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Modeling multi-legged robot locomotion
with slipping and its experimental
validation
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Abstract

Multi-legged robots with six or more legs are not in common use, despite designs with superior stability, maneuverability,
and a low number of actuators being available for over 20 years. This may be in part due to the difficulty in modeling
multi-legged motion with slipping and producing reliable predictions of body velocity. Here we present a detailed
measurement of the foot contact forces in a hexapedal robot with multiple sliding contacts, and provide an algorithm
for predicting these contact forces and the body velocity. The algorithm relies on the recently published observation
that even while slipping, multi-legged robots are principally kinematic, and employ a friction law ansatz that allows
us to compute the shape-change to body-velocity connection and the foot contact forces. This results in the ability to
simulate motion plans for a large number of contacts, each potentially with slipping. Furthermore, in homogeneous

environments, this kind of simulation can run in (parallel) logarithmic time of the planning horizon.
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1 Introduction

Most recent research in legged robots has focused on
bipedal or quadrupedal robots, yet the vast majority of
legged animal species use six or more legs, are smaller, and
therefore navigate a relatively much rougher terrain. Such
“multi-legged” systems — a term we refrain from using
for quadrupeds and bipeds — can exhibit complex trade-
offs between loads on the legs, and move with substantial
slipping at the feet. Although inertia is essential in some
limbless motion Earnst and Alben (2022), inertia turns
out to be negligible in practice Hu et al. (2009). When
friction forces dominate inertial forces, slithering can be
understood using geometric mechanics, and is “principally
kinematic” in the sense of admitting equations of motion
that do not require momentum or velocity states. Instead,
the equations of motion can be expressed as a “local
connection”: a linear relationship between the rate of shape
change 7 and the body velocity vy: v, = A(r)7 (see e.g.
Hatton and Choset (2011); Ostrowski and Burdick (1998)).
It is natural to ask how this transition to momentum-free
equations of motion occurs with increasing numbers of
legs, and whether we can obtain a model for multi-legged
locomotion without momentum.

Somewhat to our surprise, the minimal number of
slipping point contacts at which momentum can be
removed and a local connection describes the motion is
three — since with this number of contacts all DOF are
subject either to rigid constraints or to sliding friction.
Bittner et al. (2018) presented a data-driven method
to efficiently construct this local connection model for
systems with no momentum. The work in Kvalheim et al.
(2019) extended the no-momentum case to the quickly
decaying momentum case which appears in high friction
sliding contact. Recently, Zhao et al. (2022) showed that
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such local connection models are effective for multi-legged
animals and robots with and without slipping, at the
predicted level of three or more contacts.

The primary motivation of our work here is to
demonstrate to the community that the body motion of
multi-legged robots — typically hexapods and octopods
— is much easier to model than is often assumed,
because despite the complexity of additional contacts and
a combinatorial number of contact states, the ensuing
simplification that comes from momentum becoming
ignorable more than compensates. Even if each leg ends in
a multi-toed foot, leading to a total of a few dozen possible
contact points, the simulation models remain eminently
tractable.

To achieve this goal we (1) present a fast algorithm for
modeling multi-legged systems, that accurately estimates
the body velocities needed for producing motion plans,
and provides accurate foot contact force estimates in
§2. The model find contacting feet and estimate their
supporting forces through a spring-support model, and then
use a friction ansatz to construct load connection. In §3.1,
we describe (2) a multi-legged robot that simultaneously
measured all the ground contact forces produced while
moving and possibly slipping, and (3) use this robot to
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test and validate the predictions of our model. We also
(4) validate the model against other multi-legged robot
datasets in §3.2, and (5) demonstrate that it scales favorably
with the number of legs and admits easy parallelization
in comparison with a state-of-the-art mechanical simulator
in §3.3. We show our simplified ground-interaction model
yields an accurate prediction of body velocity and contact
forces compared with experimental measurements. The
friction model, which computes 50 times faster than the
traditional Coulomb friction model, gives equally good
predictions.

1.1 Prior work

Sufficiently high viscous friction has been known to
produce a local connection since the seminal paper of
Shapere and Wilczek (1989). While several sources have
compared predictions of viscous friction with Coulomb
friction noting the similarity in results (most recently
Chong et al. (2022b) supplemental figure 2), the two
friction models are incompatible in an easily observable
way. Coulomb friction models the fact that the traction
generated by a leg depends on the normal force it exerts
on the substrate whereas in viscous friction the traction
depends only on velocity, making a viscous friction
model ineffective except in cases of nearly identical
leg loading. To resolve this complication, we proposed
the use of a viscous-Coulomb friction ansatz in Revzen
and Sachdeva (2018), noting then the surprisingly good
predictive quality of the ansatz-based model. This ansatz
produces a local connection by construction, just as
viscous friction does, while conventional Coulomb-friction
based modeling approaches cannot produce such a linear
relationship between shape velocity and body velocity. The
current publication is the culmination of a multi-year effort
to extend, understand, and validate those initial results
(including, among other publications, Wu et al. (2019);
Zhao (2021); Revzen et al. (2021b); Bittner and Revzen
(2020); Revzen et al. (2021a); Zhao et al. (2022)).

1.2 Multi-legged contact forces

Much of the work on multi-legged robots has focused on
hexpedal robots, starting with Gorinevsky and Shneider
(1990); Carlton and Bartholet (1987). Hexapods are
appealing because they can have a tripod of supporting legs
while moving another tripod into place for support on the
next step. This static stability allows for the possibility of
easier control, and usable motion even when the robot is
slipping. Significant prior work was done on the hexpedal
robots of the RHex family (from Saranli et al. (2001) to
Chang et al. (2022)), many variations of which have been
built over the past 20 years. Additional families of multi-
legged robots include the ROACH robots of Zarrouk et al.
(2015), the Sprawl robots of Kim et al. (2006), various
multi-legged robots that used “whegs” from Quinn et al.
(2001) and e.g. Zarrouk and Fearing (2015), and several
studies of multi-legged robots with larger numbers of legs
such as Aoi et al. (2013), Chong et al. (2022a), and Chong
etal. (2021).

In a system with more than one point of contact,
every closed kinematic loop between body and ground
can support an internal force that produces no net body
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Figure 1. A 1-dimensional multilegged example. Consider
two or more equal-height legs, with identical friction properties
moving at different horizontal velocities relative to a body
constrained to move only in the horizontal direction. The
resulting body velocity under Coulomb friction with an odd
number of legs is the median leg speed; with an even number
of legs the answer is non-unique and any speed between the
two median leg speeds will work.
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Figure 2. Visualization of a 2D case. Consider a 4-legged
robot (right plot) whose feet move relative to the body with
known velocities (arrows, right plot). We plotted contours of
the magnitude of the total force on the body under the
assumption that the body is moving at body velocity (Vz, V)
without rotating, both under Coulomb friction (top left) and our
viscous-Coulomb ansatz (bottom left). For Coulomb friction,
this function has point discontinuities at those velocities that
put any of the feet into static friction (colored dots, color
matched across sub-figures). For each friction model, we also
indicated the body velocity at force-moment balance (red
stars). The plots demonstrate that the viscous-Coulomb
ansatz gives rise to a simple quadratic, whereas Coulomb
friction produces an almost everywhere smooth function with
point discontinuities, yet both produce very similar solutions.

acceleration. This implies a sizable space of contact forces
that unobservable from motion tracking in a multilegged
systems, and cannot be measured using the commonly used
approach of placing a force plate for the robot to move over
as in Komsuoglu et al. (2009). This is because such a force
plate only measures the total wrench applied to it — not the
interplay of all individual foot contact forces, which may
trade off in various ways from step to step. The authors
of Kao et al. (2019) measured the individual ground contact
forces of RHex by installing each leg with a 3d force sensor.

1.3 Motivating example

Coulomb friction contacts do not yield a linear relationship
between shape-change velocity and body velocity except
for the cases where at least three contacts are in static
friction and in general configuration. Consider the 1-
dimensional (1D) case (figure 1), where a robot constrained
to move along the x axis without changing pitch angle,
is driven by M legs such that each foot is commanded
to move at a potentially different velocity relative to the
body v fori =1,---, M. Further, assume for simplicity



that all the feet bear the same normal load N. Denote the
friction coefficient as p, foot velocity in the world frame as
vV, and the unknown robot body velocity as vp.

1.3.1 Coulomb friction solution is the median
The Coulomb friction acting at each foot is
fi = —pNsign(v}V) = —uNsign(vg +vP). At force
balance, we want to find vy, such that

M
0= Z —uNsign(vp + v?)

i=1

Without loss of generality, assume the feet are numbered in
a monotone order of foot speed. In this 1D example force
balance is found when half of the feet are slipping in one
direction and the other half are slipping in the opposite
direction. If M is odd, assume foot ¢ is moving at the
median speed relative to the body. If vg = —v2, that foot
will be in static friction, and the remaining feet will be in
force balance. Other solutions are possible, depending on
the size of the gap between static and dynamic friction, but
the median speed foot gives a solution for any plausible
choice of friction coefficients. If M is even, assume that
the median speed is between v” and fo. Choosing vp
anywhere in the (open) interval between these velocities
will produce force balance. Here additional solutions are
also possible if there is a sufficiently large gap between
static and dynamic friction coefficients, but the median
speeds solution will always exist.

1.3.2 Viscous-Coulomb friction solution is linear Our
viscous-Coulomb friction ansatz modifies the contact force
equations to be linear in the contact velocity vector. In the
1D case, this becomes f; = —uNvV. At force balance,

M
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i=1

The immediate solution is vg = —mean(v>) — a unique
linear solution which in many cases is quite close to
the median. The linearity of the viscous-Coulomb friction
force-balance solution extends to 2D and full 3D, yielding
the local connection.

1.3.3 Static friction in 1D is ill-posed Suppose the
system moves without any slipping by coordinating the

motions of the legs: vP = vP = ... = v The viscous-
Coulomb friction model would correctly and robustly
estimate the body velocity vp = —le , whereas the

Coulomb friction model would be at a singularity with an
ill-posed numerical problem for [v}Y'| — 0. Any level of
noise in the velocities would change the results.

1.4 Contributions

We set out to understand the results of Zhao et al.
(2022) — why do multiple legs with (presumably) Coulomb
friction interactions with the substrate produce a local
connection between shape velocity and body velocity
which is, algebraically at least, incompatible with such
a model. To address the question through experiment we
assembled a hexapedal robot with 6-Degree of Freedom
(DoF) force-torque sensors at the base of each leg, enabling
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the contact forces to be measured directly (see Wu and
Revzen (2023)). To address the question through theory, we
constructed a highly simplified quasi-static model of body-
ground interaction, and replaced the Coulomb friction term
which is linear in normal force but non-smooth and non-
linear in contact velocity with a friction ansatz that is
bilinear in normal force and contact velocity (Zhao 2021,
Chapter 4).

Here we present a refined version of this model and show
that it correctly predicts the interplay of forces measured
with the robot. We resolve the seeming contradiction of
having the “wrong” (ansatz) friction model produce the
“correct” forces, by showing that Coulomb friction and our
ansatz produce very similar motion predictions, for reasons
we partially demonstrate in section 4 and in Wu et al.
(2019). From a computational perspective, we present a
numerical study demonstrating that our computation time
is almost independent of the number of legs, unlike the
behavior of popular state-of-the-art robot simulation tools.

2 Model algorithm

We propose an algorithm to estimate world frame body
velocity from its body shape and shape-changing velocity
at the current time frame. Our algorithm takes as inputs: (1)
the positions ¢; and velocities ¢; of the robot’s feet in the
body frame; (2) the spring stiffness £; of each leg; (3) the
friction coefficients y; and friction anisotropy wg,, ;. As
outputs it provides: (1) body height p, ¢, pitch o, and roll
ay, slopes; (2) body velocities p, o and 9; (3) 3D forces at
the feet F.

The model assumes the robot’s (1) pitch and roll angles
are small; (2) pitch, roll, and height vary slowly, so their
derivatives can be assumed to be zero; (3) the system’s
inertia is irrelevant since the system is always at force-
moment balance; (4) the legs are short and the ground is
horizontal at the point of contact of each foot.

The algorithm is composed of two steps: (A) find which
feet are in contact with the ground and estimate their
gravity-induced loading using a spring support model; (B)
use force and torque balance to construct the linear local
connection model, invert it, and use that to estimate the
planar body velocity. A summary of the algorithm is shown
in algorithm 1.

The inputs to the spring support model (A) are: (1) the
3D positions of the feet g; in the body frame; (2) the spring
stiffness k; of each leg. The outputs of the spring support
model are: (1) body height p, o, pitch «,, and roll «,
slopes; (2) gravity-induced loading on each foot F’, ; and,
implicit in that, which feet are in contact with the ground.

Once the contacting feet are known, we solve for force
and moment equilibrium using a viscous-Coulomb friction
ansatz which is bi-linear in F,; and the foot sliding
velocities in the world frame p.y j, providing an local
connection model (B). The inputs to the connection model
are: (1) the 2D positions g,,,; and velocities ¢, ; of the
feet in the body frame; (2) the friction coefficients p; and
friction anisotropy wgy,;; (3) the gravity induced loading
F, ; computed in (A). The outputs of this local connection
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Algorithm 1: Pseudo-Code! of §2.1

INPUTS: 3D foot positions {g; },
PARAMETERS (CONSTANTS): mass M,

velocities {qzy ; }

stiffnesses {k; },

friction coefficients {y;},  anisotropies {wgy ;}

Define function: \/(s) set of legs on ground at state s, N'(s) := {k|p. x(s) < 0}, with p, x(s) from eqn. (7)

Solve for force-balance z* using M, {k;}, and {g; } according to §2.1.1; sy < (0,0, 2*);

Loop
if IN'(so)| < 3, i.e. 1 or 2 feet on ground then

else

end
Update current state sg < s;;

end

Compute normal (vertical) forces F, j(sg) with eqn. (8);

‘ Apply §2.1.3: rotate the body as dictated by the gravity using §5.1.2, §5.1.3, giving s;

Solve s§ using force and moment balance eqns. (9), §5.1.1;
if N (s§) = N(so), i.e. s§ has same contacts as sy then break from loop;
Apply §2.1.2: let s; be the first point on the ray from sg to s(; at which contact legs change; s§j < s1;

Apply §2.3 at state s§j to solve puy 0, 6 from eqns. (13), (14), using {quy & }» {duy.k }» {1x }, and {wey 1}
also computed {pzy i}, {Pay.x } and {F,, 1} the tangent (horizontal) forces of eqn. (12)

RETURN body state s§ = (po, 0, a,, vy ), body velocities pyy 0, 6, and 3D forces at feet {F:};

model are body velocities: (1) body velocities p, o and 6";
(2) 2D traction forces at the feet F, ;.

Suppose we are given a system with IV legs (or other
contacts), indexed by 7 = 1...N. The time-varying foot
positions in the body frame of reference are given by ¢; €
R3, j =1...N. We assume the transformation from body
frame to world frame is given by a time-varying rigid body
transformation 2 € SE(3). The world frame foot positions
p; and velocities p; are

pj = Qg; 1)
By = Q5+ Qd; = 2[00, + g @)

Let py represent the origin of the body frame at the
CoM. We assume a simplified form for the rigid body
transformation approximation €, where pitch «,, and roll
a, angles are small, so they can be approximated by their
first-order Taylor approximation. We also assume the legs
are short, so the protraction and retraction of a leg does
not affect its xy position in the world frame. We further
assume the rigid body motion is only time-varying in the
horizontal plane, i.e. a; «, and p o vary so slowly that
their derivatives can be approximated by 0. Specifically, {2/
and Q'~1Q) are

[cos® —siné

0 DPz,0
Q- sinf cosf 0 pyo 3)
—Qy Qy 1 DPz0
| 0 0 0 1
[0 =6 0 pao
Q’_lQ';: 0 0 0 py,O ] (4)
0 0 0 0
0o 0 0 0

Because of these simplifying assumptions, we can
decouple the movements in the zy plane, and the physical
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units of vertical and horizontal length are decoupled.

: . [cos® —sin@ o
We use the planar rotation Ry := [si; 0 colsn9 ], and S :=
[‘1) _01] to represent foot position and velocity in world

frame xy plane with:

Pay,j = Rodzy,j + Pay0 (5)
Pay,j = Ro (éRG?lSRG%yd + qu,j) + Payo  (6)

2.1 Spring Support Model : finding the
contacts

In this section, we show how to decouple the roll, pitch, and
vertical (z-axis) motion of the robot, determine which legs
are in contact with the ground, and what supporting force
each leg generates. We model the robot as a “body plane”,
with each leg assumed to be a vertical spring attached to
this plane. We assume the system is at force and moment
balance. A simplified version of this model, without
accounting for roll and pitch, can be found in Revzen and
Sachdeva (2018); Zhao (2021). A similar spring-leg model
was used to study legged animals and robots in Usherwood
and Smith (2018) and later in Chong et al. (2021), but they
did not specify how to determine which legs are in contact.

Consider a pitch, roll, and height state s =
(0ig, vy, P2 o). From (1), we have

pz,j(s) = =0y T yqy it 4z T D20 @)

Taking 0 to be the ground level, and up being the positive
z-axis direction, legs with p, ; < 0 are in contact with the
ground. Assuming the normal supporting force F, ;(s) is
linearly dependent on p, ;, we define the individual leg
normal force and the resulting planar moment function by,
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Figure 3. Visualization of the search for contact state in a 2D “robot”. We indicated the height and pitch (p. o,«) states searched
(labels 0-3 of (a)), and visualized the pose and contacts of the “robot” in each of these states (corresponding labels of plots in (b)).
Each “robot” leg (zigzag lines in (b)) defines a corresponding codimension 1 plane (line here) in (zo,c) at which it contacts the
ground (colored lines in (a) with color same as the leg in (b), (c)). At a p.,0 above the plane, the leg is in the air; below it, the leg will
be in contact and generate normal forces. With each state being searched (number label in (a)), there is a closed-form solution of
the force equilibrium, which we connect to that state with a line interval (black in (a)). If the equilibrium lies in the same contact state
the algorithm terminates (star; step 3). Otherwise, the portion of the line segment in another contact state is counter-factual (black
dashed in (a)). Instead, we switch to the new contact state and solve it again. Each such transition between contact states lies on a
plane corresponding to the leg that made contact (black dot in (a); circled leg in (b)).

—Kjp.j(s) ifp.;(s) <0
F. ;(s) :=
0 otherwise

M, j(8) :== —qy ;i F5(s)  My;(s) := qujF: ;(s),

(®)
and we denote the total force and moment by
N N
Fis) =) F.j(s), Ma(s) =) M,;s),

i=1 i=1
N

My(s) =) My;(s). )
i=1

2.1.1 Finding an initial z* Without loss of generality, we
number p, ; in non-increasing order. When o, = oy = 0,
the total normal force at height 2 such that p, n, < —2 <
P2 Ne+1 18 F2([0,0,2]) = Z;\fz"l K;(z+p.;). We scan
values of z, z:= —p, n,, starting with N =1, where
only the lowest foot is in contact. We increase N until
F,([0,0, —p;.n,]) < Mg < F,(0,0, —p. n,+1), and then
linearly solve using the slope K, +1 to find z* such that
force balance is achieved. For that z*, legs k =1... N
are in contact with the ground. Throughout the paper, we
use the index k to vary only over legs that in contact with
the ground based on this criterion, and by F}, ;, the normal
force of those legs.

2.1.2 Solving for state Next, we solve for the full state,
s, containing the small pitch and roll angles, and the body
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height, maintaining vertical force balance and moment
balance of the moments generated by the normal forces,
ie. F, — Mg= M, =M, = 0. We start with the initial
condition sg = (0,0, 2*), with F, = Mg. Taking a0y,
z* as unknowns and holding the legs in contact constant,
these values are a solution s(j for a 3-dimensional linear
system. We check whether the legs in contact at s; are the
same as in sp; if so, then s is the result of our model.
If not, then we search along the line segment starting
at so and ending at s{j for the first change in contacts,
which must therefore occur on a plane describing the
contact condition for the first leg which would change
contact state going along this line segment. This transition
point is taken as s;, and the process repeats for the new
legs in contact. Because contact forces are zero on the
corresponding contact condition plane, F,, M,, M, are
continuous through the change in contacting legs. The
detailed expression of the equations is in §5.1.1.

2.1.3 Case of too few contacts As the search iterates,
we may encounter a state where only one or two legs are
in contact, and the linear force torque balance equation
becomes under-determined. To resolve these states we
use the additional assumption that the origin of the body
plane is the center of mass of the robot body. Under this
assumption, when there are fewer than three legs in contact,
the CoM, at a known location, generates a moment around
the contact point(s) and we tilt the body plane, i.e. change
o and o, approximating the rotation this moment would
induce until reaching an angle where an additional leg
contacts the ground.
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We proceed to describe the tilting directions as if they
were rotations with an axis. However, the actual linear map
they describe is a shearing operation whose neutral plane
intersects the zy plane on a line containing the rotation
axis. When only one leg is in contact, the rotation is in the
plane containing the leg and the COM, around the contact
point. When two legs are in contact, the rotation is around
the line connecting their contact points, and in the direction
of the moment, the net F, generates around this line. The
detailed solution is in §5.1.2 and §5.1.3.

We used a 2D “robot” in zz-plane to visually illustrate
our search algorithm in figure 3. In this 2D case, the
algorithm searches for robot height and pitch using foot
position in z, z coordinates. The 3D model extends the
contact switching lines in 2D searching space to planes in
3D, and its visualization can be found in figure 10.

2.2 Local connection model : traction forces

After knowing which legs are in contact and their gravity
loading we solve for the body planar velocity (Pay.0, 0),
obtained by imposing force and moment balance. While
classical approaches suggest Coulomb friction is the
correct tribological model for sliding dry contacts, we show
that a viscous-Coulomb ansatz which is bilinear in both
loading force and sliding velocity makes for a linear system
of equations that leads to a local connection model.

2.2.1 Friction forces The classical approaches to
mechanics suggest that the contact between foot and
ground should be modeled by Coulomb friction (middle
term below), defining the use of Hy,

— Lovk o= Hipayre (10)
||pa:y7k ‘

The choice of Hy = —uiF. i/ ||Puy.x|| would provide
equality, i.e. Coulomb friction, but this would also produce
the well-known problem of singularity at pg, . = 0. Define
U := ||Pay,k||. We explore the tractability of alternative
friction models using

Fry,k =

€+ vk
e+vi

Hy := —ppFop (11)

When ¢ — 0, Hy, approaches that of the Coulomb friction
model; when € — oo, Hy — —pui I i, the friction force
becomes Fy 1. = — i F, kDxy k> @ combination of viscous
and Coulomb friction, depending linearly on both slipping
rate and normal force.

We further deconstruct (10) in terms of 0, Dz,0, and py o:

Frype = Hy (R [0Ro ™ SRodey b + o] + Pryo)

= (HrSRoGay.r) 0 + Hi pryo + (HeRoduy.1)
(12)

2.3 Solving for planar body velocity

From our quasi-static assumption, we have horizontal plane
force and moment balance, i.e. Y F, r, = »_ F, r = 0 and
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> M, = 0. From horizontal force balance, using (12),
we obtain two equations in 6, . o, and Py o

Ny N . N
0= Z Fﬁy,k = <Z HkSRGQWy,k> 0 + (Z Hk) pwy,O
k=1 k=1

k=1

Ny,
+ (Z HkRequ,k> (13)

k=1

The moment exerted by a leg is given by:

Mz,k = p—xryykSnyk = (p—xry,kSHkSROQxy,k) 9+
(pl—y,kSHk) pIy,O + (ply’kSHkRg(jmy’k)

Giving the obvious third and final equation:

Nk Nk
0= M. ;= (Z ply,kSHkSqum%k) 6

k=1 k=1
Nk Nk
+ (Z plykSHk> pxy,O + <Z p;—y’kSHkRQsz,k>
k=1 k=1
(14)

In the case when ¢ — oo, Hj being rate puy i
independent, the three force and moment balance equations
are linear in the body velocity pgy 0, 0 and foot velocity in
body frame ¢, . One could solve the system by 3d matrix
inversion. The detailed expression of the solution is derived
in §5.2.

In addition to classic Coulomb friction and viscous
friction, we consider the possibility that Hz can be
dependent on slipping direction, modeling forces generated
by a wheel, skate, claw, or otherwise non-isotropic
frictional contact. We consider an anisotropic viscous
friction model, where Hjy is a symmetric positive
semidefinite matrix, Hy,(¢) := RgH, »(¢)Re " taken to be
independent of Py, ., but (possibly non-linearly) dependent
on all elements of g. We assume that each contact
is associated with an enhanced traction direction and
associated magnitude, expressed in body coordinates as a
VECLOT Wgy 1, defined as:

H, = —,U}CFZ,JCRG(IQ + wzy,kw;cry,k)Re_l (15)

This changes the circular cross-section of the friction cone
into an ellipsoidal one. Even with this dependence, the
equations (14) and (13) are still linear in the velocities
Day,0s 6 and Gy, k- Similar to §2.3, body velocity pgy 0, 0
can still be solved linearly with respect to shape changing

velocity ¢gy,k, giving a general form:
Reilpx’y,o = Z A:cy,k(Q)dacy,h
k
0= — Z A0,k (0) Gy, k-
k

Where the A..(g) matrices are the kinematic term in the
reconstruction equation of geometric mechanics.
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Figure 4. A tripod gait trajectory of BigANT. We plotted the trajectory of the BigANT robot (top row) measured from motion capture
(red). We plotted roll, pitch, and yaw angles (second row, left to right), and body velocity components along the robot axis, across
the robot, and rotational (third row, left to right). We plotted body velocity model residual (fourth row). We used motion capture data
as ground truth for kinematics (wide red lines). The pitch and roll are the same for both friction models and arise from the spring
support model (purple lines), but other outputs are different for Coulomb friction (blue lines) and our viscous-Coulomb friction
(orange lines). We indicated the body location obtained from motion tracking and by integrating the body velocity predictions
(rectangles in “Robot Trajectory”). We further illustrated the motion by indicating the location of the robot body frame origin
(crosses) at the beginning, halfway point, and end of motion (same sub-plot) To compare observed forces to our prediction we
plotted details for the Front Right foot: the ground contact force in the x, y-axis, and the fraction of supporting force in the z-axis.
We used force torque sensor measurements as ground truth (same colors and line types), and plotted contact forces residual in the
x, y-axis. (For all individual foot forces and torques refer to appendix figure 11.)
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Figure 5. We plotted: (A) Metachronal gait phase vs. motor shaft angle for all six legs. (B) Magnitude of slipping velocity vs.
magnitude of planar force divided by normal force, overlaying points from all six feet. (C) Ground contact forces at the front right
foot. For each individual foot refer to appendix figure 12. (D) Ground contact forces residual at the front right foot.

3 Experimental validation

To verify our model’s accuracy in practice, we compared
our model predictions to ground truth motion capture
measurements of three different multilegged robots. We
tested our model on the BigAnt robot with force-torque
sensors measuring the ground contact wrenches. We
compare the robot motion prediction, supporting force
prediction, and 2D friction prediction of friction and
Coulomb friction model with the robot executing two
different gaits: tripod gait and metachronal gait. We
further verified the motion prediction of the model against
Multipod robots with 6-12 spring legs running undulation
gait, and a commercial quadruped, Ghost Robotics Spirit
with the company-provided onboard controller.

The marker-based motion capture system used in all
experiments consisted of 10 Qualisys Oqus-310+ cameras,
running at 100 fps with QTM 2.17 build 4000 software.

3.1

3.1.1 Robot and measurement setup To experimen-
tally verify our algorithm, we built a version of the BigANT
robot (figure 4) with a 6-DoF ATI Gamma force-torque
sensor attached to each leg, and used ATT’s wireless F/T
sensor system to communicate the measurements to the
controlling host computer at 100 Hz. We calibrated the sen-
sors to report the contact forces at the feet. This calibration

BigANT with force-torque sensors

Prepared using sagej.cls

process is of independent interest and published separately
in Wu and Revzen (2023).

BigANT is a hexpedal robot that has only one motor
(Robotis Dynamixel MX106) per leg. The leg drive-train
is a four-bar linkage designed to provide advantageous
foot clearance and gearing (Zhao 2021, Chapter 2.2). We
manufactured the legs from foamcore (Elmer’s Products
Inc. 3/8” foam board) and fiber reinforced tape (3M Scotch
#8959) using the “plates and reinforced flexures” (PARF)
technique of Fitzner et al. (2017). We laser-cut the base
plate for the BigANT chassis from a 1/4” ABS plastic plate
(Mc.Master-Carr).

We recorded the robot motions with the motion tracking
system. This allowed us to measure the position and
orientation of a robot body frame from markers we attached
to the robot’s chassis, and take the foot positions (g;)
relative to that body frame. We obtained foot velocities
g; by differentiating ¢; using a Savitzky-Golay filter
(from scipy.signal.savgol_filter, 2nd order,
with window size 25).

3.1.2 Parameter fitting The remaining inputs to the
algorithm were not so easy to determine. Because our
model is quasi-static, the mass plays no direct role, except
for its appearance in M g as the sum total of normal forces
at the feet. The force and moment balance equations remain
unchanged regardless of the units selected for force, and



these affect only Mg, the stiffnesses K, and the friction
coefficients H. We therefore chose Mg = 1. Using marker
positions, we estimated the robot body’s height, pitch and
roll according to §2.1.

We estimated the spring constants /X and two anisotropic
friction model coefficients per leg (uy and wgy  of
eqn. 15) using least-squares minimization of a suitable loss
function: we minimized the L2-norm difference between
modeled and measured F), distribution among contacting
legs, while adding the variability of K among legs as
a regularization penalty. We assumed anisotropic friction
coefficients Hy (see eqn. 15), and inferred the parameters
pr and wgy . for each leg by minimizing L2-norm
error between measured forces and forces calculated from
slipping velocity measured by motion capture. We used
scipy.optimize.least_squares for both of these
parameter estimation minimizations.

In total, we fitted 18 constant model parameters to
predict a time series of six 3-dimensional leg forces and
6-DoF body velocity measurements, thus there is little risk
of over-fitting.

3.1.3 Coulomb friction solver We solved
for the Coulomb friction force-balance using
scipy.optimize.root with the LM algorithm,
hot-starting with the solution of the previous time-step as
an initial guess. Because Coulomb friction is non-smooth,
we employed a sequence of smooth approximations to
the solution starting from ¢ = 10~° (from eqn. 11), using
each solution as an initial condition for another solution
with smaller € until the relative change in L2-norm of two
consecutive solutions differed less than 10~ — a threshold
less than 5% of the median ground speed measured. In the
very rare cases (0.12% of the BigANT tripod gait dataset)
where the Coulomb friction solver failed to converge, we
used the ground truth velocity as the initial condition to
obtain the Coulomb friction solution; this process resolved
the remaining cases.

3.1.4 BIgANT using tripod gait We first ran the robot
through an alternating tripod gait driven with the “Buehler
clock” of Saranli et al. (2001) and the steering strategy
described in Zhao and Revzen (2020). We collected 21
tripod gait trials with the robot running at 0.1Hz (dataset
at BIRDS-Lab (2023)), with 4-5 cycles in each trial, and
a total of 102082 frames consisting of 84 + 1 cycles. The
motions of the shaft angles were scheduled to have a
slow ground contact phase and a fast leg reset phase. We
show in figure 4 a comparison of forces and kinematics
modeled by our multi-contact algorithm with viscous-
Coulomb friction, our algorithm with classical Coulomb
friction, and the experimental measurements. We integrated
body velocity and showed the robot trajectory in figure 4.

Because our physical modeling assumptions only define
contact forces up to a positive scale factor, we chose a
single positive scalar o (t) for every time step, such that the
loss function

o= arnginZ(c|Fk| — |Fxl)?
P

between the 12 dimensional prediction F' and the measured
horizontal forces F' was minimized.
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We reported prediction error statistics in figure 13. The
run time for viscous-Coulomb friction was 0.19 (0.18,
0.24) [ms/frame; mean, 1st and 3rd quantile]. When
running a single approximation with the choice of € =
1075, the Coulomb friction solver took 3.7 (3.1, 3.9)
[same]. For a full set of iterations to convergence, Coulomb
friction took 10.4 (3.25,15.0) [same], about x54 slower
than our viscous-Coulomb ansatz based simulation.

To test the robustness of our modeling approach,
we measured the predictions’ sensitivity to the model
parameters — the spring constants /K and the anisotropic
friction coefficients i, and w,,  in eqn. 15. We compared
the prediction using naive parameters with the fitted
parameters as described in §3.1.2. We used the same
spring constants K = 10, and only isotropic friction
coefficients i1 = 1 for all legs. We chose the spring constant
magnitude so that the model could lift its feet to perform
the appropriate tripod gait. The body velocity prediction
root-mean-square error (RMSE) in the heading direction
increased by 14%, in the side direction decreased by 5.5%,
and turning increased by 1.5%. Roll prediction RMSE
decreased by 22%, pitch RMSE increased by 24%. Friction
force prediction RMSE among all legs increased by 4% and
3% in heading and side direction respectively. The normal
force prediction RMSE among all legs increased by 2%.

3.1.5 BIgANT: metachronal gait We wanted to further
study why the viscous-Coulomb friction model gave
similar body velocity and force predictions to those of the
classical Coulomb friction model. Since non-slip motions
provide little insight into the question of which friction
force model to use, we developed a metachronal gait
with exacerbated multi-legged slipping events. Each foot
contacted the ground for 2/3 of a cycle leading to four
feet, two from each side, being in contact with the ground
at any time (see figure 5). To ensure that feet slip, we
needed to ensure that the distances between contacting feet
change while in stance. We facilitated this by ensuring
that the contact feet have vastly incompatible velocities by
choosing the shaft angle to be a cubic function of time
during stance. We collected 12 metachronal slipping gait
trials, with the robot moving forward 4-6 cycles in each.
In total, the data consisted of 43934 frames and 60 £ 1
cycles. The resulting gait produced much more slipping
than the tripod gait, with slipping velocities ranging in
(—51.8,111.8)[mm/s; 5% , 95% percentiles].

To determine whether viscous-Coulomb or classical
Coulomb friction was indicated in these data, we examined
the force measurements from the slipping gait. Plotting
F,.;/F. ; against v, ; (see figure 5[B]) shows the expected
structure for classical Coulomb friction, namely a step
function.

3.2 Demonstration with other legged
systems

To test whether the proposed model generalizes to
other legged systems, we further examined using our
model on Multipod robots with 6-12 leaf-spring legs and
an undulation gait, and on the commercially available
quadruped Ghost Robotics Spirit 40.
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3.2.1 Multipods with 6, 8, 10, and 12 legs We used
our lab’s publicly available Multipod dataset BIRDS-Lab
(2021a,b,c) used in Zhao et al. (2022). Each contralateral
pair of legs in a multipod has two DoF — yaw and roll —
and the roll (vertical) motion is further compounded with
the spring flexing of the leg itself (see figure 6). To model
the body motion of unloaded spring legs, we computed the
location of each foot relative to the rigid segment to which
its spring was connected based on those motion tracking
frames in which the leg was unloaded. We then extrapolated
this unloaded position to the frames where the leg was
loaded.

In figure 6 we used a slice of these data with the robot
running at frequency 0.3Hz and phase offset 1.357 to
demonstrate our algorithm. We assumed the mass of the
robot is linear in the number of legs — an explicit design
feature of these robots —and set Mg = N. Weused K =1
as the spring constant and isotropic friction model p =1
on all legs. We provide additional details in figure 15 in the
appendix.

3.2.2 Ghost Robotics Spirit Our physical modeling
approach was built upon the assumption that friction
dissipates the robot’s body momentum quickly in
comparison to the time scale of gait motions. We
intentionally selected a commercial quadruped, the Ghost
Robotics Spirit, where this assumption breaks down, to test
how well the connection-based model could approximate
the motion of such a quadruped. We used the Spirit 40
v1.0 Proto Q-UGV Robot from Ghost Robotics, operated
through a Samsung Galaxy AS50 with onboard firmware
version 0.12.6. We collected 921 frames comprising about
9 cycles of motion (see figure 7). Because our model has
no inertia, it tends to produce spurious high-frequency
changes in its predictions. To obtain a more realistic time
series, we added a simple model of robot inertia in the
form of a first-order IIR lowpass filter y, = yyn—1 +
(1 = v)x,, where z, is our raw model prediction and
yn is the filtered prediction. We manually selected v =
0.15 to bring the power spectral density (PSD, computed
using scipy.signal.welch) of the estimated body
velocities close to that of the motion tracking derived
velocities.

3.3 Model runtime analysis

We compared the computation speed between our
algorithm using the viscous-Coulomb friction model and a
widely-used physics simulation engine MuJoCo (Todorov
et al. 2012, v2.2.1). MuJoCo performs competitively with
other physics simulation engines (see Erez et al. (2015),
but also Yoon et al. (2023)), and by restricting itself to
convex meshes and relaxing its contact condition, it is often
considered for problems with many independent contacts.
Since our focus is on multi-legged contacts, our models
consisted of a round disk with 3 to 50 legs equally spaced
on its circumference. We gave each leg two rotational
DOFs, a vertical translation DoF, and limited leg motions
so that their workspaces did not overlap. We tested the
execution time of both MuJoCo and our algorithm at 1000
randomly chosen poses and velocities for each number of
legs, and re-normalized the running time by dividing by the
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median execution time of the 3-legged cases, to reveal how
each simulation approach scaled with the number of legs
(see figure 8). While both algorithms reveal an increase in
execution times, our algorithm slows down by less than a
factor of 3 with 50 legs, compared with a factor of 13 for
MulJoCo. This suggests that an optimized implementation
of our algorithm could be used for multi-legged motion
planning for any practical number of contacts.

Because we are using an inertia-free model of physics
in the form of a local connection, the body velocity at
any instant is only a function of the shape change and
shape velocity at that instant. Hence, in a homogeneous
environment, all time-steps of a motion plan can be
computed in parallel. To demonstrate the performance
gains, we simulated 10,000 random poses and velocities
of a hexapod robot. We used P =1,---,4 processors
to compute the body velocity matrices in parallel, then
integrated them in a single linear process (note: this over-
estimates the parallelization overhead, since the product of
N matrices can be parallelized to take log, N time, but
was linear here). In figure 8(b) we show that the algorithm
parallelizes well, with the overhead at four processors
falling below 1.5, i.e. a net speedup of 4/1.5.

4 Discussion

Multi-legged robots (with six or more legs) are not widely
studied in the robotics community. One reason might
be that the complexity of modeling the multi-contact
ground interaction constrains both motion planning and
simulations for design.

Motivated by a previous discovery Zhao et al. (2022)
— that multi-legged robots move as if they are governed
by a local connection, i.e. quasi-statically — we developed
a simplified ground-interaction model and validated it
experimentally. Our algorithm consists of simulating a
spring support body in a small-angle approximation for
pitch and roll to obtain the vertical foot loadings. We then
introduced the viscous-Coulomb ansatz to replace classical
Coulomb friction in generating the horizontal forces to
produce a linear set of equations that can be solved to give
rise to the local connection.

4.1 Computational speed

Our experimental verification demonstrated that while the
actual contact forces were, as expected, governed by
classical Coulomb friction, our viscous-Coulomb friction
model gave equally good predictions of both contact forces
and body velocities, while computing 50 times faster for a
hexapod. Our algorithm scales to large numbers of contacts
with virtually no change in execution time, and parallelizes
with very low overhead. Although all our computation was
done offline, the computations, even when done in Python,
ran about 50 times faster than in real time. Thus it is quite
clear that our model can easily be used in online form.
Our model does not sacrifice accuracy for computation
speed. We compared the robot trajectory prediction from
our model with MuJoCo in appendix §5.6. To our best
effort in tuning the MuJoCo parameters, we showed
the MuJoCo prediction did no better than our model in
practice. Therefore, the proposed model, a much faster
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Figure 9. Contour of error between viscous-Coulomb
approximation to Coulomb friction around equilibrium velocity.

model with a small sim-to-real gap, could benefit the
reinforcement learning community in getting optimal
policies on multi-legged robots.

4.2 Comparing viscous-Coulomb friction
model to Coulomb friction model

To understand how a system governed by sliding Coulomb
friction can be modeled by a viscous-Coulomb friction
model, one may examine and compare the relative error
of a viscous friction model to that of the “true” Coulomb
friction. Because both models are isotropic, we can assume
without loss of generality that the velocity is in the z
direction. Because both models are homogeneous, we can
assume without loss of generality that the speed is 1.
What remains is to study the relative error of predicting
the Coulomb friction force for contact velocities close to
(1,0) and the prediction obtained by using the viscous
drag model instead. In figure 9, we present the contours of
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relative error when using a single viscous friction model
instead of Coulomb friction over the specified range of
velocities. The plot demonstrates that with |dv| < 0.2v],
the viscous-Coulomb force prediction for velocity v + dv
will be within 2% of the classical Coulomb friction force
prediction. This suggests that viscous-Coulombfriction is a
good approximation of Coulomb friction when the sliding
velocities do not fluctuate more than 20%.

The linearity between slipping velocity and friction
forces was observed as an average relationship in the
numerical simulations of Wu et al. (2019) and in the
experiments of Chong et al. (2022a). In Chong et al.
(2022a), the authors study the slipping locomotion of
sprawled posture robots with many legs and biological
myriapods, and discover a linear force-velocity relationship
near steady state velocity. The authors assume the net
force on an individual stance foot is equal to O, the
slipping is predominantly in the lateral direction, and the
supporting force is constant. In our work, we relax these
assumptions by solving for the force-torque balance at
the robot body level, allowing internal forces among the
contacting legs; we do not restrict slipping directions, and
we allow supporting forces to vary through the spring
loaded model.

We are thus left with the conclusion that a viscous-
Coulomb ansatz model for friction produces very similar
predictions to those produced by the classical, tribolog-
ically accurate Coulomb friction model. Comparing the
motion predictions obtained from both models, they are far
more similar to each other than either is to the measured
motion, suggesting that the dominant error in these models
was not the use of an incorrect friction model. However,
the viscous-Coulomb model, in the context of our multi-
contact algorithm provides a significant performance boost.
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It is faster to compute; it scales better with the number of
contacts; and it is easier to parallelize.

From the perspective of physics, that our ansatz produces
motion plans as accurate as those produced by Coulomb
friction but also provably produces a local connection and
principally kinematic motion in the geometric mechanics
sense is further justification for the observation of Zhao
et al. (2022) that local connection models are a framework
that includes multi-legged locomotion. While the local
connection models of Zhao et al. (2022) were data-driven,
here we have shown that such models can be obtained using
a principled modeling approach.

4.3 Future works

The algorithm we presented here provides merely a
starting point — it is a means for rapidly and accurately
estimating multi-contact robot-environment interactions.
Such estimates are building blocks for motion planning,
model predictive control, design optimization, and many
other potential applications. The algorithm itself can be
extended to include contacts with non-flat ground. For
example, if the ground can be reasonably modeled as
horizontal surfaces at various elevations, such as for
staircases, we could encompass this in our model with a
leg length offset as a function of the foot position in the
world frame.

Modern state observers for quadruped robots use
the fusion of proprioceptive information and inertial
measurement to estimate state while slipping (Bloesch et al.
2013). These have recently been extended with learning to
improve contact estimation and odometry (Lin et al. 2021).
Like any recursive estimator, such estimators alternate
between measurement steps and system evolution steps.
It would be interesting to explore how to integrate our
model as the system evolution operation in such a scheme.
Additionally, the various quantities we estimated by fitting
could be converted to slowly varying online estimates,
producing an adaptively tuned controller.

Because our proposed model provides a linear relation-
ship between shape space velocity and body velocity, it
provides a first-order representation of the dynamics as an
affine control system, which could be useful in simplifying
the controller design process.

Our model could potentially be used as an extension of
the existing models for snake slithering. First, one might
discretize the snake into a 3D shape with appropriately
chosen body velocities and vertical stiffnesses. The
simulated snake would then relax into the surface,
potentially contacting with only a part of its body, and
generate a local connection between its body motion and its
slithering speed. Such an approach might provide models
for sidewinding and other fully 3D snake behaviors.

‘We hope that our advances will stimulate the adoption of
multi-legged robots in field robotics, provide reliable and
adaptable bio-inspired locomotion platforms, and, more
generally, enable the modeling of multi-contact mechanics
problems.
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5 Appendix
5.1 Contact detection

The normal force exerted by a contacting leg:

Fz,k = Kk(_aquk + Qy Gy, k + qz.k + pz,O)
The z, y moment resulted from the normal force:

Ma:,k = _qy,kKk(_a:cQI,k + QyQy,k + qz.k +pz,0) My,k = Qx,kKk(_aIQQ:,k + Ay Gy, k + qz.k +pz,0)

5.1.1 Normal force and planar moment balance solution When there are three or more legs in contact, the linear system
to solve for normal force and planar moment balance is:

N ]
Z]\/k:kl Fz,k _ _Mg
Zkil My i L 0
Ny, —KiGe k0z + Kpqy oy + Kip.o + Krq. k i [ —Mg
Z Kz by k0 — K@, oy — Ky kpz0 — Keqy ke n | = 0
k=1 | —Kpa: 0 + Kile ky k0y + KiQe kP20 + KiQe ke r | | 0
. r N
Ny, — Kz k Krqy i Ky, Qg ~Mg— > 5 Krgzk
Z “Kaepayr  Kidyy  —Kiayx Qy | = Sy Ky ke
k=1 ~Ki@2 ) EKrGertyr  KiGer D20 | - ZkNﬁl Ko k- k

Let the previous state to be so = [a9, oy, p? o] and current solution to the above linear system is s; = [a}, o, pl .

When the contact indices are different at s;, we search for the the next state along the line segment connection sg and s1, and
stopped at the first contact transition surface. Let s = [da;, 0cvy, 0¢. o], and the next state sp = s¢ + tds = sg + t(s1 — o).
The transition surface for leg j is when F, ;(s2) = 0, i.e. it touches the ground but has zero compression.

Fj(s2) = Kj(—((1 = t5)ad + t;00)qe 5 + (1 — t5)af + tjoy )y + =5 + (1 — t)p2 o + ;L ) = 0

To find the first contact transition, we solve for all intersections ¢; along the line segment, and take the one that is the closest
to the initial condition.

t= min {t;}
j=1,....Np.t;€[0,1] -~
0 0 0
. Cplr,j — OyQy i —qz5 — Pzo
= un 1 0 yl 0 N} 0
J=1,...,N,t;€[0,1] _<az - aw)qu + (ay - O‘y)qy,j + (pz,O - pz,O)
0 0 0
Crdz,j — Oy i —qz5 — Pzo

= min (16)
Nt €00,1] —00pqy ; + 00ty qy j + P20

5.1.2 Special case: one leg in contact When there is only one leg in contact with the ground, denoting it with index 1,
we rotate the body frame about the contacting point along the normal direction connecting the contacting leg and origin.
The direction of rotation is the direction of the torque resulted by robot gravity at the contacting point. The direction towards
next state is ds = [py.1, —Pa.1, fpil - pﬁyl]. The magnitude of state change ¢ is the minimum amount that results in another
contact leg, which can be solved the same as previous equation (16).

5.1.3 Special case: two legs in contact When there are only two legs in contact with the ground, denoting it with index 1
and 2, we rotate the body frame about the line connecting these two contact points. The direction of rotation is the direction of
the torque resulted by robot gravity about the line. Therefore, let @ = py.1 — Py.2,0 = Dg.1 — Pa,2, € = Py, 1D2,2 — Dy,2Pz,1
the direction towards next state is:0s = —[a, b, ¢]¢/|c|. The magnitude of state change ¢ is again the minimum amount that
results in another contact leg, which can be solved the same as previous equation (16).
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Figure 10. Searching iterations for a 3D robot. The iterations labeled 0-3 in the search space (left) correspond to the labels below
the robot (right). The colored surfaces are the contact switching surfaces for legs that has active contact switches in this iteration
(the color of a surface corresponds to the color of a leg on the robot). It starts with the initial condition, where z-axis force balance is
satisfied. Then it solves force and moment balance for pitch, roll and height, where the grey dashed line is the direction of the
solution given current contact indices. It goes along that direction, and stops at the first intersection with a color line, where a leg
switches its contact state. The iteration continues, until a solution is found within its current polygon, i.e. contact indices do not

change. The green circle highlights the legs switching contact at that iteration.

5.2 Planar motion
The planar force exerted by a leg:

Fzy,k: = Hj, <R9 {éRO_ISROQEy,k + q:vy,k::| + pmy,O)

= (HiSRoGuy.r) 0 + Hy, Pryo + (HxRoduy k)
= (RGHq,kSQxy,k) 0 + RGHq,kR971 pwy,o + (ROHq,kqgcy,k)

The z—moment exerted by a leg:

Mz,lc = (pwy,k - pvao) SFwya
= ((pxy,k - pxy,()) SHkSRGme,k) 0+ ((pxy,k - pm’y,O)TSHk) Pay,0 + ((pwy,k - pzyyo)TSHkRo(jzy,k>

= ((pxy,k - pzy,O)TSRQHq,kngny,k) 9 + ((pmy,k - pzy,O>TSR0Hq,kR071) pxy,O
+ ((pacyk - pzy,O)TSRQHq,kay,k)
= (q:Iy,jSHmkSqw»k) 0+ (qu,jSqukR971) Pay,0 + (qu,jSqukq.xyvk)

The linear system to solve for planar force and moment balance is:

N -
Zly\[:kl me,k -0
Zk:kl Mz k
N . 1 N )
- l: RQHQJ%RQ Rqu kSq;cy, :| l: pzy,o _ . |: _IRHHq’kquvk :|
k=1 qu JSHq’kRg qu JSH‘I kSsz k ¢ i 1 sz,jSHq,kay,k
N L . N '
{ ] - { Hg kSqay,k } { Ry 1,pwy,0 — Re O ]i[ Hy kGay.k }
=1 q;cy ]SH% qacy ]SHchqucy k 0 1 0 1 P qu JSHq kay k
—1. N, —1 N
|: Rg 1.p;cy,0 :| _ zk: |: Hq k q kSQxy, :| Zk |: N Hq,k’ :| q .
0 P qu SHgk qmy SHq kSqzy,k — qry ;SHek | 179
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5.3 BigAnt with force torque sensors ground contact forces measurement and prediction

Fx/Mg

Fy/Mg

=== FT sensor measurement

—— Coulomb viscous-Coulomb

—— Spring supported model
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Figure 11. Individual leg contact forces measurement and prediction for BigANT robot with tripod gait. We plotted the ground

contact force in x, y-axis, and supporting force ratio in z-axis of each individual leg. We used force torque sensor measurements as

ground truth for forces (red). We plotted the estimated z-axis force ratio (purple), estimated xy-axis friction forces

(viscous-Coulomb: orange, Coulomb friction: blue). (leg names are: HL hind left, ML mid left, FL front left, HR hind right, MR mid

right, FR front right)

=== [T sensor measurement

—— Coulomb

viscous-Coulomb

——— Spring supported model
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Time [s]
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Figure 12. Individual leg contact forces measurement and prediction for BigANT robot with metachronal gait. We plotted the
ground contact force in x, y-axis, and supporting force ratio in z-axis of each individual leg. We used force torque sensor

measurements as ground truth for forces (red). We plotted the estimated z-axis force ratio (purple), estimated xy-axis friction forces
(viscous-Coulomb: orange, Coulomb friction: blue). (leg names are: HL hind left, ML mid left, FL front left, HR hind right, MR mid

right, FR front right)
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5.4 BIigANT with force torque sensors modeling error analysis
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Figure 13. Prediction error distributions for BigANT robot with tripod gait. We plotted the distribution of measurement residuals
from the mean (red) to compare with residuals of the predictions of the spring supported model (purple), or residuals of predictions
from viscous-Coulomb (orange) and Coulomb friction (blue).
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Figure 14. Planar forces prediction error distributions for BigANT robot with metachronal gait. We plotted the planar forces with
mean subtracted (red) and model prediction errors for planar forces (viscous-Coulomb: orange, Coulomb:blue).
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5.5 Multipod
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Figure 15. Modeling of Multipod with undulation gait at frequency 0.3Hz and phase offset 1.357. We showed Multipod with
6,8,10,12 legs. We plotted the estimated velocity and trajectory (blue), compared with motion tracking (red). Side velocity plots have
the same unit and scale as the heading velocity plots.
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5.6 Comparison with Mujoco

We compare our model accuracy with Mujoco (v3.1.4). We use Newton’s algorithm with maximum 100 iterations for
the compiler option. We model the robot with a plate chassis having diaginertia=’130000 430000 300000’
mass='818", and almost mass-less rod legs with mass=’0.1’. We use three linear position actuators per leg to control
the foot position. We choose the parameters of damping=’"10’ for all joints, and kp=’"100" for actuators along Xy,
and kp="1000" for actuators along z. The actuator parameters are chosen so that the foot trajectory executed by Mujoco
simulation has RSME less than 1cm on each foot, when controlled to be the experimental measurements .

Robot trajectory

—— model
E‘ 1000 - 600 —— mujoco
—— motion capture
— 500
P 400 4
oA
100 | 200
—_
E °] E 0
: ~100 E
200 4
-200
0.0 —400 4
— _
=z 02
© 04 600 |
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D -0.6
-0.8 1 —800
0 10 20 30 40 0 200 400 600 800 1000 1200 1400
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Figure 16. We plotted the robot position x, y and orientation 6 with respect to time (left) from our proposed model (blue), Mujoco
(orange) and motion capture (red). We showed the robot integrated trajectory (right).
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