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Legged movement is ubiquitous in nature and of increasing interest for robotics. Most
legged animals routinely encounter foot slipping, yet detailed modeling of multiple
contacts with slipping exceeds current simulation capacity. Here we present a principle
that unifies multilegged walking (including that involving slipping) with slithering and
Stokesian (low Reynolds number) swimming. We generated data-driven principally
kinematic models of locomotion for walking in low-slip animals (Argentine ant, 4.7%
slip ratio of slipping to total motion) and for high-slip robotic systems (BigANT
hexapod, slip ratio 12 to 22%; Multipod robots ranging from 6 to 12 legs, slip ratio
40 to 100%). We found that principally kinematic models could explain much of the
variability in body velocity and turning rate using body shape and could predict walking
behaviors outside the training data. Most remarkably, walking was principally kinematic
irrespective of leg number, foot slipping, and turning rate. We find that grounded walk-
ing, with or without slipping, is governed by principally kinematic equations of motion,
functionally similar to frictional swimming and slithering. Geometric mechanics thus
leads to a unified model for swimming, slithering, and walking. Such commonality
may shed light on the evolutionary origins of animal locomotion control and offer new
approaches for robotic locomotion and motion planning.

locomotion | slipping | walking | slithering | low Reynolds number

Locomotion in living systems is typically characterized by periodic movements of ap-
pendages and body elements that propel organisms through the world. It is often
observed that the forward speed of an animal is linearly related to the frequency of body
movements (1). For example, walking insects (2–4), crawling worms (5, 6), slithering
reptiles (7–9), and swimming microorganisms (10, 11) all exhibit such relationships.
However, there are notable exceptions as well; for example, birds and fish can soar or glide
over a range of speeds while their body oscillation frequency is zero. The distinction to
be made between these observations is the importance of momentum. Soaring birds and
gliding fish are capable of building up momentum to decouple body undulation from
forward speed. However, organisms that move through viscous fluids, or those that slip
producing ongoing high friction, dissipate their momentum very quickly.

Within environments where friction forces are large the body velocity v is linearly de-
pendent on the rate of body shape change ṙ through multiplication by a shape-dependent
matrix A(r), giving the equation vb = A(r)ṙ . Motion through these environments is
often referred to as “Stokesian” because it is most familiar from the literature on swimming
in low Reynolds numbers fluids, which are often called “Stokes flows” (12). An early
observation of such an instantaneous relationship appears in Purcell’s swimming model
from his seminal paper “Life at low Reynolds number” (13). Shapere and Wilczek (14)
derived this relationship for more general viscous swimming using tools from differential
geometry. With the growing interest in granular media and their similarity to fluids, new
experiments observed similar phenomena in undulatory locomotion on and within sand
(15–20). A particular surprise in granular media was that this shape-dependent, linear
relationship between body velocity v and shape velocity ṙ arose despite the fact that
interaction forces between body and granular media are velocity independent, while in
Stokes flows this relationship arose in an obvious way from linear viscosity (13).

A key result in the development of Stokesian motion models was the insight, rigorously
formalized by Hatton and Choset in ref. 21, that with an appropriate choice of body
frame the optimality of a Stokesian gait for a body with two degrees of freedom (DoF)
can be determined from the level set of a scalar height function. This extends to
optimal swimming under other fluid interaction models (22) and can be generalized
to optimization of motion with bodies that have more than two DoF (23). It is in a
collaboration with this group that we created the tools for data-driven identification of
Stokesian motion models (24, 25) we use in the current paper.
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Historically, geometric mechanics models with no momentum
terms were developed in the context of Stokes fluids and extended
to highly dissipative granular media. Thus, the term Stokesian
applies to both low Reynolds number swimming and slithering on
granular media. However, in both of these locomotion regimes,
drag resists momentum at all locations along the body and at
all times, setting up an expectation of continuous momentum
dissipation for any geometric mechanics model termed Stokesian.
In this paper, we show that geometric mechanics models also apply
to legged systems that only encounter resistance at discrete contact
points with the ground. To avoid a connotation of continuous
drag, we use the more verbose technical term “principally kine-
matic” for the systems we consider (also used in ref. 26).

While geometric mechanics has been applied to legged systems,
it has primarily relied on nonslip contacts or the availability of
explicit force-based models of the contact physics. Some of the
earliest work on legged systems was done by Kelly and Murray
(27), who provided an example based on a no-slip hexapedal
robot. Goodwine and Burdick (28) proposed methods of motion
planning for kinematic stratified systems, a class that includes
multilegged motion. Although they do mention the possibility
of slipping,* their paper focuses on the stratified structures them-
selves and is predicated on contact models being available. The
extension of this theoretical work to empirical systems was first
performed studying salamander walking on granular media (15).
Subsequent work from the same group has applied principally
kinematic locomotion models in designing and analyzing walking
gaits, on both granular surfaces (29) and solid frictional substrates
(30, 31), while allowing foot contacts to slip and thus extending
beyond the early nonslip theoretical work discussed above. A
critical feature of all these studies is that they 1) involved an
exhaustive scan of possible shapes and motions which would
be infeasible in high-dimensional shape spaces, 2) relied on a
model of the foot–ground contact forces, and 3) critically relied
on reducing the high DoF shape spaces of robots and animals
to two DoF shape spaces, to enable both the optimization and
experimental analysis in those studies.

The key contribution of our paper is demonstrating that prin-
cipally kinematic models extend to high DoF shape spaces and
that the principal kinematic relationship vb = A(r)ṙ can be
validated for animals and robots without assumptions on the foot–
ground contact model. In particular, we 1) expand the application
of the term principally kinematic to a broad class of walking
systems where friction is sufficiently high to produce a locomotion
model of vb = A(r)ṙ ; 2) illustrate that principally kinematic
equations of motion arise naturally in nonslip walking and appear
in multilegged walking with slipping; 3) record and track walking
kinematics of ants and two classes of multilegged robots producing
data for high DoF shape space systems; 4) use efficient data-
driven methods to identify that principally kinematic models are
excellent predictors for walking without slipping (ants) and with
substantial slipping (robots); and 5) test the empirically generated
models by predicting behaviors outside the training data, demon-
strating their ability to be used for control, motion planning,
and optimization or learning. Our results combined with prior
work on swimming, slithering, and walking reveal the generality
of principally kinematic models and suggest that they should
play a more central role in the investigation of legged locomo-
tion for kinesthetic learning, evolution, and robotic planning or
control.

*This appears in ref. 28, p. 217.

Background

Here we establish the rationale for modeling both nonslip and
slipping walking as principally kinematic motion. We define
locomotion as the change of a body-attached coordinate frame
through the world over time. In the following subsections we will
distinguish between the kinematic modes of walking using con-
cepts from geometric mechanics and rigid body transformations
(for a concise refresher, see ref. 32).

When Legs Are Planted, the Motion Is Principally Kinematic.
Consider the motion of a legged animal or robot with respect to
a nonslip, irrotational contact. In such a case, there is a map
g = F (r), F :Q→ SE(3) from the body shape r ∈ Q taken
from space of possible body shapes Q, to the location of and
orientation of the body frame with respect to a frame attached
to the contact feet and therefore attached to the world frame.
The body frame is represented by a rigid body transformation, g .
Here g is a member of the standard Euclidean group of rigid
body transformations SE(3), represented as matrices. This kind
of motion is called “holonomic” because it arises from the whole
function F . As a consequence of being holonomic, no periodic
motion in r can lead to a net average motion through the world
because when r returns to its initial value, g also returns to its
initial value.

Although no average motion is possible without breaking
contact with the environment, holonomic segments of motion
provide an important insight: they show that a body velocity can
be written in a principally kinematic form by differentiating g =
F (r) to give ġ = JF (r)ṙ with JF the Jacobian of the map F and
ġ the body velocity written with respect to the world frame. It is
natural to rewrite the body velocity with respect to the body frame,
given by taking AF (r) := (F (r))−1JF (r), obtaining that vb :=
g−1ġ =AF (r)ṙ . This form is the local connection appearing as
the fiber bundle form of principally kinematic motion described
in many sources (12, 14, 21, 24, 33). For each shape r ∈ Q,
AF (r) : TrQ→ se(3) maps the space of possible body shape
change velocities TrQ at the shape r to the space of body
velocities in the body frame of reference, which is the Lie algebra
se(3).

Legged Locomotion without Slipping Is Always Principally Kine-
matic. As a legged animal or robot moves through the world
without slipping, legs are necessarily planted and detached from
the environment. For every fixed set of contacts with the en-
vironment c ∈ C , taken from a finite set of possible contact
combinations C , there exists a holonomic F [c] :Q→ SE(3). As
noted previously, if the same set of planted contacts remains, no
motion is possible. As feet are lifted off the ground and other
feet are placed, the set of contacts c with respect to which F [c]
is written undergoes discrete changes. When the set of contacts
changes, this can give a jump in the body frame relative to the
feet.† However, both the body velocity vb and the change in
shape ṙ are expected to be continuous. Assuming for simplicity
that the set of contacts c is a function of the body shape r , the
function A(r) := AF [c(r)](r) is potentially discontinuous where
c(r) changes value but leads to a principally kinematic model for
nonslip multilegged locomotion vb = A(r)ṙ . Crucially, this A(·)
cannot be generated from the Jacobian of any one function F (·).
It is not holonomic; it is only piecewise holonomic. Because it is
not holonomic, there is room for cyclic shape changes to produce

†In general, F[c1](r) �= F[c2](r) even for shapes, i.e., r values, where c1 can switch to c2,
i.e., the set of contacts can change.
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net locomotion. Such piecewise approaches to developing A(r)
in multilegged walking have recently been demonstrated in, e.g.,
ref. 29.

Inertial Systems Can Be Principally Kinematic. It should be
noted that the presence of inertial and dynamic effects on the
shape of the body does not necessarily stop a motion from
being principally kinematic. In the examples above where feet
are planted without slip (When Legs Are Planted, the Motion I s
Principally K inematic and Legged Locomotion without Slipping
I s Always Principally K inematic) the system is (piecewise) holo-
nomic, and the rigid body transformation g which relates the
body frame to the world frame is a function of body shape r ;
i.e., there exists a function g = F (r). As long as this function
exists, i.e., all relevant shape variables are knowable and together
they determine g , we can differentiate this function to get the
body velocity with respect to shape, independent of whether
elastic or inertial effects act on the system to create the partic-
ular r . In other words, as long as the shape r is a complete
intermediate variable in the causal chain between the dynamics
and the body’s motion in space, the motion can be principally
kinematic. Whether the motion is inertial or not does not come
into play.

Statically Unstable Systems Can Be Principally Kinematic. To
be principally kinematic, a system must obey vb = A(r)ṙ for the
domain of r and ṙ values which it exhibits. It follows that the
body motion covaries with the shape change so as to make the net
motion depend only on the shape of the r trajectory and not on
its rate. This, however, does not require that the domain of the
principally kinematic model extend to all values of ṙ , including
being zero. Being principally kinematic is a property of a behavior,
and that behavior might not include standing in place. As long as
the position of the body frame is completely determined by the
shape changes, these motions are still principally kinematic.

Slipping Can Be Principally Kinematic as Well. While nonslip
legged locomotion is often piecewise holonomic, when feet slip,
the motion might no longer be holonomic. If the sliding foot
contacts generate sufficient friction to quickly dissipate any mo-
mentum the body has, the motion becomes principally kinematic.
This follows from taking the reduced equations of motion (ref.
33, equation 2.5) at the limit p → 0. The mathematical result
would not be too far different from the description of whole-body
linear friction as appearing in low Reynolds number swimming
and in snake slithering (34), despite having arisen from a rate-
independent Coulomb friction.

Summary: Principally Kinematic Models Could Be of Broad
Applicability to Legged Locomotion. The aforementioned
derivations suggest that although principally kinematic motion
models have been studied extensively in low Reynolds number
swimming and undulatory movement on frictional surfaces, they
may have broad application to legged locomotion. For nonslip
locomotion, they have lurked, hidden from view by a simple
mathematical derivation. However, they may also apply to legged
locomotion with slipping. Discovering whether that is in fact the
case in experimental systems is the focus of the remainder of this
paper.

Approach

Our purpose is to determine whether an observed legged system
is principally kinematic. We employed two methods to assess this:

1) directly estimating the local kinematic connection A(·) to vali-
date the instantaneous behavior expected in principally kinematic
motion and 2) evaluating whether the motion is exhibiting the
averaged features expected of principally kinematic motion, in
particular with regard to gait frequency changes.

To construct our models we collected shape measurements and
body motion from high-speed video motion tracking in ants (Ar-
gentine ants, Linepithema humile), a six-legged robot (BigANT),
and a family of multilegged robots (Multipod) with leg numbers
ranging over 6, 8, 10, and 12 (see Fig. 1).
Instantaneous Analysis: Estimating the Connection. The most
direct way to test for principally kinematic motion is to estimate
and validate the local kinematic connection A(·). Here the ques-
tion is whether body velocity vb can be determined by a model
of the form vb = A(r)ṙ , where r ∈ Q is the body shape, and
the body velocity vb := g−1g ∈ se(3) is derived from observed
body positions and orientations g ∈ SE(3). Since the systems in
question are noisy, the values of r never recur in the data, and so
we must choose some function approximation scheme for A(·)
and justify its validity based on noisy observations of g and r . We
employed the method described in detail in refs. 24 and 35 and
summarized briefly here.

The general nonlinear dependence of A(r) on r would render
our estimation attempts futile were it not for the periodic gaits
usually employed by animals and robots. Periodic gaits are cyclic
changes in body shape that generate a net motion through the
world. This cyclic behavior allowed us to reinterpret the collection
of observed shapes as a phase θ ∈ Q within the cycle and an
offset δ from the typical shape at that phase, breaking down
r as r = θ + δ. The merit of this decomposition is that δ is
small, and θ only occupies a one-dimensional space of possible
values. By selecting a body frame g ∈ SE(3) in the tracking data,
we obtained cyclic foot motions with respect to the body and
used these to estimate the phase θ using the phaser algorithm
(36). We also differentiated (two-sample finite difference) the foot
motions to obtain θ̇ and δ̇. The resulting dataset consisted of
tuples (g , θ, δ, g−1ġ , θ̇, δ̇). As in ref. 24, we expanded A(r)ṙ =

A(θ + δ)(θ̇ + δ̇) using a Taylor series expansion around the point
(θ, θ̇) ∈ TC and then estimated the terms of this expansion by
linear regression. Additional details can be found in section 5.2 of
ref. 24.

Our goal was to assess the value of a principally kinematic
model as a minimalistic prediction of body velocity in multilegged
locomotion. As our metric for comparing the predictive quality
of models, we used the ratio of root-mean-square error (RMSE)
prediction errors (1− RMSE1/RMSE0) of the model RMSE1

and the baseline model RMSE0 being compared to. This is
similar to the familiar R2 value used in linear regression. A 100%
prediction quality indicates a perfect prediction, a 0% prediction
did not reduce the error at all compared to the baseline model
being compared to, and a 50% prediction had half the RMSE
error of the baseline model.

We also wished to assess the domain of validity of the prin-
cipally kinematic models we produced. To accomplish this we
constructed the models for a restricted behavioral category (e.g.,
moderate speed with no turning) and tested their ability to predict
the outcomes of behaviors outside this behavioral category (e.g.,
fast motion turning to the right). Such ability to extrapolate is
critical if these principally kinematic models are to be usable for
design and optimization of robot behaviors.

Since we were seeking a minimal model, we compared our
principally kinematic prediction with a simpler model: body
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A B C
3 mm

1 body length

0.85 m

1 body length

80 cm

6 leg body length

Fig. 1. Foot motions through space for ants and two robots. We highlighted (thick colored lines) the feet when in stance. For animals, we assumed stance
when the foot was moving backward with respect to the body. For robots, we assumed stance when the tip of a foot was close to the ground. (A) Ants barely
slip. (B) BigANT slips a moderate amount (18.8% slip ratio). (C) The 12-legged Multipod slips much more (51.0% slip ratio). All of these can be represented well
by a principally kinematic model.

velocity as a function of phase alone, represented as a Fourier
series vfs(θ). However, because we tested for model extrapolation
across speeds, this very simple alternative would have been unfairly
disadvantaged. To allay this concern, we also considered a shape
velocity alternative: body velocity being as a function of phase
alone, rescaled by a ratio of the average rates of shape change.
For each trial k , we computed the average shape change speed
sk := averaget(‖ṙ(t)‖). This model prediction for an animal
or robot at phase θ of trial k was (sk/s0)vfs(θ), where s0 is
the average shape change speed of the training data. The shape
velocity model would predict that a body changing its shape
twice as fast on average would move at double the body velocity
at every phase. As a baseline model for comparing to all three
models (to calculated RMSE0), we used the constant mean speed
model.

Averaged Analysis and Frequency Independence. Principally
kinematic motion has profound implications on average behavior
over a gait cycle. In particular, it provides that the net body motion
over a cycle is independent of the speed with which that cycle
of shape changes was executed. This property provides additional
ways to operationalize a hypothesis test for principally kinematic
motion. It is also of independent interest because when it holds,
it signifies a reduction in the complexity of motion planning—
each cycle can be taken to produce a single, characteristic rotation
and translation, irrespective of speed. For example, such frequency
independence has been observed in prior experiments on walking,
slithering, and swimming animals and robots and has been impor-
tant in analysis and design of locomotion gaits for theses systems
(9, 15, 29–31).

Averaged analysis of principally kinematic motion is statisti-
cally straightforward. The net change in position and orientation
of the legged system throughout a motion cycle is only minimally
influenced by the cycle frequency or rate of the body shape change
if the system is principally kinematic.

Results and Discussion

Instantaneous Principally Kinematic Modeling of Ant Walking.
To test whether walking in small insects can be accurately modeled
by principally kinematic equations, we tracked the distal limbs
(tarsi) and body orientation of Argentine ants foraging freely along
a flat substrate (Fig. 2). Based on the positioning and movement of
the tarsi relative to the body center, we transformed the data from a
time series to being based on stride phase, allowing us to correlate
relative limb motion to body speed and body turning relative
to the world frame. Consistent with prior work on the same
dataset (3), we find that stride frequency is a stronger indicator of

speed than stride length.‡ Further, by comparing leg trajectories
across phase between fast-straight and slow-straight walking (in
Fig. 2F ), we observe that leg motions largely resemble each other,
demonstrating an independence of speed. That the limbs trace
the same patterns across speeds suggests that inertia minimally
contributes to ant walking, consistent with other principally
kinematic regimes (50).

Our main results for ants are summarized in Fig. 3A. While
the predictions of forward speed had similar accuracy between the
shape velocity and principally kinematic models, only the princi-
pally kinematic model predicted turning velocity (average 55.5%
vs. 0.0% for phase models and 1.1% for shape velocity models
on straight-medium speed walking). The data-driven principally
kinematic model surpassed the shape velocity model in its ability
to predict speed and was the only model to provide any predic-
tive information about turning. The principally kinematic model
predicted behaviors that it had not been trained on, including left
and right turning and slower and faster walking.

In ants we observe a fairly similar predictive ability with regard
to forward speed for the shape velocity model and the principally
kinematic model. We also found that ants hardly slip (having a
4.7% slip ratio) and that they follow similar motions at all speeds
(SI Appendix, Figs. S2 and S3). Together these suggest that ants
are principally kinematic because they are piecewise holonomic.
Because the training data were for moderate speed with (on
average) no turning, the phase model and the shape velocity model
were entirely unable to predict the instantaneous turning rate.
However, they were still able to predict some of the variability in
forward velocity. The principally kinematic model could extrapo-
late from the variability in the training data and correctly predict
the turning rate in all nine behavior categories.

Instantaneous Principally Kinematic Modeling of BigANT. That
ant walking can be better modeled by principally kinematic
models is not surprising, given their continuous contact with the
ground using at least three limbs and evidence of limited slipping
(4.7% slip ratio, see Fig. 1). To further test the application of
principally kinematic motion to walking, we next examined the
hexapedal robot BigANT performing turning walking behaviors
(Fig. 3B) (53, 54). When the robot turns, the feet continuously
slip against the ground (20% slip ratio for a 23◦ heading change
per cycle, see Fig. 1), enabling us to test whether the principally
kinematic model is effective for legged slipping.

As observed for ant walking, BigANT undergoes the same
shape changes at all speeds (SI Appendix, Fig. S9), making the

‡We took the Bhattacharyya distance between the normal distributions of fast and slow
foot position as a function of phase, yielding 0.38 ± 0.05 (taken at 100 evenly distributed
phase samples including data over an eighth of a cycle), while the same distance on the
foot velocity distributions yielded 0.66 ± 0.08.
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Fig. 2. We (A) captured ant motions in an arena and (B) logged the paths traced by the ants, including (C) points on the body (white) as well as the locations
of their feet (red). (D) We detected these points using a deep learning network, which missed the locations of feet in some frames (e.g., step 1). We obtained
an initial phase estimate from the detected feet and used frames with all feet observed to construct a Gaussian process with a periodic kernel, which we then
used to impute the missing foot data (step 2). We partitioned the data into behavioral categories based on speed and turning rate (step 3). We performed a
variety of sanity checks on the data, verifying commonly known facts. (E) (Top) When comparing slow (second quartile) and fast (top quartile) walking speeds,
the instantaneous speed of middle legs changes (Bottom), showing that while the shapes remain the same (Top), the rate at which the ant goes through these
shapes is variable. (F) As expected, ant turning is bilaterally symmetric; e.g., the middle leg fore-aft position when turning left (pink; solid line, mean; colored
band, SD; units of body length) closely matched that when turning right (cyan; reflected and shifted 1/2 cycle).

hypothesis of principally kinematic behavior testable with these
data. Surprisingly, the data-driven principally kinematic model
performed dramatically better than the alternative models across
every behavioral category. However, the principally kinematic

model deteriorated when predicting forward speed while turning,
and turning speed while forward speed was changed; i.e., it did a
bit worse predicting the interaction of turning and speed change
than it did with just one change or the other change.
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Fig. 3. Predictive value of data-driven principally kinematic models for ants and BigANT robots. We estimated our three models: phase only (light gray), shape
velocity (dark gray), and data-driven principally kinematic (geometric model following ref. 24; teal). We trained the models on the middle speed with midrange
turning behavior data (3rd quartile speed, middle tertile turning rate). We performed the same analysis on (A) ants, which turn both right and left, and (B)
BigANT robots, which turn right at three different rates. We show the prediction quality of forward velocity Vx (Left) and turning rate Vθ (Middle) for all nine
behavior categories with speed outside the lowest quartile. We also plotted illustrative, randomly selected time segments of the predicted variables (black) with
all model predictions superposed (Right). For the piecewise holonomic, nonslipping ants, the shape velocity and principally kinematic models are almost equally
good at predicting forward speed, but only the principally kinematic model was able to predict turning. The BigANTs were already turning, and mere shape
velocity rescaling did far more poorly predicting their motion. The principally kinematic model came close to perfect prediction for the effect of speed changes
on forward velocity and for the effect of increasing of decreasing turning at the same forward speed. It did somewhat more poorly predicting the motions in
behaviors where both turning rate and forward speed were different.
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Fig. 4. Instantaneous analysis for the Multipods. (A–C) We show the 12-legged Multipod with two different gaits and the 10-, 8-, and 6-legged Multipods
(columns from left to right). (D) As an illustrative example of the variability of outcomes, we plotted the frequency normalized forward velocity (vx/f ) as a function
of phase for the 10-leg Multipod at gait frequencies (in Hz; solid line, mean; ±35%, ribbon): 0.3 (blue), 0.6 (red), 1.2 (green), 2.4 (cyan), and 3.0 (magenta).
The plot shows that the two lowest frequencies produce very consistent motion profiles, the two highest frequencies produce a different but consistent
motion profile, and the 1.2 Hz motion is different from both. We examined the motion at the two lowest frequencies and here show the alternating gaits
(Δφ = π), where consecutive segments are in antiphase (first, third, fourth, and fifth columns). For comparison, we also show a nonalternating 12-legged gait
(second column; Δφ = 1.15π between consecutive segments). To demonstrate the power of instantaneous principally kinematic modeling, we fit a principally
kinematic model to the 0.3 Hz data (B, black) and used it to predict the observed motion at 0.6 Hz (B, red). The RMSEs of the prediction (B, left to right) are
0.055, 0.030, 0.041, 0.118, 0.133 m/s. Taken together, these results show that at low gait frequencies the Multipods undergo the same shape sequences (C) and
that when they do, the instantaneous principally kinematic model predicts the body velocity quite well. This observation holds for different gaits (first vs. second
column) and seems to hold better for morphologies with more rather than fewer legs.

While it might initially seem surprising that the phase-
dependent velocity model does so poorly at predicting the very
data on which it was trained (the middle tertile of turning and
third quartile of speed), this result can be understood by the
fact that our BigANT gait was designed to have a fairly constant
forward speed. As a consequence, the phase-dependent velocity
model is almost no better than the mean velocity model used as
a baseline. On the other hand, the principally kinematic model
does a good job of using the shape of the body to model the
fluctuations around this mean velocity.

Analysis of the Multipod Robots.
Instantaneous analysis of Multipod. To test whether principally
kinematic modeling of a slipping robot generalizes to other leg
configurations and gaits we analyzed the motion of the Multipod
robots, a family of multilegged robots that ranged in leg number
from 6 to 12 legs (55, 56). The Multipod robots we used are
shown in Fig. 4A, and a full description of their mechanics can
be found in ref. 37, chap. 2.3. The Multipods raise an important
issue—with their passive spring legs, Multipods might occupy a
different part of their shape space when they move at different
speeds. This is because even when friction with the environment
removes all the inertial effects from the motion of the robot as a
whole (captured in the g dynamics), inertial effects can influence
the shapes (captured in the r trajectories). In analyzing our Mul-
tipod data we found that for each gait (choice of intersegmental
phase offset Δφ) and morphology, the body shapes expressed
were consistent for the two lower frequencies (0.3 and 0.6Hz),
consistent but different for the two higher frequencies (2.4 and
3.0Hz), and vastly different for 1.2Hz (see SI Appendix, Fig. S12
for an illustrative example). The nonlinear dependence of the
connection A(r) on shape r implies that across gaits that occupy

dissimilar shapes, as was the case between low and high frequencies
in Multipod, we could not test the instantaneous principally
kinematic property.
Averaged analysis of Multipod. Our results of such an averaged
analysis, over all 520 morphology, gait, and frequency combina-
tions, are summarized in Fig. 5. Our results reveal an averaged
behavior that exhibits strong principally kinematic qualities—all
morphologies and all frequencies fall within a master curve that
depends on gait. The effect of frequency is almost unnoticeable
in the range 0.3 to 2.4Hz, and even at our maximal achievable
×10 speed-up, the change in distance traveled per cycle is ap-
proximately 20%. While the instantaneous analysis showed that at
different frequencies the details of the body velocity as a function
of phase changed, this variability cancelled out across a cycle to
produce average principally kinematic behavior. For purposes of
planning, it seems it is safe to assume that a cycle of shape change
will always produce the same motion through the world.

That the results are independent of leg number might seem
surprising at first. However, principally kinematic motion is quasi-
static. This suggests the following interpretation of our results.
When a portion of the body is large enough to be principally
kinematic on its own, it is inertial in the sense of being subject
to net zero forces and torques. If several such body parts move
in tandem, it would not matter whether they were connected to
each other or not. Thus, a longer Multipod is in essence a convoy
of shorter Multipods and falls on the same curve as its parts.

Constant Velocity Gaits Generalize Geometrically. The princi-
pally kinematic reconstruction equation vb = A(r)ṙ arises when
the contact forces are so large compared to body inertia that the
group momentum decays almost instantaneously (20, 25). A spe-
cial case of this occurs when v = const. In that case it can be shown
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Fig. 5. Summary of N = 520 Multipod motion experiments with different gaits (phase offset Δφ between consecutive segments; NΔφ = 26), morphologies
(number of leg segments 3 . . . 6), and gait frequencies (0.3, 0.6, 1.2, 2.4, and 3.0 Hz). We examine (Top) distance traveled per cycle and (Bottom) slip ratio, the
distance a foot slipped over total foot travel. (A) All the experiments fell within a narrow band (solid line with points, median; dark ribbon, ±25%; and lighter
ribbon, ±45%). After subtracting the effect of gait choice, we plotted the offset produced by (B) frequency and (C) morphology. Results show that until the
highest frequency is reached, all the Multipod robots, over a range of ×8 in frequency and doubling in leg number, fall on a single curve, which is frequency
independent and thus principally kinematic on average.

(SI Appendix, section 4) that for a variety of types of contact
friction, as long as all contacts use the same type of friction, time-
rescaling the body shape change would produce a geometrically
identical motion at a rescaled speed. The implication of this
observation is that if an animal or robot managed to discover a
pattern of shape changes, r(t), which produces a constant v , that
pattern could be used for all magnitudes of v . The limiting factor
would not be interaction with the environment; it would be the
ability of the body to execute r(st) at the speed rescaled by s . The
principally kinematic reconstruction equation vb = A(r)ṙ arises
when the contact forces are so large compared to body inertia that
the group momentum decays almost instantaneously (25).

Conclusion

In this work we propose that legged locomotion in continuous
contact regimes yields principally kinematic motion independent
of whether feet remain in static contact or slip. We demonstrated
this result through analysis of experimental data from walking
ants, the hexapedal robot BigANT, and the Multipod family of
multilegged robots with leg numbers from 6 to 12. While we have
demonstrated effective tools for constructing data-driven models
of periodic locomotion gaits in the principally kinematic regimes,
there is much room for improvement: better tools for model
fitting, methods to exploit piecewise holonomic structures where
they exist, models with underactuation (the topic of another pub-
lication), and models with low dimensional group momentum.

We have shown that walking now falls within a broader class
of principally kinematic locomotion which includes low Reynolds
number swimmers such as small microorganisms (13), the slith-
ering locomotion of snakes and limbless reptiles on hard ground
(16), and the locomotion on (15, 29) and within granular mate-
rial (9). This suggests a more sweeping hypothesis. Since princi-
pally kinematic movement is so prevalent among small animals,
which are the majority of extant animals, and the ancestral form
of larger animals, 1) the motor control and motor learning of
animals large and small might be ancestrally adapted to learn prin-
cipally kinematic movement, 2) animals would preferentially learn
near-constant velocity gaits since those generalize geometrically to
a large range of speeds, and 3) motor learning of more dynamical

movements is done as a correction on top of a principally kine-
matic approximation, with the learning of principally kinematic
motion as its core.

Centralized circuits that control cyclic limb movements
are ubiquitous across walkers from ventral nerve cord ganglia
in arthropods to central pattern generators in vertebrates.
Hemichordates and vertebrates share similar motor-neuron
architectures (38) pushing this similarity back to Deutrostomia,
and vertebrates and arthropods share much of the patterning of
the nervous system as well (39), suggesting an urbilaterian origin
for much of the control of locomotion. This last common ancestor
of bilateral animals—the urbilaterian—is currently presented as
similar to modern planarians: a small, worm-like creature that
swam or moved through the bed of bodies of water at slow
speeds. As such, it was moving at low Reynolds numbers and
was therefore approximately or fully principally kinematic. Our
work here shows that if urbilaterian motor control could handle
the relatively simple learning needed to optimize principally
kinematic gaits (24), this capability would suffice throughout
evolutionary history up to and including arthoropods’ transition
to land. While vertebrates grew large enough in the water to
no longer be principally kinematic, the vertebrate transition to
land would have brought them back into a principally kinematic
regime—crawling through mud—where reliance on this ancestral
mode of motor learning and control would have served them well.
We suggest the hypothesis that all bilaterian motor control and
learning, including that of vertebrates such as ourselves, is first
and foremost geared for principally kinematic motion, learning
to account for the effects of momentum later.

Navigation for animals is also greatly simplified in principally
kinematic motion regimes since position with respect to the
environment is determined by integrating body shape change. The
use of step-counting (odometry) to inform travel distance has been
observed in numerous species, including spiders (40), crabs (41),
mantis shrimp (42), humans (43), rodents (44), and particularly
desert ants (45). This path integration is somewhat trivial in the
case of nonslip walking, as in the case of desert ants (46). However,
path integration has also been observed under more challenging
circumstances, including those that may induce slipping, such as
desert ants walking up and down inclines (47). If walking was
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not principally kinematic, odometry would not provide accurate
travel information. Although animals may override odometry-
based path integration using other cues (e.g., visual landmarks
and chemical signals), the prevalence of odometry across animals
demonstrates the potential functionality of principally kinematic
walking and supports its broad applicability.

Our finding that principally kinematic motion applies to walk-
ing, even with slipping, will allow engineers and scientists to
construct reduced complexity models of the physics of locomotion
and generate control algorithms for movement. Most robotic
control systems rely on simulations that incorporate dynamics
such as in Gazebo (48), Bullet,§ Mujoco,¶ and Pinocchio (49).
While the performance of these packages continues to improve,
their simulations are often computationally heavy. Alternatively,
principally kinematic models of locomotion are relatively simple,
reducing both control design complexity and processing times.
Given our findings that walking systems are well characterized by
principally kinematic models, the use of these models for real-
time robotic control may transform the development of legged
robotics. This may be particularly beneficial when considering
multilegged slipping, a domain where most dynamic simulations
perform poorly or rely on machine learning to provide corrections
which have no direct basis in physics.

In conclusion, principally kinematic motion is a unifying
framework across swimming, burrowing, slithering, and now
continuous-contact walking. Principally kinematic motion
drastically reduces the complexity of modeling movement through
the world and may have important implications for understanding
the evolution of motor control and animal navigation, as well as
informing streamlined robotic simulations and actuator controls.

Materials and Methods

We collected motion data from both ants and robots. All the motion data were
collected using optical tracking. Most of the figures in this paper can be directly
reproduced using the dataset and code at DOI: 10.7302/gqk6-3x41 (50).

Experimental Data Collection in Ants. We collected ant data using high-
speed video recordings (FLIR Blackfly S cameras, at 240 fps) of ant workers
foraging from overhead views as they walked across flat substrates. A compre-
hensive overview of the method can be found in ref. 3. Briefly, we trained
a deep-learning based automated tracking algorithm (51) using a manually
tracked subset of the data (679 frames) and used it to detect 10 body landmarks,
including mouth, neck, and foot (tarsus) positions. In total, we analyzed 697,501
frames corresponding to 1.61 h of footage. We encoded the body frame locations
of each ant as a homogenous matrix, g, computed from the x, y, and θ that
the automated tracking obtained for the position and orientation of the body
frame. We took the ant shape, r ∈Q, as a tuple of 12 numbers corresponding
to the xy coordinates of the feet relative to the g coordinate frame. A total of
491,095 frames had one or more missing feet, and 35.7% of foot measurements
were missing. We imputed foot locations using a periodic Gaussian process
kernel, allowing us to discard only 63.4% of the frames for missing feet. We
differentiated both r and g by taking the average of forward and backward finite
differences to obtain ṙ and the instantaneous body velocity g−1ġ, which we
used to obtain vx along the body, vy across the body, and vθ the turning rate.
Further details about the animal tracking and foot imputation are provided in
SI Appendix, Detailed Materials and Methods—Ant tracking.

Experimental Data Collection in Robots. For the robots, we used a
commercial three-dimensional (3D) passive marker tracking system (10 Qualisys

§https://pybullet.org.
¶https://www.mujoco.org.

Oqus-310+ cameras at 120 fps, running QTM 2.17 build 4,000, interfaced to
custom SciPy 0.17.0 code using the Qualisys 1.9 Realtime API) to track body
orientation and limb motion.
Methods for BigANT robots. The BigANT robots are built from rigid foam board
that is cut and folded along lines to form rigid structures and flexible joints, using
the PARF methodology (52). Each leg of a BigANT is controlled by a single servo
motor (Robotis Dynamixel MX64) in continuous rotation, and the leg sweeps
through a stance and swing cycle through a kinematic linkage. To track the
shape of a BigANT we recorded the commanded angles of all the servos, the
3D locations of 3 markers on each of its legs, and the locations of 11 markers
spread across the body chassis. We verified that the servo angles predicted the leg
position relative to the chassis to within close to measurement error; i.e., the legs
moved rigidly (SI Appendix, Fig. S9). Thus, the coordinate frame of the chassis
g ∈ SE(3), together with the servo angles r, provides a complete configuration
space for the robot.

Our BigANT data came from three BigANT robots, executing a steering motion
in a low, medium, or high turning rate at gait frequencies of 0.10 Hz through
0.34 Hz (SI Appendix, Fig. S7), We partitioned these data into nine behavior
categories based on low, medium, and high turning rate and low, medium, and
high forward speed. Together these categories contained left-turning high speed
(3,598 points), no-turning high speed (2,183 points), right-turning high speed
(1,458 points), left-turning medium speed (2,125 points), no-turning medium
speed (2,544 points), right-turning medium speed (2,647 points), left-turning
slow speed (1,510 points), no-turning slow speed (2,467 points), and right-
turning slow speed (2,620 points). Our BigANT data are available in raw form
at DOI: 10.7302/024q-kk06 (53) and processed (ready to use) form at DOI:
10.7302/jh82-fh69 (54).
Methods for Multipod robots. The Multipod family of robots each consists of
three to six segments. Each segment contains two backbone motors (Robotis Dy-
namixel RX64) and a leg roll motor (Robotic Dynamixel MX106) which is attached
to two spring-steel legs (ref. 37, chap. 2.3). Each segment was instrumented with
motion tracking markers on the axes of the backbone motors, on the output of
the roll motor, and at the tips of the spring legs. This allowed us to fully track the
shape of the backbone and motor outputs and also observe the deflection of each
individual spring leg.

We built Multipod robots with three, four, five, and six segments. Each of these
we ran at five gait frequencies, 0.3, 0.6, 1.3, 2.6, and 3.0 (Hz), and each of those
at multiple gaits was defined by taking the phase offset between the motion
of consecutive segments to be one of 26 values between 0 and 2π. In total,
this dataset consists of 520 trials, of at least four motion cycles in each direction
for each robot; it is available in raw form at DOI: 10.7302/m05a-0d90 (55) and
processed (ready to use) form at DOI: 10.7302/0fpj-dz57 (56).
Details of principally kinematic model fitting. Given timestamped data of
shape, shape velocity, and body velocity for an animal or robot behavior, we
are able to build a local principally kinematic model. Using an algorithm called
Phaser, the data are mapped to the general form of an oscillator having di-
mension the size of the dimension of the shape. This algorithm computes an
asymptotic phase for each time sample, which allows each data point of the
behavioral data to be associated with a fraction of a cycle for that behavior. Using
that information, an average behavior can be computed from the data by fitting
a Fourier series to the shape data with respect to asymptotic phase. At this point,
each data point is binned into fractions of the cycle, and a regression is computed
fitting shape and shape velocity to body velocity. The regression terms are the
change in shape from the average shape at that phase, the change in shape
velocity from the average shape velocity at that phase, and all cross terms of
the aforementioned terms. These regression coefficients are then fit as a function
of phase across the phase bins, providing a single local model by which shape,
shape velocity, and inputs can be sampled (in the neighborhood of the data
collected) to yield predicted body velocity outputs.

Data, Materials, and Software Availability. Motion tracking data (CSV and
GZ) and processing and plotting code (python 3, scipy, matplotlib) have been
deposited in Deep Blue Data (DOI: 10.7302/gqk6-3x41, DOI: 10.7302/0fpj-
dz57, DOI: 10.7302/m05a-0d90, DOI: 10.7302/jh82-fh69, and DOI: 10.7302/
024q-kk06). Previously published data were used for this work (this work also
uses data from DOI: 10.1098/rsos.192068).
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