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Representing and Computing
the B-Derivative of the
Piecewise-Differentiable
Flow of a Class of Nonsmooth
Vector Fields
This paper concerns first-order approximation of the piecewise-differentiable flow gener-
ated by a class of nonsmooth vector fields. Specifically, we represent and compute the
Bouligand (or B-)derivative of the piecewise-differentiable flow generated by a vector
field with event-selected discontinuities. Our results are remarkably efficient: although
there are factorially many “pieces” of the derivative, we provide an algorithm that evalu-
ates its action on a tangent vector using polynomial time and space, and verify the algo-
rithm’s correctness by deriving a representation for the B-derivative that requires “only”
exponential time and space to construct. We apply our methods in two classes of illustra-
tive examples: piecewise-constant vector fields and mechanical systems subject to unilat-
eral constraints. [DOI: 10.1115/1.4054481]

1 Introduction

First-order approximations, i.e., derivatives—are a foundational
tool for analysis and synthesis in smooth dynamical and control
systems. For instance, derivatives play a crucial role in: stability
via spectral [1, Ch. 8.3] or Lyapunov [2, Ch. 5] methods; controll-
ability via linearization [1, Ch. 8.7] or Frobenius/Chow [2, Ch. 8/
Ch. 11] techniques; optimality via stationarity [3, Ch. 1] or Pon-
tryagin [4, Ch. 1] principles; identifiability via adaptation [5, Ch.
2] or Expectation-Maximization [6, Ch. 10] methods. These tools
all depend on the existence of a computationally amenable repre-
sentation for the first-order approximation of smooth system
dynamics, namely, the Fr�echet (or F-)derivative of the system’s
smooth flow [7, Ch. 5.6], which is a continuous linear function of
tangent vectors.2

By definition, nonsmooth systems do not generally enjoy exis-
tence (let alone computational amenability) of first-order approxi-
mations. Restricting to the class of (so-called Ref. [8, Def. 1, 2])
event-selected Cr (ECr) vector fields that (i) are smooth except
along a finite number of surfaces of discontinuity and (ii) preclude
sliding [9,10] or branching [11, Def. 3.11] through a transversality
condition, we obtain flows that are piecewise-differentiable [8,
Thm. 4] (specifically, piecewise-Cr (PCr) [12, Ch. 4.1]). By virtue
of their piecewise differentiability, these flows admit a first-order
approximation, termed the Bouligand (or B-)derivative, which
derivative is a continuous piecewise-linear function of tangent
vectors [12, Ch. 3, 4]. This paper is concerned with the efficient
representation and computation of this piecewise-linear first-order
approximation.

Our contributions are twofold: (i) we construct a representation
for the B-derivative of the PCr flow generated by an ECr vector
field; (ii) we derive an algorithm that evaluates the B-derivative
on a given tangent vector. Although there are factorially many
“pieces” of the derivative, we (i) represent it using exponential
time and space and (ii) compute it using polynomial time and
space. In an effort to make our results as accessible and useful as

possible, we provide a concise summary of the algorithm in Sec. 2
and apply our methods in Sec. 3 before rehearsing the technical
background in Sec. 4 needed to derive the representation in Sec. 5
and verify the algorithm’s correctness in Sec. 6.

We emphasize that our methods are most useful when there are
more than two surfaces of discontinuity, as representation and
computation of first-order approximations in the one- and two-
surface cases have been investigated extensively [13–18], and
these cases do not benefit from the complexity savings touted
above. Previously, we established existence of the piecewise-
linear first-order approximation of the flow [8, Rem. 1] and pro-
vided an inefficient scheme to evaluate each of its “pieces” [8,
Sec. 7] in the presence of an arbitrary number of surfaces of discon-
tinuity. To the best of our knowledge, this paper contains the first
representation for the B-derivative of the PCr flow of a general ECr

vector field and polynomial-time algorithm to compute it.

2 Algorithm

The goal of this paper is to obtain an algorithm that efficiently
computes the derivative of a class of nonsmooth flows. This com-
putational task and our solution are easy to describe, yet verifying
the algorithm’s correctness requires significant technical over-
head. Thus, the remainder of this section will be devoted to speci-
fying the algorithm and the problem it solves using minimal
notation and terminology. Sections 4–6 will provide technical
details—which may be of interest in their own right—that prove
the algorithm is correct.

2.1 Problem Statement. Given a vector field F : Rd ! TRd

and a trajectory x : ½0;1Þ ! Rd satisfying3

8t � 0 : xt ¼ x0 þ
ðt

0

FðxsÞ ds (1)

our goal is to approximate how xt varies with respect to x0 to first
order for a given t> 0. Formally, with / : ½0;1Þ �Rd ! Rd

denoting the flow of F satisfying
1Corresponding author.
2We emphasize both properties of the classical derivative since the generalized

derivative we consider retains one while relaxing the other.
Manuscript received April 8, 2021; final manuscript received April 15, 2022;
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3In this section (only), we will denote time dependence using subscripts rather
than parentheses to minimize the notational overhead.
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8t � 0; x0 2 Rd : /tðx0Þ ¼ x0 þ
ðt

0

Fð/sðx0ÞÞ ds (2)

our goal is to evaluate the directional derivative D/tðx0; dx0Þ
given t> 0, dx0 2 Tx0

Rd

D/t x0; dx0ð Þ ¼ lim
a!0þ

1

a
/t x0 þ a dx0ð Þ � /t x0ð Þ
� �

(3)

Specifically, we seek to evaluate this derivative for vector fields
that are smooth everywhere except a finite collection of surfaces
where they are allowed to be discontinuous. We will first recall
how to obtain the derivative in the presence of zero (Sec. 2.2) and
one (Sec. 2.3) surfaces of discontinuity before presenting our
algorithm, which is applicable in the presence of an arbitrary num-
ber of surfaces of discontinuity (Sec. 2.4).

2.2 Continuously Differentiable Vector Field. If F is con-
tinuously differentiable on the trajectory x, the derivative dxt ¼
D/tðx0; dx0Þ satisfies the linear time-varying variational equation
[19, Appendix B]

8t � 0 : dxt ¼ dx0 þ
ðt

0

DFðxsÞ � dxs ds (4)

where dxt ¼ D/tðx0; dx0Þ can be approximated to any desired pre-
cision in polynomial time by applying numerical simulation algo-
rithms [19, Ch. 4] to Eqs. (1) and (4).

2.3 Single Surface of Discontinuity. If F is continuously dif-
ferentiable everywhere except a smooth codimension-1 submani-
fold H � Rd that intersects the trajectory x transversally at only
one point xs, s 2 ð0; tÞ, the continuous-time equation Eq. (4) is
augmented by the discrete-time update [13, Eq. (58)]

dxþs ¼ Id þ
Fþ � F�ð Þ � g>

g> � F�

 !
� dx�s ¼ M � dx�s (5)

where dx6
s ¼ lims!s6 dxs and F6 ¼ lims!s6 FðxsÞ denote the lim-

iting values of dxs and FðxsÞ at s from the right (þ) and left (–)
and g 2 Rd is any vector orthogonal to surface H at xs; M 2 Rd�d

is termed the saltation matrix [17, Eq. (2.76)], [20, Eq. (7.65)].
The desired derivative is

D/tðx0; dx0Þ ¼ D/t�sðxsÞ �M � D/sðx0Þ � dx0 (6)

where D/t�sðxsÞ;D/sðx0Þ 2 Rd�d can be approximated by simulat-
ing Eq. (2), Eq. (4) since the flow is smooth away from time s. Com-
puting the saltation matrix M requires Oðd2Þ time and space, but
evaluating its action on dx�s in Eq. (5) requires only OðdÞ time and
space.

2.4 Multiple Surfaces of Discontinuity. If F is continuously
differentiable everywhere except a finite set of smooth
codimension-1 submanifolds fHjgn

j¼1
that intersect the trajectory x

transversally at only one point xs (see Fig. 1(a) for an illustration
when n¼ 2), s 2 ð0; tÞ, we showed in Ref. [8, Eq. (65)] that the
discrete-time update Eq. (5) is applied once for each surface.
However, the order in which the updates are applied, and the lim-
iting values of the vector field used to determine each update’s
saltation matrix, depend on dx0. If the surfaces intersect transver-
sally, there are n! different saltation matrices determined by 2n

vector field values, so considering all update orders requires facto-
rial time and space. To make these observations precise and spec-
ify the notation employed in Figs. 1 and 2, we formally define the
class of nonsmooth vector fields considered in this paper
[8, Defs. 1, 2].

DEFINITION 1. (Event-selected Cr (ECr) vector field) A vector
field F : D! TD defined on an open domain D � Rd is event-
selected Cr with respect to h 2 CrðU;RnÞ at q 2 Rd if U � D is
an open neighborhood of q and:

1. (event functions) there exists f> 0 such that DhðxÞ � FðxÞ �
f for all x 2 U;

2. (smooth extension) for all b 2 f�1;þ1gn ¼ Bn, with

Db ¼ fx 2 U : bjðhjðxÞ � hjðqÞÞ � 0g (7)

FjIntDb
admits a Cr extension Fb : U ! TU.

Our algorithms in Fig. 2 compute

dxþs ¼ dqþ ¼ Bðdq�Þ ¼ Bðdx�s Þ (8)

Fig. 1 Variational dynamics that determine B-derivative of planar ECr vector field’s PCr flow (8). (a) Vector field
F : R2fiT R2 is smooth everywhere except smooth codimension-1 submanifolds H1;H2 � R2 that intersect
transversally at xs ‰ R2, generating a piecewise-differentiable flow / : ½0;‘)3R2 fi R2 satisfying /s(x0) 5 xs for
all s ‰ ½0; t �, i.e., F is ECr and / is PCr [8]. The B-derivative D/t (x0; dx0) 5 dxt is determined as in Eq. (10) by the
continuous-time variational dynamics d _x s 5 DF (xs) � dxs and the discrete-time variational dynamics dx1

s 5 B(dx2
s ).

The algorithms in Fig. 2 evaluate the piecewise-linear function B using the auxiliary system in (b) determined by
the tangent planes eH 1; eH 2 and vector field limits Fb(q) in Eq. (9) for b ‰ f(� 1;�1); (11;21); (21;11);
(11;11)g5 f21;11g2.
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given dq� ¼ dx�s 2 Rd , normals fgj ¼ DhjðqÞgn

j¼1
� Rd at xs to

surfaces fHj ¼ h�1
j ðqÞg

n

j¼1
, and a function C : f�1;þ1gn ! Rd

that evaluates limits of F at q ¼ xs

8b 2 f�1;þ1gn : CðbÞ ¼ FbðqÞ (9)

using the piecewise-constant dynamics illustrated in Fig. 1(b),
which are the discrete-time analog of the continuous-time varia-
tional dynamics Eq. (4). Overall, the desired derivative is

D/tðx0; dx0Þ ¼ D/t�sðxsÞ � BðD/sðx0Þ � dx0Þ (10)

where B : TqRd ! TqRd is the continuous piecewise-linear func-
tion defined by our algorithms in Fig. 2. Our algorithms require
Oðn2dÞ time and OðdÞ space to evaluate the directional derivative
Eq. (3).

Assuming for the moment that these algorithms are correct, we
emphasize that they achieve a dramatic reduction in the computa-
tional complexity of evaluating the B-derivative—from factorial
to low-order polynomial—relative to na€ıve enumeration of all
pieces of the B-derivative. However, despite the apparent simplic-
ity of our algorithms (computationally and conceptually), verify-
ing their correctness requires significant technical effort; the bulk
of this paper is devoted to this verification task.

3 Applications

To illustrate and validate our methods, we apply the algorithm
from Sec. 2 to piecewise-constant vector fields in Sec. 3.1 and
mechanical systems subject to unilateral constraints in Sec. 3.2.

3.1 Piecewise-Constant Vector Field. Consider the vector
field F : Rd ! TRd defined by

_x ¼ F
�

xÞ ¼ 1þ D
�

signðxÞ
�

(11)

where D : Bd ! Rd; so long as all components of all vectors
specified by D are larger than –1, i.e., minb2Bd

½DðbÞ�j > �1, F is
event-selected C1 with respect to the identity function h : Rd !
Rd defined by hðqÞ ¼ q. We regard Eq. (11) as a canonical form
for piecewise-constant event-selected C1 vector fields that are
discontinuous across d subspaces, since any such vector field can
be obtained by applying a linear change-of-coordinates to
Eq. (11). In what follows, we focus on the trajectory that passes
through the origin q¼ 0, which lies at the intersection of d

surfaces of discontinuity for F. With q� ¼ q� 1
2

F�1 qð Þ;
qþ ¼ qþ 1

2
Fþ1 qð Þ, we note that q� flows to qþ through q in 1

(one) unit of time.
Our goal is to compute Dx/ð1; q�; dq�Þ 2 TqþRd for a given

dq� 2 Tq�Rd. In the general case, the desired derivative is piece-
wise linear with (up to) d! distinct pieces, providing a general test.
In the special case where DðbÞ ¼ �d � b for all b 2 Bd; jdj < 1,
the desired derivative is linear [8, Eq. (86)]

Dx/ 1; q�; dq�ð Þ ¼ 1� d
1þ d

� dq� (12)

providing a closed-form expression for comparison. Figure 3 illus-
trates results from both cases with d ¼ 2.

3.2 Mechanical systems Subject to One-Sided Constraints.
Consider a mechanical system whose configuration is subject to
unilateral (i.e., one-sided) constraints. The dynamics of such sys-
tems have been studied extensively using the formalisms of com-
plementarity [23, Sec. 3], measure differential inclusions [24,
Sec. 3], hybrid systems [25, Sec. 2.4, 2.5], and geometric mechan-
ics [26, Sec. 3]. Regardless of the chosen formalism, in a coordi-
nate chart Q � Rd , the dynamics governing q takes the form

MðqÞ€q ¼ f ðq; _qÞ subject to aðqÞ � 0 (13)

where: MðqÞ 2 Rd�d specifies the kinetic energy metric; f ðq; _qÞ 2
Rd specifies the internal, applied, and Coriolis forces; aðqÞ 2 Rn

specifies the unilateral constraints (we interpret aðqÞ � 0 compo-
nentwise); and we assume in what follows that M, f , and a are
smooth functions. Different formalisms enforce the constraint
aðqÞ � 0 in Eq. (13) differently, so we consider several cases
through Secs. 3.2.1–3.2.4.

3.2.1 Rigid Constraints Yield Discontinuous Flows. If con-
straints are enforced rigidly as in Refs. [23–25], meaning that they
must be satisfied exactly, then the velocity must undergo impact
(i.e., change discontinuously) whenever _q 2 TqQ is such that
ajðqÞ ¼ 0 and DajðqÞ � _q < 0 for some j 2 f1;…; ng [23, Sec. 2,
25, Eq. (23), 24, Eq. (23)]. Unfortunately for our purposes, these
discontinuities in the state vector x ¼ ðq; _qÞ cannot be modeled
using an event-selected Cr vector field _x ¼ FðxÞ, and the flow of
such systems is generally discontinuous (although we note that
the flow can be PCr at nonimpact times if the constraint surfaces
intersect orthogonally [27], i.e., if the surface normals are orthog-
onal with respect to the inverse of the kinetic energy metric [24,
Theorem 20]).

Fig. 2 Algorithms that evaluate the B-derivative of an ECr vector field’s PCr flow written in pseudo-code (left) and Python

[21] source code (right; requires import numpy as np [22]). These algorithms apply at a point q ‰ Rd where a vector field

F : Rd fiT Rd is event-selected Cr with respect to n surfaces (see Fig. 1 for an illustration when d 5 n 5 2), and assume

the following data is given: tangent direction, surface normals at q, vector field limits (9), dq2 ‰ TqRd , g 5 fgjgn

j 5 1
� Rd ,

C : f21;11gnfiRd , dx—array, dx.shape =5 (d,); e—array, e.shape =5 (n,d); G—function, G(b). shape =5 (d,).
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3.2.2 Soft Conservative Constraints Yield Lipschitz-
Continuous Vector Fields, C1 Flows. We now consider the for-
malism in Ref. [26] that “softens” (i.e., approximately enforces)
rigid constraints aðqÞ � 0 by augmenting the potential energy
with penalty functions fvjgn

j¼1
that scale quadratically with the

degree of constraint violation [26, Eq. (12)]

8j 2 1;…; nf g : vj qð Þ ¼
0; aj qð Þ � 0

1

2
jj a2

j qð Þ; aj qð Þ < 0

8<: (14)

In essence, each rigid constraint ajðqÞ � 0 is replaced by a spring
with stiffness jj, leading to the unconstrained dynamics [26, Eq. (14)]

MðqÞ€q ¼ f ðq; _q; uÞ �
Xn

j¼1

DvjðqÞ>

¼ f ðq; _q; uÞ �
Xn

j¼1

fðjj ajðqÞÞ � DajðqÞ>: ajðqÞ < 0g (15)

As shown by [28, Thm. 3], trajectories of Eq. (15) converge to
those of Eq. (13) in the rigid limit (i.e., as stiffnesses go to infin-
ity). Importantly for our purposes, the dynamics in Eq. (15) can be
modeled using an event-selected vector field along trajectories that
pass transversally through the constraint surfaces, whence our algo-
rithms can compute the B-derivative of the flow. However, the vec-
tor field Eq. (15) in this case is (locally Lipschitz) continuous;
hence, the B-derivative is trivial (all nonidentity terms in Eq. (57)
are zero), where the flow is continuously differentiable (C1).

3.2.3 Soft Dissipative Constraints Yield ECr Vector Fields, C1

Flows. We now augment the unconstrained dynamics Eq. (15)
with dissipation as in [26]

MðqÞ€q

¼ f ðq; _q; uÞ �
Xn

j¼1

fajðq; _qÞ � DajðqÞ>: ajðqÞ < 0g (16)

where ajðq; _qÞ ¼ jj ajðqÞ þ bj DajðqÞ � _q; in essence, each con-
straint penalty is augmented by a spring damper that is only active
when the constraint is violated as in studies involving contact with
complex geometry [29] or terrain [30]. The dynamics in Eq. (16)
can be modeled using an event-selected vector field along trajecto-
ries that pass transversally through the constraint surfaces, and the
vector field is discontinuous along the constraint surfaces.

However, we can show that the flow of Eq. (16) is continuously dif-
ferentiable (C1) along any trajectory that passes transversally
through constraint surfaces. Indeed, letting x ¼ ðq; _qÞ denote the
state of the system so that _x ¼ ð _q; €qÞ ¼ FðxÞ is determined by
Eq. (16), the saltation matrix Eq. (5) associated with each constraint
aj has the form

I þ 1

Daj qð Þ � _q

0

6aj q; _qð Þ

� �
Daj qð Þ 0
� 	

(17)

where the sign in the column vector is determined by whether the
constraint is activating (–) or de-activating (þ). Since matrices of
the form in Eq. (17) commute, the saltation matrices associated
with simultaneous activation and/or de-activation of multiple con-
straints are all equal, whence the flow of Eq. (16) is continuously
differentiable (C1) along any trajectory that passes transversally
through constraint surfaces.

3.2.4 Example (Vertical-Plane Biped). To ground the preced-
ing observations, we consider the vertical-plane biped illustrated
in Fig. 4(left) that falls under the influence of gravity toward a
substrate. The biped body has mass m and moment-of-inertia J; we
let ðx; yÞ 2 R2 denote the position of its center-of-mass in the plane
and h 2 S1 denote its rotation. Two rigid massless limbs of length ‘
protrude at an angle of 6w with respect to vertical from the body’s
center-of-mass above a smooth substrate whose height is a quad-
ratic function of horizontal position, yielding unilateral constraints

a1ðx; y; hÞ ¼ �y� ðxþ ‘ cosðh� wÞÞ2 � ‘ sinðh� wÞ
a2ðx; y; hÞ ¼ �y� ðxþ ‘ cosðhþ wÞÞ2 � ‘ sinðhþ wÞ

(18)

We consider the smoothness of the system’s flow along a trajec-
tory that activates both constraints simultaneously. The formalism
in Eq. (16) yields continuously differentiable flow for this system
as illustrated in Fig. 4 (center).

To obtain a flow that is piecewise differentiable but not contin-
uously differentiable, we modify the damping coefficients in
Eq. (16) using the following logic4: b1 ¼ b2 ¼ 1

2
if a1ðqÞ < 0 or

a2ðqÞ � 0 (exclusive or); b1 ¼ b2 ¼ 1 if a1ðqÞ < 0 and a2ðqÞ < 0.
The saltation matrices obtained from different sequences of

Fig. 3 B-derivative of planar instance of vector field from Sec. 3.1 in linear (left) and piecewise-linear (right)
cases. The vector field F defined in Eq. (11) is piecewise constant and discontinuous across the coordinate
hyperplanes H1, H2, generating a piecewise-differentiable flow / with B-derivative B. (left) The B-derivative is lin-
ear in the special case defined by Eq. (12). (right) The B-derivative is continuous and piecewise linear in general,
so a ball of initial conditions flows to a piecewise ellipsoid (solid lines).

4Although we introduce this logic purely for illustrative purposes, we note that
nontrivial dependence of forcing on the set of active constraints could be
implemented physically using clutches [31] or actuators [32].

091004-4 / Vol. 17, SEPTEMBER 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putationalnonlinear/article-pdf/17/9/091004/6885422/cnd_017_09_091004.pdf by U
niversity of M

ichigan user on 04 O
ctober 2024



constraint activations (left foot reaches substrate before right foot
or vice versa) are distinct

Mðleft;rightÞ �Mðright;leftÞ ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

�4b cosðwÞ 0 �2bðsinð2wÞ þ cosðwÞÞ 0 0 0

0 0 0 0 0 0

266666666664

377777777775
(19)

The piecewise-linear B-derivative of the system’s flow is illus-
trated in Fig. 4 (right). Source code for this example is provided at
the website5.

4 Background

To verify correctness of the algorithms specified in Sec. 2, we
utilize the representation of piecewise-affine functions from
Ref. [33], elements of the theory of piecewise-differentiable func-
tions from Ref. [12], and results about the class of nonsmooth
flows under consideration from Ref. [8]. In an effort to make this
paper self-contained (i.e., to save the reader from needing to
cross-reference multiple citations to follow our derivations), we
include a substantial amount of background details in this section.
The expert reader may wish to skim or skip this section, returning
only if questions arise in Sec. 5 or Sec. 6.

4.1 Polyhedral Theory. We let 0d 2 Rd denote the vector of
zeros, 1n 2 Rn the vector of ones, and Id 2 Rd�d the identity
matrix; when dimensions are clear from context, we suppress sub-
scripts. The vectorized signum function sign : Rd ! f�1;þ1gd

is defined for all x 2 Rd; j 2 f1;…; dg by

½signðxÞ�j ¼ signðxjÞ ¼
�1; xj < 0

þ1; xj � 0



(20)

If A 2 R‘�m and B 2 Rm�n then A � B 2 R‘�n denotes matrix
multiplication. Given a subset S � Rd , we let aff S; cone S;
conv S denote the affine span, cone span, and convex hull of S,
respectively [12, Sec. 2.1.1]. The dimension of a convex set S is
defined to be the dimension of its affine span, dim S ¼ dim aff S.
A nonempty set S � Rd is called a polyhedron [12, Sec. 2.1.2] if
there exists A 2 Rm�d; b 2 Rm such that S ¼ fx 2 Rd :
A � x � bg; note that S is closed and convex. The linear subspace
L ¼ fx 2 Rd : A � x ¼ 0g is called the lineality space of S.

4.2 Piecewise-Affine Functions. We will represent a
piecewise-affine function using a triangulation ðZ�; Zþ;DÞ
[33, Sec. 3.1] that consists of a combinatorial simplicial complex

D whose vertex set is in 1-to-1 correspondence with each of the
finite sets of vectors Z� � Rd; Zþ � Rc. For our purposes,6 a
combinatorial simplicial complex D is a collection of finite sets
D ¼ fDxgx2X such that S � Dx ) S 2 D for all x 2 X; we call
[x2X Dx the vertex set of D. We assume that, for every x 2 X,
the collections of vectors Z6

x � Z6 determined by Dx are affinely
independent [33, Sec. 2.1.1] so that D6

x ¼ convZ6
x are

ððDxÞ � 1Þ-dimensional geometric simplices [33, Claim 2.9]
where D�x � Rd; Dþx � Rc. We assume further that, for every
x;x0 2 X, the collections of vectors Z6

x;x0 � Z6 determined by
Dx \ Dx0 coincide with Z6

x \ Z6
x0 � Z6 so that D6 ¼ fD6

xgx2X
are geometric simplicial complexes [33, Sec. 2.2.1]. With these
assumptions in place, the correspondence between Z– and Zþ

determined by the triangulation ðZ�; Zþ;DÞ uniquely defines a
piecewise-affine function P : jD�j ! jDþj using the construction
from [33, Sec. 3.1] where jD�j ¼ [x2X D�x � Rd; jDþj ¼
[x2X Dþx � Rc are termed the carriers [12, Sec. 2.2.1] of the geo-
metric simplicial complexes D6.

4.3 Piecewise-Linear Functions. If a piecewise-affine func-
tion P : Rd ! Rc is positively homogeneous, that is,

8a � 0; v 2 Rd : Pða � vÞ ¼ a � PðvÞ (21)

then P is piecewise linear [12, Prop. 2.2.1]. In this case, P admits
a conical subdivision [12, Prop. 2.2.3], that is, there exists a
finite collection R ¼ fRxgx2X such that: (i) Rx � Rd is a d-
dimensional polyhedral cone for each x 2 X;7 (ii) the Rx’s cover
Rd;8 and (iii) the intersection Rx \ Rx0 is either empty or a
proper face of both polyhedral cones for each x;x0 2 X.9

4.4 Piecewise-Differentiable (PCr) Functions. (This section
is largely repeated from [8, Sec. 3.2].) The notion of
piecewise–differentiability we employ was originally introduced
in Ref. [35]; since the monograph [12] provides a more recent and
comprehensive exposition, we adopt the notational conventions
therein. Let r 2N [ f1g and D � Rd be open. A continuous
function f : D! Rc is called piecewise Cr if for every x0 2 D
there exists an open set U � D containing x0 and a finite collec-
tion ffj : U ! Rcgj2J of Cr functions such that for all x 2 U we
have f ðxÞ 2 ffjðxÞgj2J . The functions ffjgj2J are called selection
functions for f jU , and is said to be a continuous selection of ffjgj2J

Fig. 4 Vertical-plane biped, a 3-degree-of-freedom mechanical system subject to unilateral constraints (Sec. 3.2.4), consists
of a planar body with two rigid massless legs falling under the influence of gravity toward a substrate (left). The system’s flow
can be C1 (center) or PCr (right) depending on how forces vary as limbs contact substrate.

5https://github.com/gcouncil-cmu/bderv

6There are more general definitions of ([complete] semi-)simplicial complexes
and the closely related concept of D-complexes in the literature [34, Ch. 2.1], [33,
App. A.3.1]. Since we employ these concepts primarily in service of parameterizing
piecewise-affine functions as in Ref. [33, Sec. 3.1], we adopt the (relatively
restrictive) definitions of combinatorial and geometric simplicial complexes from
Ref. [33, Sec. 2.2.1] in what follows.

7i.e., Rx ¼ f
P‘x

j¼1 ajv
x
j : fajg‘xj¼1

� ½0;1Þg, some fvjg‘xj¼1
� Rd [12, Thm.

2.1.1], and dimRx ¼ d.
8i.e., [x2X Rx ¼ Rd .
9i.e., Rx \ Rx0 ¼ f

P‘x;x0
j¼1 ajv

x;x0
j : fajg‘x;x0j¼1 � ½0;1Þg, some fvx;x0

j g‘
j¼1

x;x0 � fvx
j g

‘x
j¼1
[ fvx0

j g
‘x0
j¼1

.
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on U. A selection function fj is said to be active at x 2 U if
f ðxÞ ¼ fjðxÞ. We let PCrðD;RcÞ denote the set of piecewise-Cr

functions from D to Rc. Note that PCr is closed under composi-
tion. The definition of piecewise Cr may at first appear unrelated
to the intuition that a function ought to be piecewise-differentiable
precisely if its “domain can be partitioned locally into a finite
number of regions relative to which smoothness holds” [36,
Sec. 1]. However, as shown in [36, Thm. 2], piecewise-Cr func-
tions are always piecewise differentiable in this intuitive sense.

Piecewise-differentiable functions possess a first-order approxi-
mation Df : TD! TRc called the Bouligand derivative (or
B–derivative) [12, Ch. 3]; this is the content of Ref. [12, Lemma
4.1.3]. Significantly, this B-derivative obeys generalizations of
many techniques familiar from calculus, including the chain rule
[12, Thm 3.1.1], fundamental theorem of calculus [12, Prop.
3.1.1], and implicit function theorem [37, Cor. 20]. We let
Df ðx; dxÞ denote the B-derivative of f evaluated on the tangent
vector dx 2 TxD. The B-derivative is positively homogeneous,
i.e., 8dx 2 TxD; k � 0 : Df ðx; k dxÞ ¼ kDf ðx; dxÞ, and coincides
with the directional derivative of f in the dx 2 TxD direction. In
addition, the B-derivative Df ðxÞ : TxD! Tf ðxÞR

c of f at x 2 D is
a continuous selection of the derivatives of the selection functions
active at x [12, Prop. 4.1.3]

8dx 2 TxD : Df ðx; dxÞ 2 fDfjðxÞ � dxgj2J (22)

However, the function Df is generally not continuous at
ðx; dxÞ 2 TD; if it is, then f is C1 at x [12, Prop. 3.1.2].

4.5 Event-Selected Cr
(ECr

) Vector Fields and PCr
Flows.

Vector fields with discontinuous right-hand sides and their associ-
ated flows have been studied extensively [38]. In [8, Defs. 1, 2], a
special class of so-called event-selected Cr (ECr) vector fields
were defined, which are allowed to be discontinuous along a finite
number of codimension-1 submanifolds but do not exhibit sliding
[10] along these submanifolds, and are Cr elsewhere. Importantly,
as shown in Ref. [8, Thm. 5], an event-selected Cr vector field F :
Rd ! TRd generates a piecewise-differentiable flow, that is,
there exists a function / : F ! Rd that is piecewise Cr

(/ 2 PCr) in the sense defined in Ref. [12, Sec. 4.1] (summarized
in Sec. 4.4) where F � R�Rd and

8ðt; xÞ 2 F : /ðt; xÞ ¼ xþ
ðt

0

Fð/ðs; xÞÞds (23)

Since / is PCr , it admits a first-order approximation D/ : TF !
TRd termed the Bouligand (or B-)derivative [12, Sec. 3.1], which
is a continuous piecewise-linear function of tangent vectors at
every ðt; xÞ 2 F , that is, the directional derivative D/ðt; xÞ :
Tðt;xÞF ! T/ðt;xÞR

d is continuous and piecewise linear for all
ðt; xÞ 2 F .

4.6 B-Derivative of an ECr Vector Field’s PCr Flow. Sup-
Suppose F : Rd ! TRd is an ECr vector field with PCr flow

/ : F ! Rd . Given a tangent vector ðdt; dxÞ 2 Tðt;xÞF , it was
shown in Ref. [8, Sec. 7.1.4] that the value of the B-derivative
D/ðt; x; dt; dxÞ 2 T/ðt;xÞR

d can be obtained by solving a jump-
linear-time-varying differential equation [8, Eq. (70)], where the
“jump” arises from a matrix Nx determined by the sequence x in
which the perturbed initial state xþ a dx crosses the surfaces of dis-
continuity of the vector field F for small a > 0 [8, Eq. (67)]. How-
ever, Ref. [8] did not provide a representation of the piecewise-linear
operator D/ðt; xÞ (and, to the best of our knowledge, neither has sub-
sequent work). The key theoretical contribution of this paper,
obtained in Sec. 5, is a representation of the B-derivative with respect
to state, Dx/ðt; xÞ, using a triangulation of its domain and codomain
as defined in Ref. [33, Sec. 3.1] (and recalled in Sec. 4.2).

To inform the triangulation of the B-derivative Dx/ðt; xÞ, we
recall the values it takes on. Since the flow / : F ! Rd is

piecewise Cr (PCr), it is a continuous selection of a finite collec-
tion of Cr functions f/x : Fx ! Rdgx2X near ðt; xÞ 2 F , where
Fx � F is an open set containing (t, x) for each x 2 X [12, Sec.
4.1], and the B-derivative Dx/ðt; xÞ is a continuous selection of
the classical (Fr�echet or F-)derivatives fDx/xðt; xÞgx2X [12,
Prop. 4.1.3], that is,

8dx 2 Wx � TxRd : Dx/ðt; x; dxÞ ¼ Dx/xðt; xÞ � dx (24)

where Wx � TxRd is the subset of tangent vectors where the
selection function Dx/x is essentially active [12, Prop. 4.1.1]. If
s; t 2 R and x 2 Rd are such that 0 < s < t and the vector field F
is Cr on /ð½0; t�nfsg; xÞ, i.e., the trajectory initialized at x 2 Rd

encounters exactly one discontinuity of F at q ¼ /ðs; xÞ on the
time interval ½0; t�, then Dx/xðt; xÞ has the form

Dx/xðt; xÞ ¼
Dx/

�
t� s; qÞ � Fþ1ðqÞ Id

� 	
� Nx � 0>d

Id

� �
� Dx/ðs; xÞ (25)

where Fþ1 is the Cr extension of FjInt Dþ1
that exists by virtue of

condition 2 in Def. 1 and Nx 2 Rðdþ1Þ�ðdþ1Þ is the matrix from
Ref. [8, Eq. (67)] corresponding to the selection function index
x 2 X. In what follows, we will work in circumstances where the
selection functions are indexed by the symmetric permutation
group over n elements, i.e., X ¼ Sn, and combine Eqs. (24) and
(25) as

8dx 2 Wr � TxRd :

Dx/ðt; x; dxÞ ¼ Dx/ðt� s; qÞ �Mr � Dx/ðs; xÞ � dx (26)

where the saltation matrix10 Mr 2 Rd�d corresponding to index r
is defined by

Mr ¼ Fþ1ðqÞ Id

� 	
� Nr � 0>d

Id

� �
(27)

4.7 Local Approximation of an ECr
Vector Field. Suppose

vector field F : Rd ! TRd is event-selected Cr with respect to
h 2 CrðU;RnÞ at q 2 U � Rd. For b 2 Bn ¼ f�1;þ1gn

let

eDb ¼ fx 2 Rd : bj DhjðqÞðx� qÞ � 0g (28)

and consider piecewise-constant vector field eF : Rd ! TRd

defined by

8b 2 Bn; x 2 eDb : eFðxÞ ¼ FbðqÞ (29)

where Fb is the Cr extension of FjIntDb
that exists by virtue of con-

dition 2 in Def. 1. Note that eF is event-selected Cr with respect to
the affine function eh defined by

8x 2 Rd : ehðxÞ ¼ DhðqÞðx� qÞ (30)

whence it generates a piecewise-differentiable flow e/ : eF ! Rd

where eF ¼ R�Rd . In Ref. [8, Sec. 7.1.3], eF was referred to as
the sampled vector field since it is obtained by “sampling” the
selection functions Fb that define F near q, and it was noted that
the function e/ is piecewise affine and it approximates the original
vector field’s flow / near q. We will leverage the algebraic prop-
erties of e/ and its relationship to / in what follows to obtain our
results.

10Nr 2 Rðdþ1Þ�ðdþ1Þ is referred to as a saltation matrix in Ref. [8, Sec. 7.1.4], but
this usage is inconsistent with the original definition in Ref. [13].
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4.8 Time-to-Impact for an ECr
Vector Field and Its Local

Approximation. Suppose vector field F : Rd ! TRd is event-
selected Cr with respect to h 2 CrðU;RnÞ at q 2 U � Rd , and let
/ 2 PCrðF ;RdÞ be its piecewise-differentiable flow. Then Ref.
[8, Thm. 7] ensures there exists a piecewise-differentiable time-to-
impact function s 2 PCrðU;RnÞ such that, 8x 2 U; j 2 f1;…; ng

/ðsjðxÞ; xÞ 2 Hj ¼ h�1
j ðhjðqÞÞ (31)

i.e., x flows to the surface Hj in time sjðxÞ. Similarly, applying [8,

Thm. 7] to the sampled vector field eF : Rd ! TRd and

piecewise-affine flow e/ : eF ! Rd associated with F at q con-
structed in Sec. 4.7 ensures there exists a piecewise-affine time-

to-impact function es : Rd ! Rn such that 8x 2 Rd; j 2 f1;…; ng

~/ð~sjðxÞ; xÞ 2 ~Hj ¼ qþ ker DhjðqÞ (32)

i.e., the point x flows to the affine subspace eHj in time esjðxÞ.

5 Representation

Our main theoretical result is an explicit representation for the
Bouligand (or B-)derivative of the piecewise-differentiable flow
generated by an event-selected Cr vector field. To that end, let F :
Rd ! TRd be an event-selected Cr vector field and / : F ! Rd

its piecewise-differentiable flow. In what follows, we will assume
that s; t 2 R and x 2 Rd are such that 0 < s < t and the vector
field F is Cr on /ð½0; t�nfsg; xÞ. Although a general trajectory can
encounter more than one point of discontinuity for F, such points
are isolated [8, Lem. 6], so the Chain Rule for B-differentiable
functions [12, Thm. 3.1.1] can be applied to triangulate the
desired flow derivative by composing the triangulated flow deriva-
tives associated with each point. Thus, without loss of generality,
we restrict our attention to portions of trajectories that encounter
one point of discontinuity for F, which point lies at the intersec-
tion of n surfaces of discontinuity for F. We assume n> 1 because
at least two surfaces are needed for our results to be useful: when
n¼ 1 the desired B-derivative is linear [13], so it may be repre-
sented and employed in computations as a matrix.

The B-derivative Dx/ðt; xÞ : TxRd ! T/ðt;xÞR
d we seek is a

continuous piecewise-linear function, so it can be parsimoniously

represented using a triangulation [33, Sec. 3.1], that is, a combinato-
rial simplicial complex (as defined in Sec. 4.2) each of whose verti-
ces are associated with a pair of (tangent) vectors—one each in the
domain and codomain of Dx/ðt; xÞ. We will obtain this triangulation
via an indirect route: in Sec. 5.1, we triangulate the piecewise-affine
flow e/ introduced in Sec. 4.7; in Sec. 5.2, we differentiate our repre-

sentation of e/ to obtain a triangulation of the B-derivative Dx
e/; in

Sec. 5.3, we show how the B-derivative Dx/ can be obtained from

Dx
e/, providing a triangulation of the desired derivative.

5.1 Triangulation. The goal of this section is to triangulate
the piecewise-affine flow e/ introduced in Sec. 4.7. To that end, let
q ¼ /ðs; xÞ and suppose11 rank DhðqÞ ¼ n so fdq 2 TqRd : b ¼
sign DhðqÞ � dqg has nonempty interior for each b 2 f�1;þ1gn

¼ Bn. Letting K ¼ ker DhðqÞ � TqRd denote the kernel of DhðqÞ
and K? its orthogonal complement, for each b 2 Bn there exists a
unique12,13 fb 2 K? þ fqg such that

Dhb>0ðqÞðfb � qÞ ¼ 0; Dhb<0ðqÞðfb þ FbðqÞ � qÞ ¼ 0 (33)

where hb>0 (respectively, hb<0) denotes the function obtained by
selecting components hj of h for which bj ¼ þ1 (respectively,
bj ¼ �1). The vectors defined by Eq. (33) have special significance
for the piecewise-affine flow e/ introduced in Sec. 4.7 (see Fig. 5(a))

8b 2 Bn : fb 2 ~D�1; ~/ð1; fbÞ ¼ fb þ FbðqÞ 2 ~Dþ1 (34)

that is, the point fb lies “before” all event surface tangent planes
and flows in 1 (one) unit of time to fb þ FbðqÞ, which lies “after”
all event surface tangent planes (neither “before” nor “after”
should be interpreted strictly). We denote the collections of these
vectors as follows:

Fig. 5 Triangulation of time-1 flow ~/1 of sampled system associated with planar ECr vector field. (a) For each

b ‰ f21;11g2, the point fb defined by Eq. (33) flows from eD 21 to eD 11 in 1 (one) unit of time via the sampled
system illustrated in Fig. 1(b) and defined in Sec. 4.7. (b) The sets ff21; f11; f(11;21)g, ff21; f11; f(21;11)g indexed

by Eq. (37) define geometric simplices D2

(1;2); D2

(2;1) that pass through subspaces eH 1; eH 2 in the same order. (c)

For each r ‰ f(1; 2); (2; 1)g, the set Rr is a direct sum of D2
r with subspace K.

11As observed in Ref. [8, Sec. 7.1.5], first-order approximations of an ECr vector
field’s PCr flow are not affected by flow between surfaces that are tangent at q, so
we assume such redundancy has been removed.

12Here and in what follows we mildly abuse notation via the natural vector space
isomorphism Rd ’ TqRd .

13rankDhðqÞ ¼ n ensures uniqueness since (i) K? is n-dimensional, (ii) the rows
of DhðqÞ are linearly independent, and hence (iii) there are n independent equations
in the n unknowns needed to specify fb in Eq. (33).
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Z� ¼ ffbgb2Bn
; Zþ ¼ ffb þ FbðqÞgb2Bn

(35)

In what follows, it will be convenient to use an element r 2 Sn

of the symmetric permutation group over n elements to specify
nþ 1 elements of b 2 Bn as follows: for each k 2 f0;…; ng, let
rðf0;…; kgÞ � f1;…; ng specify the unique b 2 Bn whose jth
component isþ 1 if and only if j 2 rðf0;…; kgÞ. Note that
this identification yields, with some abuse of notation,
rðf0gÞ ¼ �1; rðf0;…; ngÞ ¼ þ1. Finally, note that the follow-
ing are linearly independent collections of vectors:

frðf0;…;kgÞ � q
� �n�1

k¼0
(36a)

frðf0;…;kgÞ þ Frðf0;…;kgÞðqÞ � q
� �n

k¼1
(36b)

This fact is easily verified for Eq. (36a) in coordinates where
DhðqÞ ¼ ½In 0n�ðd�nÞ�, where the fact follows for Eq. (36b) by
Eqs. (36a) and (34) via [8, Cor. 5(c)] (time-t flow of an ECr vector
field is a homeomorphism of the state space).

Let D be the combinatorial simplicial complex over vertices Bn

with maximal n-simplices indexed by r 2 Sn via

Dr ¼ frðf0;…; kgÞgn
k¼0 2 D (37)

where we regard rðf0;…; kgÞ as an element of Bn using the same
abuse of notation employed in Eq. (36). By associating each ver-
tex b 2 Bn with the vector fb 2 Z� � Rd , every n-simplex Dr
determines an n-dimensional geometric simplex D�r � Rd , the
dimensionality of which is ensured by Eq. (36a); similarly,
Eq. (36b) ensures that associating each b 2 Bn with ðfb þ
FbðqÞÞ 2 Zþ � Rd determines an n-dimensional geometric sim-
plex Dþr � Rd from each n-simplex Dr. Refer to Fig. 5(b) for an
illustration when n¼ 2. The triple ðZ�; Zþ;DÞ parameterizes a
continuous piecewise-affine homeomorphism P : jD�j ! jDþj
using the construction from Ref. [33, Sec. 3.1] (summarized in
Sec. 4.2), where jD6j ¼ [r2Sn

D6
r � Rd denote the carriers of the

geometric simplicial complexes D6.
We now show that the piecewise-affine function P constructed

above is the nonlinear part of the time-1 flow of the sampled systeme/1 restricted to jD�j. For each r 2 Sn we extend the n-dimensional
geometric simplex D�r determined by the n-simplex Dr via direct
sum with the ðd � nÞ-dimensional subspace K to obtain a d-
dimensional polyhedron Rr (see Fig. 5(c)), and let jRj ¼ [r2Sn

Rr.
Note that K is a subset of the lineality space of Rr for each r 2 Sn.

LEMMA 1. e/1jjRj is piecewise affine and

8z 2 jD�j; n 2 K : e/1ðzþ nÞ ¼ PðzÞ þ n (38)

Proof. This proof will proceed in two steps: (i) show thate/1ðzÞ ¼ PðzÞ for all z 2 jD�j; (ii) show that e/1ðzþ nÞ ¼e/1ðzÞ þ n for all z 2 jD�j; n 2 K.

(i) Recall from Eq. (34) that e/1jZ� ¼ PjZ� where Z– is the ver-
tex set for the geometric simplicial complex D�. For each
r 2 Sn let Zr ¼ ffbgb2Dr

denote the vertex set of the n-
dimensional geometric simplex D�r . Then we claim that
each z 2 D�r passes through the same sequence of transition
surfaces as each fb 2 Zr. To verify this claim, we use the
piecewise-affine time-to-impact function es : Rd ! Rn

from Sec. 4.8. Note that fb impacts affine subspace eHj at
time 1 if bj ¼ �1 and at time 0 if bj ¼ þ1, i.e.,

es jðfbÞ ¼
1; bj ¼ �1

0; bj ¼ þ1

(
(39)

Convex combination a fb þ ð1� aÞfb0 , a 2 ð0; 1Þ, b; b0 2 Dr,
impacts eHj at time esjða fb þ ð1� aÞfb0 Þ that is: 0 if bj ¼ b0j ¼ þ1,
1 if bj ¼ b0j ¼ �1, and between 0 and 1 otherwise. More gener-
ally, any point z 2 D�r is a convex combination of the vertices Zr,
whence it impacts surfaces in the order prescribed by r, so
8z 2 D�r

0 � esrð1ÞðzÞ � esrð2ÞðzÞ � � � � � esrðnÞðzÞ < 1 (40)

Thus, e/1jD�r is affine and agrees with PjD�r . Since
jD�j ¼ [r2Sn

D�r , we have e/1jjD�j ¼ P.
(ii) We now show that the piecewise-affine map e/1 is indiffer-

ent to every n 2 K ¼ ker DhðqÞ, so for every z 2 jD�j

e/1ðzþ nÞ ¼ e/1ðqþ ðzþ n� qÞÞ (41a)

¼ e/1ðqÞ þ De/1ðq; zþ n� qÞ (41b)

¼ e/1ðqÞ þ De/1ðq; z� qÞ þ n (41c)

¼ e/1ðzÞ þ n (41d)

Indeed, Eq. (41a) since zþ n ¼ qþ ðzþ n� qÞ; Eq. (41b) sincee/1 is affine on the segment fqþ a ðzþ n� qÞ : a 2 ½0; 1�g;
Eq. (41c) since each piece of the continuous piecewise-linear
B-derivative De/1ðqÞ is specified by a saltation matrix (as
recalled in Sec. 4.4) that is the product of matrices of the form
ðId þ g � DhjðqÞÞ [8, Eq. (60)], thus n 2 K ¼ kerDhðqÞ is trans-
formed by Id; Eq. (41d) for the same reason as Eq. (41b). �

5.2 B-Derivative of e/. The goal of this section is to differen-
tiate the representation of e/ from Sec. 5.1 to obtain a triangulation
of the B-derivative De/1 : Tq�Rd ! TqþRd between the follow-
ing two points:

q� ¼ q� 1

2
F�1 qð Þ; qþ ¼ ~/ 1; q�ð Þ ¼ qþ 1

2
Fþ1 qð Þ (42)

LEMMA 2. B ¼ De/1ðq�Þ : Tq�Rd ! TqþRd satisfies:

1. B specifies how e/1 varies relative to e/1ðq�Þ

8x 2 jRj : e/1ðxÞ ¼ e/1ðq�Þ þ Bðx� q�Þ (43)

2. B is piecewise linear with conical subdivision

R0 ¼ fR0r ¼ coneðRr � q�Þ : r 2 Sng (44)

3. BjR0r is linear for all r 2 Sn and 8dq 2 R0r :

BðdqÞ ¼ Mr � dq (45)

4. L ¼ Kþ span F�1ðqÞ is a ðd � nþ 1Þ-dimensional lineal-
ity space for R0 and 8r 2 Sn

R0r ¼ L þ cone P?L � ðfrðf0;…;kgÞ � qÞ
n on�1

k¼1
(46)

where P?L is the orthogonal projection onto L?;
5. BjL is linear and 8dq 2 Tq�Rd

BðdqÞ ¼ BðPL � dqÞ þ BðP?L � dqÞ (47)

where PL is the orthogonal projection onto L.
Proof. Each point follows from straightforward application of

results in Ref. [12]: (1.), (2.), and (3.) are conclusions (4.), (3.),
and (2.), respectively, of Ref. [12, Prop. 2.2.6]; (4.) follows from
the definitions of lineality space [12, Sec. 2.1.2] and the fb’s
Eq. (33); (5.) is a restatement of Ref. [12, Lem. 2.3.2]. �

5.3 B-Derivative of / The goal of this section is to show that
the piecewise-linear function B triangulated in Sec. 5.2 gives the
nonlinear part of the desired B-derivative Dx/ðt; xÞ and14

14Here and in what follows we mildly abuse notation via the natural vector space
isomorphisms Rd ’ Tq�Rd ’ TqþRd ’ TqRd .
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Wr ¼ Dx/ðs; xÞ�1ðR0rÞ � TxRd (48)

is the cone of tangent vectors where the saltation matrix Mr is
active in Eq. (26).

THEOREM 1. Suppose vector field F : Rd ! TRd is event-
selected Cr with respect to h : Rd ! Rn at q. Let / : F ! Rd be
the PCr flow of F and s; t 2 R, x 2 Rd be such that 0 < s < t and
F is Cr on /ð½0; t�nfsg; xÞ � Rd. Then with q ¼ /ðs; xÞ, the
B-derivative of the flow / with respect to state,
Dx/ðt; xÞ : TxRd ! T/ðt;xÞR

d, is given 8dx 2 Wr � TxRd by

Dx/ðt; x; dxÞ ¼ Dx/ðt� s;qÞ � BðDx/ðs; xÞ � dxÞ; (49a)

Dx/ðt; x; dxÞ ¼ Dx/ðt� s; qÞ �Mr � Dx/ðs; xÞ � dx (49b)

where B is the continuous piecewise-linear function from Lemma
2, Wr is the cone from Eq. (48), and Mr is the saltation matrix
from Eq. (27).

Proof. Note that Eq. (49a) follows from Eq. (49b) by
Eq. (45), and the fact that “pieces” of the B-derivative Dx/ðt; xÞ
are determined by the collection of saltation matrices fMrgr2Sn

was recalled in Sec. 4.4. Thus, to establish Eq. (49b) what remains
to be shown is that Mr is the active “piece” for all dx 2 Wr, i.e.,
that fWrgr2Sn

is a conical subdivision for the piecewise-linear
operator Dx/ðt; xÞ, with Wr as defined in Eq. (48).

Given dx 2 Int Wr let dq ¼ Dx/ðs; xÞ � dx 2 Int R0r so that

esrð1Þðqþ dqÞ < esrð2Þðqþ dqÞ < � � � < esrðnÞðqþ dqÞ (50)

where es is the time-to-impact function for the sampled system as
defined in Eq. (32). Note that Dx/ðt; xÞ is linear on span FðxÞ, i.e.,
8a 2 R

Dx/ðt; x; dxþ aFðxÞÞ ¼ Dx/ðt; x; dxÞ þ aFð/ðt; xÞÞ (51)

so without loss of generality, we assume dq 2 Int ~D�1 by translat-
ing dx in the �FðxÞ direction. We claim for all a > 0 sufficiently
small that /ðt; xþ a dxÞ passes through the event surfaces with
the same sequence as e/ð1;qþ a dqÞ, i.e., that

srð1Þðxþ a dxÞ < srð2Þðxþ a dxÞ < � � � < srðnÞðxþ a dxÞ (52)

where s is the time-to-impact function defined in Eq. (31). To see
this, note that 8k 2 f1;…; ng

srðkÞðxþ a dxÞ � srðkÞðxÞ (53a)

¼ DsrðkÞðx; a dxÞ þ Oða2Þ (53b)

¼ DesrðkÞðq; a dqÞ þ Oða2Þ (53c)

¼ esrðkÞðqþ a dqÞ �esrðkÞðqÞ þ Oða2Þ (53d)

where: Eq. (53b) since s is PCr; Eq. (53c) since dq ¼
Dx/ðs; xÞ � dx and Dsðx; dxÞ; Desðq; dqÞ are determined by the
same data, namely, DhrðkÞðqÞ and F�1ðqÞ; Eq. (53d) since
dq 2 R0r. Combining the approximation Eq. (53) with Eq. (50)
yields Eq. (52) as desired.

We conclude that fWrgr2Sn
is a conical subdivision for the

piecewise-linear operator Dx/ðt; xÞ, which verifies Eq. (49). �
Remark 1. The only nonclassical part of the B-derivative of the

flow in Eq. (49a) is the piecewise-linear function B. Although there
are n! pieces of B in general, we explicitly represent all pieces using
a triangulation of 2n sample points defined in Eq. (35), achieving a
substantial reduction—from factorial to “merely” exponential—of
the information needed to represent the first-order approximation of
the flow. Note that B implicitly determines the transition sequence r
associated with the perturbation direction dx in Eq. (49a), whereas

this sequence must be explicitly specified to select the appropriate
saltation matrix Mr in Eq. (49b).

6 Computation

We now attend to the complexity of the computational tasks
required to construct or evaluate the B-derivative representation
from Sec. 5. To that end, let F : Rd ! TRd be an event-selected
Cr vector field with respect to h 2 CrðRd;RnÞ and / : F ! Rd

its piecewise-Cr flow, and assume s; t 2 R and x 2 Rd are such
that 0 < s < t, q ¼ /ðs; xÞ, and the vector field F is Cr on
/ð½0; t�nfsg; xÞ.

We seek to compute Dx/ðt; x; dxÞ given dx 2 TxRd . Since
Eq. (49a) from Theorem 1 yields

Dx/ðt; x; dxÞ ¼ Dx/ðt� s; xÞ � BðDx/ðs; xÞ � dxÞ (54)

where B : TqRd ! TqRd , the crux of the computation is

dqþ ¼ Bðdq�Þ (55)

where dq� ¼ Dx/ðs; xÞ � dx. In fact, Lemma 2 offers further
simplification via Eq. (47): since B ¼ B 	PL þ B 	P?L where
B 	PL is the linear function

B 	PL � dq� ¼

Id þ Fþ1 qð Þ � F�1 qð Þ
� � � F�1 qð Þ>

kF�1 qð Þk2

 !
�PL � dq� (56)

only the piecewise-linear function B 	P?L (equivalently, the
restriction BjL? ) requires special consideration. In what follows,
we will assume the following data, needed to construct the
sampled system illustrated in Fig. 1(b), are given: linearly inde-
pendent normal vectors for the surfaces of discontinuity, i.e.,
DhðqÞ 2 Rn�d with rank DhðqÞ ¼ n; limiting values of the vector
field at the point of intersection, i.e., FbðqÞ 2 TqRd for each
b 2 Bn; and F-derivatives of the continuously differentiable parts
of the flow, i.e., Dx/ðs; xÞ;Dx/ðt� s; xÞ 2 Rd�d .

6.1 Constructing the B-Derivative. Lemma 2 demonstrates
that there are n! pieces of the piecewise-linear function B, namely,
the collection of saltation matrices fMrgr2Sn

in Eq. (45) that are

active on the corresponding polyhedral cones in the conical subdi-
vision R0 ¼ fR0rgr2Sn

in Eq. (44). These polyhedral cones are gen-

erated by the 2n�1 points ffb : b 2 Bnnf�1;þ1gg in Eq. (46).

For each b 2 Bn, the point fb 2 K? þ fqg where K ¼ ker DhðqÞ
can be determined by solving the n affine equations with n
unknowns in Eq. (33). Given r 2 Sn, the linear piece BjL?\R0r can

be constructed using the saltation matrix [8, Sec. 7.1.6] since

Bðdq�Þ ¼ Mr � dq� for all dq� 2 L? \ R0r
where15

Mr ¼
Yn�1

k¼0

Id þ
Fr 0:kþ1ð Þ qð Þ � Fr 0:kð Þ qð Þ
� �

Dhr 0:kð Þ qð Þ � Fr 0:kð Þ qð Þ
� Dhr 0:kð Þ qð Þ

 !
(57)

or using barycentric coordinates [33, Eq. (3.1)] since Bðdq�Þ ¼
Zþr � ðZ�r Þ

†

� dq� for all dq� 2 L? \ R0r where

Z6
r ¼ ½z6

rð0:1Þ z6
rð0:2Þ � � � z6

rð0:n�1Þ� 2 Rd�ðn�1Þ (58)

8b 2 D0r : z�b ¼ P?L � ðfb � qÞ; zþb ¼ BjL?ðz�b Þ (59)

15We mildly abuse notation as in Sec. 5.1 by using r 2 Sn to specify nþ 1
elements of b 2 Bn: for each k 2 f0;…; ng, we let rð0 : kÞ ¼ rðf0;…; kgÞ
� f1;…; ng specify the unique b 2 Bn whose j-th component is þ1 if and only if
j 2 rðf0;…; kgÞ.
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D0r ¼ frðf0; 1;…; kgÞgn�1
k¼1 (60)

note that the pseudo-inverse ðZ�r Þ
†

is injective on L? \ R0r by
Eqs. (36a) and (46). Although the matrices Mr;Z

þ
r � ðZ�r Þ

†

2
Rd�d define the same linear transformation on the ðn� 1Þ-dimen-
sional cone L? \ R0r, they are generally not the same matrix. We
conclude by noting that constructing the saltation matrix in
Eq. (57) requires Oðnd2Þ time and Oðd2Þ space, whereas con-
structing the Barycentric coordinates in Eq. (58) requires Oðn2d2Þ
time and Oðd2Þ space (although evaluating the expression Zþr �
ðZ�r Þ

†

� dq� requires only Oðnd2Þ time given Z6
r ).

6.2 Evaluating the B-Derivative. One obvious strategy to
evaluate B on dq� 2 TqRd is to (i) determine r 2 Sn such that
dq� 2 R0r then (ii) apply the corresponding saltation matrix or
barycentric coordinates calculation from Sec. 6.1. The general for-
mulation of (i), termed the point location problem in the computa-
tional geometry literature, is “essentially open” [39, Sec. 6.5]. For
an arrangement of m hyperplanes in Rd , queries can be answered
in Oðd log mÞ time at the expense of OðmdÞ space [40]. In our con-
text, the conical subdivision R0 in Eq. (46) is determined by an
arrangement of m ¼ Oðn!2Þ hyperplanes, so this general-purpose
algorithm has time complexity Oðd log n!Þ ¼ Oðd n log nÞ and
space complexity Oðn!dÞ.

The relationship established by Eq. (43) between the desired B-
derivative and the flow of the sampled system illustrated in
Fig. 1(b) suggests a different strategy, summarized in Fig. 2, with

slightly worse Oðn2dÞ time complexity but dramatically superior
OðdÞ space complexity. To understand the strategy, interpret the

tangent vector dq� 2 Tq�Rd as a perturbation away from the

point q� ¼ q� 1
2

F�1 qð Þ that flows through q to qþ ¼
qþ 1

2
Fþ1 qð Þ in one unit of time and observe that16 dqþ ¼e/1ðq� þ dq�Þ � qþ ¼ Bðdq�Þ as in Eq. (43). The flow of the

sampled system e/1 is piecewise affine, and can be evaluated on a
given perturbation vector dq� by performing a sequence of n

affine projections (one for each of the affine subspaces f eHjg
n

j¼1

where eF is discontinuous) specified by the permutation r 2 Sn for
which dq� 2 R0r. Fortuitously, the sequence r can be determined
inductively as follows: First, define

dt1 ¼ 0

dq1 ¼ dq�

r 1ð Þ ¼ argmin �
Dhj qð Þ � dq1

Dhj qð Þ � F�1 qð Þ
: j 2 1;…; nf g

( )
s1 ¼ �

Dhr 1ð Þ qð Þ � dq1

Dhr 1ð Þ qð Þ � F�1 qð Þ

(61)

Then for k 2 f1;…; n� 1g inductively define

dtkþ1 ¼ dtk þ sk

dqkþ1 ¼ dqk þ sk � Fr 0;…;k�1f gð Þ qð Þ

r k þ 1ð Þ ¼ argmin �
Dhj qð Þ � dqkþ1

Dhj qð Þ � Fr 0;…;kf gð Þ qð Þ

(
: j 2 1;…; nf gnr 1;…; kf gð Þg

skþ1 ¼ �
Dhr kþ1ð Þ qð Þ � dqkþ1

Dhr kþ1ð Þ qð Þ � Fr 0;…;kf gð Þ qð Þ

(62)

Finally, set dqþ ¼ dqn � ðdtn þ snÞ � Fþ1ðqÞ. By construction,
dq� 2 R0r and dqþ ¼ Bðdq�Þ. This strategy is succinctly summar-
ized in pseudo-code and source code in Fig. 2; its time complexity

is Oðn2dÞ since there are n steps in the induction and each step
requires OðnÞ dot products between d-vectors. The space com-
plexity is OðdÞ since each step in the induction requires OðdÞ stor-
age and data from preceding steps can be forgotten or overwritten.

We conclude by noting that, if a general-purpose algorithm is
employed to solve the point location problem in Oðd n log nÞ time
to obtain the sequence r 2 Sn, then the induction described in the
preceding paragraph can be simplified by skipping the steps that
determine rð1Þ and rðk þ 1Þ from Eqs. (61) and (62). This simpli-
fication reduces the time complexity of the induction to OðndÞ, so
the overall algorithm retains the Oðd n log nÞ time complexity
of the general-purpose point-location algorithm (at the expense of
the superexponential Oðn!dÞ space complexity of the point loca-
tion algorithm). We are pessimistic these asymptotic complexities
can be improved in general.

7 Conclusion

We constructed a representation for the Bouligand (or B-)deriv-
ative of the piecewise-Cr (PCr) flow generated by an event-
selected Cr (ECr) vector field and applied the representation to
derive a polynomial-time algorithm to evaluate the B-derivative
on a given tangent vector. Our results provide a foundation that
may support future work generalizing classical analysis and syn-
thesis techniques for smooth control systems to the class of non-
smooth systems considered here. In particular, we envision
applying our results to design and control the class of mechanical
systems subject to unilateral constraints that arise in models of
robot locomotion and manipulation.
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