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In-Situ Calibration of Six-Axis
Force/Torque Transducers
on a Six-Legged Robot
Ground contact modeling for multilegged locomotion is challenging due to the possibility of
multiple slipping legs. To understand the interplay of contact forces amongmultiple legs, we
integrated a robot with six high-precision 6 degree-of-freedom (DoF) force-torque sensors,
and measured the wrenches (forces and torques) produced in practice. Here, we present an
in situ calibration procedure for simultaneously measuring all foot contact wrenches of a
hexapod using 6-DoF load cells installed at the hips.We characterized transducer offset, leg
gravity offset, and the wrench transformation error in our calibration model. Our
calibration reduced the root-mean-square-error (RSME) by 63% for forces and 90% for
torques in the residuals of the robot standing in different poses, compared with naive
constant offset removal. [DOI: 10.1115/1.4066455]

1 Introduction

Force/torque (F/T) transducers are commonly used in robotics
applications to sense the interaction between robots and their
environment [1]. The simultaneous and accurate measurement of
multiple concurrent contact forces through, e.g., a robot’s legs, has
proven to be a challenging calibration problem, forwhichwe present
one solution here. This solution proved effective for performing
ground contact measurement on our 8.18 kg, 73 cm long hexapedal
robot BigANT.
Force/torque transducers are used in robotic surgery [2],

manipulation [3,4], robot locomotion [5–7], etc. Knowing contact
forces can allow a robot to sense its surroundings more fully, with
ensuing benefits to both planning and control. For legged robots that
move by making and breaking contacts with the ground to produce
propulsion and load bearing, F/T transducers can measure how the
load is distributed among legs. The measurements can reveal how
much propulsion each leg produces, and what slipping might occur,
and thereby inform modeling and control. Such F/T measurements
have been used in contact detection [5], gait modeling [6], state
estimation [8], terrain classification [7], maintaining stability [9],
and other applications in legged robotics.
Our work was motivated by the goal of understanding the

interplay of contact forces while a multilegged robot moves with its
feet slipping on the ground. We are particularly interested in
multilegged robots with low degree-of-freedom legs [10,11]. The
mass of such robots is typically concentrated in the body, allowing
fast swinging legs, lower leg collision forces, and smaller energy
costs for leg impacts.Our previouswork showed that slippingwas an
essential part of expressing the highmaneuverability of these robots
[12], but due to a lack of precise contact force measurements, our
mechanistic understanding of these complex slipping motions was
incomplete. We did manage to reliably model the body velocity
resulting from a multilegged slipping motion in a data-driven form,

by constructing a “local connection model”—which is, in these
systems, the dominant term of the reconstruction equation
formulation of their Lagrangian mechanics [13–16]. The surprising
success of this data-driven model [13], which assumed a viscous
friction interactionwith the ground instead of the expectedCoulomb
friction, prompted us to seek precise measurements of the actual
contact forces involved in the motions we studied. We aimed to
understand what interactions contributed to the unexpectedly good
predictive power of the “wrong” friction model.
We built a version of the BigANT robot [17] with a 6-DoF F/T

transducer at the hip of each leg. This, we believed, would enable us
to measure the wrench applied by each leg to the robot chassis, and
since the shape of the leg and its point of contact were known from
motion tracking, to compute the contact force that produced each
leg’s wrench. We chose to install the F/T transducers at the hips,
mounted directly on the robot’s chassis to maintain the lightweight,
fast-swinging nature of the legs. Additionally, the commercial
transducers we found for the range of wrenches expected were both
heavy and fragile to impact, making it infeasible to attach them
directly to the tip of a foot. The wrench each transducer measured
comprises the ground contact wrench, added to the wrench
generated by gravity acting on the (albeit lightweight) leg. Our
calibration procedure needed to decouple these two terms to isolate
the ground reaction wrench we wanted to measure.
Few have measured multilegged contact wrenches simultane-

ously at all active contacts. One example is in Ref. [18] wherein the
authorsmeasured three-dimensional (3D) ground reaction forces for
a version of the hexapod RHex. The authors did not provide details
on characterization and analysis of measurement error, but did
provide 2N as the maximum error. The authors of Ref. [19]
performed in situ calibration with F/T transducers mounted on the
shoulders, hips, and feet of a bipedal robot. They used the model
from their computer aided manufacturing design file to extract the
center of mass (CoM) of each segment and estimate the torque
resulting from the gravity of each segment.
Below, we present a calibration procedure enabling simultaneous

measurement of all foot contact wrenches of our multilegged robot
using six 6-DoF F/T transducers, one at the hip of each leg. We start
with introducing the experimental setup in Sec. 2.1, followed by
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difficulties we met when using the transducers naively according to
the manufacturer’s guidelines in Sec. 2.2. We present the problem
statement including notations and F/T measurement model in this
calibration work in Sec. 3, and followwith our calibrationmethod in
Sec. 4. We then show our validation of the calibration results in
Sec. 5 and end with a discussion in Sec. 6.

2 Calibration Challenges

2.1 Experimental System: Robot and Sensors. Our goal was
to measure the ground contact wrenches with respect to a “floating
base” frame attached to the robot chassis. The robot we used was a
version of the BigANT hexapod [17] (Fig. 1) constructed using plate
and reinforced flexuremethodology [11]. The z axis of the framewas
opposite to the direction of gravity, and the x axis was perpendicular
to the z and parallel to the left-right symmetry axis of the robot. The
origin of the floating base framewas taken to be close to the centroid
of the robot chassis.
Because of all the instrumentation planned for this robot, it was far

heavier than previous BigANT variants. To ensure better rigidity
under these loads in comparison to other BigANT variants we used a
1/4 inch acrylonitrile butadiene styrene sheet for the chassis base-
plate. Connecting each leg to the robot chassis, we installed an ATI
Industrial Automation Net Force/Torque Gamma transducer, which
measured all six components of force and torque at 100Hz and
reported the results over WiFi. As in other BigANT robots, we
actuated each leg with a position controlling servomotor module
(Robotis Dynamixel MX106). We daisy-chained the modules as
they were designed to be used, and communicated with them over

the RS-485 serial bus carried over two wires of this daisy chain. The
total weight of the robot was 8.18 kg, measured by a digital hanging
scale. Along with the F/T data, we also recorded robot kinematic
data using a reflective marker motion tracking system (10 Qualisys
Oqus-310þ cameras at 100 fps, 12 markers on the chassis, and 4
markers per the distal rigid part of each leg).
Each leg ofBigANT is driven by a four-barmechanismproducing

a shaped toe trajectory (Fig. 1)with a variable gearing ratio. Because
the legs were effectively rigid 1-DoF mechanisms (as verified using
motion tracking), the shape of each leg changed through a one-
parameter family of shapes entirely controlled by the shaft angle of
the motor driving that leg. Consequently, the location of the CoM of
each leg (with respect to the chassis frame)was also solely a function
of that leg’s shaft angle. Therefore, the gravity torque introduced by
each leg on its hip F/T transducer was a function of the direction of
gravity in the chassis frame (shared among legs), and the shaft angle
of the individual leg.

2.2 Pre-Experimental Force/Torque Transducer Measure-
mentValidations. As a sanity check prior to collectingmotion data,
we collected measurements with the robot standing statically at
different poses. Because acceleration is zero, the total wrench on the
robot body should be equal and opposite to gravity acting on the
robot body through the body’s CoM, i.e., when accounting for
gravity, the sum of forces on the robot body should be zero. TheATI
user’s manual [20] suggests that the transducers may suffer from a
constant bias wrench which needs to be subtracted. We used the
average transducer readings obtained with all feet in the air rotating
two full cycles as this constant bias term for each transducer. The

Fig. 1 (a) BigANTequippedwithsix6-axis force/torque transducers, (b) zoomed-inviewofone
leg with F/T transducers, (c) schematic drawing of front right leg module, and (d) 1-DoF toe tip
trajectory in robot body frame xz-plane
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total wrench applied to the body by the legs under these conditions
had a standard deviation of approximately 5N, and the force was
distributed from—5N to 20N, shown in Fig. 2—nowhere near the
expected gravitational wrench.
We collected F/T measurements and motion tracking data with

BigANT standing at different poses. We positioned the robot in all
36 ¼ 729 combinations of three shaft angle possibilities for each leg:
0 deg (pointing straight down) or 636 deg. We waited for 5 s
between consecutive poses. When a pose transitioned to the next
pose, we observed that both the wrench and motion tracking
measurements exhibited an overshooting oscillatory behavior. We
estimated the first order derivative of both data streams using a
second order scipy.signal.savgol_®lter filter in Python.
We considered a pose to have reached a steady-state if the L2-norm
of this numerical differentiation on force data decayed to less than
1N=s. If a pose stayed at this “steady-state” for more than 1:5 s, we
took the median of the steady-state measurements to represent this
pose, thereby using the median filter’s superior outlier rejection to
guard against any nonzero mean noise processes. If a pose did not
reach a “steady-state,” we discarded that pose; this process left us
with recordings from 635 poses. We further discarded those poses
that did not have all 12 markers on the chassis tracked by the motion
capture system, leaving us with 543 poses. We transformed the
transducermeasurements from the transducer frame into the floating
base frame, where frame transformations were estimated by solving
the orthogonal Procrustes problem using singular value decom-
position on the 12 chassis markers.
The transducers themselves were precalibrated by ATI, and used

in their normal operating region. The nonphysical total body
wrenches we obtained lead us to conclude that more a complete
calibration procedure may be advisable for improving the accuracy
of these measurements.

2.3 Background on Force/Torque Transducer Calibration.
ATI, the transducermanufacturer, instructs that we should expect an
offset error for the transducers, i.e., that a nonzero reading should
appear even when the transducer is unloaded and that this reading is
added to all measurements made by that transducer. The ATI
recommendation is for users to mechanically disconnect all
transducers and recalibrate them periodically.While this calibration

could remove such an expected transducer offset, removing and
reinstalling the transducers could introduce a different assembly
error every time. Also, a fixed offset error cannot account for the
variable gravity force of a leg as it is moving through various
positions. Hence, we decided to design an in situ calibration
procedure.
A common method to perform in situ calibration of F/T

transducers in robotic manipulators is to attach a test mass to the
transducer, and then take several measurements with the transducer
at different orientations. Using the fact that the external force
applied to the transducer – the gravity of the attached mass – is fixed
in the world frame, one can use least squares methods to estimate
calibration parameters. The authors of Refs. [3,21] solved for an in
situ calibration matrix, which transformed strain gauge values to
forces and torques. The authors of Ref. [22] solved for in situ
calibration matrix together with a rotation matrix between the world
frame and the robot base frame, to account for the error caused by a
tilted robot base of a manipulator. The authors of Ref. [23] did
gravity compensation for a tool together with estimating the
transformation matrix between the transducer frame and the robot
frame. All of these researchers attached their F/T transducer rigidly
fixedwith respect to the end effector being loadedwith the testmass.

2.4 Leg Shape Changes Provide a Challenge. In our robot,
the CoMof each legwas not at a constant location in the body frame,
but instead moved as a function of its drive shaft angle. We also
observed that our placement of the transducers was not perfectly
aligned and precise relative to the robot body frame, i.e., there were
sometimes mounting position and orientation errors. Furthermore,
the origin of the robot body frame was not the CoM of the robot
body—only close to it. It is practically quite difficult to precisely
estimate the CoM of a robot built and assembled with parts using
many kinds ofmaterials, and evenwith light legs, this CoMwill shift
as the legs move.
The in situ calibration procedures available in the robotic

manipulation literature could assume near-perfect positioning of
the test mass by controlling the robot joints. The only reorientation
available to us was to hang the robot from various attachment points
to change the transducer frame orientations with respect to gravity.
However, this hanging angle was itself difficult to measure in the
body frame. Below, we present a calibration procedure that
addresses all of the aforementioned challenges.
Besides these error sources,we also discovered that the transducer

casing was not well isolated from forces applied to the exterior of
this seemingly rigid metal casing. As an illustration of these issues,
wewrapped 1–7 rubber bands (OfficeMax size 16) around the sensor
case of an unloaded sensor. The transducer’s measurements in the
xy-axis changed by as much as 1N. By gently pulling one rubber
band to create a nonuniform load around the case, the readings from
the transducer xy-axis changed by 3N.

3 Force/Torque Sensing Model

In this section, we present our notation, sensor model, and
calibration parameters. We use bold upper-case letters to represent
matrices (e.g.,T,R); and bold lower-case letters to represent vectors

(e.g., w, r). We use the generalized force, wrench w ¼ ½f; s�T, to
represent linear components (forces f 2 R3) and angular compo-

nents (torques s 2 R3). We use ‘; ’ to separate elements in column

vectors, and ‘, ’ to separate elements in row vectors. We use TB
A to

represent rigid-body motion SEð3Þ from frame A to frame B. The
homogeneous transformation representation is

TB
A ¼ RB

A pBA
0 1

" #
2 R4�4

Here,RB
A 2 SOð3Þ is the rotation from frameA toB, and pBA 2 R3 is

the translation from the origin of A to the origin of B. By abuse of

Fig. 2 Violin plot of the sum of all wrenches acting on the robot
when standing at 543 different poses, corresponding to various
combinations of each legmotor shaft at 0,136�, and236�. As the
wrenchmeasurement in each (static) poseweused themedian of
eachof thewrench components over the same 1.5 s time interval,
collected at 100 samples per second. To ensure no transient
motions contaminate this static-by-design measurement, we
only usedposeswherewe could find such a time intervalwith the
L2 normof the derivative of all force components (computedwith
a second order Savitsky-Golay filter, 11 sample window) below
1N=s. For the measurements themselves, we used the calibra-
tion procedure suggested by the vendor, consisting of constant
offset removal. See body text for additional details.
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notation, we omit 1 in the homogeneous transformation in the later
calculations, i.e., rA 2 R3, TB

Ar
A :¼ TB

A½rA; 1� ¼ ½rB; 1� ¼: rB. We
transform wrenches from frame A to frame B via the transposed
adjoint of TA

B

wB ¼ ½AdTA
B
�TwA

fB

sB

" #
¼ ðRA

BÞT 0

�ðRA
BÞT½pAB� ðRA

BÞT

2
4

3
5 fA

sA

" #

where the notation ½pBA� lifts the 3d vector pBA to a skew symmetric
matrix. The frame of reference for a value of interest is on the upper
right corner.We use k to denote the index of the legs, i.e., wrench w.
r.t. frame A on leg k is wA

k .
The coordinate frames of interest are B: robot body frame; C:

robot body frame centered at the true CoM;W: floating base frame;
ftk: F/T transducer frame of the kth leg. We use g ¼ ½0, 0, g� to
represent the gravitational acceleration in the floating base frame.
We use / to represent the shaft angle governing the shape of the

four-bar linkage leg, m to represent the mass of a leg, and rð/Þ to
represent the leg CoM as a function of /. We use i ¼ 1,…,N to
denote the index for the time series.Weuse a superscript asteriskw�

to denote the optimal value of a variable in an optimization. In Sec.

4.1, where we hang the robot, we usew#
andw"

to denote a value
associated with positive and negative hanging direction. We use

w� ¼: ðw# �w"Þ=2 and wþ ¼: ðw# þw"Þ=2 to denote anti-
symmetric and symmetric parts of a value with respect to opposite
hanging directions.

3.1 Sensor Model. From our experiments, we noticed that for
each transducer there existed a constant offset, independent of load,
which was also mentioned in ATI F/T transducer manual [20]. We

modeled the measured wrench wftk
m by the kth force/torque

transducer as the sum of the applied wrench wftk
a , an unknown

transducer offset wftk
o 2 R6 and random noise n

wftk
m ¼: wftk

a þ wftk
o þ n (1)

Since the transducers were installed underneath the legs, when a leg
was in the swinging phase (not contacting the ground), the wrench
resulting from the leg gravity was applied to the transducer. We

decomposed the applied wrench wftk
a into two parts: the wrench

resulted from the gravity of kth leg and the ground contact wrench.
The shaft angle /k governed the shape of the four-bar linkage of
each leg, and hence changed its CoM.We modeled the kth leg CoM

position in the transducer frame by r
ftk
k ð/kÞ. We used leg gravita-

tional offset wW
leg,kð/kÞ, a function of /k, to represent the wrench

gravity applied to the leg with respect to the transducer. The
gravitational acceleration is constant in the floating base frame. We
transformed the leg CoM position in the transducer frame to the
floating base frame, allowing us to write the leg gravitational offset
wrench

wW
leg,kð/kÞ ¼: ½mkg;T

W
ftk
r
ftk
k ð/kÞ � mkg�

Wedecomposed the transformation from the kth F/T transducer to
the floating base frame in four steps

TW
ftk

¼: TW
C TC

ftk
¼ TW

C TC
BT

~

kT
B
ftk

(2)

(1) a nominal transformation,TB
ftk
, from the kth transducer frame

to the body frame, calculated from robot design files;
(2) unknown transformation T

~

k to compensate for the installa-
tion ormanufacturing error,whichwas not captured by step 1;

(3) unknown translationTC
B between the origin of the body frame

and robot CoM.

(4) a pure rotation TW
C estimated from markers measured by the

motion tracking system, rotating the body frame centered at
CoM into the floating base frame.

Let gC ¼ RC
Wg be the gravitational acceleration rotated into the

body CoM frame. We used wC
gc,kð/kÞ to denote the ground contact

wrench in the body CoM frame, calculated from the applied wrench
wftk

a transformed in the CoM frame and subtracted by the wrench
from leg gravity

wC
gc,kð/k,g

CÞ ¼: ½AdðTC
ftk
Þ�1 �Twftk

a �wC
leg,kð/k,g

CÞ

ðsubstituteTftk
C byeqn:2Þ ¼ ½AdðTC

B
~TkT

B
ftk
Þ�1 �Twftk

a �wC
leg,kð/k,g

CÞ

ðsubstitutewftk
a byeqn:1Þ ¼ ½AdðTC

B
~TkT

B
ftk
Þ�1 �Tðwftk

m �wftk
o Þ

ðrewritewftk
o in f=telementsÞ� ½mkg

C;TC
B
~TkT

B
ftk
r
ftk
k ð/kÞ�mkg

C�
(3)

We transformed this wrench into the floating base frame using the

motion tracking rotation ½AdTC
W
�T . All the unknown calibration

parameters are underlined in Eq. (3). In the remainder of this paper,
leg CoM rkð/kÞ was always considered to be in the transducer ftk
frame, and associated with the kth shaft angle. We therefore omitted
ftk the leg CoM and k in /k, as rkð/Þ to simplify the notation.

4 Calibration Method

In this section, we documented our method to infer parameters by
using several optimizations applied to measurement data. We
formulated our parameter estimation goal function by using the fact
that the force of gravity on the robot and its legs must be constant in
the floating base frame. Our calibration had two steps: (1) we
estimated the transducer offset wftk

o and leg gravity offset wW
leg,k, by

summing up the measurements with leg gravity acting in opposite
directions in the transducer frame. Because perfectly opposite
measurements were never possible in reality, we assumed the
existence of a small rotational term that could leakmkg into the other
two directions, and bias the estimation of offsets. We modeled this
small rotation error as the identity plus a small skew-symmetric
matrix, and solved for the 3D skew part together with other
parameters. (2) we estimated the transformation error together with
the unknown translation between body frame origin andCoMTC

B
~Tk,

by having the robot standing at different poses, then optimizing the
error between the sum of all ground contact wrenches in the floating
frame and ½0, 0,Grobot, 0, 0, 0�T , namely, the robot gravity with zero
total torque.

4.1 Transducer Offset and LegGravity Offset. Tomodel the
wrench applied by gravity to a leg with respect to its transducer, we
estimated the leg CoM as a function of shaft angle. Because this
measurement is influenced by the transducer offset, we estimated the
CoM function of the shaft angle together with the transducer offset.
We collected measurements with the robot hanging (zero ground
contact wrenches) in opposite directions, while at the same time
slowly (quasi-statically) rotating each leg ten full cycles with 9000
sample points for each cycle (see, e.g., opposite z-directions in
Fig. 3). The torque that resulted from leg gravity arises from a cross-
product with leg CoM, leaving a one-dimension null space when
estimating from each pair of hanging experiments (more details in
Sec. 4.1.3). To get a complete 3D CoM function of shaft angle, we
repeated the procedure twice: two pairs of opposite orientations, one
along the transducer6x-axis, and one along the transducer6z-axis
(aligning with gravity).
In the rest of this section, we used the experiments of transducer

6x-axis aligning with gravity to explain the calculation; the
calculation with z-axis positive or negative direction aligning with
gravity could be performed analogously.

4.1.1 Hanging Measurement Model. We considered a mea-
surement model using a skew-symmetric matrix ½sk�, lifted from
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sk 2 R3, tomodel the axismisalignment error between the direction
of gravity and the transducer axis. We assumed sk was constant
throughout one time series, i.e., the transducer orientation did not
change throughout the measurement. The skew-symmetric matrix
½sk�, the tangent space at identity rotation, could be viewed as an
infinitesimally small rotation in the form of ½sk� þ I. The applied
wrench, when leg gravity aligned with the positive x-axis of the
transducer frame, became

f ftk ,#a ¼ ð½s#k� þ IÞmkgx

sftk ,#a ¼ ½rkð/Þ�ð½s#k� þ IÞmkgx

Its opposite applied wrench, when leg gravity aligned with negative
x-axis of the transducer frame, was the same magnitude with
opposite direction

f ftk ,"a ¼ �ð½s"k� þ IÞmkgx

sftk ,"a ¼ �½rkð/Þ�ð½s"k� þ IÞmkgx

Here ½s#k� and ½s"k�were two skew-symmetric matrices, accounting
for two different small rotations between F/T transducer positive or
negative x-axis and world z-axis. During the experiment, we
measured F/T data for both of these two configurations, with the
same set of varying shaft angles/i, for i ¼ 1,…,N, covering the full
range of motion multiple times. We modeled the measured
wrenches, according to Eq. (1), and partitioned them into their
force and torque components in Eqs. (4)–(7), where m

#
i , m

"
i ,x

#
i ,x

"
i

were realization of random noise for the ith measurement

f
ftk ,#
m,i ¼ ð½s#k� þ IÞmkgx þ f ftko þ m

#
i (4)

f
ftk ,"
m,i ¼ �ð½s"k� þ IÞmkgx þ f ftko þ m

"
i (5)

s
ftk ,#
m,i ¼ ½rkð/iÞ�ð½s#k� þ IÞmkgx þ sftko þ x

#
i (6)

s
ftk ,"
m,i ¼ �½rkð/iÞ�ð½s"k� þ IÞmkgx þ sftko þ x

"
i (7)

4.1.2 Leg Gravity, mkg. We subtracted two opposite force
measurements between Eqs. (4) and (5). By dividing the difference
by 2, we got the leg gravity multiplied by a small rotation error term
in the front

ð4Þ � ð5Þ
2

: f
ftk ,�
m,i ¼ s

#
k½ �þ s

"
k½ �

2
þ I

� �
mkgx

þ m
#
i �m

"
i

2

The sum of two skew-symmetric matrices is still
skew-symmetric, denoted by ½sþk � ¼ ð½s#k � þ ½s"k �Þ=2. Ideally,
mkgx was equal to ½mkg, 0, 0�, a constant value in x component,
and zeros in y, z components. Taking that as the optimization
goal, with N measurement samples f

ftk ,�
m,i for i ¼ 1,…,N, we

solved for sþk using scipy.optimize.least_squares with
the Trust Region Reflective algorithm and cost function tolerance
10�3

sþ,�
k ¼ argmin

sþ
k

1ffiffiffiffi
N

p
X
j¼2,3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

sþk
� �þ IÞ�1

f
ftk ,�
m,i � ejÞ2

��
þ stdi¼1,…,N sþk

� �þ I
� ��1

f
ftk ,�
m,i � e1

� �vuut

where, ej with j¼ 1, 2, 3 are unit vectors in R3. We estimated the
gravity of the leg by

mkg ¼ 1=N
XN
i¼1

ðð½sþ,�
k � þ IÞ�1~f ftkm,i � e1Þ

4.1.3 Leg Center of Mass, rkð/Þ. Next, we solved for the leg
CoM by subtracting Eqs. (6) and (7)

ð6Þ � ð7Þ
2

: sftk ,�m,i ¼ rk /ið Þ½ � sþk
� �þ I
� �

mkgx þ x�
i

¼ rk /ið Þ½ �f ftk ,�m,i þ x�
i

Here, sftk ,�m,i and f
ftk ,�
m,i could be calculated directly from the

measurement data.We estimated the leg CoM rest,kð/Þ as a function
of / through a Kalman smoother [24], after obtaining N samples
measured with varying shaft angle /i, i ¼ 1,…,N. We set the
transition and observation covariance matrices in the Kalman
smoother both having 0.01 on the diagonal and 0 on the off-diagonal
elements, which matched the magnitude of the measured covari-
ance. Since the torque was the cross product between the CoM
vector and gravity, the estimated CoM here had a one-dimensional

null space along the direction of ~f ftkm,i. The CoM could be

rkð/iÞ ¼ rest,kð/iÞ þ pi � ~f ftkm,i, for any scalar pi 2 R. Therefore, we

needed at least another pair of opposite hanging measurements to
get full rank information on rkð/Þ. In our experiment, we took
measurements with leg gravity aligning with the 6z-axis of the
transducer frame and performed analogous calculations mentioned
above with gz. We obtained another estimation r0est,kð/Þ where

rkð/iÞ ¼ r0est,kð/iÞ þ p0i � ~f 0ftkm,i. We solved pi, p
0
i by equating two

rkð/Þ obtained from two sets of measurements. This formed an
over-determined system with three equations and two unknowns
which we solved for the unknowns pi, p

0
i by ordinary least squares.

We averaged those two rk and fit a function with respect to /.

4.1.4 Transducer Offset, wftk
o ¼ ½f ftko ; sftko �. We solved for trans-

ducer torque offset sftko , by adding Eqs. (6) and (7)

Fig. 3 BigAnt robot hanging with transducer z-axis positive z ftk

(orange) and negative direction aligning with gravity direction
(red); ½s#k� and ½s"k� (purple): skew symmetric matrices modeling
the hanging orientation error
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Wedenoted the subtraction between two skew symmetricmatrices by

½s�k � ¼ ð½s#k� � ½s"k�Þ=2. In the transducermodel in Eq. (1),we assumed
the transducer offset was constant.We solved for the optimal value of

s�k by minimizing the standard deviation of sftko over all samples

s�,�
k ¼ argmin

s�
k

std
i¼1,…,N

ðsftk ,þm,i � ½rkð/iÞ�½s�k �mkgxÞ

Finally, we calculated the force and torque offsets by

f ftko ¼ 1

N

XN
i¼1

f
ftk ,#
m,i þ f

ftk ,"
m,i

2
� s�,�

k

� �
mkgx

 !

sftko ¼ 1

N

XN
i¼1

sftk ,þm,i � rk /ið Þ½ � s�,�
k

� �
mkgx

� �

4.2 Transformation Error, TC
B
~Tk. In the second part, we

showed our method for estimating the transformation error from
transducer frame to body frame, ~Tk modeled by (~Rk, ~pk), together
with an unknown transformation between body frame and CoM
frameTC

B modeled by (I3, p
C
B).We used the fact that the robot should

be at force–torque balance when standing still at different poses. At
each pose, the sum of the ground contact wrenches from all feet,
transformed to the floating base frame, should equal to the gravity of
the robotwith zero torque, as calculated in Eq. (9).We used the same
dataset as described in Sec. 2.2, and inferred the unknown
parameters by minimizing the error between the total ground
contact wrenches and the gravity of the robot with zero torque, as
shown in Eq. (8). It minimized the difference between the measured
and expected total wrench on CoM overall p ¼ 1,…,P poses. The
K-norm we used had a positive definite diagonal matrix K to allow
us to compare loss functions computed over force and torque,
which have different physical units. We used K :¼
diagð½1, 1, 1, 10, 10, 10�Þ so the forces and torques had about the
same numerical magnitude

min
~Rk ,~pk ,p

C
B

XP
p¼1

jjðwW
total,p � ½0, 0,Grobot, 0, 0, 0�TÞjj2K
s:t:~Rk 2 SOð3Þ

(8)

As formulated, the optimization problem needed to solve for
the six rotationmatrices ~Rk 2 SOð3Þ is the 3D rotation group, which
is not a vector space. However, most numerical optimization
paradigms only work on vector spaces. Instead, we parameterized
the rotat ion using Cayley transformation: ~Rk ¼ ðI�
½~qk�ÞðIþ ½~qk�Þ�1

[25]. This can represent rotation matrices over a
wide range using a parameter space which is a vector space.

wW
total,p ¼

XK
k¼1

½AdðTW
C,pÞ�1 �TwC

gc,kð/p,k, g
C
p Þ

ðsubstitutewC
gc,kby eqn:3Þ ¼

XK
k¼1

½AdðTW
C,pÞ�1 �TðAdðTC

B
~TkT

B
ftk
Þ�1 �Tðwftk

m,p � wftk
o Þ � ½mkg

C
p ;T

C
B
~TkT

B
ftk
r
ftk
k ð/p,kÞ � mkg

C
p �Þ

ðExpandTC
B
~TkÞ ¼

XK
k¼1

RW
C 0

0 RW
C

" #
~Rk 0

~Rk½~Rkð~pk þ pCBÞ� ~Rk

" #
½AdðTB

ftk
Þ�1 �Tðwftk

m,p � wftk
o Þ

 

� mkg;
RW

C 0

0 1

" #
~Rk ~pk þ pCB

0 1

" #
TB
ftk
r
ftk
k ð/p,kÞ � mkg

" #	

� ½0, 0,Grobot, 0, 0, 0�T

(9)

From here, we made a change of variables ~p0k ¼ ~Rkð~pk þ pCBÞ.
This made the objective function of the optimization Eq. (8) into a
bilinear form in ~p0k and ~Rk. To solve this optimization, we used dual
least squares optimization, fixing one unknown and solving for the
other, alternating which variable is fixed at each step, until it
convergence. For each of these steps, we again used the scipy.
optimize.least_squares Trust Region Reflective algo-
rithm with cost function tolerance 10�3. Our dual optimization
convergence criterion was tested when the maximum norm
difference between two successive steps was less than 10�3.

5 Results

In this section, we report the estimated calibration parameters and
the residual after calibration. We show the distribution of the
residuals using violin plots. All violin plots used 100 points for the
Gaussian kernel density estimation.

5.1 Transducer Offset and Leg Gravity Offset. The esti-
mated transducer offset and the leg gravity were summarized in

Supplemental Materials on the ASME Digital Collection. We
plotted the estimated leg CoM trajectories on the midleft leg in
Fig. 4 as an example. All the other legs had similar trajectories, as
shown in Supplemental Materials. After removing the transducer
offsets and the leg gravity offsets, we plotted the residual of all four
measurement orientations in Fig. 5. We compared our formulation
with the naive addition and subtraction that does not use the axis
misalignment error ŝ, modeling the imperfect hanging orientation.

5.2 Statistical Analysis on Wrench Transformation Error.
We performed a model selection on 4 different models, to see the
significance of the parameters used to model the wrench
transformation error. We tested on

(1) The full model, fitting all six rotations (~Rk) and six
translations (~p0k), using 6� ð3þ 3Þ ¼ 36 parameters;

(2) No transducer translation error (~pk ¼ 0), only fitting six
rotations (~Rk) and one single unknown translation (pCB)
between robot center and CoM, using 6� 3þ 3 ¼ 21
parameters;
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(3) No transducer rotation error (~Rk ¼ I3), only fitting the
transducer translation error together with robot center to
CoM translation (~p0k), using 6� 3¼ 18 parameters;

(4) With neither transducer rotation, nor translation error, only
fitting a single unknown translation between robot center and
CoM, using three parameters.

The statistics of those models are summarized in Table 1. We
reported the mean of the mean squared error on 5-fold cross-
validation, together with Bayesian information criterion
BIC ¼ P lnðRSS=PÞ þ DOF� lnP, where RSS is the residual
sum squared. We selected (1) full model using six rotations and
six translations, which yields the smallest Bayesian information
criterion (BIC). We showed the residual plot comparing with and
without transformation errors in Fig. 6.
Since the bilinear least-squares optimization only yielded local

optima, we started the optimization process from 20 different
randomized initial guesses within a plausible set, where the
orientation error was less than 15 degrees in all three directions
and the translation errorwas less than one-third of the robot size. The
cost function variation was only 3.2% among all initial conditions.

5.3 TripodWalking. Wealso collected thewrench andmotion
tracking datawhen theBigAnt robot used a tripod gait towalk quasi-
statically. We generated the gait with a “Buehler clock,” which
provided a high shaft rotation speed during leg swing and a low shaft
rotation speed while the leg was in stance, on an average running
frequency of 0.08Hz, and an average turning rate of 9:08 deg to the
right. A more detailed description of the gait can be found in Refs.
[12,17]. We compared the measurements between the vendor-
recommended offset correction and our calibration; see Supple-
mental Materials on the ASME Digital Collection.

Fig. 4 Estimated center of mass (CoM) versus phase of Midleft (ML) leg. We plotted the median
estimated CoM of ten cycles (solid line), interquartile range (dark shaded region), and 95% confidence
interval (light shaded region; x coordinate in blue, y coordinate in orange, and z coordinate in green).We
fitted the x, z coordinate with function rð/Þ5Asinð2p/1CÞ1D, y coordinate using a constant (black
dashes).

Fig. 5 Violinplotof force (first row) and torque (secondrow) residualonxyz-axis (columns) for all six transducers,
with the skew symmetric matrices ŝ accounting for hanging orientation error (white filling), and without (gray
filling). The measurements were collected with the robot hanging (zero ground contact wrenches) in 6x , z-axis,
while at the same time slowly (quasi-statically) rotating each leg ten full cycles with 9000 sample points for each
cycle. (FL: front left, ML: midleft, HL: hind left, FR: front right, MR: midright, HR: hind right).

Table 1 Summary of model selection statistics

Model DOF CV error BIC

Full (six rotationsþ six translations) 18þ 18 12 1580
Six rotationsþ single translation 18þ 3 17 1674
Six translations only 18 62 2352
Single translation 3 105 2546

Abbreviations: degree-of–freedom (DOF), cross-validation (CV), and
Bayesian information criterion (BIC).
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6 Discussions

In this paper, we showed that naive offset correction of the
measurements from the six 6-axis transducers on our hexapedal
robot in a static pose produced horizontal force estimates of the order
of 25% of mg, and pitch and roll torque ranges that do not even
contain the true torque of 0 (see Fig. 2). The poor accuracy of this
ground contact wrench measurement hindered us from studying our
model of multilegged walking and slipping.
To resolve this we showed an in situ calibration framework for

these sensors which can be used without disassembling the robot.
We characterized transducer offset, leg gravity offset and the
wrench transformation error in our model.
We first estimated transducer offset and leg gravity offset by

hanging the robot in two sets of opposite directions. Our calibration
method took into account of a hanging orientation error ŝ when
solving for the transducer offset and tool gravitational offset.
Without this ŝ the residual error had a multimodal distribution (see
Fig. 5), especially in Fx and Fy. By characterizing an infinitesimal
rotation error ŝ during the hanging experiment, the error distribu-
tions becamemore similar to a zeromean normal distribution, with a
maximum 0.2N standard deviation.
In our second calibration step, we characterized the frame

transformation estimation error between the transducer frame and
the body frame together with the unknown translation between the
body frame origin and the CoM. The unknown translation between
the body frame origin and the CoM removed the 2.5 Nm bias in
torque estimation. Using the frame transformation correction, we
reduced the 5-fold cross-validation residual by a factor of
� 8 compared with only fitting a single translation transformed to
the CoM. Overall, the calibration framework enabled us to make a
much more accurate measurement of ground contact forces and the
ensuing leg wrenches.
We also noticed that the offset term on the transducer could

change. Our experience showed the offset changed up to 10N after 6
months. Temperature change and gauge excitation voltage could be
possible causes for the drift, and thus should be expected over
extended periods [26]. When such a significant offset change
occurred, we easily re-estimated wftk

o by putting it as the
optimization variables in Eq. (8), with the other calibration
parameters held unchanged. This only required a fewmeasurements
with the robot standing at different poses. We found no need to redo
the entire protocol of hanging experiments to adjust this calibration.
This calibration procedure can be generalized to other systems

that have a tool attached to an F/T transducer. For example, when an
F/T transducer is attached between the end of a manipulator and an
actuated tool head, one can estimate the transducer offset and tool
gravity offset by following the same procedure described in Sec. 4.1.
However, instead of hanging, one should set the manipulator joint
angles to position the tool in opposite orientations. The ŝ term can

compensate for imperfect opposite orientations, and the method
used to characterize the legCoMcan be applied to determine the tool
CoM during actuation.
The Cayley transformation parametrization used in Sec. 4.2 is a

powerful technique to switch the optimization argument set from a
rotation group to a vector space. It can be used to characterize
unknown rotation matrices in general, as long as one can formulate
an objective function to optimize toward.

7 Conclusion

We have demonstrated a calibration methodology that enabled us
to simultaneously measure the ground contact wrenches in a six-
legged robot while it is walking and its legs are slipping.We used the
data thus obtained in Ref. [27], which discusses the multilegged
locomotion model with its predictions, and suggests some
explanations as to why a non-Coulomb friction model is successful
at predicting motion governed by Coulomb friction.
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