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Dynamic mode decomposition (DMD) is a powerful tool for extracting
spatial and temporal patterns from multi-dimensional time series, and it
has been used successfully in a wide range of fields, including fluid mech-
anics, robotics and neuroscience. Two of the main challenges remaining
in DMD research are noise sensitivity and issues related to Krylov space
closure when modelling nonlinear systems. Here, we investigate the combi-
nation of noise and nonlinearity in a controlled setting, by studying a class of
systems with linear latent dynamics which are observed via multinomial
observables. Our numerical models include system and measurement
noise. We explore the influences of dataset metrics, the spectrum of the
latent dynamics, the normality of the system matrix and the geometry of
the dynamics. Our results show that even for these very mildly nonlinear
conditions, DMD methods often fail to recover the spectrum and can have
poor predictive ability. Our work is motivated by our experience modelling
multilegged robot data, where we have encountered great difficulty in recon-
structing time series for oscillatory systems with intermediate transients,
which decay only slightly faster than a period.
1. Introduction
Dynamic mode decomposition (DMD) is a dimensionality reduction and mod-
elling approach that was initially developed in the fluids community [1,2].
DMD has also been used extensively in modelling complex systems in the
life sciences, such as human locomotion [3], brain neural activity [4,5], blood
flow [6], epidemiology [7] and the kinematics of Crevalle jack fish [8]. DMD
is a modal decomposition technique [9,10] that decomposes a matrix of high-
dimensional time series data into a set of spatial coherent structures that exhibit
the same linear dynamics in time (e.g. oscillations, exponential growth/decay).
In this way, the DMD may be thought of as an algorithmic descendent of
principal components analysis (PCA) in space with the Fourier transform in
time [11–14]. Since its introduction, DMD has been rigorously connected to
nonlinear dynamical systems [15], as an approximation of the infinite-
dimensional Koopman operator [16,17]. The Koopman operator, introduced
in 1931, provides an alternative operator-theoretic perspective for dynamical
systems, and it has experienced a resurgence because of its utility for
data-driven analysis [18–23].

Since its introduction, DMD has been applied to a wide range of fields
beyond fluid mechanics [2,24], including robotics [25], disease modelling [7],
neuroscience [4], finance [26] and plasma physics [27,28], to name only a few
[13]. One of the key reasons for the broad success of DMD is its formulation in
terms of linear algebra, statistical regression and optimization, making it relatable
to the recent work in machine learning [29] and highly extensible. Within a short
time, DMD has seen dozens of algorithmic extensions, including for control
[30,31], for large and streaming datasets [32–35] incorporating ideas of random-
ized linear algebra [36,37], for model reduction [38,39], for limited measurements
[40–43] and time delays [44,45], for multiresolution analysis [46], for selecting a
sparse subset of dominant modes [47], and for Bayesian formulations [48],
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among others [49,50]. The PyDMD [51] software package has
emerged as an open source tool for several of these extensions.

Two of the main avenues of DMD research have centred
around noise robustness and closure issues related to modelling
nonlinear systems. It was recognized early that DMD is quite
sensitive to noise [52], and several approaches have been
proposed to address this sensitivity, including a forward–
backward (FB) averaging [53], total least-squares regression
[54], variable projection [55], variational approaches [49],
subspace DMD [56], and methods based on the Kalman
filter [57,58]. A robust approach, based on robust principal
component analysis [59] has also been developed to handle
non-Gaussian noise, such as sparse outliers and corruption.
However, noise sensitivity is still a leading challenge, and is
one that we directly investigate in this paper. Similarly, soon
after the initial connection between DMD and Koopman
theory [15], there were several follow-up studies addressing
how and when a linear regression model can capture essential
features of a nonlinear system. The extended DMD algorithm
was developed to augment the DMD statewith nonlinear obser-
vables to enrich the regression [60–62], and theoretical
convergence results prove that in the infinite data limit, these
models converge to the projection of the Koopman operator on
this observable subspace [63]. However, often the observable
subspace is not closed under action of the Koopman operator,
so that it does not form an invariant subspace, resulting in
poorly predicted dynamics [64].

In our own work, we have sometimes encountered great
difficulty in reconstructing bio-locomotion time series with
DMD. A particularly difficult class seems to be the reconstruc-
tion of intermediate transients—transient phenomena that decay
faster than the slowest mode, but not much faster. This
phenomenon is common in both animal and robot locomotion,
when springy legs dissipate energy during ground contact.
The transient effect of a perturbation can last for several gait
cycles before decaying below the noise floor [65,66], which
should be characterized by modes inside the unit circle. Lim-
ited dataset size in animal experiments also prevents us from
inferring the true spectrum of the dynamics. Different from
the commonly studied long single trajectory, the animal data
are usually composed of multiple short trajectories.

Here, we investigate the possible sources of these difficul-
ties by studying special class of systems for which both the
latent linearization and the linearizing observables are
completely known—the class systems with linear latent
dynamics which are observed via multinomial observables:

xkþ1 ¼ Axk; y ¼ PðxÞ, ð1:1Þ

where P(x) is a (typically low order) multinomial. However,
since we are considering models of physical systems, we
will assume both system noise, and measurement noise:

xkþ1 ¼ Axk þ ðsystem noiseÞ and

y ¼ PðxÞ þ ðmeasurement noiseÞ: ð1:2Þ

In this paper, we explore the combination of noise and non-
linearity in this controlled setting, where it is possible to isolate
and analyse each effect with incrementally increasing severity.
Specifically, we explore a particularly benign class of such
systems, having three-dimensional latent dynamics and obser-
vables that are monotone polynomials in individual
coordinates. We demonstrate that even for these very mildly
nonlinear systems, observed over a subspace closed under the
Koopmanoperator,DMDmethodsoften fail to recover the spec-
trum and can have poor predictive value. We also explore the
influences of dataset metrics, the spectrum of the latent
dynamics, the normality of the systemmatrix and the geometry
of the dynamics. Based on results from this self-contained fra-
mework, we give generalizable recommendations regarding
dataset properties for DMD analysis. All code used to generate
these results are available as open source at: 10.7302/nzq9-4715.
2. Background
Here, we will introduce the DMD, which is a recent technique
for linear system identification. DMD is closely related to
Koopman operator theory, which provides a representation of
a dynamical system in terms of the evolution of its ‘observables’.
Wewill also introduce Koopman theory, as it relates to perform-
ingDMDondata that is augmentedwith nonlinear observables.

2.1. Modal decomposition of dynamical systems
Consider equation (1.1), representing a linear dynamical system.
Assuming we can observe the state x [ Rn directly, the most
natural modelling question would be to ask ‘can we recover
the system matrix A [ Rn�n that updates the state
xk+1 =Axk?’ Modal decompositions are a class of solutions to
this estimation problem that are particularly suited to high-
dimensional datawhere n≫ 1. The decomposition they use rep-
resents the dynamics in terms of ‘modes’ or ‘coherent structures’,
i.e. components of x, each of which evolves linearly, and which
evolve independently of each other. The eigenvectors ϕ of the
systemmatrixA represent these modes. For non-degenerate sys-
tems, they have the dimension of the original data x, and
describe spatial structures that behave coherently in time accord-
ing to the corresponding eigenvalue λ, i.e. we can write

xk � FdiagðlÞk�1b ¼
X
i

fil
k�1
i bi, ð2:1Þ

where each mode ϕi evolves exponentially with its own eigen-
value λi, and the initial condition x0 ¼ Fb merely sets b, the
weights of the various modes.

This modelling approach may seem to be highly limited—
after all, it requires linear systems with an observable state.
However, the linearity of the underlying system turns out to be
merely a matter of dimension. Koopman theory teaches us
that nonlinear dynamics can be represented by an infinite-
dimensional linear operator, raising the hope of modelling such
systems with (possibly large) finite-dimensional approximate
representations of the infinite-dimensional operator.

2.1.1. Koopman theory
Consider the flow F :X� R ! X of a continuous- or discrete-
time dynamical system, denoted x(t) = F t(x(0)) where
xð0Þ, xðtÞ [ X. By ‘flow’ we mean that F under composition
has the same group structure as the group ðR, þÞ, i.e.
8 t, s [ R : Ft � Fs ¼ Ftþs and F0 is the identity map on X.

Koopman theory governs the time evolution of observa-
bles of the state x(t). An ‘observable’ is a map g :X ! V into
some space of observation values V, which we will assume
is of the form Cd: a vector space over the field of complex num-
bers. The ‘Koopman operators’ (a.k.a. ‘composition operators’)
Kt act on observables (e.g. g) by

8 t [ R, x [ X : ðKtgÞðxÞ ¼ gðFtðxÞÞ, ð2:2Þ

http://dx.doi.org/10.7302/nzq9-4715
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i.e. Kt takes the observable g to the new observable g ○ F t

which describes the observation each state would produce
after first evolving under the dynamics for t units of time.

Our interest lies in observables g such that g ○ F t is a linear
system in V, i.e. there exists a matrix M [ AutðVÞ such that
expðtMÞ � g ¼ g � Ft ¼ Ktg. Such g spans an ‘eigenspace’ of
K over which the finite-dimensional linear evolution operator
M is a faithful representation. In the case where M is a scalar,
this coincides with the familiar definition of eigenvectors of
the linear operator Kt. Furthermore, if g is injective it has a
left inverse and the nonlinear dynamics F t can be rewritten as

Ft ¼ g�1 � expðtMÞ � g, ð2:3Þ
i.e. as latent linear dynamics observed through a change
of coordinates. This also implies that by diagonalizing M =
V−1ΛV we obtain that Vg is a modal decomposition of the
nonlinear dynamics of x under F t.

Note that for any two eigenfunctions gA, gB with com-
muting (matrix-valued) eigenvalues A and B, the function
g(x) := gA(x) · gB(x) satisfies

g � Ft ¼ ðgA � FtÞ � ðgB � FtÞ ¼ expðtAÞ � gA � expðtBÞ � gB
¼ expðtðAþ BÞÞ � ðgA � gBÞ ¼ expðtðAþ BÞÞ � g,

ð2:4Þ
and thus the pointwise product of eigenfunctions whose
eigenvalues commute is itself an eigenfunction whose eigen-
values are the sum of the constituent eigenvalues. This also
implies (trivially) that non-negative integer powers of eigen-
functions are eigenfunctions. Together these observations
imply that any monomial of eigenfunctions ga1

1 , . . . , gam
m

whose respective matrix eigenvalues were Mk for gk, and
for whom all Mk commute, is itself an eigenfunction which
has the matrix eigenvalue α1M1 + · · · + αmMm. Clearly, from
the Koopman perspective the modal decomposition is not
unique without additional conditions (see [67–69]).

However, as we show in electronic supplementary
material, A.1, it turns out that the existence of Koopman lin-
earizations for all smooth nonlinear systems with a stable
fixed point implies the existence of finite-dimensional linear
representations of arbitrary precision (theorem 1). Thus one
could reasonably hope that modal decomposition algorithms
will work directly on the nonlinear data, provided a high
enough operating dimension. This hope provides a formal
rationale for trying to use DMD on nonlinear systems.

2.1.2. Dynamic mode decomposition
DMD algorithms seek to obtain the modal decomposition of
the dynamics observed in time-series data {x1, x2,…, xm}. For
purposes of our discussion will arrange the time-series data
into two data matrices, with xk arrayed in columns

X ¼ x1, x2, � � � , xm�1½ � X0 ¼ x2, x3, � � � , xm½ �:
ð2:5Þ

These two matrices contain the data one time-step apart.
DMD now aims to find the best-fit linear operator A for the
data equation

X0 � AX, ð2:6Þ
where different DMD algorithms differ primarily in what
they define as ‘best-fit’ in the attempt of making the
estimation of A more accurate and more robust.

Exact DMD. We will begin our brief exposition of DMD
methods with the exact DMD formulation of Tu et al. [12],
and introduce several other leading variants of DMD which
have shown promise in handling noisy data [53–55]. It
should be noted that exact DMD is modified from the original
DMD algorithm which was described by Schmid [1].

In exact DMD, this solution comes from least-squares
minimization of the Frobenius norm of the error

A ¼ argmin
A

kX0 �AXkF ¼ X0Xy, ð2:7Þ

where || · ||F is the Frobenius norm and Xy is a pseudoinverse
of X, which in exact DMD is computed via the singular value
decomposition (SVD)

X ¼ USVT ¼)Xy ¼ VS�1UT : ð2:8Þ
In practice, the SVD of X is typically truncated so that only
r≪min (m, n) modes are retained: X � UrSrVT

r .
DMD was introduced for high-dimensional systems, such

as fluid dynamics, where the state dimension n may be in the
millions. In this case, the matrix A may be intractably large,
and instead of constructing A directly, its low-dimensional
representation ~A is analysed in the r-dimensional subspace
given by the columns of Ur

~A ¼ UT
r AUr ¼ UT

r X
0VrS

�1
r : ð2:9Þ

The eigenvalues of ~A are the same as the eigenvalues of A,
and are given by the elements of the diagonal matrix Λ

~AW ¼ WL: ð2:10Þ
The corresponding DMD modes, or eigenvectors of the
high-dimensional system, are computed from the projected
eigenvectors W as

F ¼ X0VT
r S

�1
r W: ð2:11Þ

Tu et al. [12] showed that the columns of F are exact
eigenvectors of the high-dimensional matrix A.

Once the DMD eigenvalues and eigenvectors are
computed, it is possible to approximate the time-series data
through the DMD expansion, which is closely related to the
Koopman mode decomposition

xk �
Xr

j¼1

f jl
k�1b j ¼ FLk�1b: ð2:12Þ

The vector b contains the amplitudes of each DMD mode,
and is often computed as

b ¼ Fyx1: ð2:13Þ
Written in matrix form, the DMD expansion becomes

X �
j j
f1 � � � fr
j j

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
F

b1
. .
.

br

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
diagðbÞ

1 � � � lm�2
1

..

. . .
. ..

.

1 � � � lm�2
r

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
TðLÞ

,

ð2:14Þ
where T(Λ) is the Vandermonde matrix generated from Λ
and representing the mode evolution over time.

Classically, the estimation of b was only based on the
initial time-step data x1. It is possible to improve this estimate
with the following optimization over all snapshots:

argmin
b

kX�FdiagðbÞTðLÞkF: ð2:15Þ
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Jovanovic et al. [47] further add a sparsity promoting penalty
to make the vector b as sparse as possible.

Optimized DMD. Askham & Kutz [55] introduced the
optimized DMD algorithm that simultaneously optimizes
over the modes and eigenvalues using variable projection. In
this approach, they combine the modes and amplitudes
Fb ¼ FdiagðbÞ and solve the following optimization:

min
L,Fb

kX�FbTðLÞkF: ð2:16Þ

The optimized DMD approach has been proven to be quite
robust to noisy data and data that comes from a system which
is not perfectly linear.

Forward–backward DMD. The sensitivity of DMD to noise
was recognized early by Bagheri [52], and several DMD var-
iants have been proposed to improve the robustness of the
algorithm.

FB DMD [53] averages the standard DMD operator A and
the inverse of a reverse-time DMD operator Ab computed by
switching the order of X and X0 in the algorithm. The
averaged operator

AFB ¼ (A(Ab)�1)1=2 ð2:17Þ

cancels out the bias introduced from noise.
Total least-squares DMD. Similarly, total least-squares

(TLS) DMD [54] makes note of the fact that if DMD is
viewed as a regression from xk to xk+1, then noise will affect
both the dependent and independent variables. Thus, repla-
cing the standard SVD-based least-squares regression with
a total least-squares algorithm will improve the robustness
to noise and remove bias. In the TLS algorithm, the data X
and X0 are stacked into a larger matrix that is used to compute
the low-dimensional subspace

Z ¼ X
X0

� �
¼ UZSZVZ

T : ð2:18Þ

The UZ matrix is partitioned into four sub-matrices

UZ ¼ UZ,a UZ,b
UZ,c UZ,d

� �
, ð2:19Þ

and the debiased estimate of the DMD operator A is given by

ATLS ¼ UZ,cU
y
Z,a: ð2:20Þ

In this work, we will compare the exact DMD algorithm,
along with the FB, TLS and optimized DMD variants.

Extended DMD. It is also possible to compute DMD on an
augmented state that includes nonlinear functions of the
measured state x, in a procedure called extended DMD
(eDMD) [60–62]. By including nonlinear functions, it is poss-
ible to approximate the projection of the Koopman operator
onto a larger space of functions, where it may be possible
to better approximate the relevant eigenfunctions. It was
recently shown that extended DMD is equivalent to the
earlier variational approach of conformation dynamics (VAC)
[70–72], introduced by Noé and Nüske to simulate molecular
dynamics with a broad separation of timescales. Further con-
nections between eDMD and VAC and between DMD and
the time-lagged independent component analysis (TICA)
are explored in a recent review [73].

Here, we also explored an extended DMD where the state
was augmented with monomial functions that were known
by construction to be sufficient for producing a correct model.
3. Methods
Generic stable linear systems can exhibit a great many behaviours;
in fact, as we have shown in the appendix, to any finite precision
they can exhibit any behaviour a stable smooth nonlinear system
can exhibit. To explore several of these, including some of the inter-
actions between different eigenvalues and eigenspace geometries,
we constructed a general three-dimensional linear system.

3.1. A ‘simple’ linear system
We created a stable real linear system, with states x [ R3, and con-
sidered specifically the case of a spectrum that consists of a (stable)
complex-conjugate pair and a single (stable) real eigenvalue. Such a
system has two invariant subspaces—a two-dimensional subspace
in which the complex-conjugate pair generate a spiral sink, and a
one-dimensional subspace in which the real eigenvalue induces
exponential convergence. We chose, without loss of generality, to
make the two-dimensional invariant space the XY plane with the
major and minor axes of the ellipsoidal spiral to be aligned with
the X and Y axes. Thus, the most general 3D system matrix A,
with a spectrum consisting of one complex-conjugate pair α ± iβ
and one real eigenvalue λ, can be constructed as follows. We took
A to be constructed from an eigenvector matrix Q, a diagonal
matrix S to rescale the major versus the minor axis in the XY
plane, and a block diagonal eigenvalue matrix L,

A :¼ QSLS�1Q�1: ð3:1Þ
We parameterized Q, S, L by

Q:¼
1 0 sinðuÞ cosðfÞ
0 1 sinðuÞ sinðfÞ
0 0 cosðuÞ

2
64

3
75,

S:¼
s 0 0

0 1 0

0 0 1

2
64

3
75, L :¼

a b 0

�b a 0

0 0 l

2
64

3
75: ð3:2Þ

The parameters ϕ, θ and s exhaust all possible 3D linear dynamics
with the spectrum of L up to an orthogonal similarity transform,
as proved in electronic supplementary material, A.3.

3.2. Nonlinear observations of the system
We took as our nonlinear observations of the system the output

y :¼ ½x1 þ 0:1ðx21 þ x2x3Þ, x2 þ 0:1ðx22 þ x1x3Þ,
x3 þ 0:1ðx23 þ x1x2Þ�T :

ð3:3Þ

For the range of x values, we considered (initial conditions on the
unit sphere), y coordinates were strictly monotone in the corre-
sponding x coordinates, and observations corresponded to
unique states. As figure 1 illustrates, the trajectories of y and of
x are so similar that for a casual observer they would seem
nearly indistinguishable. However, as we will show in 4, these
nonlinearities can have a profound impact on our ability to
model the system using DMD.

Because A had distinct eigenvalues, it was diagonalizable
over C. Consider the diagonal matrix ~L with nine diagonal
elements comprising the spectrum of A and all six pairwise
sums of eigenvalues of A. Every monomial of the form
xk11 x

k2
2 x

k3
3 with 1≤ k1 + k2 + k3≤ 2 evolves exponentially over time

as one of the diagonal elements of ~L. We conclude that the
dynamics of y could just as well have been written as
znþ1 :¼ P~LP�1zn, y :=Wz for matrices P and W.

This is of utmost importance, since it implies that this non-
linearly observed 3D linear system is exactly reproduced in a 9D
linear system observed linearly. More generally, all monomial obser-
vables of order m or less can be represented using eigenspaces
whose eigenvalues can be obtained as a sum of no more than



s = 1.0, q = 0, f = 0
s = 0.5, q = 0, f = 0
s = 1.0, q = p/6, f = p/3
s = 0.5, q = p/6, f = p/3

1
10

0

–2
–2

–1

–1 0

0

1

2

s = 1.0

s = 0.5

1 2

0

0.5

1.0

–1

–1

q

f

Figure 1. Example trajectories of our 3D system equation (1.2) for various parameters of equation (3.2) (colours). Eigenvalues were 0:9
ffiffi
3

p
=2+ 0:5i

� �
and 0.6

throughout, and we used the same initial condition. We plotted trajectories without noise added for both the latent x (dots), and the mildly nonlinear observable y
(equation (3.3); stars), in 3D perspective (left) and in an XY plane projection (right). In the 3D plot, we indicated the direction of the 0.6 eigenspace controlled by θ
and ϕ and given by the last column of Q in equation (3.2) (dashed line). We showed the effects of s in the XY plane using ellipsoids (dashed line) whose major and
minor axes have ratio s2. The trajectories demonstrate that our nonlinear observations are quite similar to the latent linear dynamics, and that trajectories vary their
geometry with the parameters of equation (3.2) even while the spectrum remains the same.
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m of the original eigenvalues; see electronic supplementary
material, A.2 for details. We may therefore rest assured that a
DMD method that allowed for nine modes could in fact predict
the values of y to without any truncation errors due to the
nonlinearity of the observations.

3.3. Dataset preparation
Our numerical experiments used the 3D systems, with Gaussian
system noise and Gaussian measurement noise both set to zero
mean and a standard deviation of 0.05. The initial conditions
were chosen uniformly distributed on the unit sphere.

We explored all combinations of s∈ {0.1, 0.5, 1.0}, ϕ∈ {0, 0.79,
π/2}, θ∈ {0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.52, 1.53, 1.560} with a fixed
eigenvalue spectrum 0:5

ffiffiffi
3

p
=2+ 0:5i

� �
and 0.8. We also explored

different spectra with complex conjugate eigenvalue pair
0:5

ffiffiffi
3

p
=2+ 0:5i

� �
and a real eigenvalue varying from 0.01 to 1,

with orthogonal eigenvector space s = 1, θ = 0. Furthermore, we
considered datasets consisting of 100 points each with: (i) N =
50 initial conditions for trajectories of length L = 2; (ii) N = 10
initial conditions for trajectories of length L = 10; (iii) N = 2 initial
conditions for trajectories of length L = 50. Because of the pres-
ence of system noise, all of these datasets meet the condition of
persistence of excitation [74].

In the following, we present contour plots showing the distri-
bution of eigenvalue estimates.Whereverwe show such plots, they
were smoothed with a Gaussian kernel of σ = 0.01. We first sorted
all eigenvalues by their imaginary parts, and then registered each
to its nearest true eigenvalue bin. To ensure the spectrum sym-
metry, we discarded estimates with more real eigenvalues than
the true spectrum. If there were any extra complex eigenvalues
pairs, we registered two copies of the average value. Furthermore,
we added data to these contour plots in batches of 300 numerical
experiments. This numberwas sufficient so that the KL-divergence
in P1 and P2, the probability distributions before and after a new
estimated eigenvalue l̂ was added, was smaller than 0.001 for all
experiments, i.e.

P
l̂ P1ðl̂Þ logðP1ðl̂Þ=P2ðl̂ÞÞ , 0:001.
4. Results
In this section, we present the eigenvalue estimation by exact
DMD on a 3D linear systemwith mild nonlinear measurements
andobservationnoise.We examine the effects of systemnormal-
ity, spectrum, mild nonlinearity in the observables, and varying
numberof initial conditions through their effect on the recovered
spectrum and the prediction of the dynamics. We found
that mildly nonlinear observations and slight non-normality
caused large eigenvalue estimation errors. For a system with a
well-posed system matrix, having a dataset with more initial
conditions and shorter trajectories can significantly improve
the prediction. With a slightly ill-conditioned system matrix,
a moderate trajectory length improves the spectrum recovery.
4.1. Fixed spectrum with different system matrix
normality

We fixed the spectrum of the system matrix to be
0:5

ffiffiffi
3

p
=2+ 0:5i

� �
and 0.8, and varied its ϕ, s and θ as described

in equation (3.1). The linear states evolved with Gaussian
system noise σ= 0.05, and they were observed via monomials
with Gaussian observation noise σ = 0.05. In figures 2 and 4, we
show the DMD eigenvalue density plot under five different
normality settings, using first- and second-order monomial
observables. In the first column, the system matrix A is
well-conditioned, with orthogonal eigenvectors and a centro-
symmetric spiral sink. In the second column, the eigenvectors
remain orthogonal, and we stretch the spiral sink by varying
the parameter s, so that the resulting trajectory converges follow-
ing an ellipsoidal spiral with a minor-to-major axes ratio of s2.
The eigenvalue density contour is stretched vertically when s
decreases, which yields a larger variance in the complex fre-
quency estimation. In the third and fifth column, we varied the
angle between the one-dimensional stable subspace correspond-
ing to the real eigenvalue and the two-dimensional subspace
corresponding to the spiral sink, with the spiral sink remaining
centrosymmetric. The fourth column exhibits both non-orthog-
onal eigenvectors and a non-centrosymmetric spiral sink. When
eigenvectors are non-orthogonal, a complicated multi-modal
error structure shows up in the L= 10, 50, θ= 1.40, 1.56 cases.

To thoroughly explore the effect of system matrix normal-
ity on spectrum recovery and dynamics prediction, in figures 3
and 5, we plotted the standard deviation of each estimated
DMD eigenvalue versus the condition number. The complex
eigenvalues always come out as conjugate pairs from exact
DMD, so we give one plot per pair. The discarded trials plot
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Figure 2. Eigenvalue density plot with first-order linear observables. Different rows have different trajectory lengths and number of trajectories, while holding the
same total data points. The system A matrix is constructed by ϕ = 0 and θ, s specified on top of each column. κ(A) is the condition number of ground truth system
matrix, and kð~AÞ is the mean of estimated condition number found by exact DMD. Red crosses are ground truth eigenvalues.
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(right lower corner in figures 3 and 5) gives the percentage of
DMD estimates resulting in a structurally incorrect estimation,
i.e. where the number of real eigenvalues is larger than the
ground truth system, because it breaks the symmetry pattern
of the complex conjugate pairs. When the condition number
is below 100, the eigenvalue estimation from a dataset with
more initial conditions and short trajectories (squares) has
lower standard deviation, and less discarded trials. When
the condition number is larger than 100, the cases with
moderate trajectory length (circles) performs better.

The estimation error caused by system matrix non-
normality can be amplified through higher order observables.
In the first two columns of figure 2, we find that the eigen-
value contours are close to the true eigenvalues. The
second-order observables in figure 4 amplified the effect of
slight changes in the condition number of the system
matrix. Only the slowest modes (red and purple contours)
were identifiable. Furthermore, in figure 5, the standard devi-
ation of the eigenvalue estimates increases to 0.25 for most
eigenvalues with a modest condition number of 4.
4.2. Different spectrum with orthogonal eigenspace
In this section, we kept an orthogonal eigenvector space with
s = 1, θ = 0 and a complex conjugate eigenvalue pair
0:5

ffiffiffi
3

p
=2+ 0:5i

� �
. We varied the real eigenvalue from 0 to

1. The linear states evolved with Gaussian system noise σ =
0.05, and were observed via monomials having Gaussian
observation noise σ = 0.05. In figure 6, we show the DMD
eigenvalue density plot under three different spectra using
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data prepared as described in §3.3. In figures 7 and 8, we
show the standard deviation of the estimated DMD
eigenvalues versus varying the eigenvalue λ.

More initial conditions with shorter trajectories uniformly
outperforms less initial conditions with longer trajectories,
resulting in more accurate and precise estimations. In the
case of second-order monomial observables with a trajectory
length of L = 2, the standard deviation of the estimated
eigenvalues increases when λ moves closer to the conjugate
pair. This suggests a dataset with short trajectories might
be more sensitive to a small spectral distance. Nonetheless,
this case still has lower standard deviation comparing to
less initial conditions with longer trajectories. When λ
moves from 0.2 to 1.0, the percentage of discarded trials for
L = 2 decreases and stays at 0, for L = 10 this percentage
remains about the same, and for L = 50 it increases to 50%.
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5. Discussion and conclusion
We have shown that under conditions of mild system and
observation noise, and mild nonlinearity, DMD can encounter
significant difficulties in recovering a linear model with the cor-
rect spectrum and an accurate prediction of the dynamics, even
when an exact linear model is known to exist. To study these
effects, we constructed a self-contained 3D linear system
where it is possible to independently control the eigenvalue
spectrum, the normality of the system matrix, the nonlinearity
of the observations, the system and observation noise, and
the number and length of the trajectories used as training data.

In this study, we find that DMD is quite sensitive to non-
normality (see figures 2–5; electronic supplementary material,
figures 12, 13), and to the existence of higher order nonlinear
terms (see figures 4 and 6; electronic supplementary material,
figures 11, 13). As to the question of which dataset metrics
govern this sensitivity, in some cases shorter data with more
initial conditions performs better (as in figures 6–8), and in
some data fewer, longer time series produce better results (see
2, 4). The challenge of non-normality has implications for the
identification of fluid systems, as highly sheared flows are gener-
ally characterized by non-normal linearized dynamics, which
was an original motivation for DMD [1].

We first fixed the spectrum of our linear system, varying the
normality of system matrix and the geometry of trajectories. The
results suggest thatan ill-conditionsystemmatrixandmildlynon-
linear observables causeDMD to fail to recover the full spectrum;
this phenomenon is especially evident in figure 4. Furthermore,
DMD estimation can be very sensitive to noise when the angle
between eigenspaces is small. For the case of linear observables,
when we decrease the angle between invariant subspaces, a
multi-modal error structure appears in figure 2. The complex
eigenvalue pair and the real eigenvalue appear to have switched
real parts. The cause of this error structure is not understood and
remains an interesting avenue of future work.

We then explored systems with different eigenvalue spec-
tra, where we changed the distance between the eigenvalues.
For short trajectories (L = 2), closer eigenvalues result in
higher standard deviation in the predicted spectrum, using
second-order observables. Generally, with enough initial con-
ditions, DMD yields descent prediction of the spectra for all
well-conditioned systems explored here. The data require-
ments of DMD have been widely studied [13,54], and there
are some key heuristics and guidelines that have emerged.
First, even in the infinite data limit, it is known that DMD
is a biased estimator of the dynamics [53,54], and so noisy
data will result in bias in the predicted eigenvalues even for
large volumes of data. The balance between L and N has
also been studied in DMD, and in system identification
more generally [75]. Typically, a larger diversity of initial con-
ditions (larger N) for smaller trajectory bursts (smaller L) will
be more useful for building accurate and efficient models.
However, in many instances, it is impractical or infeasible to
reinitialize multiple diverse initial conditions, and instead a
single long trajectory is available. Similarly, for clean data
with low noise levels, generally it is helpful to reduce the
sampling time until it is smaller than the fastest relevant time-
scales. However, decreasing the sampling time further
typically does not help and may in fact increase the condition
number and therefore the sensitivity to noise.

DMD under second-order observations generally does not
provide good estimations for transient oscillatory modes. To
ensure this is not the effect of spectrum resonance caused by
first- and second-order monomial observations, we compute
the same contour plot on a 9D non-resonant linear system
with similar spectrum in electronic supplementary material,
figure 9. The result is similar to the right nine plots of
figure 6. Furthermore, we show that using the latest denoizing
DMD algorithms in electronic supplementary material, A.5,
the difficulty in spectrum recovery often persists, although
each method performs well for certain cases.

The 3D linear system analysed here is a special case of a
larger class of systems designed specifically to test the sensi-
tivity of DMD to the challenges listed above. The class of
diagonal linear systemswithmultinomial observables provides
an algebraically convenient yet sufficiently general class of sys-
tems to use to study these problems. As the theorems in
electronic supplementary material, A.1 and A.2 show, diagonal
linear systems with multinomial observables are universal
in the sense of being able to approximate any smooth, stable
dynamical system (details in electronic supplementary
material, theorem 1). Furthermore, these systems have a finite-
dimensional linear representation which is exact—a linear
observation of a linear dynamical system (see electronic sup-
plementary material, theorem 2)—and computable in close
form. Thus, the class of diagonal linear systems with multi-
nomial observables is a useful space to test any technique that
identifies linear models, including the many variants of DMD.

There are several future directions that are motivated by
this work. It will be important to explore how these chal-
lenges scale to higher dimensional systems. There is also
the potential to design sampling strategies to improve the
conditioning of the DMD procedure. In addition to under-
standing and characterizing these challenges on numerical
examples, it will be interesting to apply these careful studies
to low-dimensional mechanical systems.
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nzq9-4715. Data are available as electronic supplementary material
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