
DATE DOWNLOADED: Mon Oct 14 15:38:59 2024
SOURCE: Content Downloaded from HeinOnline

Citations:
Please note: citations are provided as a general guideline. Users should consult their preferred
citation format's style manual for proper citation formatting.

Bluebook 21st ed.
			
Shai Revzen, Contract Drafting, Programming Languages, and What They Can Teach Each
Other, 6 WAYNE ST. U.J. BUS. L. 64 (2023).

ALWD 7th ed.
Shai Revzen, Contract Drafting, Programming Languages, and What They Can Teach Each
Other, 6 Wayne St. U.J. Bus. L. 64 (2023).

APA 7th ed.
Revzen, Shai. (2023). Contract Drafting, Programming Languages, and What They Can
Teach Each Other. Wayne State University Journal of Business Law, 6, 64-85.

Chicago 17th ed.
Shai Revzen, "Contract Drafting, Programming Languages, and What They Can Teach Each
Other," Wayne State University Journal of Business Law 6 (2023): 64-85

McGill Guide 9th ed.
Shai Revzen, "Contract Drafting, Programming Languages, and What They Can Teach Each
Other" (2023) 6 Wayne St UJ Bus L 64.

AGLC 4th ed.
Shai Revzen, 'Contract Drafting, Programming Languages, and What They Can Teach Each
Other' (2023) 6 Wayne State University Journal of Business Law 64

MLA 9th ed.
Revzen, Shai. "Contract Drafting, Programming Languages, and What They Can Teach Each
Other." Wayne State University Journal of Business Law, 6, 2023, pp. 64-85.
HeinOnline.

OSCOLA 4th ed.
Shai Revzen, 'Contract Drafting, Programming Languages, and What They Can Teach Each
Other' (2023) 6 Wayne St UJ Bus L 64 Please note: citations are
provided as a general guideline. Users should consult their preferred citation
format's style manual for proper citation formatting.

Provided by:
University of Michigan Law Library

-- Your use of this HeinOnline PDF indicates your acceptance of HeinOnline's Terms and
 Conditions of the license agreement available at

https://heinonline.org/HOL/License
-- The search text of this PDF is generated from uncorrected OCR text.

https://heinonline.org/HOL/Page?handle=hein.journals/wsujbl6&collection=journals&id=65&startid=&endid=86
https://heinonline.org/HOL/License

64 WAYNE STATE UNIVERSITY JOURNAL OF BUSINESS LAW [Vol. 6:1 2023]

CONTRACT DRAFTING, PROGRAMMING

LANGUAGES, AND WHAT THEY CAN

TEACH EACH OTHER

SHAI REVZEN *

Although vastly disparate as disciplines, Law and Computer
Science share a similar goal - using language to precisely specify
behavior. The art of drafting a contract so as to avoid ambiguity
and channel the performances into mutually agreed and
understood bounds bears great similarities to the art of computer
programming. Some of the tools and principles computer
scientists have developed for the design of computer languages
might be used for more effective contract drafting. I present a
brief review of grammatical and referential ambiguity and its
mitigation as it appears from the computer scientist's perspective,
and relate these issues to well known case law, and drafting of
large commercial contracts.

Associate Professor of Electrical Engieering and Computer Science, University of

Michigan. B.Sc. & M.Sc. Hebrew University, Jerusalem, 1993, 2003; Ph.D. Berkeley,
CA. My deepest thanks to Vincent Wellman, and Eric Zacks for valuable feedback,
and introducing me to legal publishing.

65 WAYNE STATE UNIVERSITY JOURNAL OF BUSINESS LAW [Vol. 6:1 2023]

Table of Contents

I. INTRODUCTION.. 3

II. PROGRAMMING AS CONSTRAINTS ON COMPUTATION..................4

III. WHAT IS THE "MEANING" OF THIS?...6
A. Syntax, Semantics, and Grammatical Ambiguity......................................9

1. The interaction of syntax and semantics..12
2. Compilation and Type Checking...13
3. Indexicles and Name Sco ping..15
4. Binding and Capitalized Nouns..17

B. Inheriting, Default Clauses, and Object Oriented Type Theory......17

IV. TOTAL ORDERING - A RECOMMENDATION....................................20
1. A note about intent.. 22

V. CONCLUSION...22

66 WAYNE STATE UNIVERSITY JOURNAL OF BUSINESS LAW [Vol. 6:1 2023]

I. INTRODUCTION

Law and theoretical computer science seem like disciplines that are
rather distanced from each other. The one is venerably old, deeply
tied into social institutions and the fabric of society, and almost
entirely non-mathematical. The other is new - less than a century old
- and was an outgrowth of modern mathematics. Yet both are
concerned with the same matter - governing the actions of
autonomous agents, be they people or computing devices.

In no field of law is the focus on governing actions clearer than in the
drafting of contracts. Contracting parties, within some bounds
defined by the prevailing legal system, make promises which are
meant to govern their actions, presumably to attain some mutual
benefit. While there are many approaches to the drafting of
contracts, here we consider one of the most prevalent - that a
contract be drafted primarily in a form expressing the procedure to be
followed by the parties' performances.

Computer science also has a sub-field whose primary focus is
governing the actions of agents. This is the field which focuses on
the design and implementation of programming languages. A
computer program is a specification of a computation, which is to
govern the subsequent actions of the computer.

Much of the experience of programming, for those who learn its
fundamentals, is that of struggling to adapt to the mindset of
specifying the minutia of the computation to be performed with
sufficient detail as to allow a computer to unambiguously perform
such a computation. Yet few of the people who routinely program
computers study the tools by which the programming itself is done,
just as few of the people who employ contracts on an ongoing basis
study contract drafting itself.

Our purpose in this paper is to investigate the parallels between the
tasks of contract drafting, interpretation, and enforcement, and the
tasks of program coding, parsing, and execution. After some
preliminaries, we will focus on ambiguity - an issue that has
bedeviled contract law for as long as humans have made promises -
and the technical approach and tools computer science has brought to
bear on the subject. We will show that the analogies run deeper than

67 WAYNE STATE UNIVERSITY JOURNAL OF BUSINESS LAW [Vol. 6:1 2023]

has commonly been realized, and there may be much that the legal
profession can borrow and benefit from.

II. PROGRAMMING AS CONSTRAINTS ON COMPUTATION

Modern computing devices are machines which rapidly manipulate a
giant table of symbols encoded in a binary code, with the sequence of
manipulations being itself coded in such symbols and stored in that
table. Further, external devices such as sensors and communication
channels inject symbols into some locations in this table. The
contents of this table, the computer's memory, are virtually
unintelligible to anyone except to the few programmers who work on
or with the "machine code" that defines the actual symbol
manipulations. Almost all computer programming is done in "high
level languages" - strings that are far easier for humans to read and
write - and then translated ("compiled") into machine code or
interpreted directly by a computer program. An enormous number of
machine operations is usually performed for every operation
requested in the high-level language.

Broadly speaking, high level computer languages for general use fall
into three categories: "procedural" languages, "functional"
languages, and "logic" languages. The logic languages are
programmed through declarative statements, arranged to ensure that
in resolving the logical problem they represent the computer will
perform the desired computation. In this sense they may seem the
most like statutory and regulatory law - they declare what must be,
rather than providing a recipe for accomplishing a specified goal.
Since the "private law" of contracts is usually more forthcoming as to
details of a performance, we will forgo the discussion of logic
languages.

Functional languages focus on the abstract notion of functions as
maps from inputs to outputs, providing constructs for combining,
modifying, and manipulating functions, thereby allowing for
computations to create and manipulate other computations.
Conceptually and philosophically, they are the most interesting class
of languages, since they deal with precise means of manipulating
computational procedures. The reflective and self-descriptive
capabilities of functional languages capture in a precise form some of
the ability of natural language to discuss language itself. In analogy
to law, a rule or regulation about the required structure of a

68 WAYNE STATE UNIVERSITY JOURNAL OF BUSINESS LAW [Vol. 6:1 2023]

legislative or contract drafting process would perhaps be best
analogized to a functional programming language.

However, the bulk of programming is done in procedural
programming languages. These are conceptually the simplest and the
kind most taught and used. In this they are a bit like transactional
law - the workhorse by which law is used to organize interactions in
society. A procedural language consists of methods for expressing a
sequential process by which the computer memory and input are used
and manipulated to produce the desired output. It describes a sought-
after computation much like a contract might describe a sought-after

performance'.

Starting with the Smalltalk-80 language in the late 1970s and early
1980s, the idea of "object oriented" languages has come to dominate
the way procedural and functional programming languages are
designed. The core concept of object orientation is that data and the
"methods" used to manipulate it are intricately connected and should
therefore be tightly integrated. In object-oriented programming
languages, the memory of the computer is organized into "objects",
each of which belongs to a "class". The class collects all the
methods used to manipulate the memory allocated to the object. This
allows for the notion of a "sub-class". An object of the sub-class
defaults to its "super-class(es)" for resolving method not defined in
the sub-class. Consequently, the programmer can define her
representation of the computation using a hierarchy of kinds of
objects, and the methods by which those objects' "attributes" can be
changed.

As an illustrative example, the procedural part of a high-level
language like Python, which has object-oriented features, might
include a statement "a = b + 5", which is interpreted as: (1) search for
some object, i.e. block of data, associated with the symbol "b" in an
index of symbols; (2) query the class of "b" for its method, i.e.
procedural list of operations, associated with the symbol "+" when
applied to an object, which in this case will be an object of the built-
in integer class which will contain the value 5; (3) when you find
such a method, perform the sequence of instructions it entails,
possibly leaving a resulting object in a pre-negotiated location in

'. Most functional languages have a procedural subset, and many modern
languages straddle the divide between functional and procedural for reasons that
will become clearer when we discuss "type systems" below.

69 WAYNE STATE UNIVERSITY JOURNAL OF BUSINESS LAW [Vol. 6:1 2023]

memory; (4) Generate an index entry for the symbol "a" and point
from that symbol to the result.

The purpose of this example is not to educate the reader on the
internal workings of Python, or any other computer language.
Rather, it is to illustrate the fact that what happens is ambiguous and
open to multiple interpretations. There are dozens, if not hundreds,
of ways to organize tables in computer memory that are indexed by
symbols like "a" and "b". The operation symbolized by "+" can
mean different things in different contexts; etc. Thus, even as simple
a statement as "a = b + 5" in a well-defined programming language is
in fact merely a contract for what will be done, and not an actual
performance. It expresses a set of promises about obtaining a
previously referenced object indicated by "b", querying it for its
meaning of "+" in the context of "5" using a previously defined set of
agreements about how such a query is performed, and then making
the result available using the label "a". From the perspective of the
computer's hardware - the actual physical substrate in which the
operations will be performed - this simple statement can correspond
to a vast range of ways to perform the desired operations. The design
of the computer language defines which performances ("executions")
are valid but leaves many of the details to the actual implementation
of the language. Computer languages in common use can have
hundreds of implementations, which would nevertheless produce
closely equivalent execution.

While machine language programs specify in near-physical terms the
symbol manipulation desired, high-level languages do not. Instead,
they specify constraints that any execution of the program must
satisfy.

III. WHAT IS THE "MEANING" OF THIS?

In the practice of law, the meaning of a contract is typically
examined with respect to a specific controversy regarding
performance. Using the law and various methods of construction, the
officers of the court translate the language of the contract into a
collection of factual questions which are brought to trial. The results
of the findings of fact answer questions such as: "was there a
contract?" and: "did this performance meet this contract?" Thus, for
legal contracts, the "meaning" of a contract is understood by people
and their interpretation of language of the contract, considering a

70 WAYNE STATE UNIVERSITY JOURNAL OF BUSINESS LAW [Vol. 6:1 2023]

putative example of the parties' conduct which should have been
governed by the alleged contract.

In computer science it has been shown that there is a world of
difference between following the instructions of a computer program
and checking whether a given input-output pair is consistent with a
computer program. What is perhaps the greatest open question in
computer science, and the foundation of virtually all modern
cryptography, is the question "is P=NP?", "P" being the class of
problems that can are effectively computable, and "NP" being the
class of problems whose answers can be checked for correctness in
by effectively computable means. The legal system's insistence on
trying only matters under controversy mimics a deep fundamental
issue regarding which questions are effectively answerable
altogether. Asking whether a performance matches a contract is
treating the problem of contract construction as a problem in NP.

Taking as given that construction of a contract is possible only
considering putative performance, it is only natural to ask what the
relationship ought to be between the contract language and the
actions that comprise performance of that contract. Despite being a
closely examined question in the legal literature, the study of this
question in law rests upon the shaky foundation of "plain language
interpretation". The meaning of language is itself a deep
philosophical question, which the practicing computer scientist
cannot afford to be mired in resolving. It is here - in the grounding
of meaning in a carefully constructed and provably correct
foundation - that the design of computer languages might provide its
greatest benefits to legal contract drafting.

In computer science (and most other branches of mathematics) the
notion of meaning is a relative one: X can mean Y if components of
X interact with each other in a manner analogous to that by which the
components of Y interact. In its broadest sense, this idea corresponds
to the category theory notion of a "morphism", the subtle complexity
of which is far outside the scope of this exposition. For purposes of
our discussion here, we will use the computer science notion of
"simulation" of "transition systems" as the relationship between a
program and the computation it specifies.

A "transition system" is a collection of "states" and a collection of
labelled "transitions" that are possible between those states. One

71 WAYNE STATE UNIVERSITY JOURNAL OF BUSINESS LAW [Vol. 6:1 2023]

important example of a transition system has the states as the
possible values stored in the computer's memory, and the transitions
labelled by machine language commands that perform that
command's transformation on the memory. This "Abstract
Computer" transition system captures exactly what a correctly
functioning modern electronic computer performs; in a very practical
sense it "is" what a computer does when the electronics function as
they were designed to.

Another important transition system is the transition system that has
as its states all possible grammatically correct fragments of English
language text and has as its transitions the grammatically correct
ways by which they might be combined into longer fragments. This
transition system captures all possible grammatical constructions of
the English language; we will refer to this system as the "English
Grammar" transition system.

Consider now a sequence of statements such as "increment the value
of memory address six; copy the results to memory address five".
The first part of this statement can be grammatically analyzed as
follows:

increment the value of memory address six.

VERB DET NOUN ADP NOUN NOUN NUM

Grammatical structure of a sentence, as produced by the spacy (htt:!/spacyio)
natural language processing tool with the en_coreweb_lg default configuration.

We show the part of speech of each word, and draw arrows indicating the
relationships between words. This diagram is a possible final state in a sequence of

transitions of the English Grammar transition system whose underlying text is
"increment the value of memory address six"

The formation of the words from the letters, and the grammatical
relationships of the words from their sequence, eventually lead to a
complete sentence in the "English Grammar" transition system.
Sometimes, as in the case here, the sentence contains words that
correspond to a description of a transition of "Abstract Computer"
transition system. Thus a certain subset of transitions of the English
Grammar systems is a faithful representation of the Abstract
Computer transitions in the following sense: starting from any initial
description of the world, which happens to be an abstract computer,
one may follow a sequence of English language transitions
manipulating that world, then as some point convert that
representation into an abstract computer state, and follow the
translated transitions of the Abstract Computer transition system.
Regardless of when the transition from English Grammar to Abstract

72 WAYNE STATE UNIVERSITY JOURNAL OF BUSINESS LAW [Vol. 6:1 2023]

Computer happened, the results will be the same. This sort of
mathematical relationship is called a semi-conjugacy, or in the
parlance of computer science transition systems a "simulation"
relationship whereby the Abstract Computer is a simulation of some
part of the English Grammar transition system.

It is important to note that the mapping from the English Grammar
system to an Abstract Computer is not unique. Simulation
relationships come at various levels of "refinement", where the more
refined simulations capture more information about the system being
simulated, and coarser simulations capture less and less information.
At the extremes of refinement are a least refined system, and a most
refined system. The least refined system has a single state and a
single transition as its simulation; this can be thought of as a state
whose meaning is "the system is in some state", and a transition
whose meaning is "a transition happened" - it remembers nothing
about the system it simulates or its history. The most refined
transition system simulation has states corresponding to all possible
finite transition sequences of the system it simulates. Its only
transitions are the transitions that extend that history by a possible
transition; thus it remembers everything that happened to the system
being simulated. In that sense both the most refined "universal"
simulation which can capture all meanings, and the least refined
"unit" simulation which merely asserts existence, are un-informative.
But in the space between then there exist a plethora of simulations,
some classes of which are of particular value in the interpretation of
computer programs.

A. Syntax, Semantics, and Grammatical Ambiguity

When computer scientists wish to attribute a meaning to a computer
program, they select several simulations of intermediate levels of
refinement and use those to define the precise meaning of the
computer language. This very formal process is necessary because
unlike contract drafters, there is no "plain meaning" of the computer
language text for them to fall back on. The choice of these
simulations is guided by some of the most profound results in the
theory of computation, and leads to the notions of syntax, semantics,
and type-checking.

The most granular transition system that defines a computer language
is usually its "syntax". The need for syntax comes from the fact that
while in theory one could attempt to define a computer language

73 WAYNE STATE UNIVERSITY JOURNAL OF BUSINESS LAW [Vol. 6:1 2023]

where every possible finite sequence of symbols ("string") has
meaning, this would likely be useless for humans. Thus, at the very
least, we might hope for the computer to be able to identify which
strings could possibly have a meaning (are "well formed") and which
are clearly meaningless. We would hope for meaningful strings to
follow some grammar sufficiently similar to human language to
make this grammar intuitive to humans. Finally, we would like the
grammatical analysis of these strings ("parsing") to be a fast and
efficient computational process. All these requirements were
answered together in the formation of formal language theory and the
theory of compilation. This body of work, starting in the 1950s and
still somewhat active today, discusses classes of "languages", where
the quotes indicate the use of the technical term "language" in
computer science - a designated sub-collection of the collection of
finite strings. Thus a "language" is a mathematical object that can
answer one question: "is this string in the language or not?" Formal
language theory defines classes of languages using various
representation of their grammatical rules, and identifies among them
some languages that can be efficiently "parsed", i.e. for every string
belonging to the language, a computer program could be written to
efficiently reconstruct the grammatical rules by which that string can
be derived.

Consider a simple example: specifying the "language" of those
arithmetic computations in non-negative integers which use only
addition, multiplication, and parentheses. We can represent that
language as a sub-collection of strings formed from the "alphabet" of
symbols {'+', 'x', '(', ')', '0', '1', ... , '9'}. The string "1+17" is
meaningful and part of the language we wish to represent; the string
"++x)01" is meaningless and not part of the language. We could
define this language as consisting of "valid expressions" which are
either: (Number Rule, "N") any sequence of digits that does not
begin with '0', because any number is a "valid expression";
(Arithmetic Rule, "A") a list of "valid expressions" separated by '+'

or 'x' symbols; (Parenthesis Rule, "P") a "valid expression" preceded
by '(' and followed by ')'. With this (recursive) definition, we will
allow only those strings of "alphabet" symbols which are meaningful.

74 WAYNE STATE UNIVERSITY JOURNAL OF BUSINESS LAW [Vol. 6:1 2023]

Arithmetic Arithmetic Arithmetic

- '1 Arithmetic Arithmetic
Number Number Number

'1 '+' '2' 'x ' ' Number Number Number Number Number Number

'l '+ 2, 'X '3 '1 '+ '2 , 'x '

Three ways of deriving the string "1+2x3" from the grammatical rules provided.
We denote alphabet symbols (circles with symbol inside) and the rules used to

combine them (rectangles with rule name and arrows to the "valid expressions" and
alphabet symbols to which the rule was applied). These can also be expressed in

textual form (using the abbreviations listed in the rule names) as "A[N[1],
+,N[2],x,N[3]]", "A[A[N[1],+,N[2]],x,N[3]]", and "A[N[1],+,A[N[2],x,N[3]]]".

This is an example of syntactic ambiguity.

Consider now the string "1+2x3". This string follows the rules, as
each number in the string is a valid expression according to the
Number Rule, and the entire string is an application of the Arithmetic
Rule to those valid expressions (see Figure, left-most diagram). Such
a derivation of the rules as applied to the symbols that shows how
the string could be obtained is called "(syntactically) parsing" the
string. As it turns out, there are multiple ways in which the string
"1+2x3" can be obtained from our grammar rules. This is referred to
as "syntactic ambiguity" and is studiously avoided in the design of
computer languages.

Lest it be presumed that syntactic ambiguity is not of great legal
importance, consider an example provided by Ken Adams, of "A
Manual of Style for Contract Drafting" fame2 : in O'Connor v.
Oakhurst Dairy, No. 16-1901, 2017 WL 957195 (1st Cir. Mar. 13,
2017) the First Circuit considered the meaning of the following: "The
canning, processing, preserving, freezing, drying, marketing, storing,
packing for shipment or distribution of:". We can express a "list" as
consisting of: (Item Rule, "I") an item on the list; (Item with Purpose
Rule, "P") an item followed by "for" and a list of purposes; or (List
Rule, "L") a list of items separated by commas, the last of which may
be separated by the words "and" or "or". With these rules, is the
correct parsing of the O'Connor clause "L[I[canning], I[processing],
I[preserving], I[freezing], I[drying], I[marketing], I[storing],
P[packing for L[I[shipment]]], I[distribution]]" or is it "L[I[canning],
I[processing], I[preserving], I[freezing], I[drying], I[marketing],
I[storing], P[packing for L[I[shipment], I[distribution]]]]"? The

2 Ken Adams, Why I Don't Pin My Hopes on the Serial Comma, Adams
on Contract Drafting Blog (Mar 15, 2017) https://wwwadamsdraftin.com/whv-i-
dont-piw-mwhopes-on-the-seriab-comma/.

75 WAYNE STATE UNIVERSITY JOURNAL OF BUSINESS LAW [Vol. 6:1 2023]

former considers one kind of packing, only used for shipment; the
latter has two kinds of packing - packing for shipping and
alternatively packing for distribution. The very fact that the written
notation of the parsing structure removed the syntactic ambiguity
suggests that the formal language approach used in computer science
may have some salubrious properties.

1. The interaction of syntax and semantics

Computer scientists use the term "semantics" to describe the process
of producing a uniquely specified computation from the parsed
computer language program. In our simple arithmetic language, this
raises an immediate problem: the operations of ordinary arithmetic
act on two numbers to produce a result, but the Arithmetic Rule
allowed for multiple valid expressions to be combined, separated by
multiple operations. To make it clear how to produce a conventional
arithmetic semantic for the language we specified, we could amend
the Arithmetic Rule "A" to: (Binary Operator Arithmetic Rule, "B")
a pair of "valid expressions" separated by an operator which is one of
'+' and 'x'. The string "1+2x3" now has only two parsing options:
"B[N[1],+,B[N[2],x,N[3]]]" and "B[B[N[1],+,N[2]],x,N[3]]".

We can define the semantics associated with the revised arithmetic
language as a computation that provides a value for any valid
expression. For each of our rules we define a computation: the value
of a Number Rule is the number obtained from interpreting the digits
as a decimal number; the value of a Parenthesis Rule is the value of
the valid expression in the parenthesis; the value of a Binary
Operator Arithmetic Rule is the sum of its constituent values if the
operator was '+' and the product of its constituents if the operator
was 'x'.

Sadly, our syntactic ambiguity produces a semantic ambiguity: is the
value of "1+2x3" the number 9 or the number 7? This depends on
which of the two ambiguous choices of parsing we used. The
convention that multiplication takes precedence over addition has not
been encoded in our method of parsing and evaluating (or
"executing") valid expressions.

This precedence problem was traditionally resolved by further
refinement of the Binary Operator Arithmetic Rule into rules for
products and sums. A complete set rules could define a "valid
expression" as: (Sum Rule, "S") a "product expression", possibly

76 WAYNE STATE UNIVERSITY JOURNAL OF BUSINESS LAW [Vol. 6:1 2023]

followed by '+' and a "valid expression". We also define a "product
expression" as: (Multiplication Rule, "M") an "element", possibly
followed by 'x' and a "product expression". Finally, we define an
"element" as: (Number Rule, "N") any sequence of digits that does
not begin with '0'; or (Parentheses Rule, "P"), a "valid expression"
preceded by '(' and followed by ')'. These rules allow parsing of
"1+2x3" into the unique form "S[M[N[1]],S[M[N[2],N[3]]]]"

Taking a step back and examining the bigger picture of syntactic
ambiguity, it becomes clear that a big part of the problem comes
from attempting to define a language independently from the how
that language is parsed. When the parsing mechanism and the rules
of the language are defined together, using e.g. Parsing Expressing
Grammars3, this can lead to efficient and unambiguous parsing.
Using an expressly stated provably unambiguous grammar could
completely remove an entire class of ambiguities that appear in
contract drafting.

Unfortunately, resolving syntactic ambiguities is only the first step
towards obtaining a clear meaning. The famous linguist Noam
Chomsky gave the example sentence4 "[c]olorless green ideas sleep
furiously" as an example of a syntactically sound sentence which is
semantically nonsensical and meaningless. How then can we ensure
that no nonsensical clauses are present?

2. Compilation and Type Checking

One of the most profound insights in the theory of computation is the
"halting problem". This result states that it is impossible to create a
computer program that can identify all computer programs which get
stuck in infinite loops. The relevance of this result to the design of
programming languages and the drafting of contracts is that it is
provably impossible to create a procedure that will identify all bugs
in programs, or by analogy, all flaws in contracts. Part and parcel
with realizing the futility of a general solution to the problem, comes
the understanding that there is room for approximate solutions of
various forms.

3 Bryan Ford, Parsing Expression Grammars: A Recognition Based
Syntactic Foundation, Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 111-122 (2004)
h N Cs:Cdx.doiCorg/ s 0. 1145/964001.964011

4Noam Chomsky, Syntactic Structures (1957)

77 WAYNE STATE UNIVERSITY JOURNAL OF BUSINESS LAW [Vol. 6:1 2023]

The process of parsing the language of a program and identifying the
rules by which that particular expression in the language was formed,
can, as we saw before, assign semantics for evaluating the
expression, equivalent specifying a class of correct performances of
the contract. While the halting problem tells us that any sufficiently
powerful semantics becomes impossible to test for bugs, it also
suggests that we may choose some intermediate semantics which
both provably provide an answer and simulate the true semantics we
want. These kinds of intermediate semantics are called "type-
systems" in computer science.

For example, assume we have language for describing the breeding
of domesticated animals, with the ability to express the actions such
as Breed(X,Y) to produce a set of offspring, Raise(X) to raise a
juvenile to breeding age, and Cull(X) to cull or harvest the animal. It
would be patently idiotic to have a procedure that contains
Breed(Romeo, Juliette) if Romeo is a horse and Juliette a chicken.
Regardless of what operations we do on animals (absent very
significant genetic manipulation) we cannot breed unrelated species.
Thus, we could have types like "horse" and "chicken", and the
semantics of Breed(horse, horse)=horse, Breed(chicken,
chicken)=chicken, Breed(horse, chicken)=ERROR,
Raise(chicken)=chicken, Raise(horse)=horse, and, importantly, any
function of ERROR is ERROR. Evaluating our breeding program
with these semantics will detect all species mismatches, and evaluate
nonsensical breeding plans to ERROR.

Like all simulations, type-systems can be more refined or less refined
in their resolution of details. The type-system above does not detect
errors that involve trying to breed newly hatched, immature chicks
with each other. We could refine it further, by adding types like
"foal" and "chick", that are converted to "horse" and "chicken" using
the RaiseO function. We could even add additional semantics, such
as numerical ages, sexes, etc. There is a continuum of type systems,
ranging from the trivial type-system which certifies as good any
expression that can be parsed, to some (as of yet unknown, possibly
unknowable) maximally refined type-systems that are still weak
enough to not be subject to the halting problem.

One of the ways in which the study of computer languages could
inform the drafting of contracts is in suggesting that large, complex
contracts contain an expressly defined type-system for their

78 WAYNE STATE UNIVERSITY JOURNAL OF BUSINESS LAW [Vol. 6:1 2023]

interpretation. While this type-system would not fully specify the
performances governed by the contract, it could greatly enhance the
readers' ability to identify problematic procedures and provisions.

3. Indexicles and Name Scoping

When expressing ideas in a language, it is often impractical or
impossible to refer to every object every time with some fully
unambiguous form of reference. Even in what is conventionally seen
as unambiguous use, the object will often be uniquely identified once
and then referred to with "indexical" words, such as "that", "whom",
etc. It is left to the reader to deduce from the text whether the "that"
of one clause refers to the same as the "this" of another clause. In
contract drafting, it is quite common to use capitalized nouns instead
of indexicals - terms like "Buyer" and "Seller", or the "Parties" are
used to refer to entities defined elsewhere in the document - thereby
reducing some of the ambiguity.

More specifically, we can identify several possible forms of
ambiguity associated with indexicals: (1) the indexical could refer to
more than one possible definition, and those definitions are mutually
inconsistent; (2) what the indexical is referring to is never defined;
(3) two or more indexicals refer to the same number of referants but
which indexes which is unclear.

Computer languages make extensive use of indirect references to
objects, primarily through the use of "identifiers" which are labels
the programmer can use to refer to objects. These can be "variable
names" which refer to values, and "methods names" or "function
names", which refer to sequences of operations the computer could
be required to execute. Computer languages used for large projects
are usually "strongly typed" - they have a detailed type-system that is
strictly enforced. Part of that enforcement is that the type associated
with the values of every identifier is declared before that identifier is
used, and the scope in which the identifier can be used is made
expressly clear.

In human languages, indexicals are disambiguated using attributes
such as gender and plural or singular. For example, the English
sentences: "The father, brothers, and sisters must contact the
insurance provider. They will only receive service if they provide
photo ID." are ambiguous: does "they" refer to all the people in the

79 WAYNE STATE UNIVERSITY JOURNAL OF BUSINESS LAW [Vol. 6:1 2023]

first sentence, to only the siblings, to only the brothers, or only the
sisters? In English, "they" refers to a plural and so could not refer to
the father alone; in Hebrew and Arabic the "they" would be gendered
and could be used to refer unambiguously only to the sisters, but not
unambiguously only to the brothers; and in other languages the
indexical could be absent a distinction between plural and singular.
When drafting contracts between people with different native
languages, the ambiguity of indexicals becomes an even more
complex multi-cultural issue.

Because of the various ambiguities that natural language indexicals
can introduce, and the multi-cultural nature of many business
contracts, it is probably a good idea to ensure that indexicals are used
very sparingly, if at all. If they are used, it should be within a very
immediate scope, such as referring within a sentence or to the
previous sentence.

While it may seem that the issues arising from the use of indexicals
could be addressed by a purely syntactic scan for a short list of words
with that grammatical role, the famous case of Raffles v. Wichelhaus,
EWHC Exch J19 (1864), also known as the "Peerless" case, suggests
otherwise. In this case, parties contracted to carry goods on a ship
named the "Peerless". However, there were two ships with that
name, taking this same route several months apart. The goods
arrived with the later ship, causing significant losses to the
contracting merchants, giving rise to the legal controversy in the case
- who must bear the cost of the wrong Peerless? Whenever even the
slightest ambiguity exists in a contract, sufficiently interested parties
could pursue litigation.

For our purposes, we should note that even the use of a proper noun
cannot prevent referential ambiguity. Referential ambiguity in
computer languages is usually resolved by a combination of two
tools: a scoping rule which defines the scope in which every
identifier can be used, and a name table which ensures that within its
scope every identifier is unique. It is similarly advisable to use
provably unique identifiers in contract drafting.

80 WAYNE STATE UNIVERSITY JOURNAL OF BUSINESS LAW [Vol. 6:1 2023]

4. Binding and Capitalized Nouns

Unlike natural language indexicals, capitalized nouns are a construct
of contract law. In well-written contracts, they are declared well
before they are used, and the type of objects they refer to is made
clear. Yet problems arise when additional contracts are included by
reference, which is a common practice in commercial drafting, e.g.
including an already existing confidentiality agreement in a service
contract.

The same problem arises in computer programming, when one
function wishes to use another function as part of its computation.
The value referred to by the identifier 'cow' in the using function
("caller"), might be referred to as 'animal' in the function being used
("sub-routine"). In computer languages every "invocation" of a
function includes the process of "binding" its parameters. An
express and unambiguous correspondence is formed by the semantics
of the language that defines which names in the caller correspond to
which names in the sub-routine. More importantly, it is expressly
clear that these are the only correspondences. If the sub-routine has
variables that have the same names as variables in the caller, they are
treated as separate variables. If both have a variable 'x' which is not
a parameter, these are treated as 'caller-x' and 'sub-routine-x' - two
completely independent variables.

The bindings in computer languages are usually expressed as part of
the process of invocation of the sub-routine. By analogy, this would
suggest that rather than using contract language like "the terms of the
Confidentiality Agreement (annex A) will apply to the parties", it
would be advisable to draft language like "the terms of the
Confidentiality Agreement ("CA", annex A) will apply to Contractor
as the CA Employee, and the Company as the CA Employer; no
other capitalized terms are in correspondence between this
Agreement and the CA." This kind of language expressly binds the
relevant indexicals, and expressly frees all other terms as unrelated,
precluding conflicts of definition.

B. Inheriting, Default Clauses, and Object Oriented Type Theory

In the drafting of contracts under the UCC it is common to have
default provisions come into force unless the contract expressly states
otherwise. In more complex commercial contracts, it is common to
have contracts that include several other form contracts, possibly
with overlapping provisions. Previously we addressed the issue of
binding the capitalized nouns of the included contracts and clarifying

81 WAYNE STATE UNIVERSITY JOURNAL OF BUSINESS LAW [Vol. 6:1 2023]

the scope of definition of such nouns. Here we address the trickier
question of which default provisions come into force when included
contracts and the contract including them have provisions that may
apply.

The use of default methods is a key idea in Object Oriented
Programming, which is by far the dominant framework used in
procedural programming languages. All fully object-oriented
languages define a mechanism of "inheritance" that allows objects of
a sub-class to default to using methods of their super-class. As an
example, there could be a class of "Sales of Goods contracts", with a
sub-class "UCC sales contracts", and the sub-class of that as the
"Detroit AV-Megastore sales contracts". A particular instantiation of
the latter would be a specific purchase from that store. Any
provisions missing from the AV-Megastore contracts would default
to using the UCC provisions that apply to the same matter. The
general structure of a contract for the sale of goods would be in the
top-level Sales of Goods class.

The equivalent structure exists in law and resolves matters in
essentially the same way as the programming example would. The
general structure of a contract for the sale of goods is established
common law. The UCC laws of the jurisdiction provide the UCC
provisions and the document containing the AV-Megastore's sales
contract overrides some of those provisions to establish a form
contract for the store with its customers.

Complications arise when this simple hierarchy of inheritance is
disrupted by "multiple inheritance", e.g. the AV-Megastore sells a
TV with a bundled installation service, and the "Television Sales
Contract" stipulates that it follows the provisions of the "AV-
Megastore Service Agreement" and the provisions of the "AV-
Megastore Sales Agreement", which happen to overlap and disagree
on some matter such as the late delivery penalties and remedies.

A possible object-oriented class inheritance structure for this could
be (where arrows point from sub-class to super-class):

82 WAYNE STATE UNIVERSITY JOURNAL OF BUSINESS LAW [Vol. 6:1 2023]

The problem to resolve would be which of the three "Late delivery
penalty" resolutions will be applied - UCC 2-601, Sales Agreement,
or Service Agreement. While it is clear that the AV-Megastore Sales
Agreement method overrides the UCC provisions, it is not clear

whether to inherit the Service Agreement method or the Sales
Agreement method. Here different programming languages adopt

different conventions, but all programming languages define and
enforce an unambiguous resolution to this problem. Perhaps the
easiest of these solutions is that found in the Python language, which
searches for methods in the order in which the super-classes are listed
and uses the first match found.

Language designers also needed to face an additional complication -
the "Sales Contract" super-class is shared. Are the attributes inherited
through each inheritance path the same or different? In the case at
hand, we intend the Buyer and Seller to be the same, but the Subject
of sale to be a service in one path and a TV in the other path.
Properly annotated for this choice, the Television Sales Contract
class would define attributes: Sales Contract Buyer, Sales Contract
Seller, Sales Contract Subject of Sale through Service Agreement,
Sales Contract Subject of Sale through Sales Agreement, Service
Agreement Duration of Service, and Television Sales Contract TV
Model.

The problem of attributes inherited through multiple distinct
inheritance pathways is similar to the problem of variable scope and
bindings which we previously discussed. Just as variables are
assumed local unless bound, multiply inherited attributes can be
assumed different unless expressly unified.

Viewed from a broader perspective, the procedure that associates
with each object its classes, attributes, and methods, is a choice of
type-system. Type checking an object-oriented program requires
"resolving" the types of all objects, and then testing that all methods
and all attributes mentioned do exist and permit the operation or
access that was requested.

83 WAYNE STATE UNIVERSITY JOURNAL OF BUSINESS LAW [Vol. 6:1 2023]

Several important ideas can be borrowed from object-oriented type-
systems to the domain of contract drafting. First, when including
other contract language by reference, it must be clear by what order
of precedence the provisions of included contracts should apply.
Second, if any capitalized nouns appear in the included contracts,
they should be expressly bound in the including contract, and all
unbound capitalized nouns should be expressly unbound from each
other.

IV. TOTAL ORDERING - A RECOMMENDATION

The problems of contract construction ambiguity discussed so far
often boil down to the need to resolve which of several possible
interpretations should apply. Taking the collection of all provisions in
a contract, one may wish to define a "takes priority over" relation
between them. Then, among the provisions that apply to a matter at
hand, the highest priority provision, if such can be found, should
apply. The discussion is somewhat muddied because often provisions
provide independent effects and can be applied in any order of
priority to produce the same results.

Borrowing the language of transition systems above, we can take
provisions to be states, and transitions to be made from a provision to
the provisions that take priority over it. The highest priority provision
can only be resolved if the transition system does not have any
repeating loops. Such transition systems naturally arise when
defining computations that are guaranteed to terminate. These
structures are also called "partial orderings" in mathematics. Partial
orderings and their transition system admit refinements, with a
maximally refined mathematical object in the class being a "total
ordering" - one where the question of priority can be answered
between any two provisions.

The most familiar total ordering is that of real numbers, but
numbering provisions in a contract with real numbers to indicate their
priority might be less than ideal. Thankfully, a more natural choice
exists - "lexicographic ordering" - which is the ordering used when
sorting words in the dictionary. This is also the ordering used when
sorting dot-separated numbered paragraphs. It provides, for example,
that any number starting with 2.2 would come before numbers
starting with 2.3, and after number starting with 2.1. Thus, e.g.,
2.2.89 is "prior to" 2.3.1, and "after" 1.9.9.8.

84 WAYNE STATE UNIVERSITY JOURNAL OF BUSINESS LAW [Vol. 6:1 2023]

Unless otherwise specified, the order in which the provisions of a
contract are listed has no role in conventional contract construction.
This provides an opportunity - to use the sequential order of
provisions to provide the total ordering of their priority. Just as
Python's multiple inheritance resolves potential conflicts using the
order of the super-classes, it may be possible to add language such as
"if two numbered provisions of this Agreement are found to be in
conflict, the provision with the earlier number shall preferentially be
enforced". This would make little difference under most
circumstances, but it would also provably preclude any ambiguity in
choosing between competing provisions.

An additional benefit of this approach is that it allows the numbering
of an included contract to be inserted into the including contract by
reference, thereby resolving questions of priority that may arise from
multiple inheritance. Language such as "the numbered provisions of
the Included Agreement shall be deemed prefixed with 2.12." would
provably suffice to resolve all conflicts of priority between
provisions of the included contract and the provisions of the
including contract.

Furthermore, if the practice of assigning a priority number to
provisions takes root, it is conceivable that it will take on some of the
formal dimension of contract formations in that it will become clear
that a provision can only be formally included in a contract when it is
properly numbered with a priority.

The rules of contract construction under, e.g. the UCC, already
contain conventions of priority, e.g.. UCC 2-303(e) "[...] (1) express
terms prevail over course of performance, course of dealing, and
usage of trade; (2) course of performance prevails over course of
dealing and usage of trade; and (3) course of dealing prevails over
usage of trade." The UCC priority rules could be captured by
assigning constructive provisions to the course of performance,
course of dealing, and usage of trade. These constructive provisions
will be numbered in the order listed above.

sLon L. Fuller, Consideration and Form, Columbia Law Review, Vol. 41,
No. 5 799-824 (1941) httDs:Hdoior-/10.2307/1117840

85 WAYNE STATE UNIVERSITY JOURNAL OF BUSINESS LAW [Vol. 6:1 2023]

1. A note about intent

The astute reader may ask why we have given little to no attention to
the question of the contract drafters' intent. It is because the post-hoc
question of determining intent in court is usually an indicator of an
ambiguity in the contract. Regardless of the drafter's actual intent, if
the contract is unambiguous, it is unlikely that a legal controversy
will arise. The party whose wishes do not correspond to this
postulated unambiguous contract language will need to negotiate for
a resolution from an inferior bargaining position or perform best they
can. The role of the contract itself is, among other things, to make
such legal controversies as unlikely as possible.

V. CONCLUSION

There is a close relationship between the problems faced by designers
of programming languages, and lawyers who consider the practice of
contract drafting. Due to the highly mathematical nature of computer
science, its practitioners have considered mathematically provable
methods for resolving problems of ambiguity, some of which could
be carried over into law.

We reviewed some of the formal language and tools used in
computer language design. From these, we highlighted some
practical recommendations: (1) to make extensive use of properly
defined capitalized nouns, (2) bind them clearly when contract
provisions are included by reference, and (3) to clearly decouple and
unbind all other terminology that was not expressly bound.
Furthermore, we suggested the use of (4) a numbering scheme and
related express rule that earlier numbered provisions should dominate
any later numbered provisions. This scheme should then be used to
expressly insert any contract language included by reference into the
numbering scheme.

The use of these recommendations can provably prevent any
ambiguity in deciding which provision dominates if a conflict arises
in the construction of the contract. These recommendations can also
make it easier and safer to include external language by reference in a
contract - a common practice in many commercial settings.

