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Abstract
The “infinitesimal phase response curve” (PRC) is a common tool used to analyze phase resetting in the natural sciences in
general and neuroscience in particular. We make the observation that the PRC with respect to a coordinate v actually depends
on the choice of other coordinates. As a consequence, a complete delay embedding reconstruction of the dynamics using v

which would allow phase to be computed still does not allow the v PRC to be computed. We give a coordinate-free definition
of the PRC making this observation obvious. This leads to an experimental protocol: first collect an appropriate ensemble
of measurements by intermittently controlling neuron voltage. Then, for any suitable current carrier dynamic postulated, we
show how the ensemble can be used to compute the voltage PRC with that current carrier. The approach extends to many
oscillators measured and controlled through a subset of their coordinates.
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1 Motivation

Taking voltage measurements of neurons and using time
delay embedding to reconstruct the neuronal dynamics can
lead to erroneous estimates of phase response curves (PRCs),
even the PRC of the voltage which was being directly mea-
sured. Here we discuss how to correctly recover the PRC
from any choice of state measurements, show that recon-
struction of the dynamics from, e.g. voltage delays, does not
fully specify the PRC, and show how the PRC can be recon-
structed once missing information is added.

Many physical systems are oscillators, i.e. they exhibit sta-
ble, long-term repeating cycles which persist even when the
system is perturbed. Spike train generating neurons fall into
this class, and it is common for neuro-scientists to attempt
to study these neurons using voltage measurements or by
clamping the voltage to a desired value and then releasing
the clamp as a way of resetting initial conditions and exam-
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ining the recovery. Mathematical models of coupled neurons
often use the infinitesimal phase response curvewhich repre-
sents the ratio of infinitesimal phase change to infinitesimal
external perturbation. For example, the voltage-PRC shows
how much neuronal timing (phase) will change for a small
voltage perturbation applied as a function of the phase in the
cycle at which this perturbation is applied.

These PRCs are used extensively in neuroscience mod-
els (Izhikevich 2007), dating back at least to the 1970s
and 1980s, which saw significant developments applying
the theory of weakly coupled oscillators to biological prob-
lems, e.g. Ermentrout (1986), Guckenheimer (1975) and
Winfree (1980). A PRC can be used to create a Fokker–
Planck equation for the distribution of observed phases of a
population after a perturbation; this relationship can some-
times be inverted (Wilson and Moehlis 2015) to obtain
the PRC. It is also common to study the neuronal phase
response to an incoming spike at various phases of the cycle.
This non-infinitesimal phase response cannot, in general, be
computed from the (infinitesimal) PRC because additional
non-linearities come into play. However, if the “isostable
reduction1” is known, one can replace the estimation of
asymptotic phase response curves with the measurement of
“operational phase” response and obtain the similar coupling
behaviors (Wilson and Ermentrout 2018).

In this paper we are concerned with the process of esti-
mating a PRC, e.g. the voltage PRC, using a state-space
model constructed via delay embeddings, e.g. from the
aforementioned voltage-only measurements and clamping
experiments. While it is typically possible to reconstruct the
dynamics of neurons from voltage and its delays, the PRC
obtained from taking the (partial) derivative of phase with
respect to voltage does not yield the correct result for the
voltage-PRC. This is true even for seemingly trivial changes
of co-ordinate, consider for example the first row of Fig. 1,
where a simple linear change of co-ordinates for a neural
oscillator radically changes the resoluting PRC. This prob-
lem extends to the PRCwith respect to arbitrary perturbation
types. Somewhat counter-intuitively, even an ensemble of
voltage measurements that fully characterizes the dynamics
of the neuron is not sufficient for computing so much as the
voltage-PRC. Despite the fact that the input variable volt-
age, the output variable phase, and the dynamics governing
both in time are fully known, the voltage-PRC is not defined
without knowingwhat states to hold constant while voltage is
perturbed. By postulating the dynamics of hidden state vari-
ables, e.g. gating or current variables, the problem can be
resolved and the appropriate coordinate changes can be cor-
rectly computed and produce the voltage-PRC, or any other

1 In its general form, this is the same as “data-driven floquet analysis”
representation of Revzen (2009) and Revzen and Kvalheim (2015),
originally due to Floquet (1883).

PRC needed—but the same ensemble of voltage experiments
can be compatible with multiple such postulates leading to
different results.

Our contributions are: (1) We point out that the straight-
forward approach of reconstructing the dynamics from
voltage measurements and differentiating phase with respect
to voltage at various phases will not produce the correct PRC,
because it is coordinate dependent. (2) We show how an
ensemble of (noisy, experiment-like) voltage measurements
can be combined with a model of the ionic currents or gating
variables to produce the correct voltage PRC. (3) We dis-
cuss what the PRC is in a physical, coordinate-free sense, for
oscillators of arbitrary dimension, using tools of differential
geometry.

After the general background in Sect. 2, this paper can be
read in two ways. A neuroscience practitioner might read
Sect. 3 and would almost certainly wish to bypass the math-
ematical technicalities of Sects. 4 and 4.1 for the practical
methods described in Sect. 5 and the neuroscience motivated
example of Sect. 6. For the mathematician interested in oscil-
lator theory, the coordinate invariant formulation in Sects. 4
and 8 form the beating heart of the paper, the examples of
Sects. 4.1 and 6 serve as numerical illustrations, and Figs. 5
and 6 serve as cautionary tales regarding the numerical chal-
lenges that could be encountered.

2 Oscillators in the physical sciences

This section contains a (somewhat formal) mathematical
definition of an “oscillator” model suitable for modeling
physical systems. Consider a system described by an ordi-
nary differential equation

ẋ := dx/dt = f (x) x(t) ∈ B ⊂ R
n, f ∈ C1, B open.

(1)

Intuitively, we wish to focus on the part of the dynamics of
our system—the stability basin B—that converges to a spe-
cific periodic solution. For our purposes here we add some
conditions on the convergence rates that ensure the existence
of phase. We therefore consider an “oscillator” such that: (1)
there exists a trajectory γ : R → � ⊂ B, and (2) an asso-
ciated “(minimal) period” T > 0 such that for any t ∈ R,
γ (t + T ) = γ (t), and (3) all initial conditions in B con-
verge to � (the image of γ ) at an exponential rate,2 (4) � is
Lyapunov stable.

While the phase of oscillators is conventionally repre-
sented as a real number in either [0, 1) or [0, 2π), these

2 Exponential convergence is sufficient for the existence of phase in
oscillators, and necessary for the structural stability of the equations.
Without structural stability the equations would be challenging to use
in physical modeling.
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representations suffer fromadiscontinuitywhen cycleswrap,
breaking the inherent symmetry whereby no particular phase
is “special”. Since in this paper we are concerned with dif-
ferentials of phase and such discontinuities do violence to
both the underlying geometry and the very differentials we
seek, we adopt a less common representation. We represent
a scalar phase using a complex valued “phasor”, i.e. a point
on the unit circle S1 in the complex plane C. A conventional
real valued phase θ ∈ [0, 2π ] is represented as eiθ ∈ C.

From its periodicity, it is trivial to see that � can be put
in correspondence ϕ : � → S1 ⊂ C with S1 the complex
unit circle, such that d

dt ϕ(γ (t)) = (2π i/T )ϕ(γ (t)) (where
i := √−1), i.e. the “(complex valued asymptotic) phase” ϕ

circles at a constant rate, and is uniquely defined up to one
arbitrary choice of “gauge”—the value of phase for one point
on the cycle, e.g. ϕ(γ (0)), can be arbitrarily chosen thereby
fixing all the other values of phase. Often, instead of taking
the phase as a complex valued phasor, its argument in radians
is used instead to give a “(real valued asymptotic) phase”
which has d

dt arg(ϕ(γ (t))) = 2π/T wherever arg(ϕ(γ (t)))
is differentiable.

Definition 1 The classical work of Guckenheimer (1975)
showed that ϕ can be extended (C1) smoothly and uniquely
to the entirety of the interior of B, defining the “asymp-
totic phase map”. By abuse of notation we denote this map
by ϕ : B → S1, and note that it satisfies d

dt ϕ(x(t)) =
(2π i/T )ϕ(x(t)) for all trajectories ẋ = f (x) of the system.

3 Coordinate-dependence of the standard
PRC definition

If (x1, x2, . . . , xn) are coordinates for R
n , then the stan-

dard definition of the “(infinitesimal) phase response curve
(PRC)” with respect to, say, x1 is a map ρ1 : � → R defined
by the partial derivative

ρ1 := 1

iϕ

∂ϕ

∂x1
(2)

Equivalently, ρ1(x) = ∂
∂x1

arg(ϕ(x)) wherever arg(ϕ(·))
is differentiable. See, e.g., (2010, p. 176).

Suppose now that the last (n−1) coordinates are modified
to produce a coordinate system of the form (x1, y2, . . . , yn)
with the same phase ϕ̃(x1, y2, . . . , yn) = ϕ(x1, . . . , xn)with
respect to these new coordinates. We can again define a PRC
with respect to x1, now denoted ρ̃1 : � → R, via

ρ̃1 := 1

i ϕ̃

∂ϕ̃

∂x1
(3)

In general, ρ1 �= ρ̃1, even though both are similarly defined
by limits of the form:

∂ϕ

∂xk
(x) := lim

h→0

ϕ(x + ekh) − ϕ(x)

h
.

In the next section we introduce a coordinate-free definition
of the PRC which makes this coordinate dependence obvi-
ous. This coordinate dependence can be seen in Fig. 1, which
shows two examples illustrating how the PRC changes with
the choice of projection in which the dynamics are presented.
Not only that, but even the PRC with respect to a variable
shared between the projections may change.

As a preliminary explanation, we quote the following
chastening from V. I. Arnold (1989, p. 258, foot. 81):

“It is important to note that the quantity ∂u
∂x on the x, y-

plane depends not only on the function which is taken
for x , but also on the function y: in new variables (x, z)
the value of ∂u

∂x will be different. One should write

∂u

∂x

∣
∣
∣
∣
y=const.

∂u

∂x

∣
∣
∣
∣
z=const.

.”

Taking this to heart, we should have written:

ρ1 := 1

iϕ

∂ϕ

∂x1

∣
∣
∣
∣
x2,...,xn=const.

ρ̃1 := 1

i ϕ̃

∂ϕ̃

∂x1

∣
∣
∣
∣
y2,...,yn=const.

,

(4)

making the difference obvious. The coordinate-free view of
the PRC in Sect. 4 yields another way to make the difference
obvious.

Perhaps the most familiar examples of this issue appear
in undergraduate thermodynamics. Consider the work done
by a periodically compressing piston containing an ideal gas.
For a periodic motion like V (t) = sin(t), we could get com-
plete equations ofmotion by only looking at the volumeof the
piston over time and expressing dV /dt as a function of V (t)
and V (t − δ). Despite knowing these complete equations of
motion, we cannot know the work of the piston. The work
of the piston is the integral of the increments of work with
respect to volume, but the increment of work dW performed
at a given volume V cannot be computed from the increment
of volume change dV without additional constraints on the
thermodynamic state variables. Classical constraints show
qualitatively different work outcomes: in isobaric compres-
sion, with pressure constant, dW = −PdV and the work
increment is only a function of volume increment; in isother-
mal compression, by substitution of P = nRT /V from the
ideal gas law, we get dW = −nRTdV /V , and the work
increment is inversely proportional to volume. Just as the
increment of work dW associated with a change of vol-
ume depends on the choice of coordinates held constant,
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Fig. 1 Two examples of how the PRC depends on the choice of coor-
dinates. Consider the Fitzhugh–Nagumo oscillator (top left, equations
of motion given in equation (17)) presented in terms of x1 (voltage)
and x2 (gating variable), and consider a y2 replacing x2. Because y2
is a function of x1 and x2, the oscillator’s state-space occupies a two
dimensional ribbon in the 3-dimensional (x1, x2, y2) space (center col-
umn, rainbow colors). The isochrons lie in this ribbon and intersect the
limit cycle at an angle, the slope of which is the PRC. Consequently,
the same dynamics can produce very different PRC-s even with respect
to the x1 shared by both (x1, x2) and (x1, y2) representations. As a
simple case, take y2 linear in x1 and x2 (center and right, top), with
y2 = x1 − (

2x1,max/x2,max
)

x2, where the “max” subscript indicates
the maximum value on the limit cycle). A more complicated smooth

y2 dependence can lead to even more complicated results (center and
right, bottom); here we used y2(t) := x1(t − τ) a delayed x1. The x1
(voltage) PRC-s obtained in these three coordinate systems are quite
different (bottom left). Note that the use of delay coordinates has great
advantages from an experimental perspective, because a single time
series measurement of voltage provides both x1 and y2. Takens’ theo-
rem (Takens 1980; Sauer et al. 1991) guarantees that for deterministic
dynamical systems, almost every choice of delay coordinates will allow
the dynamics to be reconstructed. In practice, finding a set of delays
producing coordinates with Jacobians that have a moderate condition
number can be challenging and due to this poor condition number por-
tions of the PRC have been omitted (this is indicated by dark vertical
bars)

the increment of phase associated with a voltage change,
the voltage-PRC, depends on the choice of coordinates held
constant.

4 A coordinate-free view of the PRC

In this section we present a geometric notion of the PRC
and show how it can be represented in a coordinate-free way
over a broad class of state-spaces. Recall from Definition 1
that the complex phase ϕ takes its value on the unit circle
in the complex plane. For any path through the state space

p : [0, L] → B, one can hope to formulate the change of
phase along the path as an integral of infinitesimal changes of
phase along that path, accumulating the total angle through
which phase has rotated. Viewed geometrically, the phase ϕ

partitions (“foliates” Guckenheimer and Holmes 1983) the
stability basin into smooth surfaces of constant phase called
“isochrons”. The change of phase experienced along a path
segment ṗ(t)dt is a measure of the number of isochrons
crossed in that segment, and in Euclidean spaces it can be
estimated as (−i/ϕ(p(t))∇ϕ(p(t))· ṗ(t)dt , which is a vector
normal to the isochrons and scaled inversely proportional to
the density of the isochrons at that point. Expressing this with
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the gradient∇ requires the underlying space to have a notion
of length in the form of a Riemannian metric, since that is
needed for defining a gradient, but this Riemannian structure
is not required for having a PRC.

The mathematical object that represents the infinitesimal
change in phase available at a point x ∈ B in a metric-
independent way is the “differential 1-form” (Rudin 1976,
Ch.10) which we name the temporal 1-form, dτ , the d indi-
cating that it is a differential 1-form. However it is not the
(exterior) derivative of any real-valued function, i.e. it is not
obtained by applying the operator d to a real-valued function
τ . Like all differential 1-forms, dτ is a section of a co-tangent
bundle, here denoted T∗B.

The tooling of differential forms allows us to define and
understand dτ , as we describe below. One important feature
of differential forms is that they admit a “pullback” operation:
if a differential form is defined on the co-domain Y of a
smooth mapψ : X → Y , it defines a differential form on the
domain X of that map which, informally speaking, “does the
same thing”. Whatever velocities, such as the rate of change
of phase, that the form canmeasure on paths in the co-domain
Y , the pullback form can measure on paths in the domain X
mapping to those paths in Y . It does so by mapping the point
of evaluation from X to Y using ψ , and the velocity at that
point using Dψ , and then applying the original form to the
result.

The form dτ can most easily be seen as pullback of a form
measuring the rotation velocity on the unit circle, which is
the image of ϕ. Any change of the coordinates for B does not
change the velocity traveled in the image of ϕ, and thus dτ is
a coordinate invariantmathematical object. The details of this
formulation using the notation of differential forms, and the
equations governing its transformation between coordinate
frames, have been relegated to Sect. 8.

4.1 An extended example

We now turn to an illustrative example of how PRCs change
coordinates and in particularwith the use of delay coordinates
as would be the case in reconstructing neuronal dynamics
from voltage measurements and their delays. Perforce, this
requires an artificially simple oscillator, whose dynamics
are fully integrable, so that we can compute all the relevant
expressions in closed form.

Themoremathematically inclined reader should view this
example in light of Example 1 in Sect. 8 which describes a
more general case. Consider a Hopf-like oscillator in polar
coordinates on R

2\{0}:

θ̇ = w ṙ = 1 − r (5)

where dots indicate differentiationwith respect to time t . This
has the general solution:

θ = wt + θ0 r = 1 + ρ0 exp(−t), (6)

where ρ0 := r(0) − 1. Note that {r = 1} is the image of an
exponentially stable periodic orbit for this system; we will
also refer to this periodic orbit as a “limit cycle”.

Let us switch toCartesian coordinates and imagine that our
y coordinate is some variable we can observe (for example, a
voltage of a neuron), while the x coordinate is some variable
we do not observe (for example, the associated current). We
rewrite the solutions as:

x = [1 + ρ0 exp(−t)] cos (wt + θ0) (7)

y = [1 + ρ0 exp(−t)] sin (wt + θ0) . (8)

Recalling that r = √

x2 + y2, and noting that the phase
of this oscillator can be taken to be θ , we can compute the
phase 1-form in this coordinate system as:

dθ(x, y) =
(

−y/r2, x/r2
)

, (9)

where the right side should be viewed as a row vector or
co-vector.3 Using for simplicity the terminology of Sect. 3,
the restrictions to the unit circle of the components of this
1-form are the PRCs with respect to x and y in the coordinate
system (x, y). We also know the isochrons explicitly, since
the asymptotic phase map is given by θ and its level sets are
radial lines. This gives rise to the coordinate-independent
observation that a velocity v is tangent to some isochron if,
and only if, it satisfies 〈dθ, v〉 = 0. In Cartesian coordinates
this is satisfied for v = (v0, v1) if yv0 = xv1, that is if the
velocity is radial.

We will now consider delay coordinates (v, u) and how
we obtain them from (x, y). The coordinate u(t) is the same
coordinate which we observe, y(t). For the coordinate v(t)
we take the value of the y coordinate of our system at some
lag time δ > 0, i.e., y(t − δ). This gives

u(t) := y(t) = [1 + ρ0 exp(−t)] sin(wt + θ0) (10)

v(t) := y(t − δ) = [1 + ρ0 exp(−t + δ)] sin(wt − wδ + θ0)

(11)

We would like to know how the PRCs with respect to
v and u in the coordinates (v, u) are related to those we
previously calculated with respect to the (x, y) coordinates.
In the present example we have an explicit formula for the
coordinate transformation, so we can eliminate time from
the above relations and carry out the remaining computations
explicitly.

3 Despite the fact that the closed 1-form defined by the right side of (9)
is not exact on R

2\{0}, “dθ” is still common notation for this 1-form.
See for example Spivak (1971, p. 93).
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The u coordinate change is trivial since, by construction,
u = y. For v, note the following identities and definitions,
all written in terms of x , y, and r := √

x2 + y2: exp(−t) =
(r − 1)/ρ0, y/r = sin(wt + θ0), x/r = cos(wt + θ0),
C := cos(wδ), and S := sin(wδ).

We thus have:

v = [

1 + ρ0e
δ · (r − 1)/ρ0

]

sin(wt − wδ + θ0)

= [

1 + (r − 1)eδ
]

(sin(wt+θ0)C− cos(wt+θ0)S)

= [

(1 − eδ) + reδ
] 1

r
(yC − xS)

= [

(1 − eδ)/r + eδ
]

(yC − xS) (12)

From this transformation we can compute the Jacobian J
of the transformation Tδ : (x, y) �→ (v, u) The components
of the Jacobian are (using the notation “|x” as shorthand for
“|x=const.” and similarly for “|y”):

∂u

∂x

∣
∣
∣
∣
y

= 0;
∂v

∂x

∣
∣
∣
∣
y

= 1

r3

(

−Sr2
(

eδr−eδ + 1
) +x

(

eδ−1
)

(Cy−Sx)
)

;
∂u

∂ y

∣
∣
∣
∣
x

= 1;
∂v

∂ y

∣
∣
∣
∣
x

= 1

r3

(

Cr2
(

eδr−eδ+1
) +y

(

eδ − 1
)

(Cy − Sx)
)

.

For certain values of the parameters w and δ, the quantity
∂v
∂x

∣
∣
y is nowhere vanishing on the image of the limit cycle.4

For such parameter values, this leads to the invertibility of the
Jacobian J at each point on the limit cycle, with expressions
for J and J−1 as follows:

J (x, y) =
(

∂v
∂x

∣
∣
y

∂v
∂ y

∣
∣
∣
x

0 1

)

,

J−1(x, y) =
((

∂v
∂x

∣
∣
y

)−1 −
(

∂v
∂ y

∣
∣
∣
x

) (
∂v
∂x

∣
∣
y

)−1

0 1

)

. (13)

4 Setting r = 1 in ∂v
∂x

∣
∣
y and viewing the resulting expression as a

quadratic function of x with parameter y, the discriminant � of this
quadratic is � = (eδ − 1)2C2y2 − 4(eδ − 1)S2. Hence � < 0 with
δ > 0 if and only if (eδ −1)C2y2 < 4S2. This implies that, with δ > 0,
� < 0 for all (x, y) ∈ {r = 1} if and only if (eδ − 1)C2 < 4S2. Since
a quadratic has a real root if and only if its discriminant is nonnegative,
the latter inequality is necessary and sufficient for the quantity ∂v

∂x

∣
∣
y to

be nowhere vanishing on {r = 1}. If it so happens that wδ /∈ π
2 + πZ,

then this necessary and sufficient condition reads

eδ − 1 < 4 tan2(wδ).

Since tan2(wδ) = w2δ2 + o(δ5) as δ → 0 while eδ − 1 = δ + o(δ),
we see that, for this condition to hold, w must be very large if δ is very
small.

If additionally δ /∈ 2π
w
Z so that the restriction of Tδ to

{r = 1} is invertible, it can be shown that the nonlinear
map Tδ is smoothly invertible on some open neighborhood of
{r = 1} (Guillemin and Pollack 2010, p. 19, Ex. 10). Thus,
for such parameter values, we may use the transformation
law for 1-forms to transform dθ(x, y) on a neighborhood of
{r = 1} according to

dθδ(v, u) := dθ(T−1
δ (v, u))J−1(T−1

δ (v, u)) (14)

Since u = y, one might assume mistakenly that the change
in phase with respect to an infinitesimal perturbation in y
in the (x, y) coordinates is the same as the change in phase
with respect to an infinitesimal perturbation in u in the (u, v)

coordinates. However, the former is x/r2, whereas the latter

is x/r2 + y/r2 ∂v
∂ y

∣
∣
∣
x

(
∂v
∂x

∣
∣
y

)−1
.

Taking one specific example, choose δ := ln 2 and w =
π/(4 ln 2), giving C = S = 1/

√
2, and examine J on the

limit cycle {r = 1}, setting x := cos(φ) and y := sin(φ).
After some algebra, we obtain:

∂v

∂x

∣
∣
∣
∣
y

= −1

2
cos

(

2φ + π

4

)

− 3
√
2

4
, (15)

∂v

∂ y

∣
∣
∣
∣
x

= −1

2
sin

(

2φ + π

4

)

+ 3
√
2

4
. (16)

The resulting difference inPRCsbetween y andu is shown
in Fig. 2.

5 PRC recovery with delay coordinates

The difficulty of the process in the example of the previous
section, supported by the detailed analysis in Sect. 8, at equa-
tion (24), suggests that the prospect of computing a desired
PRC from measurements of a scalar-valued observable such
as voltage is grim, since equation (24) involves the (usually
unknown) derivatives of the flow (D�−δk in Sect. 8).

However, in this section we show that certain PRCs can
be recovered by measurements of a scalar-valued observ-
able under certain additional assumptions. This allows us to
provide a potential solution to the problem of recovering a
PRC in an experimental system, even if the system provides
limited options for observing and controlling its state.

5.1 Assumptions and goal

We continue to make the same assumptions as in Sects. 2 and
4, but need additional requirements that allow us to consider
external control of some aspects of the state. We begin by
assuming that B ⊆ M ⊆ X × Y , i.e. where M points have
a canonical representation as pairs from X and Y , where
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Fig. 2 Comparison of the phase
response with respect to an
infinitesimal perturbation of the
u-coordinate in (v, u), and the
y-coordinate in (x, y). Note that
we have chosen u = y, and we
are perturbing the same
oscillator, with parameters
δ := ln 2 and w = π/(4 ln 2)

we will both observe and control the Y part. We write the
vector field f on M as f = ( fx , fy) so that an integral
curve (x(t), y(t)) of f satisfies the ODE ẋ = fx (x, y); ẏ =
fy(x, y). As is traditional in control theory, we think of x
as being a “hidden state” whereas y is “directly observable”,
i.e., available for us to measure at any instant.

Because our goal is to examine cases where x and y may
fall outside the range of pairings allowed by this un-forced
ODE, we consider a space of admissible controls Y ⊂ R

Y+
a space of functions from t ∈ R, t ≥ 0 to Y such that for
each yi ∈ Y , there is a bounded interval [t0i , t1i ] such that
outside this interval yi is the Y component of the system
ẋ = fx (x, yi ); ẏi = fy(x, yi ), and within the interval ẋ =
fx (x, yi ) but the second (Y ) equation need not hold. We
require M to be an open set containing all pairs of (x, yi )
arising from yi ∈ Y (and therefore also B).

We take γ : R → B be a specific T -periodic solution
of the ODE with image γ (R) = �, and assume γ is (not
merely orbitally) exponentially stable. From T -periodicity,
γ (T ) = γ (0) and γ |[0,T ) is injective. We use the notation
γx (t) ∈ X , γy(t) ∈ Y for the components of γ so that γ (t) =
(γx (t), γy(t)).

Considering the dynamics of x(t), we refer to the control
system ẋ = fx (x(t), u) as the X(u) system. It is a control
system with control input u when u is unspecified. If u is
a function of time u(t), X(u) becomes a non-autonomous
differential equation. One such non-autonomous system on
X is the system X(γy) defined by taking u(t) := γy(t) and
leading to the equation ẋ = fx (x(t), γy(t)).

Goal Find a method to recover the ∂y-PRC from y measure-
ments, where y ∈ Y = R.

We believe the same approach could be extended to Y of
higher dimension by defining “vector-valued PRCs”.

Assumption 1 fx ( · , · ) is known. We do not assume knowl-
edge of fy( · , · ).

Here we assume that we can postulate the dynamics of the
part of the state which we can neither directly observe nor
directly manipulate. We assume no knowledge of the part of
the state we can measure and manipulate (see below).

Assumption 2 There exist known 0 < δ1 < δ2 < · · · <

δm such that the delay map R : M → R
m given by

R : (x(t), y(t)) �→ (y(t), y(t−δ1), . . . , y(t−δm)) ∈ R
m is a

continuously differentiable map with a differentiable inverse
on its image for all trajectories (x(t), y(t)) evolving under
ẋ = fx (x, y); ẏ = fy(x, y).

This assumes that we have delay coordinates of y which
could allow us to reconstruct the dynamics of the observable
y in a data-driven manner. The differentiability of the map
and its inverse ensure that the dynamics can be written in
the transformed coordinates. Takens’ theorem (Takens 1980;
Sauer et al. 1991) tells us that such a collection {δi }mi=0 of
delays can usually be easily found. In fact, given some tech-
nical conditions are satisfied, almost all collections of delays
will do.

Assumption 3 For any C1 curve u : [t0, t1] → Y satisfying
u(t0) = y(t0), we can enforce y(t) = u(t) for all t ∈ [t0, t1].

Here we assume we have the ability to “clamp” the Y
portion of the state to any trajectory we want.

Assumption 4 γx (t) is the globally (within M) asymptoti-
cally stable attractor of the non-autonomous system X(γy).

This ensures that by feeding in the y dynamics of the limit
cycle we can reset the system in its entirety to the limit cycle.
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Assumption 5 There exists a neighborhood U ⊃ � and a
neighborhood V � γ (0) such that, for every (x f , y f ) ∈ U
and (x0, y0) ∈ V , there is a knownC1 controlu : [0, N ] → Y
satisfying u(0) = y0, u(N ) = y f , and steering x(0) = x0 to
x f for the X(u) dynamics.

This implies that from some specially chosen limit cycle
state γ (0), we have the ability to create an open set of states
around the limit cycle, i.e. that we can produce a sufficiently
rich set of perturbations to reproduce all possible behaviors
that can occur near the limit cycle.

Remark 1 Assumption 4 may raise some concerns as it is
not immediately obvious that a system like X(γy) would be
stable or have γx (t) as its attractor. In the appendix we show,
as a motivating example, that the required property holds for
the Hopf oscillator.

Remark 2 In general, we do not know the delay map R.
However, any trajectory ofX(u) that we compute with a seg-
ment of time [s, t], t − s ≥ δm , that evolves autonomously
(i.e., such that during [s, t] we choose u (t) = y (t) with
ẏ (t) = fy (x, y), thereby not externally forcing the system)
gives us a delay coordinate point by observing y|[s,t]. For any
hypothesised compatible x(t), this would allow us to have
sampled the value of R at the point (x(t), y(t)) and found it
to be (y(t), y(t − δ1), . . . , y(t − δm)), giving a sampling of
a R map compatible with this hypothesis.

5.2 PRC recovery procedure

Under these assumptionswepropose to recover thePRCfrom
delay coordinate measurements and Y clamping experiments
as follows.

5.2.1 Preparation

Compute from y-observations over a long enough time an
estimate of the period T and γy . Knowing the period enables
us to match the noisy observations of γy that are an integer
number of periods apart and thus correspond to observing the
same underlying valuemultiple times. The repeated observa-
tion allows for better estimation, e.g. via averaging. Having
γy also provides us with the image R(�) of the limit-cycle
point-set � under the coordinate change R into delay coordi-
nates. We can also obtain the phase on the limit cycle itself,
ϕ|� through the use of a phase estimator on the γy data.

5.2.2 Sampling

Now consider a fixed u and a time N .

(1) Let the X(u) (physical, un-disturbed) system run
autonomously, producing z(t) := (x(t), y(t)) compris-
ing our not known as of yet x(t), and our directly

observable y(t). After δm units of time, the trajec-
tory is long enough to allow the delay map image
R(z(t)) to be computed, and by Assumption 2 this image
is smoothly embedded. Continue autonomously until
|R(z)− R(γ (0))| is sufficiently small to allow us to treat
it as z = γ (0). The system has “reset”; we therefore
define the time satisfying the reset condition as a new
t = 0. (For our Fitzhugh–Nagumo example the reset con-
dition occurs when an arbitrary point on the limit cycle is
passed; we selected this point by integrating five cycles
from the position v = 0, u = 1.)

(2) Create a perturbed initial condition by forcing y(t) :=
u(t) for t ∈ [0, N ], leading to z(N ) ∈ U\�. This should
be possible given Assumptions 3 and 5. We will later
select these z(N ) to comprise a collection of points that
enable us to estimate partial derivatives of ϕ(·).

(3) Let the system run autonomously for at least δm more time
units. R(z(t)) is known again for any t > N + δm . Thus
we can determine when z(t) returns to � to within suffi-
ciently good accuracy by checking R(z) for approximate
membership in R(�) through finding the minimum dis-
tance from a fourier series model of R(γ (ϕ)). Assume
the time at which this happens is tF , i.e., we approxi-
mately have z(tF ) ∈ �. We can approximately obtain
ϕF := ϕ(z(tF )) because in Sect. 5.2.1 we obtained the
phase on � from R(z(tF )). From this and the period we
get the phases for the entire time segment as ϕ(z(t)) =
exp(−i2π(tF − t)/T )ϕF .

Consider now from these trajectories the subset of points
R(z(t)) sufficiently close to R(�) for which we also know
ϕ(z(t)). This set of points will allow us to estimate the
∂y-PRC with respect to delay coordinates (cf. Arnold’s chas-
tening in Sect. 3).

At this time our data collection is complete. Note that,
importantly, we have not used any knowledge about a spe-
cific x or fx other than presuming Assumptions 2, 3, and 5.
Despite x being neither knownnor selected, our experimental
data is fixed from here on.

5.2.3 Reconstructing R

Now we choose a specific fx that would meet our assump-
tions. Using Assumptions 1 and 4 and knowledge of γy from
Sect. 5.2.1, we numerically integrate the X(γy) system for a
long enough time to determine γx (0) as accurately as desired.

Consider again the process of Sect. 5.2.2. For each tra-
jectory computed therein, starting with the initial condition
z(0) = γ (0) which is now fully known, we integrate the
control systemX(y) to give the trajectory z(t). For the times
t > N+δm , the now known x(t) and R(z(t)) provide us with
samples of the map R(·, ·). Using this collection of samples,
we interpolate the map R and its Jacobian DR. By recon-
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structing R and its Jacobian we have acquired the means to
convert any geometric object between delay coordinates and
the original coordinates.

This allows us to use (24) to recover the desired PRC in the
(x, y) coordinates. ThePRC is the application of the temporal
1-form in delay coordinates dτdelay to whatever vector field
moves in the direction of the perturbation with respect to
which we want the PRC; here [∂y]delay for the y-PRC5. This
PRC in delay coordinates is 〈dτdelay, [∂y]delay〉. The correct
transformation to (x, y) coordinates maintaining the inner
product is 〈(DR)Tdτdelay ◦ R, (DR)−1[∂y]delay ◦ R〉, which
equals 〈dτx,y, [∂y]x,y〉.

6 An example from neuroscience

Whereas the mathematical observations in the former sec-
tions and Sect. 8 is perhaps noteworthy, it is hardly surprising
to a geometrically-minded mathematician. However, these
observations could have significant practical applications.
We therefore switch our focus to numerical approaches that
could be applied to (possibly noisy) experimental data. For
this reason, in this sectionwewill analyze data produced from
numerically simulating a model system as if we were exper-
imentalists without knowledge of the underlying equations
of motion. We will conduct this analysis based on plausible
assumptions informed by numerical tests, highlighting the
places where analytical or computer-assisted proofs would
perhaps be nice to have, but are beyond the scope of typical
experimental work.

For our example we consider the Fitzhugh–Nagumo
(FHN) system, often used as a model of a simple neuronal
oscillator. A standard form of the equations for this system
is:

v̇ = c

(

v + w − v3

3
+ z

)

ẇ = a − v − bw

c
(17)

Here voltage v, gating variable w, and time have all been
suitably normalised. Differentiation with respect to time is
indicated by a dot.We adopted the values 0.7, 0.8, 3 and−0.4
for a, b, c and z respectively.

The time series data we obtained by numerically inte-
grating (17) at these parameter values strongly suggests that
there is an exponentially stable limit cycle with a large basin
of attraction; we henceforth assume this is the case with-
out proof. We modeled the limit cycle with two univariate
splines (one for each coordinate; scipy.interpolate.

5 The notation ∂z , a vector, is not the partial derivative ∂
∂z ; it is the

derivation along z, i.e. given any path p(t), d/dt z(p(t)) = 〈∂z, ṗ(t)〉.
Thinking of z as scalar valued function, and ignoring issues of the
presence or lack thereof of an underlying metric, ∂z is the gradient of
z, and the previous equation is an expression of the chain rule.

UnivariateSpline) based on 2000 pointswith the num-
ber of knots set to interpolate through all points.

Following themethod of Sect. 5,we attempted to use delay
coordinates (v, vd) with a single delay of length 0.1 units to
build a full picture of the dynamics using only observations of
v. The rationale behind using such a voltage-centered model
is that when observing a neuron we are typically able to
record its voltage but not the current flowing through it or
the status of its ion channels (here represented by the gating
variable). Thedelay coordinates (v, vd) are implicitly defined
as functions of (v,w):

v = v vd = g (v,w) . (18)

Using trajectory data, we generated an approximation of
the graphof themap (v,w) �→ g(v,w) = vd shown inFig. 3.
This approximation strongly suggests that ∂g

∂w
|v=const. > 0

in a neighborhood of the limit cycle, which we henceforth
assume without proof. This assumption implies that the map
(v,w) �→ (v, vd) is a diffeomorphism from a (possibly
smaller) neighborhood of the limit cycle onto its image, and
so the delay coordinates (v, vd) yield a smooth and invertible
change of coordinates on this neighborhood.

As in Sects. 3 and 4, we let ϕ : B → S1 ⊂ C be the
asymptotic phase map defined on the basin of attraction B
of the limit cycle. The restriction of 1

iϕ
∂ϕ
∂v

|w=const. to the
limit cycle is the PRC curve associated with rapidly perturb-
ing the system’s voltage, so quickly that the (unobserved)
gating variable remains effectively fixed, i.e. changes at an
asymptotic order slower, where the perturbation is O(t) and
the gating changes O(t2). If we were to mistakenly use
1
iϕ

∂ϕ
∂v

|vd= const. instead, our result will be in error by a term
obtainable from the Jacobian of the coordinate transforma-
tion (18), as explained in Example 1 and demonstrated in
the example of Sect. 4.1. The notion of computing the partial
derivative of v while holding vd constant may seem confus-
ing because the deterministic nature of the dynamics does
not allow a delayed value to be held constant while the value
at any other time changes. The partial derivative in question
is better viewed as the slope in the v direction of the man-
ifold representing the (v, vd , v̇, v̇d) graph—it contains part
of the information needed to reconstruct the dynamics, but
is not a direction of change that corresponds to anything the
system could do, because v and vd are intertwined by those
dynamics and cannot be independently modified.

We now describe a simulated experiment using this FHN
model. The experiment consisted of a noise free simulation
of a FHNmodel, which we used to establish the “true” PRC-
s, followed by a stochastic simulation of the same model,
producing simulated experimental data, which we then use
to demonstrate that similar results can be obtained from real-
istically noisy data.
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Fig. 3 Shown here are sample
points illustrating the coordinate
transformation
(v,w) �→ (v, vd ) for the
Fitzhugh–Nagumo system (17)
implicitly defined by delaying
the v coordinate. Here v is the
normalised voltage, w is the
gating variable, and vd is the
delayed normalised voltage

6.1 Noise-free“ground truth”

Because we conducted a simulated experiment we obtained
the phase response curve via a perturbation approach which
could be available to an experimentalist, rather than e.g.
using the adjoint method (Malkin 1949, 1959; Hoppensteadt
and Izhikevich 1997) which would require knowledge of the
dynamical equations of the system.

6.1.1 Obtaining the period T

For forward integration we used scipy.integrate.
odeint, with the Jacobian provided, and tolerances for the
error control parameters atol and rtol set to a low tol-
erance of 10−10. We recorded a sufficiently large collection
of steady-state oscillations, so large as to enable an initial
estimate of the period of the limit cycle. We then estimated
the period by forward integration from a point on the limit
cycle. This initial point was obtained by integrating forward
in time approximately one thousand periods.

We then used scipy.optimize.fmin to find the
integration time that minimises the function returning the
distance between the start and end point of an integration
using with 10−12 tolerance for both the function value and

the location of the optima. This provided a highly accurate
sampling of our periodic solution, γ of Sect. 2.

This periodic solution also enabled us to model the limit
cycle of the system in delay coordinates, as per Sect. 5.2.1,
to our desired accuracy.

6.1.2 Voltage perturbations

We then went on to evaluate the PRCs by sampling. We
allowed the system’s state to evolve until we were confi-
dent it was close to the limit cycle, at which point we applied
a small change to voltage (10−2 in the normalised units of
the Fitzhugh–Nagumo system), instantly driving the volt-
age slightly above or below the voltage when resting on the
limit cycle, while at the same time leaving the gating vari-
able unchanged.6 We allowed the system to settle for a fixed
amount of time equal to five periods (as estimated above),

6 We note that many characterisations of neural oscillators in terms
of phase do not apply a small voltage in order to estimate the PRC,
but rather apply a spike (large voltage, short duration) to obtain a PRC
which might be inconsistent with a first order approximation. Such
an experiment is not considered here, although we note that what is
required to calculate the induced phase change across the stability basin
is some method of integrating the accumulated phase change resulting
from travelling from the limit cycle to the perturbed state. Because the
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and then recorded the resulting phase shift as described in the
next section. Because we waited an integer number of peri-
ods, the unperturbed base-point on the limit cyclewould have
returned to itself, simplifying the calculation of the phase
response.

6.1.3 Obtaining phases

We took our estimate of the limit cycle and assigned to points
on this curve a phase which advances uniformly in time.

Weevaluatedphase onother trajectories by: (1) integrating
forward in time until theywere “sufficently” close to the limit
cycle; (2) obtaining an estimate of the phase of the final point
on the trajectory; and (3) computing the phases of all previous
points from their times and the period T .

To estimate the phase of a final trajectory point we found
the nearest two points in our high resolution model of the
limit cycle described above, and orthogonally projected the
final trajectory point onto the line segment connecting them.
We took the linear interpolation of the phases of the limit
cycle points at the projected point as the phase of the final
trajectory point.

Given the phase of the final point in a trajectory, we used
the period and the sample times of the other trajectory points
to assign self-consistent phases to all the points in each tra-
jectory.

A pseudo-code summary of this approach to phase esti-
mation would be:

(1) Compute the limit cycle and uniformly distribute phases
on it

(2) Obtain a point of the limit cycle
(3) Perturb the point in voltage by a small amount
(4) Simulate the system through until sufficiently close to the

limit cycle
(5) Assign phases to the points obtained from this simulation

by uniformly distributing phase changes through time
and ending on the same phase as the point of closest
approach on the limit cycle

6.1.4 Ground truth PRC-s

All our perturbed initial points were obtained by an instan-
taneous change in voltage from a related point on the limit
cycle. We therefore took the phase of the perturbed initial
point and subtracted from it the phase of the related limit
cycle point, giving a phase change. We divided this phase
change by the change in voltage that created the perturbed

Footnote 6 Continued
ensuing state change is typically “large”, i.e., of the order of the size
of the limit cycle itself, infinitesimal approximations are unlikely to be
accurate.

initial point to obtain the PRC. Because the perturbation only
changed v, but not w, this procedure gave us an estimate of
the voltage-PRC with the gating variable held constant.

The “ground truth” PRC-s are shown in the Fig. 4 “small
perturbation” line.

6.2 Simulated experimental data

Our simulated experimental data included measurement
noise (we added a sample from a Gaussian distribution to
our observed voltages, with standard deviation 0.1 units),
but otherwise evaluated phase in a similar process. This pro-
duced a distribution of “measured” phases, as shown in Fig. 4
“phase change”, which shows up as a coloured region.

Since our phase estimates for these noisy trajectory points
relied on finding the nearest limit cycle point to the (noisy)
final point of each trajectory, we also computed a windowed
median of these estimates (see Fig. 4 “median phase change”
line. We used the median rather than mean since our system
produced results with variability that seemed to be heavy
tailed; rank statistics are more stable under such conditions
than moments tend to be).

For actual experimental data we should presume the pres-
ence of many types of noise: numerical errors, experimental
system noise, and experimental measurement noise. Under
such conditions, the finite difference approximation of the
derivatives we wished to compute would have poor statisti-
cal properties. A more noise-resilient method is to take small
segments of our data at points around the limit cycle in delay
coordinates, confine ourselves to slices of the data in the
delay coordinate vd , and perform a linear regression of the
final phase against change in voltage v. However, thismethod
will calculate the PRC with a fixed delay coordinate (Fig. 4
“constant delay” plot) which, for the reasons we explained
in Example 1 and demonstrated in Sect. 4.1, will not be the
voltage PRC with fixed gating variable which we desire.

Recall that here we attempted to analyze numerically
generated data as if this data came from experimental mea-
surements, for which we have no underlying equations of
motion (17). Unlike in the example of Sect. 4.1, there is
no way to construct the delay coordinate transformation in
closed form.7

6.2.1 Estimating PRC using nearby points

We constructed a Taylor approximation of the delay coordi-
nate transformation frompoints in small regions. Each region

7 Even if we were assuming knowledge of the equations of motion, it
seems likely to us that (17) is sufficiently complicated that constructing
the delay coordinate transformation in closed form is intractable. We
were able to construct the delay coordinate transformation in closed
form for the toy example of Sect. 4.1 since its form was chosen for this
very purpose.
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Fig. 4 Plot of the normalised
voltage PRC of the
Fitzhugh–Nagumo system
against the phase of the
oscillator. We show a ground
truth PRC (green) which we
calculated numerically from a
small perturbation, our sampled
observations, a rolling median
of the observations (black),
1
iϕ ∂vφ|vd=const. (orange), and
1
iϕ ∂vφ|vd=const. corrected with
the Jacobian of the delay map to
give 1

iϕ ∂vφ|w= const. (red). We
computed the sampled
observations by taking the
difference between the phase a
fixed time after the perturbation
and the phase predicted by
simulating the unperturbed
system forward in time the same
amount, dividing by the
magnitude of the voltage
perturbation, leading to variable
results (blue dots; percentiles 2
and 98 light blue lines; 25 and
75 grey lines). Because some of
the plots are hard to distinguish,
we also plotted the same, but
with the forward simulation
(green, top subplot) subtracted
(bottom subplot; all other line
types unchanged)

was centered at a limit cycle base-point and contained the
0.5% observations in our training set nearest (by Euclidean
distance) to that base-point (Fig. 5). Initially, we evaluated
the Jacobian of the delay coordinate transformation by total
least squares regression of the region points against their
transformed images. However, this produced several numer-
ical anomalies we wished to explore further.

To make it easier for us to interpret and sanity-check
the coordinate transformation, we further sub-divided the
regions into high aspect-ratio horizontal and vertical strips
(Fig. 5, left sub-plot, blue and red). For a region sufficiently
small to have a nearly constant Jacobian, a scatter plot of the
major axis coordinate of a strip against a transformed output
coordinate value is expected to be a line segment whose slope
is the respective element of the Jacobian (Fig. 6 bottom 4×4

grid). Inspection of this kind of scatter plot for behaviour
distinct from this linear structure allowed us to resolve the
numerical issues we encountered.

A pseudocode summary of this method would be:

(1) Assign phases to observations as in the previous subsec-
tions

(2) For every point on the limit cycle:

(a) Take a thin slice of voltages at a point close to the
limit cycle and regress the assigned phases against
the delayed voltage to obtain the phase response for
changes in the delayed voltage at fixed voltage

(b) Repeat the above step for thin slices in delayed volt-
age regressing phase against voltage

123



Biological Cybernetics

Fig. 5 Process for calculating the PRC in delay coordinates by cor-
recting using the Jacobian of the transformation from conventional to
delay coordinates. We plotted the delay coordinate data for 100,000
points (left subplot; sampled points in pale blue; x-axis is v, y-axis is
vd ), indicated the limit cycle (black line) and the points at which we
calculated the PRC (black crosses). At every fifth such point we indi-
cated vertical and horizontal subsets of points we used to compute the
Jacobian with (gem blue and red). We plotted an illustrative zoomed
in view of one such location (boxed on limit cycle; center inset). To

demonstrate the quality of the various linear fits this process required,
we plotted the individual linear input–output relationships (right sub-
plot). This includes the linear fits of the phase and the Jacobian of the
transformation between (v, vd ) and (v,w) coordinates at the location of
the inset. The plot shows both functions of v (with respect to the bottom
x-axis; dotted lines), and functions of vd (top x-axis; solid lines). We
show phase change (blue; circular and triangular markers); w change
(orange and red; square and hexagonal markers); and vd (black; pen-
tagonal markers)

(3) Compute the Taylor expansion of the current and voltage
in terms of the gating variable and delay voltage and
compute the Jacobian at every point on the limit cycle

(4) Perform the co-ordinate transform to compute the phase
response with respect to voltage at a fixed gating variable

6.2.2 Auto-scaled local linear regression

At most points along the limit cycle the following procedure
workedwell.We selected a region size, andwithin that region
selected 20% of the points in the region with the least change
in the variable being held constant. Using linear regression,
we calculated the PRC for both v and vd , with vd and v held
constant, respectively. In addition, we calculated the Jaco-
bian of the transformation from (v,w) to (v, vd) by linear
regression.We then reduced the size of the region of admitted
points until the R2 statistic of the linear fit increased above
an arbitrarily chosen threshold of 0.75. This automatic scal-
ing ensured that we were sampling a region within which the
higher order Taylor polynomial terms do not dominate the
results.

However, in some regions the coordinate transformation
for the delay we chose had singularities (“folds”) coming
close to the limit cycle. As a consequence, the image points
of some of the strips were clearly quadratic (see Fig. 8 or
bi-modal (Fig. 6 top 4 × 4 grid). In these cases too the auto-
scaling helped prevent the numerical problems we initially
encountered.

Armed with a high quality estimate of the Jacobian of
the coordinate change (v,w) �→ (v, vd), we calculated
the desired PRC 1

iϕ
∂ϕ
∂v

|w=const. using the (v, vd) coordi-
nates and the estimated Jacobian as in Example 1 and in
Sect. 4.1 (see Fig. 4 “corrected PRC”). There is excellent
agreement between the results of this calculation, using sim-
ulated experimental data with delay coordinates, and that
obtained numerically by the other calculation methods. Fur-
thermore, the computationweperformed allowedus to obtain
a voltage PRC with the gating variable constant that very
closely follows that which we could have obtained by com-
puting the median of an enormous number of experiments
(see Fig. 4 bottom sub-figure for detail of differences between
PRC calculation results).

It is crucial to note that this entire simulated experimen-
tal protocol did not require any measurements of the gating
variable.

7 Conclusion

Wehave pointed out both the danger and opportunity inherent
in attempting to construct oscillator models including their
phase response curves from measuring only a subset of the
state variables. Such an approach could allowus, for example,
to fully characterize an FHN-like neuron by only measuring
and perturbing “voltage”. However, the resulting PRC will
then be correct only with respect to the delay embedding we
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Fig. 6 Scatter plot matrices of
the dimensionless voltage,
gating variable, delayed voltage;
and phase (red, blue) around a
point (black) on the limit cycle.
The transformation to delay
coordinates has a singularity in
it which causes bimodality (red,
top-right half of matrix, low
alpha in the bottom-left); this is
removed by excluding those
observations which are
separated from the point about
which we are calculating our
derivatives (blue, bottom left)

use to describe the dynamics. Since in practice, some other
non-observed quantities (such as “current” or “gating vari-
able”) are held constantwhile coupling to the neuron,we then
showed how a model of those quantities can be used to con-
vert the PRC to the correct coordinates.We demonstrated this
computation in a form that is robust to noise and potentially
suitable for the analysis of experimental data. This process
can be fraught with numerical difficulties if the coordinate
change required is nearly singular close to the limit cycle.
We have shown techniques which helped us ascertain when
and where such problems appeared in our data.

Our approach provides a rapidmethod for obtaining aPRC
in cases where the unobserved dynamics (the gating variable
in our neuroscience example) arewell known.However, from
a neuroscience perspective there is an important lesson to be
learned here: for any given set of voltagemeasurements, there
can be a variety ofmodels for current or gating variablewhich
could be assumed with equal validity, and the resulting PRC
would accordingly change. Our approach gives the “correct”
PRC for an experimental system if the model of the state
variable that remained constant under perturbation is cor-

rect. If the model is not correct, there is no guarantee that the
PRC will be accurate. This dependency might be a means
for eliminating among multiple such models, provided the
voltage measurements yield an alternative method for mea-
suring the PRC against which the predictions from different
current or gating variable models can be tested. As new cur-
rent or gating variable generation dynamics are hypothesized,
it may be possible to use the differences in PRC that would
be produced by these newmodels to discern which “current”
or “gating variable” is consistent with a given neuron’s pre-
recorded voltage measurements—all without requiring any
new data collection.

The approach we present here is by no means limited to
neuroscience applications. Future applications of this work
include producing reliable and robust models of coupled
oscillator systems in any domain in which oscillator mod-
els are used.

In this paper we considered only classical asymptotic
phase for deterministic oscillators. However, there are also
multiple notions of stochastic phase defined for stochas-
tic oscillatory systems (Schwabedal and Pikovsky 2013;
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Thomas and Lindner 2014; Cao et al. 2020; Engel andKuehn
2021) (see Pikovsky 2015; Thomas and Lindner 2015 for a
spirited discussion), and it would be interesting to investigate
these notions in the context of the present work.

8 The temporal 1-form view of phase
response curves

In this final, primarily technical, sectionwe present a detailed
account of how the “temporal 1-form” can be obtained math-
ematically, and how this coordinate invariant object relates to
all PRC-s. The original idea for the temporal 1-form extends
several years back; our first public presentation of this con-
ceptwas inWilshin andRevzen (2014), and additional details
can be found in Wilshin et al. (2014). The insight that the
“gradient” of phase is free of the gauge indeterminacy and
jump discontinuity that appears in the commonly used real-
valued phase goes back at least to Takajo and Takahashi
(1988), where this insight was used for improved recovery
of the phase of Fourier transformed images. The treatment
there did not consider phase in the dynamical systems sense
at all. In Guillamon andHuguet (2009) the importance of this
gradient is also reiterated, and attributed also to Izhikevich
(Izhikevich (2007), Ch. 10). In a sense the “phase response
surface” defined and discussed there is a conjugate object
to the temporal 1-form, but the computational approaches
used there assume the ability to accurately integrate the
dynamics—an approach not very amenable to the analysis
of experimental data. More recent work on modeling oscil-
lators using machine learning methods has shown the ability
to recover PRC-s from machine learning models trained to
simulate the dynamics of the system, e.g. using recurrent
neural networks (Cestnik and Abel 2019). It is clearly the
case that a faithful simulation of the dynamics, either by
integration as in Guillamon and Huguet (2009) or through
machine learning as in Cestnik and Abel (2019), can allow
one to reconstruct the PRC-s. Knowing the true dynamics
precisely, or learning a faithful model of the dynamics from
the data are very demanding requirements compared to the
requirements for estimating the temporal 1-form as described
in Wilshin et al. (2014), where we additionally provided a
convergence proof and estimate of convergence rates as a
function of the properties of the noise. Furthermore, the coor-
dinate independent nature of 1-forms captures and expresses
the implications of coordinate choice which are the topic of
the current manuscript.

Consider the differential 1-form dθ ∈ T∗S1 measuring
change of angle on the unit circle. Viewing the complex plane
as R2 and the unit circle S1 geometrically, at any point φ ∈
S1, this form is dual to the (unit) vector iφ, pointing tangent
to the circle and counter-clockwise. If φ : R → S1 is a
function of time, the angle change it undergoes in a short

interval dt is (−i/φ)〈φ̇, dθ〉dt , where this inner product 〈·, ·〉
can be viewed as the standard R

2 inner product, or more
accurately as the contraction of the co-vector dθ ∈ T∗

φ(t)S
1

with a vector φ̇ ∈ Tφ(t)S1. This contraction perspective is
coordinate independent and does not require a Riemannian
metric.

The pullback of dθ through ϕ (ϕ as defined in Sect. 2)
denoted by ϕ∗dθ is a differential 1-form on B the domain of
ϕ which satisfies the property that for any (smooth) path p :
R → B, 〈 d

dt p(t), ϕ
∗dθ(p(t))〉 = 〈 d

dt ϕ(p(t)), dθ(p(t))〉.
We define the (real) differential 1-form

dτ(x) := (ϕ∗dθ)(x). (19)

Consider now a trajectory x(t) of the dynamical sys-
tem ẋ = f (x). We already know that the complex valued
asymptotic phase ϕ satisfies d

dt ϕ(x(t)) = (i2π/T )ϕ(x(t)).
It follows that

〈 f (x), dτ(x)〉 = 〈ẋ, dτ(x)〉 =
〈
d

dt
ϕ(x), dθ

〉

= (2π/T )〈iϕ(x), dθ〉 = 2π/T , (20)

i.e. the 1-form dτ measures the rate of change of phase along
paths and as such identically gives the constant 2π/T on the
vector field f : M → TM that generates the dynamics.
Because this 1-form, which we call the “temporal 1-form”,
measures the rate of change of phase along any direction in
TM , it contains the information about all possible PRC-s in
a single coordinate-independent object.

We can therefore define the conventional PRC as follows.

Definition 2 Let Z : � → TB|� assign to each x ∈ � a
vector Z(x) ∈ Tx B. Then the infinitesimal Z phase response
curve (PRC) ρZ : � → R is defined by

ρZ (x) := 〈dτ, Z〉(x). (21)

Remark 3 The connection of Definition 2 with the PRC def-
inition of Sect. 3 is as follows: take B = R

n and let Z = ∂x1
be the first coordinate vector field defined by a choice of
coordinates (x1, x2, . . . , xn) for Rn .

If the last (n − 1) coordinates are changed to produce
a coordinate system (x1, y2, . . . , yn), then with respect to
these new coordinates the first coordinate vector field Z̃ is
generally not equal to Z ; it is the pushforward of Z along the
coordinate change � : (x1, x2, . . . , xn) �→ (x1, y2, . . . , yn).
Explicitly,
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Z̃ = �∗Z := D� ◦ Z ◦ �−1.

In light of Definition 2 and Remark 3, this explains the obser-
vation made at the end of Sect. 3.

Remark 4 More generally, let B ⊆ M , � : M → M̃ be
a diffeomorphism. The vector field f pushes forward to a
vector field f̃ = �∗ f on M̃ having a stable hyperbolic T -
periodic orbit with image �̃ = �(�), basin of attraction
B̃ = �(B), and asymptotic phase map ϕ̃ : B̃ → S1 given
by ϕ̃ = ϕ ◦ �−1. Given Z : � → TB|� , we define Z̃ : �̃ →
T B̃|�̃ by Z̃ := D� ◦ Z ◦�−1|�̃ . The definitions of pullbacks
and pushforwards immediately imply that, on �̃:

ρZ ◦ �−1 = 〈ϕ∗dθ, Z〉 ◦ �−1 = 〈(�−1)∗ϕ∗dθ,�∗Z〉
= 〈(ϕ ◦ �−1)∗dθ,�∗Z〉
= 〈ϕ̃∗dθ, Z̃〉 =: ρ̃Z̃ . (22)

Hence one can obtain the PRC ρZ from data on M̃ using
ρZ (x) = ρ̃Z̃ (�(x)).

Example 1 Here we will illustrate this phase extraction pro-
cess, and the limitation previously identified, using a simple
worked example. For the reader interested in comparing the
general case of examples discussed here with the detailed
example worked out in Sect. 4.1, the following table provides
some key correspondences.

Section4.1 Here

R
2\{0} M

(w, 1 − r) f (x)
{r = 1} �

R
2\{0} B

dθ ϕ∗dθ

(0, 1) Z
x/r2 ρZ (x)
( ∂u

∂ y , ∂v
∂ y ) �= (0, 1) Z̃

Let � be the local flow generated by f ; since we are
only interested in dynamics on B, we may assume without
loss of generality that � : R × M → M is a flow. Given
0 = δ0 < δ1 < δ2 < · · · < δm and a smooth function
h : M → R, define the delay embedding coordinates taken
from delays of observable h, R : M → R

m+1 via

R(x) := (h(x), h ◦ �−δ1(x), h ◦ �−δ2(x), . . . , h ◦ �−δm (x)).

(23)

Let us assume that R is a smooth embedding so that the
codomain-restricted map � := R : M → R(M) =: M̃ is a
diffeomorphism.

Because R is locally just a choice of coordinates like any
other, we can express PRCs associated with the vector field
f from observations on M̃ just as easily as on M using
Remark 4: given any vector field Z : � → TB|� over �,
the Z -PRC ρZ : � → R is given by

ρZ (x) = 〈ϕ̃∗dθ,�∗Z〉(�(x))

=
〈

ϕ̃∗dθ,

m
∑

k=0

(Dh ◦ D�−δk Z(x))∂xk

〉

, (24)

where ∂xk is the derivation (i.e. partial derivative vector field)
with respect to the k-th coordinate, xk , in whatever coor-
dinates (x0, x1, . . . , xm) we choose for representing M̃ ⊆
R
m+1. The first equality follows here from Eqs. 21 and 22.

The right hand equality follows from Eq. 23.

Appendix A. The Hopf oscillator satisfies
Assumption 4

Consider the Hopf oscillator whose attractor is a trajectory
around the unit circle with velocity 1.

Here γx (t) := sin(t), leading to

ẏ = (1 − sin2(t) − y2)y − sin(t)

as the non-autonomous y dynamics, which we expect to con-
verge to y = cos(t).

Changing to an error variable z := y−cos(t), and shifting
t by π/2 for algebraic convenience gives

ż = −z(z2 + 3z sin(t) + 2 sin2(t)).

without loss of generality we can assume z > 0, since an
initial negative z corresponds to a time shift of π in t , and
we seek to prove a result for all t .

We need to show z → 0 for all initial z. Define L := ln(z).
We shall show that over a period of 2π , L decreases by at
least some constant, thereby showing z → 0 exponentially.
We do this by taking a separate bound for each half-cycle,

L̇ = ż

z
= −(z2 + 3z sin(t) + 2 sin2(t)) (25)

∫ 2π

0
L̇dt =

∫ 2π

0

(
1

4
sin2(t) − (z + 3

2
sin(t))2

)

dt (26)

=
∫ π

0

(
1

4
sin2(t) − (z + 3

2
sin(t))2

)

dt

+
∫ 2π

π

(
1

4
sin2(t) − (z + 3

2
sin(t))2

)

dt

≤
[(

1

4
− 9

4

)

+ 1

4

] ∫ π

0
sin2(t) = −7

8
π.

123



Biological Cybernetics

Appendix B. Estimating the period of the
Fitzhugh-Nagumo system

Below is a listing of the python code used to calculate the
period of the Fitzhugh-Nagumo oscillator. This oscillator is
slow-fast and quite stiff, so some care is needed when inte-
grating it; the default settings of the scipy odeint command
do not produce reliable results.

from numpy import stack,linspace
from scipy.integrate import odeint
from scipy.optimize import fmin

# Derivatives and partial derivatives of the Fitzhugh-Nagumo system.
def vdot(v,w,z,c): return(c*(w+v-((v*v*v)/3.)+z))
def wdot(v,w,a,b,c): return(-(v-a+b*w)/c)
def vdotdv(v,w,z,c): return(c*(1.-v*v))
def vdotdw(v,w,z,c): return(c)
def wdotdv(v,w,a,b,c): return(-1./c)
def wdotdw(v,w,a,b,c): return(-b/c)

def xdotfhn(p,t=0,z=-0.4,a=0.7,b=0.8,c=3.,tau=1.):
'''Vectorised form of the Fitzhugh-Nagumo system'''
x,y = p[...,0],p[...,1]
return(tau*stack([vdot(x,y,z,c), wdot(x,y,a,b,c)],-1))

def Jxfhn(p,t=0,z=-0.4,a=0.7,b=0.8,c=3.,tau=1.):
'''Jacobian of the Fitzhugh-Nagumo system (vectorised)'''
x,y = p[...,0],p[...,1]
return(tau*stack([

stack([vdotdv(x,y,z,c),vdotdw(x,y,z,c)],-1),
stack([wdotdv(x,y,a,b,c),wdotdw(x,y,a,b,c)],-1) ],-1))

def loopf(tc):
'''
Integrate the Fitzhugh-Nagumo system for a period of tc and return the
difference between the initial and final point.
Minimising this will give an integral multiple of the period.
'''
y1 = odeint(xdotfhn,y0,[0,tc],Dfun=Jxfhn,col_deriv=True,

rtol=tol, atol=tol, mxstep=mxstep)[-1]
return(sum((y0-y1)**2))

tc0 = 3*3.743 # Initial guess at the period
tol = 1.e-10 # Tolerance
trelax = 1000 # A long period of time, sufficient for the system to relax
Nstep = 1000 # Need extra steps for long initial integration
mxstep=5000 # Maximum number of intermediate steps for integrator
yinit = [1.0,0.0] # A starting location in stability basin

# Get a point on the limit cycle by integrating for a long period of time
y0 = odeint( xdotfhn, yinit, linspace(0,trelax,Nstep),

Dfun=Jxfhn, col_deriv=True, rtol=tol, atol=tol, mxstep=mxstep )[-1]

# Minimise the squared difference between the starting position on the limit
# cycle and the final position on the limit cycle by adjusting the integration
# period, should have a minimum of zero to within tolerace after convergence.
tc1 = fmin(loopf,tc0,ftol=1e-12,xtol=1e-12)[0]
print("Period estimated to be:",tc1)

It is useful to supply the Jacobian and to have a large
number of intermediate steps. In addition, for the precision
we required for the period in this work, a higher than default
tolerance was needed.
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Appendix C. Special cases estimating the
infinitesimal PRC

There are multiple special cases which must be considered
when estimating the partial derivatives used to calculate the
infinitesimal phase response curve close to the limit cycle for
this system.

We consider two models. First, we select a model where
the dependent variable (the phase for the infinitesimal phase
response curve, the un-transformed coordinates for the Jaco-
bian) is a polynomial function of the independent variable
(the transformed coordinate). We consider the linear and
quadratic cases, and select from these models via an AIC.
An example where the linear model was superior is included
in Figure 7.

For some cases this model is deficient. There is a clear
non-linear relationship between the independent variable and
dependent variable, such that a quadratic in the dependent
variable is a more appropriate model. Such cases can be
readily identified by inspection, the non-linearity is obvious
and there is frequently bi-modality in the distribution of the
dependent variable. In such cases a quadratic in the depen-
dent variable is instead used. This is illustrated in Figure 8.

Fig. 7 An example where a simple linear model was used to estimate
the rate of change of the phase against change in dimensionless voltage
at a fixed point on the limit cycle (black point in center of plot). We
plotted the phases of the points at fixed delay voltages vd across a range
of voltages v (cyan crosses). We also plotted various model fits (dot-
dash lines): linear (black), quadratic in v (red), and quadratic in phase φ

(blue). These imply potentially unequal derivatives which we indicate
as lines with the associated slope (same color, solid thin lines). In this
instance all fits give comparable estimates for the slope

Fig. 8 An example where there is quadratic dependence of phase
against delayed dimensionless voltage. The elements of this plot are
as in Figure 7. The model with this quadratic dependence is clearly
superior

In some cases the transformation from the conventional
coordinates of the Fitzhugh-Nagumo system to the delay
coordinates contains a singularity which is very close to the
limit cycle. This was handled in two ways.

In most cases the approach of this singularity was close,
but not so close that a reasonable estimate of the gradient
could not be obtained by simply excluding manually those
points which came excessively close to the limit cycle. An
example of such a case is illustrated in Figure 9.

For one test point the singularity came extremely close
to the limit cycle and no reasonable estimate of the phase
response was possible. Instead two additional points were
selected near to this example and the phase response esti-
mated at these locations instead. This is illustrated in Fig-
ure 10.
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Fig. 9 An example where a singularity in the transformation to delay
coordinates is present and close to the limit cycle. The elements of this
plot are as in Figure 7. In this case, those points which are on the wrong

side of the singularity can simply be excluded (right panel) and a better
estimate of the partial derivative is obtained.

Fig. 10 Here, the singularity in the transformation to delay coordinates
is too close to the limit cycle, and no reasonable estimate of the partial
derivative can be obtained, illustrated in the top panel. The elements of

this plot are as in Figure 7. Instead, two points (bottom left and right
panels) close by on the limit cycle are considered and estimates for the
partial derivatives are obtained there
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