family of RHex robots [6], RoACH robots [9], Sprawl robots [10],
and BigAnt[8] equip with 1DoF or even less per leg. Different from bipedal locomotion, where
slipping could induce falling over, and require postural control strategies for slip avoidance [43],
some multi-legged locomotion, however, exhibit slipping in a significant portion of motion [44].

How to model multi-legged systems efficiently is still a challenging question due to the complex-
ity of interactions between the body, legs and the substrate. The possible interactions among the
groups of legs with the ground could grow combinatorially. When considering the possibility of
slipping in multi-legged locomotion, the complexity of modeling increases further. Previous work
used template, the simplest model with the least number of variables and parameters, to trim down
the complexity and analyze body motion [45]. For example, spring-loaded inverted pendulum
(SLIP) and lateral leg spring (LLS) are widely used a template to model the sagittal and horizontal
motion of legged systems. However, they do not deal with the interaction among multiple legs nor
slipping.

As the number of legs increases and the relative size of each leg becomes smaller, the locomotion
of a multi-legged robot converges to that of a slithering of snake robot. Slithering can be understood
using geometric mechanics, and is “principally kinematic” in the sense of admitting equations of
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motion that do not require momentum or velocity states. The equations of motion can be expressed
as a “local connection”: a linear relationship between the rate of shape change Ûr and the body
velocity vb: vb = A(r) Ûr (see e.g. [26, 27]). It is natural to ask how this transition to momentum-free
equations of motion occurs with increasing numbers of legs, and whether we can obtain a model
for multi-legged locomotion without momentum.

Previous observation showed that with three points of contact, for example the motion of
ants and hexapod BigAnt, momentum can be removed and the motion can be described through
connection [30]. Previous work presented a data-driven method to efficiently construct this local
connection model for systems with no momentum [28]. An extension of the no-momentum case to
the quickly decaying momentum case which appears in high friction sliding contact was presented
in [29]. Such local connection models are effective for multi-legged animals and robots with and
without slipping, at the predicted level of three or more contacts [30]. Furthermore, by replacing
the Coulomb friction term which is linear in normal force but non-smooth and non-linear in contact
velocity, with a friction ansatz that is bilinear in normal force and contact velocity [8, Chapter 4],
one could easily construct the local connection.

Based on the prior work in extending geometric mechanics to multi-legged locomotion, the body
motion of multi-legged robots – typically hexapods and octopods – is much easier to model than is
often assumed, because despite the complexity of additional contacts and a combinatorial number
of contact states, the ensuing simplification that comes from momentum becoming ignorable more
than compensates. Even if each leg ends in a multi-toed foot, leading to a total of a few dozen
possible contact points, the simulation models remain eminently tractable. In this chapter, we
(1) present a fast algorithm for modeling multi-legged systems, that accurately estimates the body
velocities given the body shape movements, and provides accurate foot contact force estimates. We
validate (2) this model against several multi-legged robot datasets, including one with force-torque
sensors measuring ground contact forces of each foot. We (3) demonstrate that it scales favorably
with the number of legs and admits easy parallelization in comparison with a state-of-the-art
mechanical simulator.

3.1.1 Multi-legged contact modeling

Legged systems generate propulsion forces through contacting with the substrate. Understanding
ground contact forces could help with the studying the mobility, maneuverability and stability.
By analyzing these forces, researchers can develop control algorithms that help robots maintain
stability while navigating uneven terrain or optimizing their performance. Contact estimation
through proprioceptive or external sensing is commonly used to model the kinematic and dynamics
of biepdal [46] and quadrupedal locomotion [47, 48].
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The contact forces are usually unobservable barely frommotion tracking inmulti-legged systems,
and cannot be measured using the commonly used approach of placing a single force plate for the
robot to move over as in [49]. Multi-legged system contacts with more than one point, and every
closed kinematic loop between body and ground can support an internal force that produces no net
body acceleration. A force plate, measuring only the total wrench applied to it, cannot reveal the
interplay of all individual foot contact forces, which may trade off in various ways from step to step.
The authors of [50] measured the individual ground contact forces of RHex by installing each leg
with a 3d force sensor, and developed a control strategy to modulate the difference of normal forces
between fore an hind legs. In-situ Calibration of the force-torque sensors on a hexapod turned out
to be a non-trivial task, and the detailed approach we used in calibration was explained in Chapter
4.

Rigid body contacts are usually modeled through linear or non-linear complementarity problems
withCoulomb friction. However, these problems are usually computationally expensive to solve. To
imporve the computational efficiency, MuJoCo [23] recently played an important role in modeling
and optimizing robotics behaviors. It used soft contact model to relax the contact constraints, and
smooth the interactions, and therefore improve the computation speed.

In the perspective of fluid dynamics, drag is the analogous "contact" forces between body and
flow. At low Reynolds number (when viscous forces are large compared to inertial forces), the net
motion can be computed through a local connection over the shape space [51]. Resistive force
theory successfully modeled movement of animals and robots on dry granular media [52, 53], and
the net motion of a system could be computed by local connection [54].

In this chapter, we tried to bridge multi-legged locomotion governed under Coulomb friction
with geometric mechanics through a special viscous-Coulombfriction assumption.

3.1.2 Motivating example: Coulomb friction and viscous-Coulombfriction

Coulomb friction contacts do not yield a linear relationship between shape-change velocity and
body velocity except for the cases where at least three contacts are in static friction and in general
configuration. Consider the 1-dimensional (1D) case (figure 3.1), where a robot constrained to
move along the x axis without changing pitch angle, is driven by M legs such that each foot is
commanded to move at a potentially different velocity relative to the body vB

i for i = 1, · · · , M .
Further, assume for simplicity that all the feet bear the same normal load N . Denote the friction
coefficient as µ, foot velocity in the world frame as vW

i , and the unknown robot body velocity as vB.

20



Figure 3.1: A 1-dimensional multi-legged example. Consider two or more equal-height legs, with
identical friction properties moving at different horizontal velocities relative to a body constrained
to move only in the horizontal direction. The resulting body velocity under Coulomb friction
with an odd number of legs is the median leg speed; with an even number of legs the answer is
non-unique and any speed between the two median leg speeds will work.

3.1.2.1 Coulomb friction solution is the median

The Coulomb friction acting at each foot is f C
i = −µNsign(vW

i ) = −µNsign(vB + vB
i ). At force

balance, we want to find vB, such that

0 =
M∑

i=1
−µNsign(vB + v

B
i )

Without loss of generality, assume the feet are numbered in a monotone order of foot speed. In
this 1D example force balance is found when half of the feet are slipping in one direction and the
other half are slipping in the opposite direction. If M is odd, assume foot i is moving at the median
speed relative to the body. If vB = −v

B
i , that foot will be in static friction, and the remaining feet

will be in force balance. Other solutions are possible, depending on the size of the gap between
static and dynamic friction, but the median speed foot gives a solution for any plausible choice of
friction coefficients. If M is even, assume that the median speed is between vB

i and vB
i+1. Choosing

vB anywhere in the (open) interval between these velocities will produce force balance. Here
additional solutions are also possible if there is a sufficiently large gap between static and dynamic
friction coefficients, but the median speeds solution will always exist.

3.1.2.2 Viscous-Coulomb friction solution is linear

Our viscous-Coulomb friction ansatz modifies the contact force equations to be linear in the contact
velocity vector. In the 1D case, this becomes f vi = −µNvW

i . At force balance,

0 =
M∑

i=1
−µN(vB + v

B
i )
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The immediate solution is vB = −mean(vB
i ) – a unique linear solution which in many cases is quite

close to the median. The linearity of the viscous-Coulomb friction force-balance solution extends
to 2D and full 3D, yielding the local connection.

3.1.2.3 Static friction in 1D is ill-posed

Suppose the systemmoves without any slipping by coordinating the motions of the legs: vB
1 = vB

2 =

· · · = vB
M . The viscous-Coulomb friction model would correctly and robustly estimate the body

velocity vB = −v
B
1 , whereas the Coulomb friction model would be at a singularity with an ill-posed

numerical problem for |vW
i | → 0. Any level of noise in the velocities would change the results.

3.1.2.4 Extending to 2D

In 2D, the Coulomb friction becomes f C
i = µNvW

i /| |v
W
i | |; our viscous-Coulomb friction ansatz is

again f vi = −µNvW
i . In figure 3.2, we show the total force of a four legged robot slipping under

Coulomb or viscous-Coulomb friction. The two friction models produce very similar result when
solving for the body velocity under force-torque balance. However, the Coulomb friction model
produces a force contour with discontinuities, whereas, the viscous-Coulomb model produces a
simple quadratic force contour.
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Figure 3.2: Visualization of a 2D case. Consider a 4-legged robot (right plot) whose feet move
relative to the bodywith known velocities (arrows, right plot). We plotted contours of themagnitude
of the total force on the body under the assumption that the body is moving at body velocity (Vx,Vy)

without rotating, both under Coulomb friction (top left) and our viscous-Coulomb ansatz (bottom
left). For Coulomb friction, this function has point discontinuities at those velocities that put any of
the feet into static friction (colored dots, colormatched across sub-figures). For each frictionmodel,
we also indicated the body velocity at force-moment balance (red stars). The plots demonstrate that
the viscous-Coulomb ansatz gives rise to a simple quadratic, whereas Coulomb friction produces
an almost everywhere smooth function with point discontinuities, yet both produce very similar
solutions.
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3.2 Model Overview

We propose an algorithm to estimate world frame body velocity from its body shape and shape-
changing velocity at the current time frame. Our algorithm takes as inputs: (1) the positions q j

and velocities Ûq j of the robot’s feet in the body frame; (2) the spring stiffness k j of each leg; (3) the
friction coefficients µ j and friction anisotropy wxy, j . As outputs it provides: (1) body height pz,0,
pitch β, and roll α slopes; (2) body velocities Ûpxy,0 and Ûθ; (3) 3D forces at the feet Fj .

The model assumes the robot’s (1) pitch and roll angles are small; (2) pitch, roll, and height vary
slowly, so their derivatives can be assumed to be zero; (3) the system’s inertia is irrelevant since
the system is always at force-moment balance; (4) the legs are short and the ground is horizontal at
the point of contact of each foot. A summary of the algorithm is shown in algorithm 1. The Python
code implementation is open source together with experimental dataset in [31].

Algorithm 1: Pseudo-Code of §3.3
Inputs: 3D foot positions {q j}, velocities { Ûqxy, j}

Parameters (constants): mass M , stiffnesses {k j}, friction coefficients {µ j},
anisotropies {wxy, j}

Define function: N(s) set of legs on ground at state s, N(s) := {k |pz,k(s) < 0}, with
pz,k(s) from eqn. (3.6)

Solve for force-balance z∗ using M , {k j}, and {q j} according to §3.3.1; s0 ← (0, 0, z∗);
Loop

if |N(s0)| < 3, i.e. 1 or 2 feet on ground then
Apply §3.3.3: rotate the body as dictated by the gravity using eqn. (3.11),
eqn. (3.12), giving s∗0;

else
Solve s∗0 using force and moment balance equations: (3.9);
if N(s∗0) = N(s0), i.e. s∗0 has same contacts as s0 then break from loop;
Apply §3.3.2: let s1 be the first point on the ray from s0 to s∗0 at which contact legs
change; s∗0 ← s1;

end
Update current state s0 ← s∗0;

end
Compute normal (vertical) forces Fz,k(s∗0) with eqn. (3.7);
Apply §3.4.2 at state s∗0 to solve Ûpxy,0, Ûθ from eqns. (3.16), (3.18), using {qxy,k}, { Ûqxy,k},
{µk}, and {wxy,k};

also computed {pxy,k}, { Ûpxy,k}, and {Fxy,k} the tangent (horizontal) forces of eqn. (3.15)

RETURN body state s∗0 = (p0, θ, αx, αy), body velocities Ûpxy,0, Ûθ, and 3D forces at feet
{Fk};
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The algorithm is composed of two steps: (A) find which feet are in contact with the ground
and estimate their gravity-induced loading using a spring support model; (B) use force and torque
balance to construct the linear local connection model, invert it, and use that to estimate the planar
body velocity.

The inputs to the spring support model (A) are: (1) the 3D positions of the feet q j in the body
frame; (2) the spring stiffness k j of each leg. The outputs of the spring support model are: (1) body
height pz,0, pitch β, and roll α slopes; (2) gravity-induced loading on each foot Fz, j and, implicit in
that, which feet are in contact with the ground.

Once the contacting feet are known, we solve for force and moment equilibrium using a viscous-
Coulomb friction ansatz which is bi-linear in Fz, j and the foot sliding velocities in the world frame
Ûpxy, j , providing an local connection model (B). The inputs to the connection model are: (1)the 2D
positions qxy, j and velocities Ûqxy, j of the feet in the body frame; (2) the friction coefficients µ j and
friction anisotropy wxy, j ; (3) the gravity induced loading Fz, j computed in (A). The outputs of this
local connection model are body velocities: (1) body velocities pxy,0 and Ûθ; (2) 2D traction forces
at the feet Fxy, j .

Suppose we are given a system with N legs (or other contacts), indexed by j = 1 . . . N . The
time-varying foot positions in the body frame of reference are given by q j ∈ R

3, j = 1 . . . N . We
assume the transformation from body frame to world frame is given by a time-varying rigid body
transformation Ω ∈ SE(3). The world frame foot positions p j is

p j := Ωq j (3.1)

Let p0 represent the origin of the body frame at the CoM. The rigid body transformation written
in homogeneous transformation representation is:

Ω =

[
R p0

0 1

]
, R ∈ SO(3)

Using Euler angle with roll (α) pitch (β) yaw (θ) representation,

R = Rz(θ)Ry(β)Rx(α) =


cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1




cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)



1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)


We assume a simplified form of R′, where pitch and roll angles are small, so they could be

approximated by their first order Taylor expansion sin(α) ≈ α, cos(α) ≈ 1 and sin(β) ≈ β, cos(β) ≈
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1. The first order approximation of R becomes:

R′ =


cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1




1 0 β

0 1 0
−β 0 β



1 0 0
0 1 −α

0 α 1


=


cos(θ) − sin(θ) α sin(θ) + β cos(θ)
sin(θ) cos(θ) −α cos(θ) + β sin(θ)
−β α 1

 (3.2)

We further assume the rigid body motion is only time-varying in the horizontal plane, i.e. α
β and pz,0 vary so slowly that their derivatives can be approximated by zeros, Ûα = Ûβ = Ûpz,0 = 0.
Furthermore, we assume the robot body is low to the ground, so we could ignore the projection
from body z-axis to the horizontal plane in world frame. Specifically, Ω′ is:

Ω
′ : =


cos(θ) − sin(θ) 0 px,0

sin(θ) cos(θ) 0 py,0

−β α 1 pz,0

0 0 0 1


(3.3)

Because of these simplifying assumptions, we can decouple the movements in the xy plane, and
the physical units of vertical and horizontal length are decoupled. We use the planar rotation
Rθ :=

[ cos θ − sin θ
sin θ cos θ

]
, and S :=

[ 0 −1
1 0

]
, together with the fact ÛRθ = ÛθSRθ = ÛθRθS, to represent foot

position and velocity in world frame xy plane with:

pxy, j = Rθqxy, j + pxy,0 (3.4)

Ûpxy, j = ÛRθqxy, j + Rθ Ûqxy, j + Ûpxy,0 = Rθ

(
ÛθRθ
−1SRθqxy, j + Ûqxy, j

)
+ Ûpxy,0 (3.5)

The decoupled foot position in world frame vertical z−axis is:

pz, j = −βqx, j + αqy, j + qz, j + pz,0 (3.6)

3.3 Spring Support Model : finding the contacts

In this section, we show how to decouple the roll, pitch, and vertical (z-axis) motion of the robot,
determine which legs are in contact with the ground, and what supporting force each leg generates.
We model the robot as a “body plane”, with each leg assumed to be a vertical spring attached to
this plane. We assume the system is at force and moment balance about its center, i.e. the origin of
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Figure 3.3: Visualization of the search for contact state in a 2D “robot”. We indicated the height
and pitch (pz,0,β) states searched (labels 0-3 of (a)), and visualized the pose and contacts of the
“robot” in each of these states (corresponding labels of plots in (b)). Each “robot” leg (zigzag lines
in (b)) defines a corresponding co-dimension 1 plane (line here) in (z0,β) at which it contacts the
ground (colored lines in (a) with color same as the leg in (b), (c)). At a pz,0 above the plane, the leg
is in the air; below it, the leg will be in contact and generate normal forces. With each state being
searched (number label in (a)), there is a closed-form solution of the force equilibrium, which we
connect to that state with a line interval (black in (a)). If the equilibrium lies in the same contact
state the algorithm terminates (star; step 3). Otherwise, the portion of the line segment in another
contact state is counter-factual (black dashed in (a)). Instead, we switch to the new contact state
and solve it again. Each such transition between contact states lies on a plane corresponding to the
leg that made contact (black dot in (a); circled leg in (b)).

the robot frame. A simplified version of this model, without accounting for roll and pitch, can be
found in [8]. A similar spring-leg model was used to study legged animals and robots in [55] and
later in [14], but they did not specify how to determine which legs are in contact.

We used a 2D “robot” in xz-plane to visually illustrate our search algorithm in figure 3.3. In this
2D case, the algorithm searches for robot height and pitch using foot position in x, z coordinates.
The 3D model, derived with details in this section, extends the contact switching lines in 2D
searching space to planes in 3D, and its visualization can be found in figure 3.4.

Consider a roll, pitch and height state s = (α, β, pz,0). From (3.1), we have

pz, j(s) := −βqx, j + αqy, j + qz, j + pz,0

Taking 0 to be the ground level, and up being the positive z-axis direction, legs with pz, j < 0
are in contact with the ground. Assuming the normal supporting force Fz, j(s) is linearly dependent
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on pz, j , we define the individual leg normal force and the resulting planar moment function by,

Fz, j(s) :=


−K j pz, j(s) if pz, j(s) < 0

0 otherwise

Mx, j(s) := −qy, j Fz, j(s) My, j(s) := qx, j Fz, j(s), (3.7)

and we denote the total force and moment by,

Fz(s) =
N∑

i=1
Fz, j(s), Mx(s) =

N∑
i=1

Mx, j(s),

My(s) =
N∑

i=1
My, j(s). (3.8)

3.3.1 Finding an initial z∗

Without loss of generality, we number pz, j in non-increasing order. When α = β = 0, the total
normal force at height z such that pz,Nk

≤ −z < pz,Nk+1 is Fz([0, 0, z]) =
∑Nk

j=1 K j(z + pz, j). We scan
values of z, z := −pz,Nk

,starting with Nk = 1, where only the lowest foot is in contact. We increase
Nk until Fz([0, 0,−pz,Nk

]) ≤ Mg < Fz(0, 0,−pz,Nk+1), and then linearly solve using the slope KNk+1

to find z∗ such that force balance is achieved. For that z∗, legs k = 1 . . . Nk are in contact with the
ground. Throughout this chapter, we use the index k to vary only over legs that in contact with the
ground based on this criterion, and by Fz,k the normal force of those legs.

3.3.2 Solving for state

Next, we solve for the full state, s, containing the small pitch and roll angles, and the body height,
maintaining vertical force balance and moment balance of the moments generated by the normal
forces, i.e. Fz − Mg = Mx = My = 0. We start with the initial condition s0 = (0, 0, z∗), with
Fz = Mg. Taking α,β, pz,0 as unknowns and holding the legs in contact constant, i.e. assuming
the change in state s does not generate or break contacts, these values are a solution s∗0 for a
3-dimensional linear system. When there are three or more legs in contact, the linear system to
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solve for s∗0 at normal force and planar moment balance is:[ ∑Nk

k=1 Fz,k∑Nk

k=1 Mxy,k

]
=

[
−Mg

0

]
(3.9)

Nk∑
k=1


−Kk qx,k β + Kk qy,kα + Kk pz,0 + Kk qz,k

Kk qx,k qy,k β − Kk q2
y,kα − Kk qy,k pz,0 − Kk qy,k qz,k

−Kk q2
x,k β + Kk qx,k qy,kα + Kk qx,k pz,0 + Kk qx,k qz,k

 =

−Mg

0
0


Nk∑

k=1


−Kk qx,k Kk qy,k Kk

−Kk qx,k qy,k Kk q2
y,k −Kk qy,k

−Kk q2
x,k Kk qx,k qy,k Kk qx,k




β

α

pz,0

 =

−Mg −

∑Nk

k=1 Kk qz,k∑Nk

k=1 Kk qy,k qz,k

−
∑Nk

k=1 Kk qx,k qz,k


We check whether the legs in contact at s∗0, the solution to the above 3-dimensional linear system,

are the same as in the initial condition s0; if so, then s∗0 is the result of our model. If not, then
we search along the line segment starting at s0 and ending at s∗0 for the first change in contacts,
which must therefore occur on a plane describing the contact condition for the first leg which would
change contact state going along this line segment. This transition point is taken as s1, and the
process repeats for the new legs in contact. Because contact forces are zero on the corresponding
contact condition plane, Fz, Mx , My are continuous through the change in contacting legs.

In general, let the initial state be s0 = [α0, β0, z0], and the solution to be s∗0 = [α
∗
0, β
∗
0, z
∗
0]. When

the contact indices are different at the solution s∗0 from the initial condition s0, we search for the
next state s1 along the line segment connecting those two points, s1 = s0 + t(s∗0 − s0), and stop at
the first contact transition surface. The contact transition surface for a leg j is when its pz, j(s1) = 0,
i.e. it touches the ground but has zero compression. The line segment intersects with such surface
when t = t j , where t j is the solution to

pz, j(s1) = −((1 − t j)β0 + t j β
∗
0)qx, j + ((1 − t j)α0 + t jα

∗
0)qy, j + qz, j + (1 − t j)z0 + t j z∗0 = 0

To find the first contact transition, we solve for all intersections t j along the line segment, and take
the one that is the closest to the initial condition:

t = min
j=1···N,tj∈[0,1]

{t j}

= min
j=1···N,tj∈[0,1]

{
β0qx, j − α0qy, j − qz, j − z0

−(β∗0 − β0)qx, j + (α
∗
0 − α0)qy, j + (z∗0 − z0)

}
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Let δs = s∗0 − s0 = [δα, δβ, δpz,0],

t = min
j=1···N,tj∈[0,1]

{
β0qx, j − α0qy, j − qz, j − z0

−δβqx, j + δαqy, j + δz

}
(3.10)

3.3.3 Case of too few contacts

As the search iterates, we may encounter a state where only one or two legs are in contact, and the
linear force-torque balance equation becomes under-determined. When there are fewer than three
legs in contact, the CoM, located at the origin, generates a moment around the contact point(s) and
we tilt the body plane, i.e. change β and α, approximating the rotation this moment would induce
until reaching an angle where an additional leg contacts the ground.

We proceed to describe the tilting directions as if they were rotations with an axis. When only
one leg p1 is in contact, the rotation is in the vertical plane containing the leg and the COM, around
the contact point, while holding the compressed length of the contact leg to be a constant. Let the
change towards next state be δs = [δα, δβ, δpz,0]. It needs to satisfy (1) The compressed length
remains the same: pz,1(s) = pz,1(s+ δs); (2) The CoM remains in the vertical plane passing through
the contacting point p1, its hip (px,1, py,1, 0), and the origin. Therefore, we get the state changing
direction as

δs = t[py,1,−px,1,−p2
y,1 − p2

x,1]. (3.11)

The magnitude of state change t is the minimum amount that results in another contact leg, which
can be solved the similar to eqn. (3.10), with constraint t > 0.

When two legs p1, p2 are in contact, the rotation is around the line connecting their contact
points, and in the direction of the moment, generated by the gravity around this line. Let δx =

px,1 − px,2, δy = py,1 − py,2, c = py,1px,2 − py,2px,1, the direction of the change in states is

δs = −t[δy, δx, c]c/|c |. (3.12)

Again, the magnitude of state change t is the minimum amount that results in another contact leg,
which can be solved the similar to eqn. (3.10), with constraint t > 0.

3.4 Local connection model : modeling the friction

After knowing which legs are in contact and their gravity loading we solve for the body planar
velocity ( Ûpxy,0, Ûθ), obtained by imposing force and moment balance. While classical approaches
suggest Coulomb friction is the correct tribological model for sliding dry contacts, we show that
a viscous-Coulomb ansatz which is bilinear in both loading force and sliding velocity makes for a
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Figure 3.4: Visualization of the search for contact state in a 3D "robot" (labels 0-3, left). We
indicated the searching states as roll, pitch and height (α, β, p0), and visualized the pose and
contacts of the "robot" in each iteration (labels 0-3, right). Each "robot" robot leg (spiral lines,
right) defines a corresponding co-dimension 2 plane in state space (left), at which it contacts the
ground as the same color as plotted on the "robot". The search starts with the initial condition,
where z-axis force balance is satisfied. Then it solves force and moment balance for pitch, roll and
height, where the grey dashed line is the direction of the solution given current contact indices. It
goes along that direction, and stops at the first intersection with a color line, where a leg switches
its contact state. The iteration continues, until a solution is found within its current polygon, i.e.
contact indices do not change. The green circle highlights the legs switching contact at that iteration.
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linear system of equations that leads to a local connection model.

3.4.1 Friction forces

The classical approaches to mechanics suggest that the contact between foot and ground should be
modeled by Coulomb friction (middle term below), defining the use of Hk

Fxy,k = −
Ûpxy,k

‖ Ûpxy,k ‖
µk Fz,k = Hk Ûpxy,k . (3.13)

The choice of Hk = −µk Fz,k/‖ Ûpxy,k ‖ would provide equality, i.e. Coulomb friction, but this
would also produce the well-known problem of singularity at Ûpxy,k = 0. Let vk := ‖ Ûpxy,k ‖ be the
magnitude of the sliding velocity. We explore the tractability of alternative friction models using

Hk := −µk Fz,k
ε + vk

ε + v2
k

. (3.14)

When ε → 0, Hk approaches that of the Coulomb friction model; when ε → ∞, Hk → −µk Fz,k ,
the friction force becomes Fxy,k = −µk Fz,k Ûpxy,k , a combination of viscous and Coulomb friction,
which bilinear in slipping rate and normal force.

We further deconstruct (3.13) in terms of body velocity Ûθ, Ûpx,0, and Ûpy,0 using frame transfor-
mations in (3.5):

Fxy,k = Hk

(
Rθ

[
ÛθRθ
−1SRθqxy,k + Ûqxy,k

]
+ Ûpxy,0

)
=

(
HkSRθqxy,k

)
Ûθ + Hk Ûpxy,0 +

(
HkRθ Ûqxy,k

)
(3.15)

3.4.2 Solving for planar body velocity

At quasi-static equilibrium, the system achieves horizontal plane force and moment balance, i.e.∑
Fx,k =

∑
Fy,k = 0 and

∑
Mz,k = 0. From planar force balance, using (3.15), we obtain two

equations in Ûθ, Ûpx,0, and Ûpy,0

0 =
Nk∑

k=1
Fxy,k =

(
Nk∑

k=1
HkSRθqxy,k

)
Ûθ +

(
Nk∑

k=1
Hk

)
Ûpxy,0 +

(
Nk∑

k=1
HkRθ Ûqxy,k

)
(3.16)

Let p̄xy,k := pxy,k − pxy,0, and by (3.4), we have p̄xy,k = Rθqxy,k . The z-moment exerted by a leg
about the body center is given by:

Mz,k = p̄T
xy,kSFxy,k =

(
p̄T

xy,kSHkSRθqxy,k

)
Ûθ +

(
p̄T

xy,kSHk

)
Ûpxy,0 +

(
p̄T

xy,kSHkRθ Ûqxy,k

)
(3.17)
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Giving the third and final equation:

0 =
Nk∑

k=1
Mz,k =

(
Nk∑

k=1
p̄T

xy,kSHkSRθqxy,k

)
Ûθ +

(
Nk∑

k=1
p̄T

xy,kSHk

)
Ûpxy,0 +

(
Nk∑

k=1
p̄T

xy,kSHkRθ Ûqxy,k

)
(3.18)

In the case when ε →∞, Hk being rate Ûpxy,k independent, the three force and moment balance
equations are linear in the body velocity Ûpxy,0, Ûθ and foot velocity in body frame Ûqxy,k . One could
solve the system by 3d matrix inversion.

3.4.3 Anisotropic friction

In addition to classic Coulomb friction and viscous friction, we consider the possibility that Hk

can be dependent on the system’s configuration (q), modeling forces generated by a wheel, skate,
claw, or otherwise non-isotropic frictional contact. We consider an anisotropic viscous friction
model, where Hk is a symmetric positive semidefinite matrix, Hk(q) := RθHq,k(q)Rθ

−1 taken to be
independent of Ûpxy,k , but (possibly non-linearly) dependent on all elements of q. We assume that
each contact is associated with an enhanced traction direction and associated magnitude, expressed
in body coordinates as a vector wxy,k , defined as:

Hk := −µk Fz,kRθ(I2 + wxy,kw
T
xy,k)Rθ

−1 (3.19)

This changes the circular cross-section of the friction cone into an ellipsoidal one. Even with this
dependence, the equations (3.18) and (3.16) are still linear in the velocities Ûpxy,0, Ûθ and Ûqxy,k . The
planar force exerted by a leg becomes

Fxy,k =
(
RθHq,kSqxy,k

)
Ûθ + RθHq,kRθ

−1 Ûpxy,0 +
(
RθHq,k Ûqxy,k

)
The z−moment exerted by a leg:

Mz,k =
(
p̄T

xy,kSRθHq,kSqxy,k

)
Ûθ +

(
p̄T

xy,kSRθHq,kRθ
−1

)
Ûpxy,0 +

(
p̄T

xy,kSRθHq,k Ûqxy,k

)
=

(
qT

xy,kSHq,kSqxy,k

)
Ûθ +

(
qT

xy,kSHq,kRθ
−1

)
Ûpxy,0 +

(
qT

xy,kSHq,k Ûqxy,k

)
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The linear system to solve for planar force and moment balance is:[ ∑Nk

k=1 Fxy,k∑Nk

k=1 Mz,k

]
= 0

Nk∑
k=1

[
RθHq,kRθ

−1 RθHq,kSqxy,k

qT
xy,kSHq,kRθ

−1 qT
xy,kSHq,kSqxy,k

] [
Ûpxy,0
Ûθ

]
=

Nk∑
k=1

[
RθHq,k Ûqxy,k

qT
xy,kSHq,k Ûqxy,k

]
Nk∑

k=1

[
Hq,k Hq,kSqxy,k

qT
xy,kSHq,k qT

xy,kSHq,kSqxy,k

] [
Rθ
−1 Ûpxy,0
Ûθ

]
=

Nk∑
k=1

[
Hq,k Ûqxy,k

qT
xy,kSHq,k Ûqxy,k

]
Hence, body velocity Ûpxy,0, Ûθ can still be solved linearly with respect to shape changing velocity

Ûqxy,k , giving a general form:[
Rθ
−1 Ûpxy,0
Ûθ

]
=

Nk∑
k=1

(
Nk∑

k=1

[
Hq,k Hq,kSqxy,k

qT
xy,kSHq,k qT

xy,kSHq,kSqxy,k

])−1 [
Hq,k

qT
xy,kSHq,k

]
Ûqxy,k

=:
Nk∑

k=1
Ak(q) Ûqxy,k

= A(q) Ûq (3.20)

where A(q) is constructed by stacking the block of Ak(q) if that foot is contacting, and zeros
otherwise; Ûq is the stack of xy foot velocities in body frame. The A·(q) matrices are the kinematic
term (mechanical connection) in the reconstruction equation of geometric mechanics.

3.5 Experimental validation

To verify our model’s accuracy in practice, we compared our model predictions to ground truth
motion capture measurements of three different multilegged robots. We tested our model on the
BigAnt robot with force-torque sensors measuring the ground contact wrenches. We compare the
robot motion prediction, supporting force prediction, and 2D friction prediction of friction and
Coulomb friction model with the robot executing two different gaits: tripod gait and metachronal
gait. We further verified the motion prediction of the model against Multipod robots with 6-12
spring legs running undulation gait, and a commercial quadruped, Ghost Robotics Spirit with the
company-provided onboard controller.

The marker-based motion capture system used in all experiments consisted of 10 Qualisys
Oqus-310+ cameras, running at 100 fps with QTM 2.17 build 4000 software.
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3.5.1 BigANT with force-torque sensors

3.5.1.1 Robot and measurement setup

To experimentally verify our algorithm, we built a version of the BigANT robot (figure 3.5) with a
6-DoF ATI Gamma force-torque sensor attached to each leg, and used ATI’s wireless F/T sensor
system to communicate themeasurements to the controlling host computer at 100Hz. We calibrated
the sensors to report the contact forces at the feet. This calibration process is documented in the
next chapter of this thesis.

BigANT is a hexpedal robot that has only one motor (Robotis Dynamixel MX106) per leg. The
leg drive-train is a four-bar linkage designed to provide advantageous foot clearance and gearing [8,
Chapter 2.2]. We manufactured the legs from foamcore (Elmer’s Products Inc. 3/8” foam board)
and fiber reinforced tape (3M Scotch #8959) using the “plates and reinforced flexures” (PARF)
technique of [56]. We laser-cut the base plate for the BigANT chassis from a 1/4” ABS plastic
plate (Mc.Master-Carr).

We recorded the robot motions with the motion tracking system. This allowed us to measure
the position and orientation of a robot body frame from markers we attached to the robot’s chassis,
and take the foot positions (q j) relative to that body frame. We obtained foot velocities Ûq j by
differentiating q j using a Savitzky-Golay filter (from scipy.signal.savgol_filter, 2nd
order, with window size 25).

3.5.1.2 Parameter fitting

The remaining inputs to the algorithm were not so easy to determine. Because our model is quasi-
static, the mass plays no direct role, except for its appearance in Mg as the sum total of normal
forces at the feet. The force and moment balance equations remain unchanged regardless of the
units selected for force, and these affect only Mg, the stiffnesses K , and the friction coefficients H.
We therefore chose Mg = 1. Using marker positions, we estimated the robot body’s height, pitch
and roll according to §3.3.

We estimated the spring constants K and two anisotropic friction model coefficients per leg (µk

andwxy,k of eqn. (3.19)) using least-squares minimization of a suitable loss function: weminimized
the L2-norm difference between modeled and measured Fz, distribution among contacting legs,
while adding the variability of K among legs as a regularization penalty. We assumed anisotropic
friction coefficients Hk (see eqn. (3.19)), and inferred the parameters µk and wxy,k for each leg by
minimizing L2-norm error between measured forces and forces calculated from slipping velocity
measured by motion capture. We used scipy.optimize.least_squares for both of these
parameter estimation minimizations.
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In total, we fitted 18 constant model parameters to predict a time series of six 3-dimensional leg
forces and 6-DoF body velocity measurements, thus there is little risk of over-fitting.

3.5.1.3 Coulomb friction solver

We solved for the Coulomb friction force-balance using scipy.optimize.root with the
LM algorithm, hot-starting with the solution of the previous time-step as an initial guess. Because
Coulomb friction is non-smooth, we employed a sequence of smooth approximations to the solution
starting from ε = 10−5 (from eqn. (3.14)), using each solution as an initial condition for another
solution with smaller ε until the relative change in L2-norm of two consecutive solutions differed
less than 10−3 – a threshold less than 5% of the median ground speed measured. In the very
rare cases (0.12% of the BigANT tripod gait dataset) where the Coulomb friction solver failed to
converge, we used the ground truth velocity as the initial condition to obtain the Coulomb friction
solution; this process resolved the remaining cases.

3.5.1.4 BigANT using tripod gait

We first ran the robot through an alternating tripod gait driven with the “Buehler clock” of [6] and
the steering strategy described in [57]. We collected 21 tripod gait trials with the robot running
at 0.1Hz (dataset at [31]), with 4-5 cycles in each trial, and a total of 102082 frames consisting of
84± 1 cycles. The motions of the shaft angles were scheduled to have a slow ground contact phase
and a fast leg reset phase. We show in figure 3.5 a comparison of forces and kinematics modeled by
our multi-contact algorithm with viscous-Coulomb friction, our algorithm with classical Coulomb
friction, and the experimental measurements. We integrated body velocity and showed the robot
trajectory in figure 3.5.

Because our physical modeling assumptions only define contact forces up to a positive scale
factor, we chose a single positive scalar σ(t) for every time step, such that the loss function

σ := arg min
c

∑
k

(c |F̂k | − |Fk |)
2

between the 12 dimensional prediction F̂ and the measured horizontal forces F was minimized.
We reported prediction error statistics in figure 3.7. The run time for viscous-Coulomb friction

was 0.19 (0.18, 0.24) [ms/frame; mean, 1st and 3rd quantile]. When running a single approximation
with the choice of ε = 10−5, the Coulomb friction solver took 3.7 (3.1, 3.9) [same]. For a full set
of iterations to convergence, Coulomb friction took 10.4 (3.25,15.0) [same], about ×54 slower than
our viscous-Coulomb ansatz based simulation.

To test the robustness of our modeling approach, we measured the predictions’ sensitivity to the
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Figure 3.5: A tripod gait trajectory of BigANT. We plotted the trajectory of the BigANT robot
(top row) measured from motion capture (red). We plotted roll, pitch, and yaw angles (second row,
left to right), and body velocity components along the robot axis, across the robot, and rotational
(third row, left to right). We plotted body velocity model residual (fourth row). We used motion
capture data as ground truth for kinematics (wide red lines). The pitch and roll are the same for
both friction models and arise from the spring support model (purple lines), but other outputs are
different for Coulomb friction (blue lines) and our viscous-Coulomb friction (orange lines). We
indicated the body location obtained from motion tracking and by integrating the body velocity
predictions (rectangles in “Robot Trajectory”). We further illustrated the motion by indicating the
location of the robot body frame origin (crosses) at the beginning, halfway point, and end of motion
(same sub-plot).

model parameters – the spring constants K and the anisotropic friction coefficients µk and wxy,k

in eqn. (3.19). We compared the prediction using naive parameters with the fitted parameters as
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Figure 3.6: Individual leg contact forces measurement and prediction for BigANT robot with
tripod gait. We plotted the ground contact force in x, y-axis, and supporting force ratio in z-axis
of each individual leg. We used force torque sensor measurements as ground truth for forces (red).
We plotted the estimated z-axis force ratio (purple), estimated xy-axis friction forces (viscous-
Coulomb: orange, Coulomb friction: blue). (leg names are: HL hind left, ML mid left, FL front
left, HR hind right, MR mid right, FR front right)

described in §3.5.1.2. We used the same spring constants K = 10, and only isotropic friction
coefficients µ = 1 for all legs. We chose the spring constant magnitude so that the model could
lift its feet to perform the appropriate tripod gait. The body velocity prediction root-mean-square
error (RMSE) in the heading direction increased by 14%, in the side direction decreased by 5.5%,
and turning increased by 1.5%. Roll prediction RMSE decreased by 22%, pitch RMSE increased
by 24%. Friction force prediction RMSE among all legs increased by 4% and 3% in heading and
side direction respectively. The normal force prediction RMSE among all legs increased by 2%.

3.5.1.5 BigANT: metachronal gait

Wewanted to further study why the viscous-Coulomb friction model gave similar body velocity and
force predictions to those of the classical Coulomb friction model. Since non-slip motions provide
little insight into the question of which friction force model to use, we developed a metachronal
gait with exacerbated multi-legged slipping events. Each foot contacted the ground for 2/3 of a
cycle leading to four feet, two from each side, being in contact with the ground at any time (see
figure 3.8). To ensure that feet slip, we needed to ensure that the distances between contacting feet
change while in stance. We facilitated this by ensuring that the contact feet have vastly incompatible
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Figure 3.7: Prediction error distributions for BigANT robot with tripod gait. We plotted the distri-
bution of measurement residuals from the mean (red) to compare with residuals of the predictions
of the spring supported model (purple), or residuals of predictions from viscous-Coulomb (orange)
and Coulomb friction (blue).

velocities by choosing the shaft angle to be a cubic function of time during stance. We collected 12
metachronal slipping gait trials, with the robot moving forward 4-6 cycles in each. In total, the data
consisted of 43934 frames and 60± 1 cycles. The resulting gait produced much more slipping than
the tripod gait, with slipping velocities ranging in (−51.8, 111.8)[mm/s; 5% , 95% percentiles].

To determine whether viscous-Coulomb or classical Coulomb friction was indicated in these
data, we examined the force measurements from the slipping gait. Plotting Fx, j/Fz, j against vx, j (see
figure 3.8[B]) shows the expected structure for classical Coulomb friction, namely a step function.

3.5.2 Demonstration with other legged systems

To test whether the proposed model generalizes to other legged systems, we further examined
using our model on Multipod robots with 6-12 leaf-spring legs and an undulation gait, and on the
commercially available quadruped Ghost Robotics Spirit 40.
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A B

C DFigure 3.8: We plotted: (A) Metachronal gait phase vs. motor shaft angle for all six legs. (B)
Magnitude of slipping velocity vs. magnitude of planar force divided by normal force, overlaying
points from all six feet.

Figure 3.9: Individual leg contact forces measurement and prediction for BigANT robot with
metachronal gait. We plotted the ground contact force in x, y-axis, and supporting force ratio
in z-axis of each individual leg. We used force torque sensor measurements as ground truth for
forces (red). We plotted the estimated z-axis force ratio (purple), estimated xy-axis friction forces
(viscous-Coulomb: orange, Coulomb friction: blue). (leg names are: HL hind left, ML mid left,
FL front left, HR hind right, MR mid right, FR front right)
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Figure 3.10: Planar forces prediction error distributions for BigANT robot with metachronal gait.
We plotted the planar forces with mean subtracted (red) and model prediction errors for planar
forces (viscous-Coulomb: orange, Coulomb:blue).

3.5.2.1 Multipods with 6, 8, 10, and 12 legs

We used our lab’s publicly available Multipod dataset [58, 59, 60] used in [30]. Each contralateral
pair of legs in a multipod has two DoF – yaw and roll – and the roll (vertical) motion is further
compounded with the spring flexing of the leg itself (see figure 3.11). To model the body motion of
unloaded spring legs, we computed the location of each foot relative to the rigid segment to which
its spring was connected based on those motion tracking frames in which the leg was unloaded.
We then extrapolated this unloaded position to the frames where the leg was loaded.

In figure 3.11 we used a slice of these data with the robot running at frequency 0.3Hz and phase
offset 1.35π to demonstrate our algorithm. We assumed the mass of the robot is linear in the
number of legs – an explicit design feature of these robots – and set Mg = N . We used K = 1 as
the spring constant and isotropic friction model µk = 1 on all legs.

3.5.2.2 Ghost Robotics Spirit

Our physical modeling approach was built upon the assumption that friction dissipates the robot’s
body momentum quickly in comparison to the time scale of gait motions. We intentionally selected
a commercial quadruped, the Ghost Robotics Spirit, where this assumption breaks down, to test
how well the connection-based model could approximate the motion of such a quadruped. We
used the Spirit 40 v1.0 Proto Q-UGV Robot from Ghost Robotics, operated through a Samsung
Galaxy A50 with onboard firmware version 0.12.6. We collected 921 frames comprising about 9
cycles of motion (see figure 3.12). Because our model has no inertia, it tends to produce spurious

40



Figure 3.11: 6 and 12 legged Multipod gait. Here we plotted the body velocity and predicted
body velocity at 0.3Hz and 1.35 π phase offset. We show Multipods with 6 legs (top) and 12 legs
(bottom). We plotted the estimated (blue) velocity (middle) and trajectory (right), for comparison
with the motion tracking (red). Side velocity plots have the same unit and scale as the heading
velocity plots.
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Figure 3.12: Modeling of a Ghost Robotics Spirit 40. We plotted the estimated velocity (top three
rows, in orange) of the robot (left, bottom row), filtered estimation (blue) and motion tracking (red)
of the absolute motion (right, bottom row).

high-frequency changes in its predictions. To obtain a more realistic time series, we added a
simple model of robot inertia in the form of a first-order IIR lowpass filter yn = γyn−1 + (1 − γ)xn,
where xn is our raw model prediction and yn is the filtered prediction. We manually selected
γ = 0.15 to bring the power spectral density (PSD, computed using scipy.signal.welch) of
the estimated body velocities close to that of the motion tracking derived velocities.

3.5.3 Model runtime analysis

We compared the computation speed between our algorithm using the viscous-Coulomb friction
model and a widely-used physics simulation engine MuJoCo [23, v2.2.1]. MuJoCo performs
competitively with other physics simulation engines (see [61], but also [62]), and by restricting
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itself to convex meshes and relaxing its contact condition, it is often considered for problems with
many independent contacts.

Since our focus is on multi-legged contacts, our models consisted of a round disk with 3 to
50 legs equally spaced on its circumference. We gave each leg two rotational DOFs, a vertical
translation DoF, and limited leg motions so that their workspaces did not overlap. We tested the
execution time of both MuJoCo and our algorithm at 1000 randomly chosen poses and velocities
for each number of legs, and re-normalized the running time by dividing by the median execution
time of the 3-legged cases, to reveal how each simulation approach scaled with the number of legs
(see figure 3.13). While both algorithms reveal an increase in execution times, our algorithm slows
down by less than a factor of 3 with 50 legs, compared with a factor of 13 for MuJoCo. This
suggests that an optimized implementation of our algorithm could be used for multi-legged motion
planning for any practical number of contacts.

Because we are using an inertia-free model of physics in the form of a local connection, the
body velocity at any instant is only a function of the shape change and shape velocity at that
instant. Hence, in a homogeneous environment, all time-steps of a motion plan can be computed in
parallel. To demonstrate the performance gains, we simulated 10,000 random poses and velocities
of a hexapod robot. We used P = 1, · · · , 4 processors to compute the body velocity matrices in
parallel, then integrated them in a single linear process (note: this over-estimates the parallelization
overhead, since the product of N matrices can be parallelized to take log2 N time, but was linear
here). In figure 3.13(b) we show that the algorithm parallelizes well, with the overhead at four
processors falling below 1.5, i.e. a net speedup of 4/1.5.

3.5.4 Model accuracy comparison with Mujoco

We compared our model accuracy with Mujoco (v3.1.4). We used Newton’s algorithm with
maximum 100 iterations for the compiler option. We modeled the robot with a plate chassis having
diaginertia=’130000 430000 300000’ mass=’818’, and almost mass-less rod legs
with mass=’0.1’. We used three linear position actuators per leg to control the foot position. We
chose the parameters of damping=’10’ for all joints, and kp=’100’ for actuators along xy, and
kp=’1000’ for actuators along z. The actuator parameters were chosen so that the foot trajectory
executed by Mujoco simulation has RSME less than 1cm on each foot, when controlled to be the
experimental measurements. To the best of our parameter tuning effort, we did not see MuJoCo
out perform our proposed model in model accuracy. An example robot trajectory comparison was
plotted in figure 3.14.
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Figure 3.13: (a) Plot of the normalized run time of the multi-contact algorithm and MuJoCo
simulation versus the number of legs. We plotted the distribution of time-step computation times
on 1000 randomly initialized configurations for each number of legs from 3 to 50. Plot indicates
distribution percentiles 2.5 to 97.5 (lightly shaded); 25 to 75 (shaded); and median (dotted line).
The execution times are normalized relative to the median execution time of each simulation on
the 3 leg case. The robot configurations consisted of a disk with N equally spaced legs on the rim
as illustrated by examples with N = 3, 21 and 42. (b) Plot of parallelization overhead splitting the
algorithm over M threads. The overhead is execution time times M the number of threads, in units
of the median execution time on a single thread. Perfectly parallelizable workloads give 1 whereas
unparalellizable workloads give M . We plotted the workload distributions at M = 1 . . . 4 for a
hexapod, running 100 randomized trajectories each 10000 time-steps long (ribbon with the same
quantile as in (a)).

Figure 3.14: We plotted the robot position x, y and orientation θ with respect to time (left) from our
proposed model (blue), Mujoco (orange) and motion capture (red). We showed the robot integrated
trajectory (right).
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3.6 Conclusions and discussions

Multi-legged robots (with six or more legs) are not widely studied in the robotics community. One
reason might be that the complexity of modeling the multi-contact ground interaction constrains
both motion planning and simulations for design.

Motivated by a previous discovery [30] – that multi-legged robotsmove as if they are governed by
a local connection, i.e. quasi-statically – we developed a simplified ground-interaction model and
validated it experimentally. Our algorithm consists of simulating a spring support body in a small-
angle approximation for pitch and roll to obtain the vertical foot loadings. We then introduced the
viscous-Coulomb ansatz to replace classical Coulomb friction in generating the horizontal forces
to produce a linear set of equations that can be solved to give rise to the local connection.

3.6.1 Computational speed

Our experimental verification demonstrated that while the actual contact forces were, as expected,
governed by classical Coulomb friction, our viscous-Coulomb friction model gave equally good
predictions of both contact forces and body velocities, while computing 50 times faster for a
hexapod. Our algorithm scales to large numbers of contacts with virtually no change in execution
time, and parallelizes with very low overhead. Although all our computation was done offline, the
computations, even when done in Python, ran about 50 times faster than in real time. Thus it is
quite clear that our model can easily be used in online form.

Our model does not sacrifice accuracy for computation speed. We compared the robot tra-
jectory prediction from our model with MuJoCo in figure 3.14. To our best effort in tuning the
MuJoCo parameters, we showed the MuJoCo prediction did no better than our model in practice.
Therefore, the proposed model, a much faster model with a small sim-to-real gap, could benefit the
reinforcement learning community in getting optimal policies on multi-legged robots.

3.6.2 Comparing viscous-Coulomb frictionmodel toCoulomb frictionmodel

To understand how a system governed by sliding Coulomb friction can be modeled by a viscous-
Coulomb frictionmodel, onemay examine and compare the relative error of a viscous frictionmodel
to that of the “true” Coulomb friction. Because both models are isotropic, we can assume without
loss of generality that the velocity is in the x direction. Because both models are homogeneous,
we can assume without loss of generality that the speed is 1. What remains is to study the relative
error of predicting the Coulomb friction force for contact velocities close to (1, 0) and the prediction
obtained by using the viscous drag model instead. In figure 3.15, we present the contours of relative
error when using a single viscous friction model instead of Coulomb friction over the specified
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Figure 3.15: Contour of error between viscous-Coulomb approximation to Coulomb friction around
equilibrium velocity.

range of velocities. The plot demonstrates that with |δv | < 0.2|v |, the viscous-Coulomb force
prediction for velocity v + δv will be within 2% of the classical Coulomb friction force prediction.
This suggests that viscous-Coulombfriction is a good approximation of Coulomb friction when the
sliding velocities do not fluctuate more than 20%.

The linearity between slipping velocity and friction forces was observed as an average relation-
ship in the numerical simulations of [32] and in the experiments of [54]. In [54], the authors study
the slipping locomotion of sprawled posture robots with many legs and biological myriapods, and
discover a linear force-velocity relationship near steady state velocity. The authors assume the net
force on an individual stance foot is equal to 0, the slipping is predominantly in the lateral direction,
and the supporting force is constant. In our work, we relax these assumptions by solving for the
force-torque balance at the robot body level, allowing internal forces among the contacting legs;
we do not restrict slipping directions, and we allow supporting forces to vary through the spring
loaded model.

We are thus left with the conclusion that a viscous-Coulomb ansatz model for friction produces
very similar predictions to those produced by the classical, tribologically accurate Coulomb friction
model. Comparing the motion predictions obtained from both models, they are far more similar
to each other than either is to the measured motion, suggesting that the dominant error in these
models was not the use of an incorrect friction model. However, the viscous-Coulomb model, in
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the context of our multi-contact algorithm provides a significant performance boost. It is faster to
compute; it scales better with the number of contacts; and it is easier to parallelize.

From the perspective of physics, that our ansatz produces motion plans as accurate as those
produced by Coulomb friction but also provably produces a local connection and principally
kinematic motion in the geometric mechanics sense is further justification for the observation of
[30] that local connection models are a framework that includes multi-legged locomotion. While
the local connection models of [30] were data-driven, here we have shown that such models can be
obtained using a principled modeling approach.

3.6.3 Future works

The algorithm we presented here provides merely a starting point – it is a means for rapidly and
accurately estimating multi-contact robot-environment interactions. Such estimates are building
blocks for motion planning, model predictive control, design optimization, andmany other potential
applications. The algorithm itself can be extended to include contacts with non-flat ground. For
example, if the ground can be reasonably modeled as horizontal surfaces at various elevations, such
as for staircases, we could encompass this in our model with a leg length offset as a function of the
foot position in the world frame.

Modern state observers for quadruped robots use the fusion of proprioceptive information and
inertial measurement to estimate state while slipping [63]. These have recently been extended
with learning to improve contact estimation and odometry [64]. Like any recursive estimator,
such estimators alternate between measurement steps and system evolution steps. It would be
interesting to explore how to integrate our model as the system evolution operation in such a
scheme. Additionally, the various quantities we estimated by fitting could be converted to slowly
varying online estimates, producing an adaptively tuned controller.

Because our proposed model provides a linear relationship between shape space velocity and
body velocity, it provides a first-order representation of the dynamics as an affine control system,
which could be useful in simplifying the controller design process.

Our model could potentially be used as an extension of the existing models for snake slithering.
First, one might discretize the snake into a 3D shape with appropriately chosen body velocities and
vertical stiffnesses. The simulated snake would then relax into the surface, potentially contacting
with only a part of its body, and generate a local connection between its body motion and its
slithering speed. Such an approach might provide models for sidewinding and other fully 3D snake
behaviors.

We hope that our advances will stimulate the adoption of multi-legged robots in field robotics,
provide reliable and adaptable bio-inspired locomotion platforms, and, more generally, enable the
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modeling of multi-contact mechanics problems.
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CHAPTER 4

In-situ calibration of six-axis force/torque
transducers on legged robot

4.1 Introduction

Force/torque (F/T) transducers are commonly used in robotics applications to sense the interaction
between robots and their environment [65]. The simultaneous and accuratemeasurement ofmultiple
concurrent contact forces through, e.g. a robot’s legs, has proven to be a challenging calibration
problem, for which we present one solution in this chapter. This solution proved effective for
performing ground contact measurement on our 8.18 kg, 73 cm long hexapedal robot BigANT.

F/T transducers are used in robotics surgery [66], manipulation [67, 68], robot locomotion [69,
70, 71], etc. Knowing contact forces can allow a robot to sense its surroundings more fully, with
ensuing benefits to both planning and control. For legged robots which move by making and
breaking contacts with the ground to produce propulsion and load bearing, F/T transducers can
measure how the load is distributed among legs. Themeasurements can reveal howmuch propulsion
each leg produces, what slipping might occur, and thereby inform modeling and control. Such F/T
measurements have been used in contact detection [69], gait modeling [70], state estimation [72],
terrain classification [71], maintaining stability [73], and other applications in legged robotics.

Our work was motivated by the goal of understanding the interplay of contact forces while
a multi-legged robot moves with feet slipping on the ground. We are particularly interested in
multi-legged robots with low degree of freedom (DoF) legs [74, 75]. The mass of such robots
is typically concentrated in the body, allowing fast swinging legs, lower leg collision forces, and
smaller energy costs for leg impacts. Our previous work showed that slipping was an essential part
in expressing the high maneuverability of these robots [76], but due to a lack of precise contact force
measurements our mechanistic understading of these complex slipping motions was incomplete. In
the previous chapter, we managed to reliably model the body velocity resulting from a multi-legged
slipping motion, by constructing a “local connection model”, by assuming a viscous-like friction
interaction with the ground instead of the expected Coulomb friction. Our goal was to understand
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what interactions contributed to the unexpectedly good predictive power of the “wrong” friction
model, and what are the actual contact forces involved in the motions.

We built a version of the BigANT robot [8] with a 6-DoF F/T transducer at the hip of each leg.
This, we believed, would enable us to measure the wrench applied by each leg to the robot chassis,
and since the shape of the leg and its point of contact were known frommotion tracking, to compute
the contact force that produced each leg’s wrench. We chose to install the F/T transducers at the
hips, mounted directly on the robot’s chassis to maintain the lightweight, fast-swinging nature of
the legs. Additionally, the commercial transducers we found for the range of wrenches expected
were both heavy and fragile to impacts, making it all but infeasible to attach them directly to the tip
of a foot. The wrench each transducer measured comprises the ground contact wrench, added to
the wrench generated by gravity acting on the (albeit lightweight) leg. Our calibration procedure
needed to decouple these two terms to isolate the ground reaction wrench we wanted to measure.

Few have measured multi-legged contact wrenches simultaneously at all active contacts. One
example is in [50] wherein the authors measured 3D ground reaction forces for a version of the
hexapodRHex. The authors did not provide details on characterization and analysis ofmeasurement
error, but did provide 2N as the maximum error. The authors of [77] performed in-situ calibration
with F/T transducers mounted on the shoulders, hips and feet of a bipedal robot. They used the
model from their Computer Aided Manufacturing (CAD) design file to extract the center of mass
(CoM) of each segment and estimate the torque resulted from the gravity of each segment.

Belowwe present a calibration procedure enabling simultaneous measurement of all foot contact
wrenches of our multi-legged robot using six 6-DoF F/T transducers, one at the hip of each leg.
We start with introducing the experimental setup in §4.1.1, followed by difficulties we met when
using the transducers naively according to the manufacturer’s guidlines in §4.1.2.1. We present
the problem statement including notations and F/T measurement model in this calibration work
in §4.2, and follow with by our calibration method in §4.3. We then show our validation of the
calibration results in §4.4 and end with a discussion in §4.5.

4.1.1 Experimental system: robot and sensors

Our goal was to measure the ground contact wrenches with respect to a “floating base” frame
attached to the robot chassis. The robot we used was a version of the BigANT hexapod [8]
(figure 4.1) constructed using PARF methodology [75]. The z axis of the frame was opposite to
direction to gravity, and the x axis perpendicular to z and parallel to left-right symmetry axis of
the robot. The origin of the floating base frame was taken to be close to the centroid of the robot
chassis.

Because of all the instrumentation planned for this robot, it was far heavier than previousBigANT
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Figure 4.1: (A) BigANT equipped with six 6-axis force/torque transducers. (B) Zoomed-in view
of one leg with F/T transducers. (C) Schematic drawing of front right leg module. (D) 1-DoF toe
tip trajectory in robot body frame xz-plane.
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variants. To ensure better rigidity under these loads in comparison other BigANT variants we used
a 1/4 inch Acrylonitrile Butadiene Styrene (ABS) sheet for the chassis base-plate. Connecting
each leg to the robot chassis, we installed an ATI Net Force/Torque Gamma transducer, which
measured all six components of force and torque at 100 Hz and reported the results over WiFi.
As in other BigANT robots, we actuated each leg with a position controlling servo motor module
(Robotis Dynamixel MX106). We daisy chained the modules as they were designed to be used,
and communicated with them over the RS-485 serial bus carried over two wires of this daisy chain.
The total weight of the robot was 8.18 kg, measured by a digital hanging scale. Along with the
F/T data, we also recorded robot kinematic data using a reflective marker motion tracking system
(10 Qualisys Oqus-310+ cameras at 100 fps, 12 markers on the chassis and 4 markers per the distal
rigid part of each leg).

Each leg of BigANT is driven by a four-bar mechanism producing a shaped toe trajectory
(figure 4.1) with a variable gearing ratio. Because the legs were effectively rigid 1-DoFmechanisms
(as verified using motion tracking), the shape of each leg changed through a one-parameter family
of shapes entirely controlled by the motor shaft angle of the motor driving that leg. Consequently
the location of the CoM of each leg (with respect to the chassis frame) was also solely a function of
that leg’s shaft angle. Therefore the gravity torque introduced by each leg on its hip F/T transducer
was a function of the direction of gravity in the chassis frame (shared among legs), and the shaft
angle of the individual leg.

4.1.2 Challenges in accurate ground contact wrench measurements

4.1.2.1 Pre-experimental F/T transducer measurement validations

As a sanity check prior to collecting motion data, we collected measurements with the robot
standing statically at different poses. Because acceleration is zero, the total wrench on the robot
body should be equal and opposite to gravity acting on the robot body through the body’s CoM,
i.e. when accounting for gravity, the sum of forces on the robot body should be zero. The ATI use
manual [78] suggests that the transducers may suffer from a constant bias wrench which needs to
be subtracted. We used the average transducer readings obtained with all feet in the air rotating two
full cycles as this constant bias term for each transducer. The total wrench applied to the body by
the legs under these conditions had 5N standard deviation, and the force was distributed from -5N
to 20N, shown in figure 4.2 – nowhere near the expected gravitational wrench.

We collected F/T measurements and motion tracking data with BigANT standing at different
poses. We positioned the robot in all 36 = 729 combinations of three shaft angle possibilities
for each leg: 0◦(pointing straight down) or ±36◦. We waited for 5 seconds between consecutive
poses. When a pose transitioned to the next pose, we observed that both the wrench and motion
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Figure 4.2: Violin plot of the sum of all wrenches acting on the robot when standing at different
poses, with F/T transducers calibrated with naive offset removal.

tracking measurements exhibited an overshooting oscillatory behavior. We estimated the 1st order
derivative of both data streams using a 2nd order scipy.signal.savgol_filter filter. We
considered a pose to have reached steady state if the L2-norm of this numerical differentiation on
force data decayed to less than 1 N/s. If a pose stayed at this “steady state” for more than 1.5s, we
took the median of the steady state measurements to represent this pose, thereby using the median
filter’s superior outlier rejection to guard against any non-zero mean noise processes. If a pose
did not reach “steady state” we discarded that pose; this process left us with recordings from 635
poses. We further discarded those poses that did not have all 12 markers on the chassis tracked by
motion capture system, leaving us with 543 poses. We transformed the transducer measurements
from transducer frame into the floating base frame, where frame transformations were estimated
by solving the orthogonal Procrustes problem using SVD on the 12 chassis markers.

The transducers themselves were pre-calibrated by ATI, and used in their normal operating
region. The non-physical total body wrenches we obtained lead us to conclude that more a complete
calibration procedure may be advisable for improving the accuracy of these measurements.

4.1.2.2 Background on F/T transducer calibration

ATI, the transducer manufacturer, instructs that we should expect an offset error for the transducers,
i.e. that a nonzero reading should appear even when the transducer is unloaded and that this reading
is added to all measurements made by that transducer. The ATI recommendation is for users to
mechanically disconnect all transducers and re-calibrate them once a while. While this calibration
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could remove such an expected transducer offset,removing an reinstalling the transducers could
introduce a different assembly error every time. Also, a fixed offset error cannot account for the
gravity of a leg as it is moving through various positions. Hence, we decided to design an in-situ
calibration procedure.

A common method to perform in-situ calibration of F/T transducers in robotic manipulators
is to attach a test mass to the transducer, and then take several measurements with transducer at
different orientations. Using the fact that the external force applied to transducer – the gravity of the
attachedmass – is fixed in the world frame, one can use least squares methods to estimate calibration
parameters. The authors of [79, 67] solved for a in-situ calibration matrix which transformed strain
gauge values to forces and torques. The authors of [80] solved for in-situ calibration matrix together
with a rotation matrix between world frame and the robot base frame, to account for the error caused
by a tilted robot base of a manipulator. The authors of [81] did gravity compensation for a tool
together with estimating the transformation matrix between transducer frame and the robot frame.
All of these researchers attached their F/T transducer rigidly fixed with respect to the end effector
being loaded with the test mass.

4.1.2.3 Leg shape changes provide a challenge

In our robot, the CoM of each leg was not at a constant location in the body frame, but instead
moved as a function of its drive shaft angle. We also observed that our placement of the transducers
was not perfectly aligned and precise relative to the robot body frame, i.e. there were sometimes
mounting position and orientation errors. Furthermore, the origin of the robot body frame was not
the CoM of the robot body – only close to it. It is practically quite difficult to precisely estimate
the CoM of a robot built and assembled with parts using many kinds of materials, and even with
light legs this CoM will shift as the legs move.

The in-situ calibration procedures available in the robotic manipulation literature could assume
near perfect positioning of the test mass by controlling the robot joints. The only reorientation
available to us was to hang the robot from various attachment points to change the transducer frame
orientations with respect to gravity. However, this hanging angle was itself difficult to measure in
the body frame. Below, we present a calibration procedure that addresses all of the aforementioned
challenges.

Besides these error sources, we also discovered that the transducer casing was not well isolated
from forces applied to the exterior of this seemingly rigid metal casing. As an illustration of these
issues, we wrapped 1-7 rubber bands (OfficeMax size 16) around the sensor case of an unloaded
sensor. The transducer xy reading changed by as much as 1N. By gently pulling one rubber band
to create a non-uniform load around the case, the readings from the transducer xy axis changed by
3N.
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4.2 Force/torque sensing model

In this section, we present the notations, sensing error model and calibration parameters.

4.2.1 Notations

Weuse upper-case letters to representmatrices (e.g. T,R); and lower-case letters to represent vectors
(e.g. w, r). We use the generalized force, wrench w = [ f ; τ]T , to represent linear components
(forces f ∈ R3) and angular components (torques τ ∈ R3). We use ; to separate elements in a
column vector. We use TB

A to represent rigid-body motion SE(3) from frame A to frame B. The
homogeneous transformation representation is:

TB
A =

[
RB

A pB
A

0 1

]
∈ R4×4

Here RB
A ∈ SO(3) is the rotation from frame A to B, and pB

A ∈ R
3 is the translation from the origin

of A to the origin of B. With an abuse of notation, we omit 1 in the homogeneous transformation
in the later calculations, i.e. rA ∈ R3, TB

ArA := TB
A[r

A; 1] = [rB; 1] =: rB. We transform wrenches
from frame A to frame B via the transposed adjoint representation of transformation TA

B:

wB = [AdTA
B
]TwA[

f B

τB

]
=

[
(RA

B)
T 0

−(RA
B)

T
[
pA

B
]
(RA

B)
T

] [
f A

τA

]
where the bracket

[
pB

A
]
lifts the 3d vector pB

A to a skew symmetric matrix. The frame of reference
for a value of interest is on its upper right corner. We use k to denote the index of the legs, i.e.
wrench w.r.t. frame A on leg k is wA

k .
The coordinate frames of interests are B: robot body frame; C: robot body frame with centered

at CoM; W: floating base frame; ftk: F/T transducer frame of the kth leg. We use g = [0, 0, g] to
represent the gravitational acceleration in the floating base frame.

We use φ to represent the shaft angle governing the shape of four-bar linkage leg, m to represent
the mass of a leg, and r(φ) to represent the leg CoM as a function of φ. We use i = 1, · · · , N to
denote index for time series. We use �∗ to denote the optimal value for the variable in optimization.
In §4.3.1, where we do the hanging experiment to estimate transducer and leg gravity offsets, we
use �↓ and �↑ to denote a value associated with positive and negative hanging direction. We use
�− =: (�↓−�↑)/2 and�+ =: (�↓+�↑)/2 to denote subtraction and addition of some value measured
in two opposite hanging directions.
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4.2.2 Sensing model

From our experiments, we noticed that for each transducer there existed a constant offset, inde-
pendent of load, which was also mentioned in ATI F/T transducer manual [78]. We modeled the
measured wrench wftk

m by the kth force/torque transducer, as the sum of the applied wrench wftk
a , an

unknown transducer offset wftk
o ∈ R

6 and random noise n,

wftk
m =: wftk

a + w
ftk
o + n (4.1)

Since the transducers were installed underneath the legs, when a leg was in swinging phase (not
contacting the ground), the wrench resulted from the leg gravity was applied to the transducer. We
decomposed the applied wrench wftk

a into two parts: the wrench resulted from the gravity of kth

leg and the ground contact wrench. The shaft angle φk governed the shape of four-bar linkage of
each leg, and hence changed its CoM. We modeled the kth leg CoM position in transducer frame
by r ftkk (φk). We used leg gravitational offset wW

leg,k(φk), a function of φk, to model its gravity, and
the torque generated by gravity. The gravitational acceleration is constant in the floating base
frame. We transformed leg CoM position in the transducer frame to the floating base frame, and
leg gravitational offset wrench:

wW
leg,k(φk) =: [mkg; TW

ftkr
ftk
k (φk) × mkg]

We decomposed the transformation from the kth F/T transducer to floating base frame in four
steps:

TW
ftk =: TW

C TC
ftk = TW

C TC
B T̃kTB

ftk (4.2)

Read from right to left, we had:

1. A nominal transformation, TB
ftk , from the kth transducer frame to body frame, calculated from

robot design files;

2. Unknown transformation T̃k to compensate the installation or manufacturing error, which
was not captured by step 1;

3. Unknown translation TC
B between the origin of the body frame and robot CoM.

4. A pure rotation TW
C estimated from markers measured by motion tracking system, rotating

the body frame centered at CoM into floating base frame.

Let gC = RC
Wg be the gravitational acceleration rotated into body CoM frame. We used wC

gc,k(φk)

to denote the ground contact wrench in the body CoM frame, calculated from the applied wrench
wftk

a transformed in the CoM frame and subtracted by the wrench from leg gravity.
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wC
gc,k(φk, g

C) =: [Ad(TC
ftk
)−1]

Twftk
a − w

C
leg,k(φk, g

C)

(substitute Tftk
C by eqn.4.2) = [Ad(TC

B T̃kTB
ftk
)−1]

Twftk
a − w

C
leg,k(φk, g

C)

(substitute wftk
a by eqn.4.1) = [Ad(TC

B T̃kTB
ftk
)−1]

T (wftk
m − wftk

o )

(rewrite wftk
o in F/T elements) − [ mk gC; TC

B T̃k T
ftk
k (φk)× mk gC]

ftk
(4.3)

It could be transformed into the floating base frame simply by the motion tracking rotation
[AdTC

W
]T . All the unknown calibration parameters were highlighted in eqn. (4.3). In the rest of the

paper, leg CoM rk(φk) was always considered to be in the transducer ftk frame, associated with the
kth shaft angle, so we omitted ftk the leg CoM and k in φk , as rk(φ) to simplify the notation.

4.3 Calibration method

In this section, we documented our method to infer parameters by using several optimizations
applied to measurement data. We formulated our parameter estimation goal function by using the
fact that the force of gravity on the robot and its legs must be constant in the floating base frame. Our
calibration had two steps: (1) we estimated the transducer offset wftk

o and leg gravity offset wW
leg,k,

by summing up the measurements with leg gravity acting in opposite directions in the transducer
frame. Because perfectly opposite measurements were never possible in reality, we assumed the
existence of a small rotational term which could leak mkg into the other two directions, and bias
the estimation of offsets. We modeled this small rotation error as the identity plus a small skew
symmetric matrix, and solved for the 3D skew part together with other parameters. (2) we estimated
the transformation error together with the unknown translation between body frame origin and CoM
TC

B T̃k , by having the robot standing at different poses, then optimizing the error between the sum
of all ground contact wrenches in floating frame and [0, 0,Grobot, 0, 0, 0]T , namely the robot gravity
with zero total torque.

4.3.1 Transducer offset and leg gravity offset

Tomodel thewrench applied by gravity to the a legwith respect to its transducer, we estimated the leg
CoM as a function of shaft angle. Because this measurement is influenced by the transducer offset,
we estimated the CoM function of shaft angle together with the transducer offset. We collected
measurements with the robot hanging (zero ground contact wrenches) in opposite directions, while
at the same time slowly (quasi-statically) rotating each leg ten full cycles with 9000 sample points
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for each cycle (see e.g. opposite z-directions in figure 4.3). The torque that resulted from leg gravity
arises from a cross-product with leg CoM, leaving a one-dimension null space when estimating
from each pair of hanging experiments (more details in §4.3.1.3). To get a complete 3D CoM
function of shaft angle, we repeated the procedure twice: two pairs of opposite orientations, one
along the transducer ±x-axis, and one along the transducer ±z-axis (aligning with gravity).

In the rest of this section, we used the experiments of transducer ±x-axis aligning with gravity
to explain the calculation; the calculation with z-axis positive or negative direction aligning with
gravity could be performed analogously.

Figure 4.3: BigAnt robot hangingwith transducer z-aixs positive zftk (orange) and negative direction
aligning with gravity direction (red);

[
s↓k

]
and

[
s↑k

]
(purple): skew symmetric matrices modeling

the hanging orientation error.

4.3.1.1 Hanging measurement model

We considered a measurement model using a skew symmetric matrix [sk], lifted from sk ∈ R3,
to model the axes misalignment error between the direction of gravity and the transducer axis.
We assumed sk was constant throughout one time series, i.e. the transducer orientation did not
change throughout the measurement. The skew symmetric matrix [sk], the tangent space at identity
rotation, could be viewed as an infinitesimally small rotation. The applied wrench, when leg gravity
aligning with positive x-axis of the transducer frame, became

f ftk,↓a = (
[
s↓k

]
+ I)mkgx; τftk,↓a = [rk(φ)] (

[
s↓k

]
+ I)mkgx

Its opposite applied wrench, when leg gravity aligning with negative x-axis of the transducer frame,
was the same magnitude with opposite direction.

f ftk,↑a = −(
[
s↑k

]
+ I)mkgx; τftk,↑a = − [rk(φ)] (

[
s↑k

]
+ I)mkgx
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Here
[
s↓k

]
and

[
s↑k

]
were two skew symmetric matrices, accounting for two different small rota-

tions between F/T transducer positive or negative x-axis and world z-axis. During the experiment,
we measured F/T data for both of these two configurations, with the same set of varying shaft angles
φi, for i = 1, · · · , N , covering the full range of motion multiple times. We modeled the measured
wrenches, according to eqn. (4.1), and partitioned them into their force and torque components in
eqn. (4.4)-4.7, where ν↓i , ν

↑

i , ω
↓

i , ω
↑

i were realization of random noise for the ith measurement.

f ftk,↓m,i = (
[
s↓k

]
+ I)mkgx + f ftko + ν

↓

i (4.4)

f ftk,↑m,i = −(
[
s↑k

]
+ I)mkgx + f ftko + ν

↑

i (4.5)

τ
ftk,↓
m,i = [rk(φi)] (

[
s↓k

]
+ I)mkgx + τ

ftk
o + ω

↓

i (4.6)

τ
ftk,↑
m,i = − [rk(φi)] (

[
s↑k

]
+ I)mkgx + τ

ftk
o + ω

↑

i (4.7)

4.3.1.2 Leg gravity, mkg

We subtracted two opposite force measurements between eqn. (4.4) and eqn. (4.5). By dividing the
difference by 2, we got the leg gravity multiplied by a small rotation error term in the front.

(4.4) − (4.5)
2

: f ftk,−m,i =
©­­«
[
s↓k

]
+

[
s↑k

]
2

+ I
ª®®¬ mkgx +

ν
↓

i − ν
↑

i

2

The sumof two skew symmetricmatrices is still skew symmetric, denoted by
[
s+k

]
= (

[
s↓k

]
+
[
s↑k

]
)/2.

Ideally, mkgx was equal to [mkg, 0, 0], a constant value in x component, and zeros in y, z components.
Taking that as the optimization goal, with N measurement samples f ftk,−m,i for i = 1, . . . , N , we solved
for s+k using scipy.optimize.least_squares with the Trust Region Reflective algorithm
and cost function tolerance 10−3.

s+,∗k = arg min
s+k

1
√

N

∑
j=2,3

√√√ N∑
i=1
((
[
s+k

]
+ I)−1 f ftk,−m,i · e j)

2

+ stdi=1,··· ,N ((
[
s+k

]
+ I)−1 f ftk,−m,i · e1)

where, e j with j = 1, 2, 3 are unit vectors in R3. We estimated the gravity of the leg by

mkg = 1/N
N∑

i=1
((
[
s+,∗k

]
+ I)−1 f̃ ftkm,i · e1)
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4.3.1.3 Leg CoM, rk(φ)

Next, we solved for the leg CoM by subtracting eqn. (4.6) and eqn. (4.7).

(4.6) − (4.7)
2

: τftk,−m,i = [rk(φi)] (
[
s+k

]
+ I)mkgx + ω

−
i

= [rk(φi)] f ftk,−m,i + ω
−
i

Here τftk,−m,i and f ftk,−m,i could be calculated directly from the measurement data. We estimated the leg
CoM rest,k(φ) as a function of φ through a Kalman smoother [82], with N samples measured with
varying shaft angle φi, i = 1, · · · , N . We set the transition and observation covariance matrices
in the Kalman smoother both having 0.01 on the diagonal and 0 on the off diagonal elements,
which matched the magnitude of the measured covariance. Since the torque was the cross product
between CoM vector and gravity, the estimated CoM here had a one dimensional null space along
the direction of f̃ ftkm,i . The CoM could be rk(φi) = rest,k(φi)+pi · f̃

ftk
m,i , for any scalar pi ∈ R. Therefore,

we needed at least another pair of opposite hanging measurements to get full rank information on
rk(φ). In our experiment, we took measurements with leg gravity aligning with ±z-axis of the
transducer frame and performed analogous calculations mentioned above with gz. We obtained
another estimation r′est,k(φ) where rk(φi) = r′est,k(φi) + p′i · f̃ ′ftkm,i. We solved pi, p′i by equating two
rk(φ) obtained from two sets of measurements. It formed an over-determined system with three
equations and two unknowns, so we solved for the unknowns pi, p′i by ordinary least squares. We
averaged those two rk and fit a function with respect to φ.

4.3.1.4 Transducer offset, wftk
o = [ f

ftk
o ; τftko ]

Then, we solved for transducer torque offset τftko , by adding eqn. (4.6) and eqn. (4.7).

(4.6) + (4.7)
2

: τftk,+m,i = [rk(φi)]
©­­«
[
s↓k

]
−

[
s↑k

]
2

ª®®¬ mkgx

+ τftko +
ω
↓

i + ω
↑

i

2

We denoted the subtraction between two skew symmetric matrices by
[
s−k

]
= (

[
s↓k

]
−

[
s↑k

]
)/2. In

the transducer model in eqn. (4.1), we assumed the transducer offset was constant. We solved for
the optimal value of s−k by minimizing the standard deviation of τftko over all samples:

s−,∗k = arg min
s−k

std
i=1,··· ,N

(
τftk,+m,i − [rk(φi)]

[
s−k

]
mkgx

)
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Finally, we calculated the force and torque offsets by:

f ftko =
1
N

N∑
i=1

(
f ftk,↓m,i + f ftk,↑m,i

2
−

[
s−,∗k

]
mkgx

)
τftko =

1
N

N∑
i=1

(
τftk,+m,i − [rk(φi)]

[
s−,∗k

]
mkgx

)
4.3.2 Transformation error, TC

BT̃k

In the second part, we showed our method in estimating the transformation error from transducer
frame to body frame, T̃k modeled by (R̃k, p̃k), together with an unknown translation between body
frame and CoM frame TC

B modeled by (I, pC
B). We used the fact that the robot should be at force-

torque balance when standing still at different poses. At each pose, the sum of the ground contact
wrenches from all feet, transformed to the floating base frame, should equal to the gravity of the
robot with zero torque, as calculated below:

wW
total,p =

K∑
k=1
[Ad(TW

C,p)
−1]

TwC
gc,k(φp,k, g

C
p )

=

K∑
k=1
[Ad(TW

C,p)
−1]

T
(
Ad(TC

B T̃kTB
ftk
)−1]

T (wftk
m,p − w

ftk
o )

−[mkg
C
p ; TC

B T̃kTB
ftkr

ftk
k (φp,k) × mkg

C
p ]

)
(substitute wC

gc,k by eqn.4.3)

=

K∑
k=1

([
RW

C 0
0 RW

C

] [
R̃k 0

R̃k
[
R̃k(p̃k + pC

B)
]

R̃k

]
[Ad(TB

ftk
)−1]

T (wftk
m,p − w

ftk
o )

−[mkg;

[
RW

C 0
0 1

] [
R̃k p̃k + pC

B
0 1

]
TB
ftkr

ftk
k (φp,k) × mkg]

)
(Expand TC

BT̃k)

≈ [0, 0,Grobot, 0, 0, 0]T

We used exactly the same dataset as described in §4.1.2.1, and inferred the unknown parameters
by minimizing the error between the total ground contact wrenches and the gravity of the robot
with zero torque, as shown in eqn. (4.8). It minimized the difference between the measured and
expected total wrench on CoM over all p = 1, · · · , P poses. The K-norm we used had a positive
definite diagonal matrix K to allow us to compare loss functions computed over force and torque,
which had different physical units. In practice, we used 1, 1, 1, 10, 10, 10 in the diagonal elements
and zeros elsewhere as the K-norm, so the forces and torques had about the same magnitude.
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min
R̃k,p̃k,pC

B

P∑
p=1
| |(wW

total,p − [0, 0,Grobot, 0, 0, 0]T )| |2K (4.8)

s.t. R̃k ∈ SO(3)

As formulated, the optimization problem needed to solve for the six rotationmatrices R̃∈̨SO(3) the
3D rotation group, which is not a vector space. However, most numerical optimization paradigms
only work on vector spaces. Instead, we parameterized the rotation using Cayley transformation:
R̃k = (I − [q̃k])(I + [q̃k])

−1 [83]. This can represent rotation matrices over a wide range using a
parameter space which is a vector space.

From here we made a change of variables p̃′k = R̃k(p̃k + pC
B). This made the objective function

of the optimization eqn. (4.8) into a bilinear form in p̃′k and R̃k . To solve this optimization we
used dual least squares optimization, fixing one unknown and solving for the other, alternating
which variable is fixed at each step, until it convergence. For each of these steps we again used
the scipy.optimize.least_squares Trust Region Reflective algorithm with cost function
tolerance 10−3. Our dual optimization convergence criterion was testing when the maximum norm
difference between two successive steps was less than 10−3.

4.4 Calibration results

In this section, we reported the estimated calibration parameters and the residual after calibration.
We used violin plots to show the distribution of the residuals, and all violin plots in this chapter
used 100 points for the Gaussian kernel density estimation.

4.4.1 Transducer offset and leg gravity offset

The estimated transducer offset and the leg gravity were summarized in table 4.1. We plotted the
estimated leg CoM trajectories of all legs in figure 4.4. After removing the transducer offsets and
the leg gravity offsets, we plotted of the residual of all four orientations in figure 4.5. We compared
our formulation with the naive addition and subtraction, without the axis misalignment error ŝ.

62



0.00

0.01

0.02

0.03

0.04

0.05
Co

M
 [m

]
HL ML FL

0.0 0.2 0.4 0.6 0.8 1.0
Phase ( )

0.00

0.01

0.02

0.03

0.04

0.05

Co
M

 [m
]

HR

0.0 0.2 0.4 0.6 0.8 1.0
Phase ( )

MR

0.0 0.2 0.4 0.6 0.8 1.0
Phase ( )

FR

Figure 4.4: Estimated center of mass (CoM) vs. phase of all six legs. We plotted the median
estimated CoM of ten cycles in dots, interquartile range in dark shaded region and 95% confidence
interval in shallow shaded region (x coordinate in blue, y coordinate in orange and z coordinate in
green). We fitted x, z coordinate with function r(φ) = A sin(2πφ + C) + D, y coordinate using a
constant, and plotted them in red dashes.

Table 4.1: Summary of the estimated force/torque offsets and the estimated gravity of legs. The
top row is the abbreviation of the transducer underneath which leg. (FL: front left, ML: mid left,
HL: hind left, FR: front right, MR: mid right, HR: hind right)

HL ML FL HR MR FR

foffset[N ]

1.47 ± 0.03

−1.30 ± 0.01

−5.61 ± 0.01

1.419 ± 0.001

−4.884 ± 0.001

−0.406 ± 0.001

0.57 ± 0.01

3.71 ± 0.01

−2.039 ± 0.003

−8.49 ± 0.02

−1.448 ± 0.004

−2.43 ± 0.01

−0.06 ± 0.02

−0.123 ± 0.001

−0.07 ± 0.01

−0.93 ± 0.01

0.653 ± 0.001

−2.183 ± 0.004

τoffset[Nm]

0.2457 ± 0.0002

0.002 ± 0.003

0.034 ± 0.003

−0.0136 ± 0.0002

0.0808 ± 0.0002

0.0144 ± 0.0001

0.2176 ± 0.0001

0.0921 ± 0.0005

−0.0177 ± 0.0004

−0.3159 ± 0.0002

0.3449 ± 0.0009

0.001 ± 0.001

−0.2392 ± 0.0009

−0.0982 ± 0.0012

0.004 ± 0.001

−0.3611 ± 0.0004

−0.153 ± 0.001

0.0222 ± 0.0007

mg[N ] 6.2 ± 0.2 6.2 ± 0.2 6.2 ± 0.1 6.1 ± 0.2 6.2 ± 0.2 6.4 ± 0.1

4.4.2 Statistical analysis on wrench transformation error

We performed a model selection on 4 different models, to see the significance of the parameters
used to model the wrench transformation error. We tested on

1. The full model, fitting all six rotations (R̃k) and six translations (p̃′k), using 6 × (3 + 3) = 36
parameters;
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Figure 4.5: Violin plot of force (first row) and torque (second row) residual on xyz-axis (columns)
for all six transducers. With skew symmetric matrices ŝ accounting for hanging orientation error
(orange), without (blue). (FL: front left, ML: mid left, HL: hind left, FR: front right, MR: mid right,
HR: hind right).

2. No transducer translation error (p̃k = 0) , only fitting six rotations (R̃k) and one single
unknown translation (pC

B) between robot center and CoM, using 6 × 3 + 3 = 21 parameters;

3. No transducer rotation error (R̃k = I3), only fitting the transducer translation error together
with robot center to CoM translation (p̃′k), using 6 × 3 = 18 parameters;

4. With neither transducer rotation, nor translation error, only fitting a single unknown transla-
tion between robot center and CoM, using 3 parameters.

The statistics of those models were summarized in table 4.2. We reported mean of the testing
mean squared error (MSE) of 5-fold cross validation, together with Bayesian information criterion

Table 4.2: Summary of model selection statistics. (Abbreviations: degree of freedom(DOF),
cross-validation(CV), Bayesian information criterion(BIC)

Model DOF CV error BIC
Full (Six rotations + six translations) 18+18 12 1580
Six rotations + single translation 18+3 17 1674

Six translations only 18 62 2352
Single translation 3 105 2546
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Figure 4.6: Violin plot of the residual of the sum of force (left) and torque (right) at robot CoM
in floating base frame at different poses. Naive bias removal (light blue), without characterizing
transformation error (orange), our calibration method with (R̃k, p̃′k) (green). Our calibration
reduced the RSME (from blue to green) by 63% for forces (66% in Fx, 61% in Fy, 13% in Fz) and
90% for torques (61% in Tx, 95% in Ty, 78% in Tz).

BIC = P ln (RSS/P) + DOF × ln P, where RSS is the residual sum squared. We selected (1) full
model using six rotations and six translations, which yielded the smallest BIC. We showed the
residual plot comparing with and without transformation errors in figure 4.6.

Since the bilinear least-squares optimization only yielded local optima, we started the opti-
mization process from 20 different randomized initial guesses within a plausible set, where the
orientation error was less than 15 degrees in all three directions and the translation error was less
one-third of the robot size. The cost function variation was only 3.2% among all initial conditions.

4.4.3 Tripod walking

We also collected the wrench and motion tracking data when the BigAnt robot used tripod gait to
walk quasi-statically. The gait was governed by a Buehler clock running at frequency 0.08Hz and
turned right at 9.08o per gait cycle on average. A more detailed description of the gait can be found
in [76, 8]. The measurements compared between naive bias taring and our calibration was shown
below.

4.5 Discussions

In this paper, we showed that naive offset correction of the measurements from the six 6-axis
transducers on our hexapedal robot in a static pose produced horizontal force estimates on the
order of 25% of mg, and pitch and roll torque ranges that do not even contain the true torque of 0
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(right column) measured from the f/t transducers with naive taring transformed to the floating base
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Figure 4.8: Right tripod.

Figure 4.9: We plotted all groud contact wrenches on left tripod (left column) and right tripod
(right column) at the floating base frame after calibration compared with with naive taring.

(see figure 4.2). The poor accuracy of this ground contact wrench measurement hindered us from
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studying our model of multi-legged walking and slipping.
To resolve this we showed an in-situ calibration framework for these sensors which can be used

without disassembling the robot. We characterized transducer offset, leg gravity offset and the
wrench transformation error in our model.

We first estimated transducer offset and leg gravity offset by hanging the robot in two sets of
opposite directions. Our calibration method took into account of a hanging orientation error ŝ when
solving for the transducer offset and tool gravitational offset. Without this ŝ the residual error had
a clearly multi-modal distribution (see figure 4.5), especially in Fx and Fy. By characterizing an
infinitesimal rotation error ŝ during the hanging experiment, the error distributions became more
similar to a zero mean normal distribution, with a maximum 0.2N standard deviation.

In our second calibration step we characterized the frame transformation estimation error be-
tween transducer frame and body frame together with the unknown translation between body frame
origin andCoM. The unknown translation between body frame origin andCoM removed the 2.5Nm
bias in torque estimation. Using the frame transformation correction, we reduced the 5-fold cross
validation residual by a factor of ×8 compared with only fitting a single translation transformed to
CoM. Overall, the calibration framework enabled us to make a much more accurate measurement
of ground contact forces and the ensuing leg wrenches.

We also noticed that the offset term on the transducer could change. Our experience showed
the offset changed up to 10 N after six months. Temperature change and gauge excitation voltage
could be possible causes for the drift, should be expected over extended periods [78]. When such
a significant offset change occurred, we easily re-estimated wftk

o by putting it as the optimization
variables in eqn. (4.8), with the other calibration parameters held unchanged. This only required
a few measurements with robot standing at different poses. We found no need to redo the entire
protocol of hanging experiments to adjust this calibration.

This calibration procedure can be generalized to other systems that have a tool attached to an F/T
transducer. For example, when an F/T transducer is attached between the end of a manipulator and
an actuated tool head, one can estimate the transducer offset and tool gravity offset by following the
same procedure described in §4.3.1. However, instead of hanging, one should set the manipulator
joint angles to position the tool in opposite orientations. The ŝ term can compensate for imperfect
opposite orientations, and the method used to characterize the leg CoM can be applied to determine
the tool CoM during actuation.

The Cayley transformation parametrization used in §4.3.2 is a powerful technique to switch the
optimization argument set from a rotation group to a vector space. It can be used to characterize
unknown rotationmatrices in general, as long as one can formulate an objective function to optimize
towards.
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4.6 Conclusion

We have demonstrated a calibration methodology that enabled us to simultaneously measure the
ground contact wrenches in a six legged robot while it is walking and its legs are slipping. We used
this calibration method to obtain the F/T measurements for the previous chapter, which discusses
the multi-legged locomotion model with its predictions, and suggests some explanations as to why
a non-Coulomb friction model is successful at predicting motion governed by Coulomb friction.
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CHAPTER 5

Multi-legged Locomotion Model Extensions and
Applications

5.1 Introduction

In chapter 3, we present an algorithm for multi-legged locomotion contacting forces and the body
velocity together with slipping. The multi-legged systems are governed by principally kinematic
motion, and we employ a friction law ansatz that allows us to compute the shape-change to body-
velocity linear connection and the foot contact forces. The model is fast-to-compute, scales well
with large number of contacts, each potentially with slipping, and it has been experimentally
validated on several robots with different morphology. It enables the rapid and accurate estimation
of multi-contact robot-environment interactions.

In this chapter, we seek to further improve and apply this model to real-world applications. In
§5.2, we relax the model model assumption of flat surface, and allow the robot pitch and roll to vary
around non-zero constant angles. This allows the model to apply to slopes and staircases. In §5.3,
we use a data-driven connection residual term to capture the unmodeled dynamics, and improve the
motion prediction on side velocities. We show this residual term is able to predict motion across
gaits and frequencies. In §5.4, we implement this model on GPU, and plan the robot gait with
a large number of possible motions computed in parallel. We show the paralleized computation
allows us to exhaustively search among the entire configuration space, and generates multi-legged
robot motions that are non-intuitive for human to design.

5.2 Uneven terrain

Natural terrain is rarely flat, and even some indoor area is also non-flat, for example staircases or
ramps. Robots need to have the capability of traversing uneven terrains and stairs autonomously
in urban disaster relief or search and rescue missions. Previous works have demonstrated that
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multi-legged robots with 1-DoF legs, Rhex and BigAnt, are robust to uneven terrain and able to
climb up or down stairs with open loop control [84, 85, 86]. However, these gaits were usually
tuned by engineers through experiments with respect to certain stair specification. Previous work
on quadrupeds developed robust stair climbing algorithms through proprioceptive sensing [87] and
trajectory optimization [88].

In the previous chapter §3.3, we assume that the ground is flat, and the robot body has small
pitch and roll angles relative to 0. This assumption limits the usage of our proposed model on
uneven surfaces, where many challenges arise for robots to navigates while maintaining efficient
motion and stability. A simple, accurate and fast-to-computemodel could help analyze and generate
more reliable motion for robots to move through uneven terrain, and perhaps find the motion that
minimizes slipping off the stairs. In this section, we generalize our model to accommodate to
simple cases of uneven terrain: ramps and staircases. Specifically, instead of assuming small pitch
and roll, we assume the pitch and roll are small with respect to some non-zero constant initial pitch
(β0) and roll (α0); and instead of assuming the terrain is flat, we consider two cases: (1) the terrain
has a constant slope, (2) terrain can be modeled as a piece-wise constant step function.

Figure 5.1: Schematic drawing of the 2D support spring model extended to slope (left) and stair
cases (right). The robot is assumed to have a small pitch around the initial pitching value β0.

5.2.1 Modeling the motion on a constant slope

When the surface has a constant known slope, assume rotation R0 ∈ SO(3) transform the horizontal
plane (with respect to gravity) to the slope. In this case, we decompose the gravity into the directions
that parallel and perpendicular to the slope. The total force balance becomes


Fx

Fy

Fz

 = R0


0
0

Mg


i.e. the spring-supported model searches for the solution satisfying force balance that vertical to
the slope; and the sum of planar friction forces needs to compensate for the gravity instead of 0.
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Figure 5.2: A trajectory of simulated BigAnt robot moving up 17o slope. We plotted the slope
(gray), robot center (red), the trajectories of front-left (FL, blue), mid-left (ML, orange), hid-left
(HL, purple) feet before compress (stance: stars, swing: lines).

5.2.2 Modeling the motion on stairs

When moving to the stairs, we assume the robot pitch (β) has a small variation around the slope
the stairs (β0), so the first order Taylor expansion around the initial position become sin(β) ≈
sin(β0) + cos(β0)(β − β0), cos(β) ≈ cos(β0) − sin(β0)(β − β0). Let δβ = β − β0, the first order
approximation of rotation matrix R becomes:

R = Rz(θ)Ry(β)Rx(α) ≈ Rz(θ)R′y(β)R
′
x(α)

=


cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1




cos(β0) − sin(β0)δβ 0 sin(β0) + cos(β0)δβ

0 1 0
− sin(β0) − cos(β0)δβ 0 cos(β0) − sin(β0)δβ



1 0 0
0 1 −α

0 α 1


Considering the last row of the transformation, the foot position in world frame vertical z-axis
becomes

pz, j = (Rq j + pz,0)z

≈ −(δβ cos(β0) − sin(β0))qx, j + α cos(β0)qy, j + (cos(β0) − δβ sin(β0))qz, j + pz,0

= −δβ(cos(β0)qx, j + sin(β0)qz, j) + α cos(β0)qy, j + (sin(β0)qx, j + cos(β0)qz, j) + pz,0

Let h(px, j, py, j) be the stair height at the toe position of jth foot, the relative toe position
is pz, j − h(px, j, py, j). The exact same search algorithm (§3.3) applies with a simple change of
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coordinates:

q′x, j = cos(β0)qx, j + sin(β0)qz, j

q′y, j = cos(β0)qy, j

q′z, j = sin(β0)qx, j + cos(β0)qz, j − h(px, j, py, j)

The foot velocities in world frame is still Ûp j = ÛRq j +R Ûq j + Ûp0, so force-moment balance for the
planar plane can be solved with a simple change of coordinates q′j = R′y(β)R′x(α)q j

Figure 5.3: A trajectory of simulated BigAnt robot moving up stairs (tread: 0.3m, riser: 0.12m).
We plotted the slope (gray), robot center (red), the trajectories of front-left (FL, blue), mid-left
(ML, orange), hid-left (HL, purple) feet before compress (stance: stars, swing: lines).

5.3 Residual modeling for sim-to-real transfer

In chapter 3, we presented a reduced-order template model to analyze multi-legged system body
motion together with slipping. We showed the model could capture the body motion on BigAnt
robot with both tripod and metachronal gait, whereas the model failed to model the side velocities
of Multipods (figure 3.11). This might due to robot mechanical asymmetry during installation,
or the individual differences in spring stiffness and friction coefficients among all legs. In this
section, we assume the locomotion is still geometric, and add a residual term to the model-based
mechanical connection matrix to capture the unmodeled behavior.
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Figure 5.4: The actuation schematic (top) and the modular leg section of Multipod (bottom) in
YPY (yaw-roll-yaw) configuration [8].

5.3.1 Residual formulation

Specifically, for an K-legged system, we define a constant matrix B ∈ R3×2K for the modeling error.
Together with A(q) obtained from eqn. (3.20), the geometric reconstruction equation becomes

g̊ =

[
Rθ
−1 Ûpxy,0
Ûθ

]
= (A(q) + B) Ûq

Let g̊0 = A(q) Ûq and the ground truth body velocity be g̊true. Let the sub-index t denote the index
of snapshots, with N snapshots in total. We obtained matrix B through the least-square regression:

B
[
Ûq0, · · · , Ûqt, · · · , ÛqN

]
=

[
[g̊true,0 − A(q0) Ûq0], · · · [g̊true,t − A(qt) Ûqt], · · · [g̊true,N − A(qN ) ÛqN ]

]
B ≈

[
[g̊true,0 − A(q0) Ûq0], · · · [g̊true,t − A(qt) Ûqt], · · · [g̊true,N − A(qN ) ÛqN ]

] [
Ûq0, · · · , Ûqt, · · · , ÛqN

]†
where † represents the Moore-Penrose inverse.

5.3.2 Results

We tested this error formulation against Multipod dataset with 8 legs [58, 59, 60]. Each pair of legs
was a leg segment with three motors, configured in yaw-roll-yaw configuration.
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The robot gait was defined by

θy1 = θy1,0 cos(2π f t + i∆φ)

θr = θr,0 sin(2π f t + i∆φ)

θy2 = θy2,0 cos(2π f t + i∆φ)

where (θy1, θr, θy2) were joint angle inputs as shown in the figure 5.4; (θy1,0, θr,0, θy2,0) defined the
joint amplitudes; f was the gait frequency; ∆φ was the phase offset between adjacent leg segments.
The gait used roll and yaw amplitude θr,0 = 5π/36, θy1,0 = θy2,0 = π/9, with 26 different phase
offset from 0.2π to 1.8π, and 5 gait frequencies 0.3, 0.6, 1.2, 2.4Hz. Each trial contained robot
walking 8-10 cycles, with motion capture sample rate at 125Hz. The detailed gait selection process
was documented in chapter 2.3.3.1 [8].

In figure 5.5, we showed the results using four training trials with ∆φ = (0.65, 0.9, 1.1, 1.35)π.
We tested the model on a different gait with ∆φ = π. The number of four trials was selected,
because the validation error stopped decreasing with increasing number of training trails.

We further studied whether the residual model could generalize from low frequency data to
higher frequencies. We used four randomly selected trials running at 0.3Hz to estimate B matrix,
and tested the body velocity predictions at higher frequencies. We compared the residuals using
training trials at it own frequencies. The results were plotted in figure 5.6.

5.3.3 Discussion

We presented a data-driven method to capture the unmodeled dynamics directly from robot motion
data. Specifically, we estimated a constant error term for the geometric connection matrix. In
figure 5.5, the left and right contours had almost the same error distribution, and both greatly
improved the the side velocity estimation. This indicated that the connection residual matrix B

could generalize well among different gaits, and frequencies.
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Figure 5.5: We plotted the body velocity prediction with(orange) and without(blue) residual term
together with motion capture(red) for Multipod running at 0.3,0.6,1.2,2.4Hz.
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Figure 5.6: Residual plot of model trained on datasets across frequencies. We plotted the violin
plots of body velocity residuals of the model (blue), model with residual trained by trials at 0.3Hz
(orange, left half), model with residual trained by trials under its own frequency (purple, right half).
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5.4 Motion planning with GPU

5.4.1 Acknowledgment

This section is based on joint work with an undergraduate student Shuyu Zhan from University of
Michigan.

5.4.2 Introduction

The motion planning problem is always considered as an NP-hard task, and the search could
soon become intractable for rather simple disc robots in simple-polygon workspace [89]. Motion
planning with contact switches on the legged system is even harder. Many trajectory optimization
methods generate motion plans by solving for a nonlinear optimization problem for second-order
systems [90, 91]. Alternatively, one could construct asymptotically stable gait primitives for
planning [92]. However, with more legs, the planning complexity increases, and the problem could
soon become intractable with contact switches over a short planning time horizon. On multi-legged
systems, we have shown a history-independent, first-order connection that could model the system
well. Since the model could be solved through a simple set of linear equations, we decided to
implement this model on GPU.We conducted a brute-force search among a large number of motion
plans in parallel on GPU, and select the one with the lowest cost. This allowed us to exhaustively
search among the entire configuration space, and generate multi-legged robot motions that are
non-intuitive for engineers to design.

5.4.3 Motion planning problem setup

We consider a multi-legged robot with N legs, indexed by i = 1, · · · , N . Each leg has a single
periodic degree of freedom (DOF), denoted by φi ∈ [0, 1]/{0, 1}. At each timestamp, each DOF,
φi, has M choices of velocity Ûφ j

i , j = 1, · · · , M . The total choice of the movement at a single
timestamp is MN . The goal of motion planning is, at a given initial condition, to find the best
movement of all legs that optimizes a certain goal function. We compute all MN motion options in
parallel on a GPU, and then select the optimal one.

5.4.4 Cost function design

Let Ωt ∈ SE(2) denote the robot position at time step t, and let the ith choice of motion to be
( Ûφ)i. After executing this motion on the robot for ∆t period, the robot transformation becomes
Ωi

t+1. Given a target Ωtarget
t+1 ∈ SE(2), we define the cost function as the distances between the

currentΩi
t+1 and the targetΩ

target
t+1 transformation, as a geodesic norm of translational and rotational
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Figure 5.7: Flowchart of GPU parallelization for computing and finding the optimal motion.

distances. Note that different from a cost function that prescribing target velocity, this cost function
prescribes a target trajectory, and gives the robot the opportunity to "catch-up" is it deviates from
the trajectory.

5.5 Simulation setup

We used the model of 6-legged BigAnt robot in the simulation. Each leg was governed by a four-bar
linkage, with foot trajectory shown in figure 5.8. Robot configuration was controlled by motor shaft
angles [φ1, · · · φ6], with the order [hind left, mid left, front left, hind right, mid right, front right].
At each time step, when computing the robot body velocity given ( Ûφ)i, we further discretized ∆t

into Ts finer time steps, and integrated the body velocities to compute the cost. Then we only use
the first T f time steps in the actual motion. This allowed us to look ahead for ∆t, without risk of the
contact switches causing wrongly predicted motion over this time period. The robot body velocity
under certain motor control was computed using the model in §4.2, implemented in Just-in-Time
(JIT) compilation offered by Numba [93] in Python for GPU parallelization.

We considered an initial condition of the robot standing with two tripods out of phase, i.e robot
configuration [0.5, 0, 0.5, 0, 0.5, 0]. We gave each leg four choices of motor velocity (M = 4):
Ûφ

j
i ∈ [−1, 0, 1, 2], i.e. move backwards, stay still, move forward or move forward at a higher speed.

If a leg was not in contact with the ground, it always had a fixed swinging velocity 2. Therefore, at
a given timestamp, we have MN = 46 = 4096 many possible motions.
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Figure 5.8: Foot trajecotry of Bigant robot. We plotted points at shaft angle φ = 0, 0.2, 0.4, 0.6, 0.8
(red stars).

5.5.1 Results

We tested the planning performance on Nvidia GeForce RTX 1070 and 8 core Intel(R) Core(TM)
i7-7700@ 3.60GHz running Ubuntu 22.04. We set the planning goal for the robot to track a certain
constant velocity, and used ∆t = 0.05, Ts = 20 and T f = 2.

5.5.1.1 Computation speed

We tested our algorithm on both CPU and GPU. We pre-compiled the functions with JIT. On GPU,
we used 5 random goal velocities and each repeated 5 times. The computation speed of planning
for 150 time steps cost 1.03 ± 0.05 seconds. Note that the data transfer time between CPU and
GPU was measured in this cost. On CPU, the time was quite large, and we tested the planning for
50 time steps, with 5 randomly chosen goal velocities and ran 1 time for each velocity. The CPU
time cost was 31±2 seconds per time step. The GPU planning is about 4650 times faster than CPU
computation.

5.5.1.2 Planning results

In this section, we showed three example trajectories generated by the planning algorithm. We
demonstrated motions of walking straight, turn-in-place, and moving diagonally without turning.
Note that the third gaits were quite non-intuitive for BigAnt robot with 1-DoF leg in the xz-plane,
and it have never been designed on this robot.
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Figure 5.9: We plotted the robot trajectory (top plot) planned (blue) and goal (red), with its yaw
orientation at 0, 100, 200, 300 time step (∆t = 0.05). The goal velocity was 0.2 m/s in x-axis. We
also plotted the planned shaft angle (bottom plot) of each leg.
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Figure 5.10: We plotted the robot yaw (top plot) planned (blue) and goal (red), ∆t = 0.05. The
goal was s turn-in-place motion with 0.2 rad/s in yaw velocity. The planned motion generated
displacement always less 0.1m radius around the origin, and thus not shown here. We also plotted
the planned shaft angle (bottom plot) of each leg.
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Figure 5.11: We plotted the robot trajectory (top plot) planned (blue) and goal (red), with its yaw
orientation at 0, 100, 200, 300 time step (∆t = 0.05). The goal was to generate a side motion, but
always pointing the heading to x-axis. The goal velocity was 0.05 m/s in x-axis, and 0.02 in y-axis.
We also plotted the planned shaft angle (bottom plot) of each leg.
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5.6 Conclusions and discussions

In this section, we presented three extensions and applications of the multi-legged locomotion
model proposed in Chapter 3. We extended the model to generalize to special cases of uneven
terrain: slopes and staircases. By fitting a residual term in the connection using robot motion data,
the model accuracy was improved, and the fitted geometric connection residual motion could be
generalized among different gait parameters and frequencies. We also enabled multi-legged motion
planning through a simple parallel brute-force search. The motion planning algorithm was fast,
with an average computation cost of 300-time steps in 1 second, with 4096 different possibilities
considered at each step. It could generate motions that were hard to design by engineers on a
hexapod with 1-DoF legs.

5.7 Future work

The examples studied in this section are just a starting point for using this multi-legged locomotion
model. There are many more possibilities beyond it. For example, one could mutate the residual
modeling together with motion planning to generate motion plans online with feedback. One could
also do motion planning on staircases to generate a more robust motion plan of climbing upstairs.
We hope this chapter could facilitate the usage of our proposed multi-legged locomotion model,
and the development of multi-legged robots with applications in the field.

5.7.1 Anisotropic friction and feet design

Point contact and isotropic friction are two common simplifications in legged robotics models
and designs, whereas arthropods usually possess feet with special surface structures to enhance
feet attachments [94, 95]. Gecko inspired adhesion has been applied to space manipulation [96]
and climbing [97]. In snake locomotion, the anisotropic texture of skins creates drag-direction-
dependent friction coefficients that benefit snake slithering with different gaits in their living
environments [98, 99]. How anisotropic friction could facilitate multi-legged locomotion remains
unclear. In eqn. (3.19), we propose a model to study the effect of friction anisotropy in a certain
direction (the ellipsoidal cone in figure 5.12). This proposed model is still symmetrical about the
major and minor axis of the ellipse, i.e. the system generates the same friction forces when slipping
in two opposite directions. In nature, friction anisotropy can be direction-dependent in the result of
an asymmetric arrangement of surface micro-structures [100]. An oblique friction cone that breaks
the symmetry of the ellipsoidal cone might be useful to study this tribological property.

Animals also have a variety of feet adapting to their living habitats and lifestyles. For example,
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Figure 5.12: Friction cones (from left to right): isotropic friction cone (governed by a single friction
coefficient), ellipsoidal friction cone (governed by a friction coefficient together with an enhanced
traction direction), oblique ellipsoidal friction cone (governed by a friction coefficient, an enhanced
traction direction and center offset), the cross section slice of three cones.

cats have retractable claws with soft pads on their paws; horses have hooves; elephants have
large, padded feet with fatty tissue cushions; Kangaroos have large, muscular hind feet with long,
strong toes. Current quadrupedal robots usually possess simple elastic round tips as their feet, and
some bipedal robots start using human-like feet with ankles to enhance stability. In multi-legged
locomotion, future works in feet design considering its shape, friction, and damping together with
robot morphology could potentially improve the locomotion robustness and efficiency.

5.7.2 Momentum

In this thesis, we study multi-legged locomotion in the principally kinematic regime, where the
robot momentum is negligible and the motion can bemodeled through the local connection between
body velocity and shape-changing velocity: g−1 Ûg = −A(r) Ûr . For a system with non-negligible
momentum, the motion written in the full reconstruction equation is [101]:

g−1 Ûg = −A(r) Ûr + B(r)p

Ûp = ÛrTα(r) Ûr + ÛrT β(r)p + pTγ(r)p

M(r)Ür = −C(r, Ûr) + N(r, Ûr, p) + τ

where p is the generalized momentum. Previous work [29] discussed a data-driven method to
model the motion with quickly decaying momentum near period orbit. Our initial results in [102]
showed that for large trotting quadrupeds, even though breaking down the assumption of friction
annihilates momentum quickly, data-driven connections still approximate their observed motion
well. Future work could study what is a good representation of momentum in a legged system, and
how to efficiently model it.
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Another assumption made in our model was that the shape and shape changing velocities are
directly measurable and controllable at a high bandwidth. The robot shape is usually subject to
some dynamics in reality, for example, the motor dynamics, or some passive oscillation. The shape
and shape velocity (r, Ûr) becomes not directly controllable, and perhaps also not measurable at a
high frequency. How to identify the shape dynamics from robot data could be a future direction to
study.

5.7.3 Motion planning

In §5.4, we presented the initial motion planning results on a hexapod. In the search, we picked
robot behavior that gave the lowest cost at each time step. This could only give us a local minimum,
in the sense that the algorithm was not able to find a path with an accumulated lower cost, when
the path needed to deviate from the goal and then come back. Contact planning with many legs is
already a high dimensional computationally expensive problem, and how to find the global optimal
path can be an interesting direction for future work.

5.7.4 Sensing

State observers usually use proprioceptive information and inertial measurements to estimate robot
states. Previous work has shown that an invariant Kalman filter can be used for state estimation
over long trajectories [103]. It would be interesting to explore how to integrate our model as part
of the system evolution in the filtering scheme. The various system parameters, such as spring
constants and friction coefficients, could be converted to slowly varying online estimates, producing
an adaptive model. Further utilizing visual sensing in motion planning could be helpful for the
motion over complicated uneven terrain.
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