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Koopman eigenfunctions are a special case - defined on the entire basin of attraction. Our main
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dynamical system with semisimple and nonresonant linearization. We give an intrinsic definition of
"principal Koopman eigenfunctions” which generalizes the definition of Mohr and Mezi¢ for linear
systems, and which includes the notions of "isostables" and "isostable coordinates" appearing in work
by Ermentrout, Mauroy, Mezi¢, Moehlis, Wilson, and others. Our main results yield existence and
uniqueness theorems for the principal eigenfunctions and isostable coordinates and also show, e.g.,
that the (a priori non-unique) "pullback algebra" defined in Mohr and Mezi¢ (2016) is unique under
certain conditions. We also discuss the limit used to define the "faster" isostable coordinates in Wilson
and Ermentrout (2018), Monga et al. (2019) in light of our main results.
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1. Introduction linearization theorems [15,16] and (ii) uniqueness theorems ap-
plying only to analytic eigenfunctions for certain analytic dynam-
ical systems [15]. Existence and uniqueness results are desirable
since, in analyzing the theoretical properties of any algorithm for
computing some quantity, it is desirable to know whether the
computation is well-posed [38], and in particular whether the
quantity in question exists and is uniquely determined.

The results in the present paper yield new precise conditions
under which various quantities in the applied Koopmanism lit-
erature - including targets of numerical algorithms - exist and
are unique, and are especially relevant to work on principal eigen-
functions and isostables for point attractors [15,22] and to work on
isostable coordinates for periodic orbit (limit cycle) attractors [39-
42]. Isostables and isostable coordinates are useful tools for non-
linear model reduction, and it has been proposed that they could
prove useful in real-world applications such as treatment design
for Parkinson’s disease, migraines, cardiac arrhythmias [43], and
jet lag [44].

This paper fills a significant technical gap between the lin-
earization results known from classical dynamical systems
theory - e.g., the linearization theorems of Poincaré-Siegel [1-3],
Sternberg [4], Grobman-Hartman [5,6], and Hartman [7] - and
the growing interest in applied fields such as engineering and
fluid dynamics in using linearizations based on Koopman theory.!
Motivated largely by data-driven applications, this “applied Koop-
manism” literature has experienced a surge of interest initiated
by [9-11] around 70 years after Koopman’s seminal work [12].2

The practical application of computational Koopman eigen-
function representations of dynamical systems is grounded in
(i) eigenfunction existence theorems based on such classical

* Corresponding author.
E-mail addresses: kvalheim@seas.upenn.edu (M.D. Kvalheim),
shrevzen@umich.edu (S. Revzen).

1 Here “linearization” refers to a nonlinear change of coordinates in which
a nonlinear dynamical system becomes exactly linear, and is distinct from
approximate linearization. A recent paper extending and discussing some of the
state of the art is [8].

2 See, e.g., [13-37].
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1.1. Nontechnical overview of results

This paper was motivated by the following three questions. (A
C* function is one which has continuous mixed partial derivatives
up to order k.)
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Eigenfunction uniqueness When - and in what sense - are C¥
(1 < k < 400) Koopman eigenfunctions unique?

Linearization uniqueness When - and in what sense - are full
€k (1 < k < 400) linearizing coordinate changes unique?

Eigenfunction existence Can the existence of specific C* (2 <
k < +o00) Koopman eigenfunctions be guaranteed under
assumptions which are weaker than those needed to in-
voke a classical result guaranteeing a full set of linearizing
coordinates exists?

We provide answers to each of these three questions for eigen-
functions and coordinate changes defined on the basin of an
attracting hyperbolic fixed point or periodic orbit. To the best
of our knowledge, our answers to the eigenfunction uniqueness
and existence questions are new. During the review process of
this paper we discovered that an answer to the full linearization
uniqueness question for the case k = +o0o (equivalent to our
answer in that case) can also be obtained from results in the
recent book [45, Thm 6.8.21, 6.8.22].

Sternberg’s work showed that, for C¥ (1 < k < +00) dynami-
cal systems such as those arising from a C* ordinary differential
equation

d
Ex(t) = f(x(t))

having an attracting fixed point x, € R", there is an intimate rela-
tionship between the eigenvalues of the derivative Dy f of f at xo
and the existence of C¥ linearizing coordinates defined near x [4].
Our results establish a similarly intimate relationship between
certain eigenvalues and the answers to our three questions. In the
case of the eigenfunction uniqueness and existence questions, we
show that the corresponding relationship is less restrictive than
in Sternberg’s case. In particular, the answer to the eigenfunction
existence question is “yes” (especially in the case of the “slowest”
principal eigenfunctions/isostable coordinates). The answer to
the linearization uniqueness question is this: under Sternberg’s
hypotheses guaranteeing that C* linearizing coordinates exist
in the vicinity (hence also on the entire basin [16,46]) of an
attracting hyperbolic fixed point, these coordinates are uniquely
determined by their derivatives at the fixed point.

To obtain the answers to our three questions, we prove a
general result on the existence and uniqueness of C¥ lineariz-
ing semiconjugacies (partial linearizations), of which Koopman
eigenfunctions and linearizing conjugacies are special cases. To
provide more refined answers to the same three questions, we
further examine the C,’f)’f‘ smoothness classes refining the familiar
C* smoothness classes, wherein C¥ = Cllf)co . Our main results con-
cern the existence and uniqueness of linearizing semiconjugacies
defined on the basin of an attracting hyperbolic fixed point or
periodic orbit. Notable consequences worked out in this paper,
for dynamics in the basin of an attracting hyperbolic fixed point
or periodic orbit, include:

x(t) e R"

e a fairly tight relationship between properties of the system
eigenvalues/Floquet multipliers and the uniqueness of Cl’f)‘f‘
principal eigenfunctions for C! dynamics (Proposition 6) or
Cl’f)f‘ dynamics (Proposition 7);

« sufficient conditions for the existence of such C;* principal
eigenfunctions when the dynamics are C,’f)’f‘ (Propositions 6
and 7);

o sufficient conditions for when such C* eigenfunctions (or
isostable coordinates) can be constructed by limiting pro-
cedures such as Laplace averages (Propositions 6 and 7 and

Remark 14);
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e a full classification of all C* eigenfunctions in terms of
principal eigenfunctions for C*° dynamics satisfying a non-
degeneracy assumption (Theorems 3 and 4); and

o sufficient conditions under which a full set of linearizing
Ck coordinates exist and are uniquely determined by their
first-order approximation (Propositions 2 and 3).

To the best of our knowledge, our uniqueness results for
principal Koopman eigenfunctions are the first uniqueness re-
sults known for non-analytic eigenfunctions. Similarly, our clas-
sification of all C*° Koopman eigenfunctions appears to be the
first such classification theorem for non-analytic eigenfunctions.
While certain existence results for principal Koopman eigenfunc-
tions defined on the basin of an attracting hyperbolic equilibrium
or periodic orbit have been known for some time [15,16], we
believe our new existence results to be the strongest known for
C* eigenfunctions with 2 < k < +o0. This is because prior exis-
tence results (cf. [29, Sec. 5, 7, 8]) construct C* eigenfunctions by
pulling back linear eigenfunctions through the linearizing conju-
gacies provided by the Sternberg or Poincaré-Siegel linearization
theorems mentioned above, and the full hypotheses of one of
these linearization theorems must be assumed in order to invoke
it; in contrast, our existence result for specific principal eigenfunc-
tions requires much weaker assumptions. These assumptions are
extremely mild in the case of the “slowest” principal eigenfunc-
tions/isostable coordinates; the following subsection contains a
precise statement (with more details in Remark 15) as part of a
more technical overview of our results.

1.2. Technical overview of results and organization of the paper

In this paper, we consider C' dynamical systems ®:Q x T —
Q for which Q is the basin of attraction of a stable hyperbolic
fixed point or periodic orbit. Here Q is a smooth manifold, either
T =ZorT =R, and @ could be the restriction of a dynamical
system defined on a larger space (e.g., R") to some basin of
attraction Q. That @ is a dynamical system means that ®° = idq
and @' = @' o @S for all t,s € T, where @' := &(-,t); in
particular, it follows that #¢: Q — Q is a C' diffeomorphism with
inverse @' forany t € T. When T = R, & is called a flow; a
common example is that of t — @‘(xy) being the solution to the
initial value problem
d
—X
dt
determined by a complete C! vector field f on Q. Our main
contributions are existence and uniqueness results regarding Cl’:,é"
linearizing semiconjugacies ¢:Q — C™ defined on the entire
basin of attraction Q, where we do not assume that m has any
relationship to the dimension of Q; in particular, ¢ need not
be a diffeomorphism or a homeomorphism. By definition, such
a semiconjugacy makes the diagram

(6) =f(x(t)),  x(0)=xo

b b ®

commute for some A € C™™ and all t € T. By Cl"o’c” with k € N54

and 0 < o < 1, we mean that ¥ € C¥Q, C™) and that all kth
partial derivatives of v/ are locally a-Holder continuous in local

coordinates, and by definition (o = G}>* = C*. We note

that Cl’;’CO = Ck, so the reader uninterested in Holder continuity

can simply keep in mind the case Clko‘c0 = C* and the fact that every

C**1 function is also Cl’;f for every 0 < o < 1. Our motivation for

including local Hélder continuity of derivatives is that, once it is
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included, our main results become fairly close to optimal, at least
in the interesting case m = 1 of Koopman eigenfunctions y (see
Examples 2 and 3).

Linearizing semiconjugacies are also known as linearizing fac-
tors or factor maps in the literature and can be viewed as a
further generalization of the generalized Koopman eigenfunctions
of [29,33]. We note that such semiconjugacies are distinct from
those in the diagram

Q25 q

K K (2)
Ll

obtained from (1) by flipping the vertical arrows (although the
diagrams are equivalent if, e.g., ¥ and K are diffeomorphisms).
In (2) K is a factor of e, whereas v is a factor of @' in (1).
Existence results for semiconjugacies of the type in (2) were
obtained by [47-49] in the context of proving invariant manifold
results using the parameterization method.

Our main result for the case of an attracting hyperbolic fixed
point both generalizes and sharpens Sternberg’s linearization the-
orem [4, Thms 2,3,4] which provides conditions ensuring the
existence of a linearizing local C¥ diffeomorphism defined on a
neighborhood of the fixed point; the results of [16,46] show that
this local diffeomorphism can be extended to a C* diffeomor-
phism ¢: Q — R" C C" defined on the entire basin of attraction
Q making (1) commute. Under Sternberg’s conditions, a corollary
of our main result is that this global linearizing diffeomorphism
is in fact uniquely determined by its derivative at the fixed point
(cf. [45, Thm 6.8.21, 6.8.22] for the case k = +o00). Additionally,
we sharpen Sternberg’s result from C* to Cl"(;f linearizations. For
the case of an attracting hyperbolic periodic orbit of a flow,
our main result also yields a similar existence and uniqueness
corollary for the Floquet normal form, a nonlinear change of
coordinates in which the dynamics become the product of a
linear system with constant-rate rotation on a circle [50-52]. We
remark that the Floquet normal form is a nonlinear generalization
of the comparatively well-known classical Floquet theory of linear
time-periodic systems [53, Sec. II1.7]

Using our two main results, we make the following con-
tributions to the theory of Koopman eigenfunctions. We give
an intrinsic definition of principal eigenfunctions for nonlinear
dynamical systems which generalizes the definition for linear
systems in [22]. We provide existence and uniqueness results
for Cl'f)f principal eigenfunctions, and we also show that the (a
priori non-unique) “pullback algebra” defined in [22] is unique
under certain conditions. For the case of periodic orbit attractors,
principal eigenfunctions essentially coincide with the notion of
isostable coordinates defined in [41,42], except that the definition
in these references involves a limit which might not exist ex-
cept for the “slowest” isostable coordinate. Our techniques shed
light on this issue, and our results imply that this limit does
in fact always exist for the “slowest” isostable coordinate if the
dynamical system is at least smoother than Cl})f‘ with ¢ > 0.
In fact, our results imply - assuming that there is a unique and
algebraically simple “slowest” Floquet multiplier which is real
— that a corresponding “slowest” C“ isostable coordinate with
o > 0 always exists and is unique modulo scalar multiplication
fora CIL‘C“ dynamical system (e.g., a C?> dynamical system), without
the need for any nonresonance or spectral spread assumptions.
Similarly, if instead there is a unique and algebraically simple
“slowest” pair of Floquet multipliers which are complex conju-
gates, then a corresponding “slowest” complex conjugate pair of
Ch¢ isostable coordinates always exists and is unique modulo
scalar multiplication for a Cllf‘ dynamical system with > 0.
As a final application of our main results, we give a complete
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classification of C* eigenfunctions for a C*° dynamical system
with semisimple (diagonalizable over C) and nonresonant lin-
earization, generalizing known results for analytic dynamics and
analytic eigenfunctions [15,29].

The remainder of the paper is organized as follows. We explain
notation and terminology below to be used in the sequel. After
some definitions, in Section 2 we state Theorems 1 and 2, our
two main results, without proof. We also state a proposition on
the uniqueness of linearizing factors which does not assume any
nonresonance conditions. As applications we derive in Section 3
several results which are essentially corollaries of this proposition
and the two main theorems. Section 3.1 contains existence and
uniqueness theorems for global Sternberg linearizations and Flo-
quet normal forms. In Section 3.2 we define principal Koopman
eigenfunctions and isostable coordinates for nonlinear dynamical
systems and discuss how Theorems 1 and 2 yield corresponding
existence and uniqueness results. We then discuss the relation-
ship between various notions defined in [22] and our definitions,
and we also discuss the convergence of the isostable coordinate
limits in [41,42]. Section 3.3 contains our theorem which com-
pletely classifies the C* eigenfunctions of C* dynamical systems
on the basin of an attracting hyperbolic fixed point or periodic
orbit. Finally, Section 4 contains the proofs of Theorems 1 and 2.

1.3. Notation and terminology

In this paper we employ the following mostly standard nota-
tion and terminology.

1.3.1. Sets of numbers

We denote the real numbers by R, complex numbers by C,
integers by Z, and nonnegative integers by N. Given ¢ € R and
S C R, we define S5 :={s € S:s>c}and S.. == {s € S:s > c}
so that, e.g., Z>p = N>o = N.

1.3.2. Linear algebra

Given m € N4, we denote by GL(m, C) C C™*™ the invertible
m x m matrices with entries in C and by GL(m, R) C GL(m, C)
those with entries in R. Given A € C™™, we denote by spec(A) C
C the set of eigenvalues of A; given A € R™™, we denote by
spec(A) C C the set of eigenvalues of A € R™™ C C™™
when viewed as a complex matrix. If A:V — V is a linear self-
map with V a complex vector space, spec(A) C C also denotes
the eigenvalues of A. If V is a real vector space, then its com-
plexification V¢ is the complex vector space given by all formal
linear combinations of vectors in V with complex coefficients
(cf. [54, p. 64]); if A:V — W is an R-linear map between real
vector spaces, then the complexification Ac: Ve — W¢ of A is the
unique C-linear extension of A (cf. [54, p. 65]), and if W = V
we define spec(A) := spec(Ac) C C. If E1,E; C V are linear
subspaces of a real or complex vector space V, we say that E;
and E, are complementary if V = {e; + e;:e; € E1, e; € E;} and
if E; N E; = {0}.

1.3.3. Derivatives

Given a differentiable map F: M — N between smooth mani-
folds, we use the notation D4F for the derivative of F at the point
X € M. (Recall that the derivative DyF: T\M — TN is a linear
map between tangent spaces [55], which can be identified with
the Jacobian of F evaluated at x in local coordinates.) In particular,
given a dynamical system @:Q x T — Q and fixed t € T, we
write Dy®': TxQ — Tyt Q for the derivative of the time-t map
®':Q — Q at the point x € Q. A map F:M — N satisfies
F € CK(M, N) with k € Ns U {400}, or briefly F € C¥, if every
X € M is contained in a coordinate chart in which all mixed partial
derivatives of F of order less than k + 1 exist and are continuous.
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For convenience, we define the 0-th derivative DEF = F(x) to
coincide with F for all x € M.

Several of our results include conditions such as “D;OF =0
for all integers 0 < i < r”. This is to be interpreted to mean
that, in local coordinates, all mixed partial derivatives of F of
order less than r vanish at xp. This can be made more formal in
the following way. Inductively, if i > 2 and D§<OF H(Ty M PRI
Trx)N is Well-defined and zero forall 1 <j < i— 1, then the
ith derivative D F:(Ty,M)® — Trux,)N is a well-defined linear
map from the ith tensor power (Ty,M 18 to Trx)N represented
in local coordinates by the (1 + i)-dimensional array of ith partial
derivatives of F evaluated at xo.>

2. Main results

Before stating our main results, we give two definitions which
are essentially asymmetric versions of some appearing in [4,56].
When discussing eigenvalues and eigenvectors of a matrix or
linear self-map (endomorphism) in the remainder of the paper,
we are always discussing eigenvalues and eigenvectors of its
complexification, although we do not always make this explicit.

Definition 1 (X, Y) k-nonresonance). Let X € C?*¢ and Y € C™"
be matrices with eigenvalues 1, ..., ug and Aq, ..., A,, respec-
tively, repeated with multiplicities. For any k € N> U {+00}, we
say that (X, Y) is k-nonresonant if, for any i € {1, ..., d} and any
m=(my,...,m,) € Nl satisfying2 <m; +---+m, <k+1,

i # AT (3)

(Note this condition vacuously holds if k = 1; i.e, any two
matrices are 1-nonresonant.) We also extend the definition of k-
nonresonance to general linear self-maps X,Y of finite-
dimensional complex vector spaces by identifying X, Y with their
matrix representations with respect to any choice of bases. We
say that linear self-maps (X, Y) of finite-dimensional real vector
spaces are k-nonresonant if the complexifications (Xc, Yc) are
k-nonresonant.

For the definition below, recall that the spectral radius o(X) of
a matrix is defined to be the largest modulus (absolute value) of
the eigenvalues of (the complexification of) X.

Definition 2 ((X,Y) Spectral Spread). Let X € GL(m,C) and
Y € GL(n, C) be invertible matrices with the spectral radius p(Y)
satisfying p(Y) < 1. We define the spectral spread v(X, Y) to be

In(|ul)
Ml) 2 ()L spect |)\'|r>} (4)
espec(Y)

v(X,Y):=
( ) pespec(X) In(|A|)
respec(Y)
=min {r € R: p(X~") (p(Y))" < 1}.

We also extend the definition of v(X, Y) to general linear auto-
morphisms X, Y of finite-dimensional complex vector spaces by
identifying X, Y with their matrix representations with respect
to any choice of bases. We extend the definition to linear au-
tomorphisms (X, Y) of real vector spaces by defining v(X,Y) =
v(Xc, Yc) to be the spectral spread of the complexifications.

= min {r GR:( min

nespec(X)

The second line in (4) follows since In(|u|)/In(|A]) < r if and
only if In(|u|) > rlin(]A]), with the inequality flipping because
In(JA]) < 0O since [A] < p(Y) < 1, and this in turn holds if

3 To define DLOF, use local coordinates. The inductive assumption that the
first i — 1 derivatives are well-defined and zero at x, ensures that the result is
independent of the choice of local coordinates, hence well-defined.
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Fig. 1. An illustration of the condition v(e#, Dy, @') < k+ « of Theorem 1. This
condition is equivalent to every eigenvalue of ngd>1 (represented by an “x”
above) belonging to the open disk with radius given by raising the smallest

modulus of the eigenvalues of e* to the power 1.

and only if || > |A|". The third line follows from the defini-
tion of the spectral radius p(Y). Fig. 1 illustrates the condition
v(e", Dy, @') < k + o in Theorem 1. Finally, we now recall the
definition of Cl"o’f functions.

Definition 3 (Cllé’f‘ Functions). Let M, N be smooth manifolds of
dimensions m and n, let € CK(M,N) be a C* map :M — N
with k € Nsg, and let 0 < o < 1. We will say that ¢ €
Cllf;c‘)‘(M,N) if for every x € M there exist charts (Uy, ¢1) and
(Ua, ¢2) containing x and v (x) such that all kth partial derivatives
of p; 0o o gafl are Holder continuous with exponent «. If k =
400, we use the convention Cl:fo’“(M, N) := C*°(M, N) for any
0 < o < 1. If the domain and codomain M and N are clear from
context, we will sometimes write C* and G instead of CX(M, N)

and C5*(M, N) and write, e.g., ¥ € C* or ¢ € C}-*. We note that

Cof c ¢l for any k € NU {400} and 0 < @ < B < 1, and that
¥ e ¢t if and only if y € C~.

Remark 1. Using the chain rule and the fact that compositions
and products of locally «-Hdélder continuous functions are again
locally «-Holder, it follows that the property of being Cl’;’f‘ on a
manifold does not depend on the choice of charts in Definition 3.

We now state our main results, Theorems 1 and 2, as well as
Proposition 1. An example and several clarifying remarks follow
the statement of Theorem 1; in particular, see Remark 2 for
intuitive remarks and Example 1 for concreteness. Simple analytic
(counter-)examples demonstrating Theorems 1 and 2 in the case
m = 1 of Koopman eigenfunctions - demonstrating in particular
the sharpness of the uniqueness statement - are Examples 2 and
3 of Section 3.2.

We emphasize that Theorems 1 and 2 do not assume that
the linear map B is invertible, and do not claim anything about
the semiconjugacy y: Q — C™ being a diffeomorphism (but see
Propositions 2 and 3); moreover, nothing is assumed about the
relationship of m to dim(Q).

Theorem 1 (Existence and Uniqueness of Clko’c" Global Linearizing
Factors for a Point Attractor). Let @:Q x T — Q be a C! dynamical
system with Q the basin of an attracting hyperbolic fixed point
Xo € Q, where Q is a smooth manifold with dim(Q) > 1 and either
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T=2ZorT =R Let m € Ns; and e* € GL(m, C) have spectral
radius p(e") < 1, and let the linear map B: Ty, Q — C™ satisfy

Vt € T: BDy, @' = eB. (5)

Fix k € No1 U {+o00} and 0 < « < 1, assume that (e#, Dy, @) is
k-nonresonant, and assume that v(e", Dy, ®') < k + .
Uniqueness. Any ¥ € CX%(Q, C™) satisfying

loc
Yo' =y, Dy¥ =8B

is unique, and if B:T,,Q — R™ C C" and ¢* € GL(m,R) C
GL(m, C) are real, then ¥:Q — R™ C C™ is real.
Existence. If furthermore @ € Cl’ﬁ)é" then such a unique ¢ €

Cl’;c‘” (Q, C™) exists and additionally satisfies
Vt e T: ¢ o df = ey, (6)

In fact, if P € Cllf;f(Q, C™) is any “approximate linearizing factor”

satisfying Dy,P = B and
Pod!'=e*P+R (7)
with DLOR = 0 for all integers 0 <i < k + «, then

Y = lim e™P o ! (8)
t—o00

in the topology of C%*-uniform convergence on compact subsets of

Q if k < +oo, and in the topology of C¥ -uniform convergence on

compact subsets of Q for any k' € N> if k = +o0.

Remark 2. The spectral spread condition v(e#, Dy, ®') < k +
o means that, if A is any eigenvalue of DXO<D1, then |A/“t is
smaller than || for every eigenvalue p of e*. The k-nonresonance
condition means that no eigenvalue p of e can be written as a
product (with repetitions allowed) of ¢ € {2, ..., k} eigenvalues
of oncpl. The uniqueness statement of Theorem 1 then says
that, under these two conditions, any linearizing semiconjugacy
LS Cl"(;c"‘(Q, C™) is uniquely determined by its derivative at
the fixed point xg. Under the additional assumption that @ €
Cll;c“ rather than merely @ e C!, the existence statement of
Theorem 1 gives sufficient conditions ensuring that, given a linear
linearizing semiconjugacy B: T,,Q — C™ for the linear dynamical
system (v,t) > Dy ®" - v, there exists a unique nonlinear
linearizing semiconjugacy ¥ € Cl’f)‘f‘(Q,(Cm) for the nonlinear
dynamical system @ satisfying Dy,¥% = B. Thus, the existence
statement can be thought of as supplying sufficient conditions
under which a linearizing semiconjugacy can be constructed from
an “infinitesimal” one.

Remark 3 (Weaker Nonresonance Assumption in the Case T = R).
Assume T = R in the setting of Theorem 1. Differentiating the
identity @' = @ o @5 at xq yields

Vt,s € R:Dy, @' = Dy, @ 0 Dy P°. (9)

If ® € C!, then the map t > Dy, @' is, a priori, merely contin-
uous. However, continuity together with (9) actually implies the
existence of a linear map J: T,,Q — Ty,Q such that

Vi € R:Dy, @' = e, (10)

See [57, Thm 2.9] and [57, p. 9, para. 1]. Let Aq, ..., A, be the
eigenvalues of (the complexification of) J, repeated with mul-
tiplicities. Taking the natural logarithm of (3), we see that k-
nonresonance of (e, Dy, ®') means that, for any (possibly com-
plex) eigenvalue p of A, any n-tuple (my,...,m,) € NI, sat-

isfying 2 < m;y +---+m, < k+ 1, and any £ € Z,

£ Myhy + -+ Mphy + 278, (11)
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where i = /—1.If ¢ > 0 and we define the rescaled linear map
A¢ := cA and the time-rescaled flow @, := @<, then we see that
BDy,@! = BDy,®" = e™B = e*Band ¢ o @} = ¢ 0 & =
ey = ey for all t € R. Thus, B and v satisfy (5) and (6) with
T = R if and only if B and v satisfy (5) and (6) with A and @
replaced by A; and @, for every ¢ > 0. Now, the k-nonresonance
condition for (e, Dy, @!) is obtained from (11) by multiplying
the eigenvalues © and A4, ..., A, by c; dividing by c then yields

2w
W #E My +-~-+mnkn+176. (12)

Because there are only finitely many eigenvalues of A and J, (12)
can be violated for all ¢ > 0 if and only if it is violated with
£ = 0. It follows that, if T = R, the k-nonresonance assumption
in Theorem 1 (as well as in Theorem 3 and Propositions 2 and 6)
can be replaced with the less restrictive condition

W FE MyAr+ -+ MyAp (13)

for all (my, ..., my) € N satisfying 2 < my +---m, < k+1
and all (possibly complex) eigenvalues . of A, where A1, ..., Ay
are the eigenvalues of (the complexification of) J, repeated with
multiplicity.

Example 1. Consider the setting of Theorem 1 in the special
case that Q C R", T = R, and with & the flow of the ordinary
differential equation

dx

i = f(x)

with f € C! a complete vector field, so that f(x;) = 0. Let
B € C™" be any matrix such that BDy,f = AB for some A € C™™.
(For example, in the case m = 1, B is a left eigenvector of Dy, f if
B # 0.) It follows that Bh(tDy,f) = h(tA)B for any analytic function
hand t € R, so in particular Be'™o/ = e®B. Since Dy, @ = P/
for all t € R (because f(xo) = 0), it follows that BD,,®" = eB
for all t € R. Thus, Theorem 1 can be applied in this situation
as long as the spectral spread and nonresonance conditions are
satisfied. Since ondﬁ] = eP/ in the present setting, satisfaction
of the spectral spread condition v(e?, Dy, ®') < k + «a according
to Definition 2 (after taking logarithms) means that, if A is any
(possibly complex) eigenvalue of Dy, f, and if u is any (possibly
complex) eigenvalue of A, then the real part Re(A) < 0 satisfies

(k + a)Re(1) < Re(w).

Satisfaction of the k-nonresonance condition means that, for any

(possibly complex) eigenvalue u of A, any n-tuple (mq, ..., my) €
N, satisfying 2 <mj; +---+my <k+1,and any ¢ € Z,
M;éml)"l‘i‘""i‘mn)"n'i‘iznga (14)

where A4, ..., A, are the (possibly complex) eigenvalues of Dy,f,
repeated with multiplicity, and i = +/—1. By Remark 3, the k-
nonresonance condition of Theorem 1 can actually be replaced
with the less restrictive condition

W FE MyAr+ -+ MyAp (15)

in the setting of the present example. To make easier the appli-
cation of the existence portion of Theorem 1, we note that if the
vector field f € 2%, then also the flow @ € C°* [58, Thm A.6].

Remark 4. Definitions 1 and 2 are not independent. In particular,
if (X,Y) is (¢ — 1)-nonresonant and v(X,Y) < ¢ for £ € N,
then it follows that (X, Y) is co-nonresonant. Hence an equiv-
alent statement of Theorem 1 could be obtained by replacing
k-nonresonance with co-resonance everywhere (alternatively, for
the existence statement only (k — 1)-nonresonance need be as-
sumed in the case @ = 0). We prefer to use the stronger-sounding
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statement of the theorem above since it makes it clear that the set
of matrix pairs (e?, DXO(D1) satisfying its hypotheses are open in
the space of all matrix pairs. Openness for k < +oo is immediate,
and openness for k = +oo follows the fact that v(e?, Dy, @) is
always finite.

Remark 5. The statement in Theorem 1 regarding the limit
in (8) actually holds without any nonresonance assumptions if
an approximate linearizing factor P € Clko‘f‘(Q, C™) satisfying (7)
exists; see Lemma 5 in Section 4.1.2.

Remark 6 (The C* Case). In the case that k = +o0, the hypothesis
v(e, Dy, @') < k + o becomes v(e?, Dy, ®') < +oo which is
automatically satisfied since v(e?, DXO<D‘) is always finite. Hence
for the case k = 400, no assumption is needed on the spectral
spread in Theorem 1; we need only assume that (e?, oncbl) is co-
nonresonant. Similar remarks hold for all of the following results
in this paper which include a condition of the form v(-, -) <
k+ o.

Remark 7 (Sketch of the Proof of the Existence Portion of Theo-
rem 1). Here we sketch the proof of the existence statement of
Theorem 1, which is somewhat more involved than the unique-
ness proof. (The existence proof also yields uniqueness, but under
the additional assumption @ € Cllf;c” not needed for the unique-
ness statement in Theorem 1.) Since the basin of attraction Q of
Xo is always diffeomorphic to R" [59, Lem 2.1], we may assume
that Q = R" and x; = 0. For now we consider the case
k < +oo. First, the k-nonresonance assumption implies that we
can uniquely solve (7) order by order (in the sense of Taylor
polynomials) for P up to order k. Once we obtain a polynomial
P of sufficiently high order, we derive a fixed point equation for
the high-order remainder term ¢, where ¢ = P+ ¢ is the desired
linearizing factor. Given a sufficiently small, positively invariant,
closed ball N centered at the fixed point, the proof of Lemma 5
shows that the spectral spread condition v(e?, Dy, ®') < k + &
implies that the restriction ¢|y of the desired high-order term
is the fixed point of a map S: C*%(N, C™) — Ck%(N, C™) which
is a contraction, with respect to the standard C** norm || - ||k
making C*%(N, C™) a Banach space, when restricted to the closed
linear S-invariant subspace 7 C CK*(N,C™) of functions with
vanishing ith derivatives at the fixed point for all integers 0 <
i < k4 o.* In fact, S is the affine map defined by

S(gln) = —Ply+e ™ (PIn+gln) o @' (16)

Hence we can obtain ¢|y by the standard contraction map-
ping theorem, thereby obtaining the function ¥ |y= ¢|v+P|n€E
Cke(N, C™) satisfying ¥ |yo®@'|y= e’V |y. (The preceding tech-
niques are an extension of Sternberg’s [4] and owe much to
Sternberg’s work.) We then extend the domain of /|y using the
globalization techniques of [16,46] to obtain a function ¢ €
Clko‘f(Q, C™) defined on the entire basin Q and satisfying Y o®! =
e*y. To show that the function  satisfies (6) when T = R,
i.e., that ¥ is actually a linearizing factor of ®! for all t € R,
we use an argument of Sternberg [4, Lem. 4] in combination with
the uniqueness statement of Theorem 1. We extend the result to
the case that k = 400 using a bootstrapping argument.

Remark 8 (A Numerical Consideration). Our proof of the existence
portion of Theorem 1, outlined above, was inspired by Sternberg’s
proof of his linearization theorem [4, Thms 2, 3, 4] and also
has strong similarities with the techniques used to prove the

4 Note, however, that || - [y, must be induced by an appropriate underlying
adapted norm [47, Sec. A.1] on R" to ensure that S is a contraction.
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existence of semiconjugacies of the type (2) using the parame-
terization method [47-49]. We repeat here an observation of [47,
Sec. 3] and [49, Rem. 5.5] which is also relevant for numerical
computations of linearizing semiconjugacies of the type (1) (such
as Koopman eigenfunctions) based on our proof of Theorem 1.
Consider P € Cl';’f‘(R”, C™) satisfying (7) as in Remark 7; N, S, and
F as in the same remark; and an initial guess Yo|n= P|v+¢oln
for a local linearizing factor with ¢g|ye F. If

Lip(S) <k <1  [IS(¢oln) — @olnll <6

where Lip(S) is the Lipschitz constant of S, then the standard
proof of the contraction mapping theorem implies the estimate

leln—eolnll < 8/(1— k), (17)

where ¢|ye F is such that ¢|y= P|y+¢|n is the unique actual
local linearizing factor. Thus equation (17) furnishes an upper
bound on the distance between the initial guess ¢g|y and the
true solution ¢|y, and can be used for a posteriori estimates in
numerical analysis.

Theorem 1 gave conditions ensuring existence and uniqueness
of linearizing factors under spectral spread and nonresonance
conditions. Before stating Theorem 2, we state a result on the
uniqueness of linearizing factors which does not assume any
nonresonance conditions. Proposition 1 follows immediately from
Lemma 3 (used to prove the uniqueness statement of Theorem 1)
and the fact that Q is diffeomorphic to RY™Q) as mentioned
above.

Proposition 1. Fix k € N>q U {+oo} and 0 < « < 1, and let
®:Q x T — Q be a C' dynamical system with Q the basin of
an attracting hyperbolic fixed point X, € Q, where Q is a smooth
manifold with dim(Q) > 1 and either T = Z or T = R. Let
m € Ny and e* € GL(m, C) have spectral radius p(e?) < 1 and
satisfy v(e*, DoF) < k + a. Let ¢ € C%(Q, C™) satisfy D, ¢ =0
for all integers® 0 < i < k + « and

pod! =élg.
Then it follows that ¢ = 0. In particular, if ¢ = {¥{ — Yy, then
Y1 =¥

Theorem 2 (Existence and Uniqueness of Clko’c" Global Linearizing
Factors for a Limit Cycle Attractor). Fix k € N>; U {+o0} and
O<a<lletd:QxR—>Q beaCl’;'C“ﬂowwithQ the basin of an
attracting hyperbolic t-periodic orbit with image I' C Q, where Q is
a smooth manifold with dim(Q) > 2. Fix xo € I" and let Ejo denote
the unique Dy, @"-invariant subspace complementary to Ty, I". Let
m € Nx; and e € GL(m, C) have spectral radius p(e**) < 1, and
let the linear map B: Ejo — C™ satisfy

_ A
BDX0¢’|E§O_ e™B. (18)
Assume that (e™, DX0<1>’|E§O) is k-nonresonant, and assume that

v(e™, Dy, @7 Iz, ) < k+a.
Then there exists a unique ¥ € C©%(Q, C™) satisfying

loc
DXQW'E)S(O:Bv (]9)

and if B:E;, — R™ C C™ and A € R™™ C C™™ are real, then
Y:Q — R™ C C™is real.

Vt e Riy o @ = ey,

5 Note the case « = 0 which does not require vanishing of the kth derivative.
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Remark 9. For the uniqueness statement of Theorem 1 (and
Proposition 6) it is only assumed that @ e C!, whereas @ ¢
Cllf)f‘ is assumed for the uniqueness statement of Theorem 2
(and Proposition 7). This is because our proof of the unique-
ness statement of Theorem 2 relies on Cllz;f‘ smoothness of the
isochrons [60] or (equivalently) strong stable manifolds [61-63]
of the periodic orbit, a property which is ensured by the assump-
tion that @ € Cl’;f‘ . We leave open the question as to whether the
need for this additional assumption is merely an artifact of our

proof of Theorem 2.

Remark 10. By considering the Poincaré (first-return) map with
Poincaré section an isochron [60] and using Theorem 1, it is
readily seen that the linearizing factor i of Theorem 2 can also
be represented as a limit analogous to (8) which converges in the
pointwise sense. While we believe that this limit also converges
in the topology of C%“-uniform convergence on compact subsets
of Q as in Theorem 1, we did not attempt to prove this stronger
convergence statement.

3. Applications

In this section, we give some applications of Theorems 1
and 2 and Proposition 1. Section 3.1 contains results on Stern-
berg linearizations and Floquet normal forms. Section 3.2 gives
applications to principal Koopman eigenfunctions and isostable
coordinates. Section 3.3 contains our classification theorems for
C* eigenfunctions of C*° dynamical systems.

3.1. Sternberg linearizations and floquet normal forms

The following result is an improved statement of Sternberg’s
linearization theorem for hyperbolic sinks [4, Thms 2,3,4]. Our
improvements include: uniqueness of the linearizing conjugacy,
refined Cllf)c“ regularity rather than just C¥, and global definition of
the linearization on the entire basin of attraction Q rather than
just on some small neighborhood of x,. Our techniques for glob-
alizing the domain of the linearization are essentially the same
as those used in [16,46]. For the case T = R, the k-nonresonance
assumption in the following result can be replaced by the slightly
less restrictive nonresonance condition in Remark 3.

Proposition 2 (Existence and Uniqueness of Global Cl’f)‘f Sternberg
Linearizations). Fix k € N>q U {400} and 0 < o < 1. Let
P:Q xT — Qbea Cl'f;c‘" dynamical system with Q the basin of
an attracting hyperbolic fixed point X, € Q, where Q is a smooth
manifold with dim(Q) > 1 and either T = Z or T = R. Assume
that v(Dy, @', Dy, ®') < k + «, and assume that (Dy, @', Dy, ®') is
k-nonresonant.

Then there exists a unique diffeomorphism € Cl’f)‘g‘(Q, Ty, Q)
satisfying

VteT:y o @' =Dy, @'y, Dy ¥ = idr,q- (20)

(In writing Dy, = ideOq, we are making the standard and
canonical identification To(Ty,Q) = Tx,Q.)

Remark 11 (Uniqueness of General Linearizing Conjugacies Mod-
ulo a Linear Coordinate Transformation). Under the hypotheses
of Proposition 2, let Ly, [;: T, Q x T — Ty,Q be any linear
dynamical systems (i.e., such that each time-t map L! is linear)
and v, Y, € Cl"(;f‘(Q, Tx,Q) be any diffeomorphisms satisfying
Yio®' =Ly forallt € Tandi € {1, 2}. Differentiation at the
fixed point xo using the chain rule yields Dy, ¥iDx,®" = LDy, ¥
forallt € T, so Lf = B,-DXOQDIB,?1 where B; := Dy, ¥;. It follows that
B "0 @' = Dy, @'B; 'y for all t € T, so B; 'y satisfies (20) for
i € {1, 2}. The uniqueness statement of Proposition 2 then implies
that ¥; = B;y, from which it follows that vy = B1B; 'y,.
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Proof. Identifying T,,Q with R" by choosing a basis and letting
A € GL(n, C) be any matrix logarithm of onqﬁl, we apply Theo-
rem 1 with e = Dy, @' and B = idr, o to obtain a unique ¢ €
Cl'ﬁ;f‘(Q, Tx,Q) satisfying (20) and Dy, = idr, q. It remains only
to show that ¢ is a diffeomorphism. To do this, we separately
show that v is injective, surjective, and a local diffeomorphism.

By continuity, Dy, ¥ = idTXOQ implies that D, is invertible for
all x in some neighborhood U > xo. Since Q = |J,-, @ HU) by
asymptotic stability of xg, (20) and the chain rule imply that D,y
is invertible for all x € Q. Hence v is a local diffeomorphism.

To see that  is injective, let U be a neighborhood of xy such
that ¥|y:U — (U) is a diffeomorphism, and let x,y € Q
be such that ¢(x) = ¥(y). By asymptotic stability of xq, there
is T > 0 such that ®T(x), ®T(y) € U, and (20) implies that
¥ o @T(x) = Y o @T(y). Injectivity of |y then implies that
®T(x) = ®T(y), and injectivity of @7 then implies that x = y.
Hence v is injective.

To see that v is surjective, fix any y € Ty,Q and let the
neighborhood U be as in the last paragraph. Asymptotic stability
of 0 for Dy, @:Ty,Q x T — Ty,Q implies that there is T > 0 such
that Dy, @' -y € ¥(U), so there exists x € U with Dy, @7 -y = y(x).
Hencey = Dy, @ - ¥ (x) = ¥ 0o® ' (x), where we have used (20).
It follows that v is surjective. This completes the proof. O

The following is an existence and uniqueness result for the
Cl'f)'c‘)‘ Floquet normal form of an attracting hyperbolic periodic
orbit of a flow, a nonlinear change of coordinates in which the
dynamics become the product of a linear system with constant-
rate rotation on a circle. References discussing the Floquet normal
form include [50, Sec. 26], [51, Sec. 1.3], and [52, Sec. 4.3]; the
Floquet normal form is a nonlinear generalization of the classical
Floquet theory of linear time-periodic systems [53, Sec. IIL.7]. The
following result is proved using a combination of Proposition 2
and stable manifold theory [61-64] specialized to the theory of
isochrons [60]. For the statement, recall that a map between
manifolds is a C' embedding if it is a homeomorphism onto its
image (equipped with the subspace topology) and if its derivative
is everywhere one-to-one [65, p. 21]; a CI’;’C“ embedding is a Cllf)f‘
map which is also a C! embedding. A map between topological
spaces is proper if the preimage of every compact subset is
compact [55, p. 610].

Proposition 3 (Existence and Uniqueness of Cllf;ca Global Floquet
Normal Forms). Fix k € N>q U {+oo} and 0 < o < 1. Let
@P:Q xR — Q bea Clk(;c” flow with Q the basin of an attracting
hyperbolic t-periodic orbit with image I' C Q, where Q is a
smooth manifold with dim(Q) > 2. Fix x, € I' and let Ejo C
Ty, Q denote the unique Dy, ®*-invariant subspace complementary
to Ty, I". Assume that v(Dy, ®* |E§0, Dy, @° |E;O) < k+ «a, and assume
that (onqbflE;O, DXO@’lE;O) is k-nonresonant.

Then if we write DX0<D’|E;0: e™ for some complex linear

A: (E)f0 o — (Ej0 )c, there exists a unique, proper, Cl';f‘ embedding

¥ = (Yo, ¥2): Q — S x (Ey ) such that yig(xo) = 1, (Dy, ¥z)lgg, =
(E;0 — (Ejo )c), and

VE € R: Yy 0 O'(X) = €T Yp(x), ¥z 0 @(X) = ey(n), (21)
where S' C C is the unit circle and i = +/—1. I)‘A|E§0:Ej0 —
E;O C (Ejo)c is real, then v, € Ck’“(Q,E,io) is real, and the

loc
codomain-restricted map ¥:Q — S' x Ejo c S!' x (Ejo)c is a

diffeomorphism.

Proof. Theorem 2 implies that a map v, € Cl'f;f(Q, (Ey,)c)
satisfying all applicable conclusions above exists. Letting W;O
denote the global strong stable manifold (isochron) through xo,
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we have Ty W = ES and @7 (W ) = . Since WS is

the stable mamfold for the fixed pomt Xo of the Cloc”‘ dlffeo—
morphism &7, it follows that WS is a C’“" submanifold [64,
pp. 2, 27; Thm 6.1] which is properly embedded (rather than
merely immersed) in Q because I" is stable [46, pp. 4208-4209].
Proposition 2 then implies that I/lews 'WS — ES (E5 )c is a

diffeomorphism onto its image ES 6 Smce Es is closed in (ES )o, it

follows that 1//Z|Wst.W)f0 — (ES )c is a proper Cloc embeddmg [55,
Prop. A.53(c)].

Define expy: (Ej )c x R — (Ef )c via expy(z, t) = ez, let
K C (E )T be any subset define K, = expy(K x [—7, 0]), and
define ]r = (Wz|w5 Y~(K;). From the second equation of (21),
we have that

v, ') =

tel0,7]

If K is compact, then so are K; and J; by continuity of exp,,
properness of Wz|ws and the fact that WS is a closed subset of Q
since it is properly embedded [55, Prop. 5. 5] Thus, if K is compact,
continuity implies that v, '(K) is a closed subset of the compact
set @(J; x [0, t]) and is therefore compact. This establishes that
V1 Q — (Ej0 )c is proper.

Since the vector field generating @ intersects W;O transversely,
a standard argument [54, p. 243] and the che implicit function

loc
theorem [58, Cor. A.4] imply that a real-valued CI’;C“ “time-to-
impact Wjo" function can be defined on a neighborhood of any
point. Using these facts, one can show that the function ¥»: Q —
S! defined via W(WS ) = 1 and (@ (WS ) = e2mit is a C,’f)f‘
function. By constructlon this function Satisfies Yo%) = 1
and (21). ¥, is unique among all continuous functions satisfying
these equalities, since if ¥, is any other such function, then
asymptotic stability of I" implies that the quotient (v /Wg) is
constant on Q, and since (/¥ )(xo) = 1 it follows that ¥y = .

Note that, for all t € R and x € qur( = ! (WS ),
ker (Dyg) = TyW. Sty = (O
with the second equality following since wZ|W;t(XO)= e o lﬁzlwxso
o®~ tlw(; o) isa Clkca embedding. It follows that ¥ := (V¥y, ¥,): Q
— ST x (ES )c is an immersion, i.e., that Dyy is injective for all

x e Q. Furtﬂermore ¥ is injective since the restriction of i, to
any level set W? of ¥ is the composition of injective maps

4”( 0)
et oz lwg 0P~ lW:;‘(xo). Let 7r,: S' x (E§ )c — (E5,)c be projection
W(K)C v,

onto the second factor. Since v~ (7, (K)) for any subset
K, properness of ¥, and continuity of 7, and v imply that v is
also proper. Since (i) proper maps between manifolds are closed
maps [55, Thm A.57], (ii) closed injective continuous maps are
homeomorphisms onto their images [55, Lem. A.52.C], and (iii) ¥
is a Cl’gf‘ injective immersion, it follows that v is a proper G
embedding.

If A is real, then the image of the proper embedding i is
contained in S' x Ej C S' x (Ej )c. Since dim(S' x E})) =
dim(Q), and since C! proper embeddings between manifolds
of the same dimension are both open and closed maps [55,
Prop. 4.28, Thm A.57], it follows that the image of v is both open
and closed in S' x E . Since S' x E;_is connected, it follows that
the image of y is all of ST x ES [55, Prop. A.39(e)]. Thus, ¢ is a

loc ¢ diffeomorphism onto S! x 55 if A is real. This completes the
proof. O

@' ((Welwg,) (e K)) € @ x [0, ).

<1>‘(><o) and ker (Dyyr,) N Ty

6 Strictly speaking, Proposition 2 was - for simplicity - stated for smooth
manifolds. Hence in order to apply Proposition 2 here (and also in the proofs of
Theorems 2 and 4) we must first give Wjo a compatible C* structure, but this
can always be done [65, Thm 2.2.9], so we will not mention this anymore.
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3.2. Principal Koopman eigenfunctions, isostables, and isostable co-
ordinates

Given a C! dynamical system @:Q x T — Q, where Q is
a smooth manifold and either T = Z or T = R, we say that
¥:Q — C is a Koopman eigenfunction if i is not identically zero
and satisfies

YVt e T:p o @ = ety (22)

for some p € C. The following are intrinsic definitions of prin-
cipal eigenfunctions and the principal algebra which extend the
definitions for linear systems given in [22, Def. 2.2-2.3]; a more
detailed comparison is given later in Remark 16. The condition
Y| = 0 was motivated in part by the definition of a certain space
Fa, of functions in [21, p. 3358].

Definition 4. If Q is the basin of an asymptotically stable fixed
point xy € Q for @, we say that an eigenfunction ¥ € C'(Q)is a
principal eigenfunction if ¥(xg) = 0 and Dy,¥ # 0. If instead Q is
the basin of an asymptotically stable periodic orbit with image
I' C Q for @, we say that an eigenfunction ¢ € C!(Q) is a
principal eigenfunction if ¥|-= 0 and Dy, ¥ # 0 for all xo € r’
In either case, we define the Cl’;f‘ principal algebra A';"” to be the
complex subalgebra of C &, o‘( Q, C) generated by all Cl'f)'ca principal
eigenfunctions.

Given a (real or complex) linear self-map Y:V — V, we say
that a linear map w:V — C is a left eigenvector of Y with
eigenvalue A € C if wY = Xw. (If a basis is chosen for V,
then Y can be identified with a matrix and w can be identified
with a row vector so that wY = Aw in the usual sense of ma-
trix multiplication.) Differentiating (22) and using the chain rule
immediately yields Propositions 4 and 5, which have previously
appeared in the literature (see, e.g., the proof of [21, Prop. 2]; our
stability assumptions are for convenience of exposition and are
not necessary).

Proposition 4. Let Q be the basin of an asymptotically stable
fixed point xo for the C! dynamical system ®:Q x T — Q. If
Y is a principal Koopman eigenfunction for @ satisfying (22) with
exponent (1 € C, then for any t € T, it follows that Dy, v is a left
eigenvector of Dy, @' with eigenvalue e'.

Proposition 5. Let Q be the basin of an asymptotically stable
t-periodic orbit with image I' C Q for the C' dynamical system
®:Q x R — Q. If ¥ is a principal Koopman eigenfunction for
@ satisfying (22) with exponent u € C, then for any xo € T, it
follows that Dy, is a left eigenvector of Dy, @ with eigenvalue e**;
in particular, e** is a Floquet multiplier for I.

Remark 12. For a dynamical system with Q the basin of an
attracting compact invariant set M, any continuous eigenfunction
defined on Q satisfying (22) with exponent © € C must have
le*| < 1. 1If this attracting set M is furthermore a hyperbolic fixed
point, then there is the stronger observations that either e# = 1
or [e*| < 1. These observations are straightforward consequences
of continuity and (22).

Remark 13. Let u € C and consider the case that Q is the
basin of an attracting hyperbolic fixed point xg € Q for the
C! dynamical system @:Q x T — Q. Recall that the spectral
radius p(Dy,@') € (0, 1) of Dy, @' is defined to be the largest

7 By (22) and the chain rule, it suffices to assume there exists one point
Xo € I" such that ¥(xo) # 0 and Dy, ¥ # 0.
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modulus (absolute value) of the eigenvalues of (the complexifi-
cation of) oncbl. From Eq. (4) of Definition 2, the spectral spread
v(et, Dy, @) satisfies

v(e", Dy ®') = min {r eR:|e"| > (p (oncpl))r} . (23)
It follows that, for any r € R U {400},
le"] > (p (Dy@"))" (24)

where (o (ondﬁl))+C>O := 0 in the special case that r = +o0.

v(e!, Dy, ®') <r —

In light of Remarks 12 and 13 (taking r = k + « in (24)),
Proposition 6 is now nearly immediate from Theorem 1 and
Proposition 4. We prove the non-immediate portion following the
statement of Proposition 6. We emphasize that, when k = +oco
in Proposition 6, the spectral spread condition

1> (0 (0 @) = (0 (P ®") ™ = 0

is automatically satisfied since |e/|
Remark 6).

For the case T = R, the k-nonresonance assumptions in the
following result can be replaced by the slightly less restrictive
nonresonance condition in Remark 3. Applications-oriented read-
ers may find it helpful to consult Example 1 with m = 1 for
remarks relevant to the following proposition.

> 0 forall u € C (cf

Proposition 6 (Existence and Uniqueness of Cl’f)’c"‘ Koopman Eigenval-
ues and Principal Eigenfunctions for a Point Attractor). Let ®:Q x
T — Q be a C' dynamical system with Q the basin of an attracting
hyperbolic fixed point xo € Q, where Q is a smooth manifold with
dim(Q) > 1 and either T = Z or T = R. Fix k € N> U {+00} and
0 < & < 1, and assume that the spectral radius p (Dy,®') € (0, 1)
satisfies

el > (p (D ®")"

in all of the following statements.

Uniqueness of Koopman eigenvalues and principal eigen-
functions. Let V¥, € Clk(;f(Q,C) be any Koopman eigenfunction
satisfying (22) with exponent u € C.

(1) Then there exists m = (my, ..., my) € NL, such that

et = e™*,
where e*1, ..., e* are the eigenvalues of Dy,®' repeated
with multiplicities and A := (A1, ..., An).

(2) Assume that 1 is a principal eigenfunction so that e* €
spec(Dy, '), and assume that (e", Dy, ®") is k-nonresonant.
Then vy is uniquely determined by Dy v, and if e* and
Dy, V1 are real, then ¥1:Q — R C C is real. In particular, if
e* is an algebraically simple eigenvalue of (the complexifica-
tion of) D,<0<1>1 and if v, is any other principal eigenfunction
satisfying (22) with the same exponent , then there exists
c € C\ {0} such that

Y1 = .

Existence of principal eigenfunctions. Assume that @ € Cl’f)‘f
and that (e*, ondﬁ]) is k-nonresonant. Let w: Ty,Q — C be any left

eigenvector of oncpl with eigenvalue e such that
Vt € T: wDy, @' = ew.

(1) Then there exists a unique principal eigenfunction v €
C{Zf(Q, C) satisfying (22) with exponent p and satisfying
Dy, ¥ = w.
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(2) In fact, if P € C&%(Q, C) is any “approximate eigenfunction”

loc

satisfying Dy,P = w and
Po®d! =etP +R (25)
with D} R = 0 for all integers 0 < i < k + o, then

Y = lim e P o @t (26)
t—o00

in the topology of C**-uniform convergence on compact sub-

sets of Q if k < o0, and in the topology of C¥ -uniform

convergence on compact subsets of Q for any k' € N.q if

k = +oc.

Proof. All of the claims are immediate from Theorem 1 and
Proposition 4 except for the first uniqueness claim, which we
now justify. Suppose (to obtain a contradiction) that the first
uniqueness claim does not hold. Then (i) e* is not an eigenvalue
of Dy, @' and (ii) (e”, Dy, ®") is co-nonresonant. The first obser-
vation together with Proposition 4 implies ¥ is not a principal
eigenfunction, i.e., Dy,3% = 0. From Remark 13 and the unique-
ness portion of Theorem 1 (with A = u and B = 0), it follows
that ¥ = 0 is identically zero. However, Koopman eigenfunctions
are (by definition) not identically zero, so we have obtained a
contradiction. O

Remark 14 (Laplace Averages). Given P:Q — C and T = R, in
the Koopman literature the Laplace average

T
Y = lim 1[ e Mpo@tdr
T—o0 0

is used to produce a Koopman eigenfunction satisfying (22) with
exponent u as long as the limit exists [15,17]. (When T = Z, a
similar definition can be given with a sum replacing the integral.)
Since convergence of the limit (26) easily implies convergence of
the Laplace average to the same limiting function, the existence
portion of Proposition 6 gives sufficient conditions under which
the Laplace average of P exists and is equal to a unique C]’;’f‘
principal eigenfunction v satisfying Dy, = Dy,P.

Remark 15 (Isostables and Isostable Coordinates). It follows from
the discussion after [15, Def. 2] that the definition of isostables
given in that paper - for @ having an attracting hyperbolic fixed
point xo with basin of attraction Q and with Dy,®' having a
unique eigenvalue e*1 (or complex conjugate pair of eigenvalues)
of largest modulus - is equivalent to the following. Isostables
as defined in [15] are the level sets of the modulus [¢| of
a principal eigenfunction ¢; defined on Q and satisfying (22)
with exponent @ = . Because e*1 is the “slowest” eigen-
value of DXOQI)], Proposition 6 implies that, for any « > 0,
any such ¢y € Cllf‘(Q, C) satisfying (22) with exponent w4 is
unique modulo scalar multiplication for a C! dynamical system
@ without any further assumptions (since |e#1| > |e*1|!T® =

(0 (DXOQ?l))Ha). Furthermore, such a unique eigenfunction al-

ways exists if @ ¢ Cl})’c‘)‘ and if wDy, @' = e“w for all t € T,
where w is a left eigenvector of DXOQ>1 with eigenvalue e*.8 Since
the complex conjugate v, is a principal eigenfunction satisfying
(22) with exponent u = i1, it follows that the isostables as
defined in [15] are unique even if u; € C \ R. A uniqueness
proof for analytic isostables under the additional assumptions
of (onqbl, Dx0<1>1) oo-nonresonance and of dynamics generated

by an analytic vector field was given in [15, App. A]. For the

8 By Example 1, if T =R and & is the flow of a G vector field f, these
assumptions are automatically satisfied if w is a left eigenvector of Dy, f with
eigenvalue p.
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special case that the eigenvalue of largest modulus is real, unique,
and algebraically simple, in [15, p. 23] these authors do point
out that uniqueness of C! isostables (if they exist) follows from
the fact that they coincide with the unique C! global (strong)
stable manifolds [46, pp. 4208, 4211] over® an attracting, nor-
mally hyperbolic [46, p. 4207], 1-dimensional, inflowing invariant
manifold [46, p. 4211]; this argument works even if the dynam-
ical system is only C! (see [46] for detailed information on the
global stable foliation of an inflowing invariant manifold). The
1-dimensional invariant “slow” manifold is itself generally non-
unique without further assumptions, but this does not affect the
isostable uniqueness argument. However, as pointed out in [15,
p. 23], this argument does not work when the eigenvalue of
largest modulus is not real, because in this case the isostables
can no longer be interpreted as strong stable manifolds (e.g., the
relevant slow manifold is now 2-dimensional, so the dimension
of the codimension-1 isostables is too large by 1).

For the case that T R and @ has an attracting hyper-
bolic periodic orbit, several authors have investigated various
versions of isostable coordinates without restricting attention to
the “slowest” isostable coordinate. The authors in [39, Eq. 5] de-
fined a “finite-time” approximate version of isostable coordinates
which provide an approximation of our principal eigenfunctions.
Subsequently, [40, Sec. 2] defined a version of “exact” isostable
coordinates (termed amplitudes and phases) directly in terms of
Koopman eigenfunctions, and in particular our Proposition 7 and
Theorem 4 can be used to directly infer existence, uniqueness and
regularity properties of these coordinates under relatively weak
assumptions. It appears that [41,42] intended to define a different
version of “exact” isostable coordinates close in spirit to the
approximate version in [39]. However, these definitions [41,42,
Eq. 24, Eq. 58] are given in terms of a limit which might not
exist for principal eigenfunctions other than the “slowest”, as we
show in Example 3. In any case, it appears that principal Koopman
eigenfunctions provide a means for defining all of the isostable
coordinates for a periodic orbit attractor which does not require
such limits.

Remark 16 (Relationship to the Principal Eigenfunctions, Principal
Algebras, and Pullback Algebras of [22]). Given a nonlinear dynam-
ical system @:Q x T — Q with Q the basin of an attracting
hyperbolic fixed point xo, Mohr and Mezi¢ defined (in our nota-
tion) the principal eigenfunctions for the associated linearization
Dy, @: Tx,Q x T — Ty, Q to be those of the form v — w(v), where
w:Ty,Q — C is a left eigenvector of onq§1 [22, Def. 2.2], and
they defined the principal algebra “4on¢1 to be the subalgebra

of CO(TXOQ, C) generated by the principal eigenfunctions [22,
Def. 2.3]. Mohr and Mezi¢ do not define principal eigenfunctions
or the principal algebra for the nonlinear system itself but, given
a topological conjugacy 7:T,,Q — Q between & and D,,®, they
define the pullback algebra

(A%@) ot li={pot ipe Ap, o1} (27)

Assuming that @ € Cl’f)'f, Proposition 6 implies that the re-
lationship between the concepts in our Definition 4 and those
of [22] is as follows. If (Dy, @', Dy, ®') is k-nonresonant and
V(Dy, @', Dyy®') < k + « (see Definition 2), our principal eigen-
functions for oncpl coincide precisely with their principal eigen-
functions w:T,,Q — C. This implies that our principal algebra

9 general, the (strong) stable manifolds are the leaves of the unique global
(strong) stable foliation [46, p. 4208] of the global (center-)stable manifold [46,
p. 4208] of an (inflowing) normally hyperbolic invariant manifold [58,63,66];
these leaves generalize the isochrons [60] of an attracting hyperbolic limit cycle.

10
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AS;E@
back algebra (27) is generated by the functions w o t~' where
w:Ty,Q — C is a principal eigenfunction of the linearization. If
we further assume that the conjugacy t is a Cl’f,’c“ diffeomorphism,
then the chain rule implies that each w o 77! is a Cl’;’f principal
eigenfunction for &, and therefore (A%d,]) ot ! = A’;;“ by
Proposition 6. In particular, under the above hypotheses it follows
that (Aondﬂ) ot~ !is independent of T and generated by at most

coincides with their Ap, o1 Next, notice that the pull-
1

n C,’;’f‘ principal eigenfunctions for @. This is perhaps surprising
since (27) depends on the a Priori non-unique conjugacy t; here
the assumption that 7 is a ;" diffeomorphism is essential.

For an attracting hyperbolic t-periodic orbit of a C{‘O'C‘)‘ flow
with image I and basin Q D I, stable manifold theory [60-
64] can be used to show that the global strong stable manifold

(isochron) Wy through xo € I' is a Cl"(;c” submanifold of Q, and

qY(W,fO) = W,fo. Furthermore, any eigenfunction ¢ € Cl’f)‘f(WjO, C)
of ®T|Wxso satisfying ¢ o @° |W;0 = e admits the unique exten-
sion to an eigenfunction ¢ € Cl'f;f(Q, C) with exponent u given
by

_ plt —t
I/f|W;D[(X0)-— oo lW;f(x())
forall t € R. That ¢ € Cl’f;f‘ follows from considering locally-
defined CI’;'C“ “time-to-impact W;O" functions as in the proof of
Proposition 3. This observation combined with Propositions 5
and 6 yields the following result. (Alternatively, the statement
concerning existence and uniqueness of principal eigenfunctions
follows from Theorem 2 and Proposition 5.)
Proposition 7 (Existence and Uniqueness of Cf;f‘ Koopman Eigen-
values and Principal Eigenfunctions for a Limit Cycle Attractor). Fix
keNsqU{+oo}and0 <o < 1.Let P:Q xR — Qbeaq’;c“ﬂow
with Q the basin of an attracting hyperbolic t-periodic orbit with
image I' C Q, where Q is a smooth manifold with dim(Q) > 2. Fix
Xo € I and let Ejo = T,(OW,f0 denote the unique Dy, @ -invariant
subspace complementary to Ty, I'. Assume that the spectral radius

P (DXO¢T|E§O) € (0, 1) satisfies

- . ko
€1 > (p (D@7l ) )

in all of the following statements.
Uniqueness of Koopman eigenvalues. Let y/; € Cf‘o’f(Q, C) be

any Koopman eigenfunction satisfying (22) with exponent u € C

and T = R. Then there exists m = (my, ..., m,) € N such that

et — e(m-)\)r’
where e*17, ... e*" are the eigenvalues of Dy, @° |E§0 repeated with
multiplicities and A .= (A1, ..., Ap).

Existence and uniqueness of principal eigenfunctions. As-
sume that (e"", Dy, @7 | ) is k-nonresonant. Let w: E;o — C be any
left eigenvector of Dy, 7| £, with eigenvalue e**. Then there exists

a unique principal eigenfunction € C{;‘f(Q, C) for @ satisfying
(22) with exponent u and T = R and satisfying DX01//|E§<O= w.

Additionally, if u and w are real, then ¥:Q — R C C is real.

A well-known example of Sternberg shows that, even for an
analytic diffeomorphism @' of the plane having the globally
attracting fixed point 0, there need not exist a C? principal eigen-
function corresponding to e* € spec(Do@!) if (e*, Dg@!) is not
2-nonresonant [4, p. 812]. Concentrating now on the issue of
uniqueness of principal eigenfunctions, the following example
shows that our nonresonance and spectral spread conditions are
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both necessary for the uniqueness statements of Propositions 6
and 7 (hence also for the uniqueness statements of Theorems 1
and 2).

Example 2 (Uniqueness of Principal Eigenfunctions). Consider @ =
(P71, P3): R? x T — R? defined by

Dl(x,y)=e""'x
¢£(X, y) — e—(k+a)ty

where k € N1, 0 < o < 1, and either T = Zor T = R. @
is a diagonal linear dynamical system with x = 0 a globally
exponentially stable fixed point, and the eigenvalues of Dy®'
@1 are e~ and e~ *+®), Furthermore, for any irrational « € [0, 1],
(e=+2) Dydp1) is co-nonresonant; co-nonresonance also holds if,
eg., k = 1and o = 0 (see Definition 1). However, if we define
0q(x) := |x| for @ > 0 and o,(x) := x for « = 0, then for any
k € N>; and « € [0, 1] both

(28)

hi(x,y) =y (29)
and
hy(x,y) =y + oo (x)F (30)

are Ck principal eigenfunctions satisfying (22) with the same
exponent

n=—(k+a).

In particular, this shows that Cllf)f‘ principal Koopman eigenfunc-
tions are not necessarily unique (modulo scalar multiplication)
even if the oco-nonresonance condition is satisfied. Since here
h, € Cl'f;f‘(Rz, C) and r = (k + «) is the smallest r € R satisfying
e () > (p (Do@!))" = (e7'), this shows that the spectral
spread condition |e*| > (p (onq)]))kw is both necessary and
sharp for the principal eigenfunction uniqueness statement of
Proposition 6 to hold, at least in thg case that « > 0.1 (Note
that Proposition 6 does imply that Cllf]c'“ principal eigenfunctions
are unique for any k' + @’ > k + «.) If instead k 1 and
o = 0, then h; and h, are both analytic eigenfunctions satisfying
(22) with the same exponent u —1, while (e71, Dy@1) is
oo-nonresonant, but now these eigenfunctions are distinguished
by their derivatives at the origin; this is consistent with the
uniqueness statement of Proposition 6. On the other hand, if k =
2 and o = 0 so that (e72, Dy®') is not 2-nonresonant, (29) and
(30) show that analytic eigenfunctions are not unique despite the
fact that the spectral spread condition |e 2| > (o (Doq)1))+°° =0
certainly holds. Hence the nonresonance condition is also nec-
essary for the principal eigenfunction uniqueness statement of
Proposition 6 to hold. Finally, by taking T = R, changing the
state space R? above to R? x S, and prescribing the unit circle
S! C C with the decoupled dynamics ®4(x, y, 0) := e''0 (where
i = o/—1) yields an example showing that the spectral spread and
nonresonance conditions are both necessary for the uniqueness
statement in Proposition 7 to hold as well.

Example 3 (Existence of the Limit (26) and Isostable Coordinates).
Existence of the limit in (26) is not automatic if the “approximate
eigenfunction” P is not an approximation to sufficiently high
order. To demonstrate this, fix k € N>1, « € [0,1], 1 € R>y,
and € € R.q. Define o,(x) := |x| for « > 0 and o,(x) := x for

10 1n the terminology and notation of Theorem 1 with m = 1, the condition
le“] > (o (DO(DI))HQ is equivalent to the condition v(e*, Dg@') < k+ a, where
the spectral spread v(-, -) is defined in Definition 2. See Remark 13.

11
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Ck,a

o dynamical system @:R? x T — R?

o = 0, and consider the
defined by

Bi(x.y) = e 'x

31
¢£(X, y) — e—rt(y _ EO’a(X)IH—a) 4 ee_("”)taa(x)k”, ( )

where either T = Z or T = R. To see that @ is indeed a dynamical
system (i.e., that @ satisfies the group property @'** = @' o @°),
define the diagonal linear system ®'(x, y) = (e~‘x, e~ "'y) and the
cke diffeomorphism H: R* — R? via H(x, ) := (x, y+€0q(x)F"®),
and note that @' = H o @' o H™!. In other words, @ is obtained
from a diagonal linear dynamical system via a C** change of
coordinates; note also that this change of coordinates can be
made arbitrarily close to the identity by taking e arbitrarily small.
Since xo = 0 is a globally exponentially stable fixed point for @,
it is also so for @. We note that r = r > 1 is the smallest ry € R
such that the spectral radius p (Dp@') = e~! € (0, 1) satisfies
le"| > (p (Do®"))"™."" We further note that, for any choice of e,
the analytic function P(x, y) := y satisfies

Po®'=e"P+R

where DJ(O,O)R = 0 for all integers 0 < j < k 4+ «. However,

lim e"P o ®(x,y) =y — €0, (XY + ey ()T Jim plr—(kte)t
— 00

—00
y—eo (x)t* 1<r<k+a

=1y r=k+o
400 r>k+o

(32)

for any x # 0 and € > 0. We see that the limit (32) diverges
when r > k + « (so that [e™"| < (p (Dodﬁl))kﬂ), but the limit

converges when r < k + « (so that [e™"| > (p (D0¢1))k+a).
For the case that r < k + « and r ¢ N, this is consistent
with Proposition 6 which guarantees that the limit converges
if @ € G if le| > (p (D0<D1))k+a, and if (e7", Dg®') is
k-nonresonant. When r = k 4+ « and r ¢ Ns,, convergence
is also guaranteed by Proposition 6 for this specific example,
because then (i) (e, Do®') is co-nonresonant, (ii) @ is linear
(the nonlinear terms cancel when r k + «) and hence C*°,
and (iii) Proposition 6 guarantees that this limit always exists if
@ e C® and (e™", Dy®') is co-nonresonant because the spectral
spread condition [e”"| > (p (D0<1L"1))+°O = 0 always holds. As
alluded to in Remark 5, the preceding reasoning can actually be
applied even without the assumption that r is not an integer if
Lemma 5 is used instead of Proposition 6 as the tool of inference
(i.e., nothing about nonresonance actually needs to be assumed
for this example). We emphasize that the divergence in (32)
is associated purely with the spectral spread condition since,
e.g., we can choose r > 1 so that (e™", Dg®!) is co-nonresonant
and take o = 0 so that @ is analytic.

Note that by taking T R, changing the state space R?
to R?> x S, and prescribing the unit circle S' C C with the
decoupled dynamics ®L(x,y, 0) := e''0 (where i = /—1) yields
a corresponding example with a globally attracting hyperbolic
periodic orbit {(0, 0)} x S'. In this case, for this example [41,42,
Eq. 24, Eq. 58] would attempt to define the “faster” isostable coor-
dinate (principal eigenfunction in our terminology) v, satisfying
(22) with exponent u, := —r via the limit (32), but (32) shows
that this limit does not exist if r > k4. This phenomenon should
be compared with the explanation in the preceding paragraph
based on our general results.

11 Thae is, the spectral spread satisfies v(e™", Dg@!) = r in the terminology of
Definition 2 and Theorem 1. See Remark 13.
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3.3. (lassification of all C*° koopman eigenfunctions

Notation. To improve the readability of Theorems 3 and 4, we
introduce the following multi-index notation. We define an n-
dimensional multi-index to be an n-tuple i = (i1, ...,i,) € NL,
of nonnegative integers, and define its sum to be |i| = i; +
-+« + ip. For a multi-index i € NI and z = (zy,...,2,) € C,
we define zl! := z'...z!". Given a C"-valued function ¥ =
(Y1, ..., ¥m):Q — C", we define ¥1:Q — C via yl(x) =
(y(x) for all x € Q. We also define the complex conjugate of

v = (Y1, ..., ¥n) element-wise: ¢ := (¥q, ..., ¥n).

For the case T = R, the co-nonresonance assumption in the
following result can be replaced by the slightly less restrictive
nonresonance condition in Remark 3. Applications-oriented read-
ers may find it helpful to consult Example 1 with m 1 for
relevant remarks.

Theorem 3 (Classification of all C*° Eigenfunctions for a Point
Attractor). Let @:Q x T — Q be a C* dynamical system with Q
the basin of an attracting hyperbolic fixed point xo € Q, where Q is
a smooth manifold with dim(Q) > 1 and either T = Z or T = R.
Assume that DX0<151 is semisimple (diagonalizable over C) and that
(Dyy @', Dy, @") is co-nonresonant.

Letting n = dim(Q), it follows that there exists an n-tuple

W=(1ﬂ1’---71//n)

of C* principal eigenfunctions such that every C*° Koopman eigen-
function ¢ is a finite sum of scalar multiples of products of the ;
and their complex conjugates v;:

o= Y cmyly™

[€]+Im|<k

(33)

for some k € N»( and some coefficients ¢, m € C.

Proof. By Proposition 2 and linear algebra, there exists a C*°
embedding Q < C" which maps Q diffeomorphically onto
an R-linear subspace of C", maps xo to 0, and semiconjugates
@ to the diagonal C-linear dynamical system ®@%(z,...,z,) =
(eM'zy, ..., e*tz,).12 Thus, for simplicity, we may (and do) view
Q as a ®@-invariant R-linear subspace of C" with @ = ©|qr. Let
¢ € C*(Q, C) be any C* Koopman eigenfunction satisfying (22)
with exponent u € C.

Write z = (21, ..., z,) € C". For any k € N, Taylor’s theorem
implies the existence of R, € C*°(Q, C) satisfying 0 = Ry(0)
DoRk = - - - = DRy and coefficients ¢, such that

> cm?Z™ + Riz)
[€]+Im]<k

o(z) (34)

for all z € Q. Defining A (A, ..., Ap) and writing the
eigenfunction equation ¢ o @! = e*¢ in terms of the expansion
(34) yields, for all z € Q,

ez.“m.;%mzmz[m] +Rio0 (pl(z) — Z et (Camz[ﬂz[m] + Rk(z)) .

[€|+m|<k [€]+m|<k

Upon subtracting terms, we see that S, = Ry o ®! — e Ry is
the restriction of a kth order polynomial to Q. On the other
hand, we infer that 0 S«(0) DoSk DS, from
the corresponding property of Ry. Thus, Sy is the zero function,
so Ry o @! e*Ry. Recall Definition 2 of the (always finite)
spectral spread v( -, -). If we choose k sufficiently large so that
k > v(e*, Dg@1), Proposition 1 implies that R, = 0. From (34),
we then see that ¢ is equal to a sum of products of the principal
eigenfunctions v¥;(z) := z, 1/_/]-(2) =Zj as desired. O

12 The standard definition of C* embedding is recalled preceding Proposi-
tion 3 (take & = 0 and k = 400).
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For a an attracting hyperbolic t-periodic orbit of a Cl’;f‘ flow
with image I and basin Q D I, let W,fo be the global strong
stable manifold (isochron) through the point x, € I". As discussed
in the proof of Proposition 3, there is a unique (modulo scalar
multiplication) continuous eigenfunction satisfying (22) with ex-
ponent u iZ and T = R, where i /=1, and this
eigenfunction is in fact C* for a C* flow. Moreover, such an
eigenfunction is constant on W,fo. In the theorem below, let vy
be the unique such eigenfunction satisfying v |W)§0 = 1, where the
point X is as in the theorem statement. Explicitly, ¥ is given by

Yolws

ot(xg)

— ¥t
for all t € R. This defines 1, on all of Q since Q =, W;,(XO),
and the definition makes sense since W, o) = W, forallj € Z.
0
Theorem 4 (Classification of all C*° Eigenfunctions for a Limit Cycle
Attractor). Let ®:Q x R — Q be a C* dynamical system with
Q the basin of an attracting hyperbolic t-periodic orbit with image
I' C Q, where Q is a smooth manifold with dim(Q) > 2.
Fix xo € I’ and denote by Ejo the unique t-invariant subspace
complementary to Ty, I". Assume that Dy, @ | B, is semisimple and
that (Dy, @° |E’S‘o’ DX0¢T|E)§0) is oco-nonresonant.
Letting n + 1 = dim(Q), it follows that there exists an n-tuple

wz(w17"'7l//.n)

of C* principal eigenfunctions such that every C*° Koopman eigen-
function ¢ is a finite sum of scalar multiples of products of integer
powers of Yy with products of the v; and their complex conjugates

v
o= > cmy gy

[€]+Im] <k

(35)

for some k € N, some coefficients ¢, , € C, and jo.;m € Z.

Proof. Let W)fo be the C* global strong stable manifold through
Xo. We remind the reader of the facts Q = U[eR W;[(XO) and
Wfpt(xO) CD‘(W,fO) which are implicitly used in the remainder
of the proof.

First, we note that every eigenfunction y € C°°(W)fo, C) of
Fl(x) := @t |w;0 (x) satisfying (22) with exponent 4 € C and T =
Z admits a unique extension to an eigenfunction ¥ € C*°(Q, C)
of @ satisfying (22) with exponent x and T = R; this unique
extension x is defined via

= 67‘” o @t s
) X |w¢7[(XO)

Xlws_,, (36)
for all t € R. That ¥ € C* follows from considering locally-
defined C*° “time-to-impact W)fo” functions as in the proof of
Proposition 3, and y is a principal eigenfunction if and only if
its extension ¥ is.

Next, let ¢ € C*°(Q, C) be a eigenfunction satisfying (22) with
exponent x and T = R. Theorem 3 implies that (p|W§0 is equal to
a sum of products of principal eigenfunctions i, ..., xn,» X1, .- -»
Xn Of cDTlW;O of the form:

l -
> cmxxm

|€]+|m|<k

¢lw;, = (37)
for some k € N-o, where x = (x1,..., Xn)- Let A = (A1, ... Ap) €
C" be such that each yx; satisfies xj o @7|ys = el™ x;. Since ¢
satisfies (22) with exponent p, it follows that

ot — e(z»x+mi)r (38)
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forall ¢, m e ano such that ¢, ;, # 0, so for such £, m we have

- 2w,
/A:E-k+m~k+17ﬂ,m (39)

for some j,, € Z, where i +/—1. By the previous paragraph,
we may uniquely write x 1p|WXsO: (1/f1|W;0, e w,,|WXsO) for
principal eigenfunctions ; of @ satisfying (22) with exponent ;
and T =R.

Using (37),(39), and the extension formula (36), we obtain

- o e HE . (yU7ImY o gt
(/)|W;_t(XO) Z tm (X X ) |W§>—t(x0)
[¢|+Im| <k
— .7
= > ceme™ (YY) s 00t ys
0 »=t(xg)
[€]+m|<k
_(i%Z; AN
— Z Ce.me (i jemlt | (1/,[ ]w[m]) s .
> t(xg)
[€]+[m|<k
a7 Je,
= > com (VO e
»~t(xg)
[€]+Im|<k

for all t € R as desired. To obtain the last equality we used the
fact that 1/[9|WgOE 1, so the extension formula (36) implies that

21 j
Yo lws = e~'7 ! and hence also ( é"”‘)
27 (x)

This completes the proof. O

lws = (i Ziemk,
d>*[(x0)

4. Proofs of the main results
4.1. Proof of Theorem 1

In this section we prove Theorem 1, which we repeat here for
convenience.

Theorem 1 (Existence and Uniqueness of CI’"“ Global Linearizing

Factors for a Point Attractor).Let @:Q x T —>O(cz be a C! dynamical
system with Q the basin of an attracting hyperbolic fixed point
Xo € Q, where Q is a smooth manifold with dim(Q) > 1 and either
T=2ZorT =R. Let m € N»; and e* € GL(m, C) have spectral

radius p(e*) < 1, and let the linear map B: Ty, Q — C™ satisfy

Vt € T:BD,,®" = e”B. (5)

Fix k € Noj U {+o0} and 0 < « < 1, assume that (e*, Dy, ®") is
k-nonresonant, and assume that v(e*, Dy, @') < k + .
Uniqueness. Any ¢ € ( """(Q, C™) satisfying

loc
Yoo ="y, Dy¥ =8B

is unique, and if B:T,,Q — R™ C C™ and ¢! € GL(m,R) C
GL(m, C) are real, then y: Q — R™ C C™ is real.
Existence. If furthermore @ € Cll;f‘ then such a unique ¢ €

C,’f)‘f(Q, C™) exists and additionally satisfies

Vt € T: ¢ o @' = ey (6)

In fact, if P € CI’E;C‘)‘ (Q,C™) is any “approximate linearizing factor”

satisfying Dy,P = B and
Pod!'=e'P+R (7)
with DLOR = 0 for all integers 0 <i < k + «, then

(8)

Y = lim e P o !
t—o00

in the topology of C**-uniform convergence on compact subsets of
Q if k < +oo, and in the topology of C¥ -uniform convergence on
compact subsets of Q for any k' € N1 if k = +-o0.
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We prove the uniqueness and existence portions of Theorem 1
in the following Section 4.1.1 and Section 4.1.2, respectively.
Some of our statements and proofs make use of higher-order
derivatives of maps between Euclidean spaces [51, Sec. A.5] and
the fact that a multilinear map is equivalent to a linear map out of
a tensor product (the “universal property of the tensor product”).

4.1.1. Proof of uniqueness

In this section, we prove the uniqueness portion of Theorem 1.
The proof of uniqueness consists of an algebraic part and an
analytic part. The algebraic portion is carried out in Lemmas 1
and 2, and the analytic portion is carried out in Lemma 3.

Lemma 1. let k € N5q U {400}, m,n € N>q, X € C™"™, and
Y € R™" be such that (X, Y) is k-nonresonant. Forall 1 < i < k+1,
let £((R™M)®, C™) denote the space of linear maps from the i-fold
tensor product (R™)® to C™, and define the linear operator

T L((RM®, C™) = £((RM)®, C™), T(P) := PY® — XP. (40)

(By this formula we mean that T;(P) acts on tensors T € (R")® via
7 — P(Y®i(1)) — XP(7).)

Then for all 1 < i < k+ 1, T; is a linear isomorphism. (The
conclusion holds vacuously if k = 1.)

Proof. Let Ay,..., A, and w1, ..., unm respectively be the eigen-
values of Y and X repeated with multiplicity.

First assume that Y and X are both semisimple, i.e., diagonaliz-
able over C. Identifying Y with its complexification, let e, ..., e,
€ C™ be a basis of eigenvectors for Y and let e!, ..., e" € (C")*
be the associated dual basis. Let fi,...,f,, € C™ be a basis of
eigenvectors for X. Fix any integer i with 1 < i < k + 1,
any p € {1,...,m}, and any multi-indices ¢,j € Ni>13 defining
e®ll = el @ ... ® €Y and similarly for egyj;, we compute

T; (fp ® e®[ll) el = Ajy gy G “egijlfp — Mp - (e - egp )y
¢
=4 ()“j] A — Mp)fp

(no summation implied), where the multi-index Kronecker delta
is defined by & 1 and & 0 if ¢ # j. Hence the f, ®
e®ll are eigenvectors of T; with eigenvalues (A, -~ A¢ — 1p),
and dimension counting implies that these are all of the eigen-
vector/eigenvalue pairs. The k-nonresonance assumption implies
that none of these eigenvalues are zero, so T; is invertible if Y and
X are both semisimple.

Since the operator T; depends continuously on the matrices
X and Y, since eigenvalues of a matrix depend continuously
on the matrix, and since semisimple matrices are dense, it fol-
lows by continuity that the eigenvalues of T; are all of the form
(Aey -+ ¢; — 1p) even if one or both of X and Y are not semisim-
ple (cf. [67, p. 37]), and these eigenvalues are all nonzero by
the assumption that (X,Y) is k-nonresonant. Hence T; is still
invertible in the case of general X and Y. O

Lemma 2. Let F € CY(R", R") have the origin as a fixed point,
where n > 1. Let k € N>1 U {400}, m € N>, and X € C™™ be
such that (X, DoF) is k-nonresonant. Assume that € CK(R", C™)
satisfies Doy = 0 and

YoF =Xy (41)
Then it follows that y(0) = X(0) and
DyY =0

forall 1 < i< k+ 1. (The conclusion holds vacuously if k = 1.)

Remark 17. We can restate the conclusion of Lemma 2 in the
language of jets [51,65,68]. If ¥ is a linearizing factor such that
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the 1-jet jé(l// — ¥(0)) = 0, then automatically the k-jet j’é(w —
¥(0)) = 0.

Proof. That 1/(0) = X(0) follows from setting x = 0 in (41) and
using the assumption that F(0) = 0. We will prove the remaining
claim that Df)l// = 0for1 < i < k+ 1 by induction on i.
The base case of the induction, D(])tp = Doy = 0, is one of the
hypotheses of the lemma. For the inductive step, assume that
Doy = --- = Df)lp = 0 for an integer i satisfying 1 < i < k.
If it were the case that F € C'*!, one way to proceed would
be to differentiate (41) (i + 1) times and somehow deduce that
Db“x// = 0. However, we are assuming only that F € C, so that
approach is problematic. We instead proceed as follows.

By Taylor’s theorem and the inductive hypothesis, we have
(here x®¢ denotes the tensor product of x with itself £ times)

F(X) = DoF - X+ Re(x), (%) = ¥(0)+ Doy ™" - X2+ R, (x)

(42)
for all x, where the remainders satisfy lim,_q lei\)\() = 0 and
limy_,¢ ‘fx"ﬂ% = 0. It follows that
Y(F(x)) = ¥(0) + Doy - (DoF - x)*™V + R(x), (43)

where

Ry (F(X))+Doyr "+ Y " CI(DoF -x)® @ (Re(x)) 1] (44)
=0

R(x)

for suitable combinatorially determined constants C, > 0. Rewrit-
ing (41) using (42) and (43), we obtain

¥(0)+Doy ™! (DoF -x)* TV 4-R(x) = Xy (0)+XDoy 1V L XRy (x).
(45)

In order to deduce the information we need from (45), we now
show that limy_,¢ Hfﬁ—fjl = 0. Using the tensor product property

aPtiy® @ w® = (av)®? ® (aw)®? for a scalar a and vectors v and
w, this follows from (44) and the computation

. R(x) Ry (F(x)) [[F(x)|"*!

lim —— = lim - s

x=0 [[X[[FT 0 x—0 [[FEOIT [|x]i+!
i+1

Doyt - lim ) €
+ Doy XLO; ¢

(DOF . X)@(i+l—£) o (RF(X))®Z
llxI llxI

(46)

The first limit on the right is zero since F(x) — 0 as x — 0 and
since F € C', so [[F(x)|I/lIX| < maxy <1 [DyF|| < 400 when
x| < 1 by the mean value theorem; the second limit on the
right is zero since ||DoF - x||/||x]| < ||DoF|| < +o0.

Let r > 0 and X be a unit vector. Set x rx in (45).
By the first sentence of the proof, y(0) Xy (0). Canceling
these equal terms from (45), dividing both sides of the resulting
equation by r*!, and taking the limit as r — 0 using (46) yields
Doy I T1(DoF )@ . 38+ = XDy it1 . 20+ for all unit vectors
X. Since derivatives are symmetric tensors, the latter equation
has the form § - ¥+ = T . £8(+D with symmetric tensors
S = Doyt (DeF)®H* and T := XDoy'*!. Since symmetric
tensors are completely determined by their action on tensors of
the form 2+ [69, Thm 1], it follows that 0 =S — T, or

0= DZ)+1W (DOF)®(i+l) _XDB-Hw — T(iJr])(Dg'—ll/f), (47)

where the linear operator Tj;;.1): £((R")®0FD, €M) — £((R™)®0HD,
C™)is as defined in Lemma 1 (taking Y := DgF). Lemma 1 implies
that T;,q) is invertible since (X, DoF) is k-nonresonant, so (47)

=0.
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implies that D{)“w = 0. This completes the inductive step and
the proof. O

Lemma 3. Let F € C!(R", R") be a diffeomorphism such that the
origin is a globally attracting hyperbolic fixed point for the dynamical
system defined by iterating F, where n > 1. Fix k € N>; U {+00}
and 0 < o < 1. Let e € GL(m, C) have spectral radius p(e") < 1
and satisfy v(e®, DoF) < k + o. Assume ¥ € Cllf)‘f‘(R”, R™) satisfies

Y oF =y (48)
and
Dy =0 (49)

for all integers 0 < i < k + « (note the case « = 0 which does not
require vanishing of the kth derivative). Then ¢ = 0.

Proof. We first observe that since (i) 0 is asymptotically stable for
the iterated dynamical system defined by F, (ii) ¥ is continuous,
and (iii) p(e") < 1, it follows that ¥(0) = 0 since

0= lim ey (x0) = lim Y (F"(x0)) = ¥(0)

for any xo € R". The second equality follows from (48).

For the remainder of the proof, fix any r > 0 with v(e?, DoF) <
r <k+e,fixx € R"\ {0}, and define x; := Fi(xo) for j € N. Let
0 < k' < r be the largest integer smaller than r. Taylor’s theorem
for Cl’f;c" functions [70, p. 162] says that

(50)

K
Y(x) =Y Dyy - X 4+ R(x),
i=0
where lim,_,g % = 0. Egs. (49) and (50) imply that all of the
terms in the sum above vanish, so we obtain y» = R. Using (48)
it follows that ey = ¢ o F = Ro FJ, and since x; = Fi(xp) we
obtain
. R(x)
ey (xg) = R(x:), =
Ylo) =Reg)  lim oo

(51)

Denote by M := p(DoF) < 1 the spectral radius of DyF. Since
v(e?, DoF) < r, (4) implies that all eigenvalues p of e satisfy
|| > M. Since this inequality is strict, by continuity there is
€ >0suchthat0 < (M +¢) < 1and

Vi € spec(e®): ul > (M +e)". (52)

By replacing || - || with an adapted norm, we may assume that
IDoF|| < (M+€/2)."% Since |[F(x)—DoF -x[|/ x|l — 0 as [|x]| — 0,
there exists b > 0 such that ||[F(x)|| < (M + €)||x| if ||x]| < b
(cf. [54, p. 281]). Since the origin is globally asymptotically stable
and since {||x|| < b} is positively invariant by the preceding
sentence (recall that (M + €) < 1), there exists jo € N>; such
that ||x;|| < b for all j > jo. Hence for all j > jo:

X1l < (M + €Y lxj,ll = C - (M + €Y Ixoll, (53)
where C := (M + €)™ |x;, Il [ X0l =" _
Dividing both sides of (51) by ||x;||", multiplying by 1 = %131:

and taking the limit as j — oo yields

Y (xo)

Il 1"

L M+ ¥\ et J
‘jli‘?o< 1 ) ((M+e)f> v (54

13 Suchan adapted norm always exists. It can be constructed as the Euclidean
norm with respect to a choice of basis placing DoF in “e-Jordan form” [54,
pp. 279-280], wherein the off-diagonal unity entries of the usual Jordan normal
form are replaced by e. An alternative construction of an adapted norm proceeds
by suitably averaging a given norm along the dynamics linearized at the
fixed point [47, Sec. A.1]; an analogous technique also works in more general
situations.

0 = lim e

j—o00
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Since (52) implies that all eigenvalues of (M+E) have modulus
strictly larger than 1, the moduli of all nonzero entries in the (up-
per triangular, complex) Jordan normal form of (- W +€)r Y approach
00 asj — oot If ¥(xo) # O, it follows that the absolute value
of at least one component of (ﬁ)"w(xo) with respect to the
Jordan basis approaches oo as j — oo. Moreover, (53) implies

that (“‘”*E’j

lIxl

> C7"||xo||”" > 0 for all j, so the product of this

quantity with the diverging quantity (ﬁ)"w(xo) also diverges
as j — oo. It follows that (54) holds if and only if ¥ (x9) = O.
Since xo € R" \ {0} was arbitrary, and since we already obtained
¥(0) = 0 in (50), it follows that ¥ = 0 on R". This completes the
proof. O

Using Lemmas 2 and 3, we now prove the uniqueness portion
of Theorem 1.

Proof of the Uniqueness Portion of Theorem 1. Since xj is
globally asymptotically stable, the Brown-Stallings theorem [59,
Lem 2.1] implies that there is a diffeomorphism Q ~ R" sending
Xo to 0, where n = dim(Q), so we may assume that Q = R"
and x, = 0.'° Define the diffeomorphism F := &' to be the
time-1 map. Let iy and v, be two functions satisfying Doy =B
and ¥; o F = e*y; for i = 1,2. Then ¢ = v — Y satisfies
Doy = 0 and ¢ oF = efy. Lemma 2 implies that D}y = 0 for all
1 <i < k+1,and Lemma 3 then implies that yr; — WZ Y =0.1f
e! and B are real, then we can define v/, := ¥ to be the complex
conjugate of v, and so the preceding implies that vy = v;
hence 1 is real if e* and B are real. This completes the proof
of the uniqueness statement of Theorem 1. O

4.1.2. Proof of existence

In this section, we prove the existence portion of Theorem 1.
As with the proof of the uniqueness portion, the proof consists
of an algebraic part and an analytic part. The techniques we use
in the existence proof are similar to those used in [4,47]. The
algebraic portion of our proof is carried out in Lemma 4, and the
analytic portion is carried out in Lemma 5.

Lemma 4 (Existence and Uniqueness of Approximate Polynomial
Linearizing Factors for Diffeomorphisms). Fix k € N>; and let F €
CK(R", R™) have the origin as a fixed point, where n > 1. Let
m € N>y and X € C™™ be such that (X, DoF) is k-nonresonant,
and assume B € C™" satisfies

BDoF = XB.

Then there exists a unique degree-k symmetric polynomial P: R" —
C™ vanishing at 0 such that DoP = B and such that

PoF =XP +R, (55)

where R satisfies DBR 0 for all 0 < i < k. Furthermore, if
X € R™™ and B € R™" are real, then this unique polynomial
P:R" — R™ C C™ is real.

Remark 18. We state and prove Lemma 4 for the case of finite k
only and rely on a bootstrapping method to prove the existence
portion of Theorem 1 for the case k = +o0 at the end of this
section. We believe it is possible to prove a C* version of the
existence portion of Lemma 4 (loosely speaking) using the fact

4 The desire for this conclusion was part of what motivated our definition of
the spectral spread v(-, -).

15 por example, Wilson states in [59, Thm 2.2] this result for the special
case of a flow generated by a C' vector field, but his argument based on the
Brown-Stallings theorem [59, Lem 2.1] works equally well for any C' flow or
diffeomorphism having a globally asymptotically stable fixed point.

15

Physica D 425 (2021) 132959

that for every formal power series there exists a C* function with
matching derivatives [67, p. 34], but we did not attempt to do
this.

Proof. By Lemma 1, the linear operator

Ti: C((R™)®, C™) — £((R"®, C™),  Ti(P;) := P(DoF)® — XP;

(56)

is invertible for all 1 < i < k. Denoting by Sym'((R")®, C™) C
L((R™)®! C™) the linear subspace corresponding to symmetric
multilinear maps (R") — C™ via the universal property of the
tensor product, we see from (56) that T(Sym'((R")®, C™)) C
Sym'((R™)®!, C™). Invertibility of T; and dimension counting imply
the opposite inclusion, so T; restricts to a well-defined linear
automorphism of Sym'((R")®!, C™).

By Taylor’s theorem we may uniquely write F as a degree-k
symmetric polynomial plus remainder, F(x Zl 1 Fi- x® LRy,
where F; DoF and D oR1 = 0 for all 0 < i < k. Defining
Fgjj = F, ® ---®F, for any multi-index j € Ny>; and using
the notation |j| :=j; + - -- +jg, (55) is equivalent to

Z:P,Z D Fapy - X —XZP X%, (57)
jENel
e

where j = |Gy, ..., jo)l = S0 i P(x) = Yk_, P -x®¢, and Py =

B. It follows from an inductive argument (equating coefficients of
x®") that (55) is equivalent to

= XP; - % (58)

i
>or Y o |
=1 jeN‘;l
ljl=i

Vie{l,...,k}

If we require that all tensors P, are symmetric then, for each
fixed i, the two tensors acting on x®' in (58) are symmetric. Since
symmetric tensors are completely determined by their action on
all tensors of the form x®' [69, Thm 1], it follows that (55) is
equivalent to

Vie{l,... k: Zm > Fgpy = XP, (59)
jENz
lil=i

or, after rearranging terms,

Vie{l,... k) ZP[ > Fap = XPi — P,(DOF) i (60)
jert ETE

U=t

since DoF = F;. By our assumptions, XB — BDoF = 0 and P; =
DoP = B. Moreover, as discussed above, Tils,i(gnyei cm) is @ well-
defined linear automorphism of the subspace Sym'((R")®!, C™).
Thus, (60) can be inductively solved for the tensors Py, .. ., Py, and
the preceding sentence implies that these solutions are unique
and symmetric. Thus, so is P.

Finally, assume that X € R™™ and B € R™*" are real, and
assume by induction that B = Py, P, ..., P;_1 are real. Taking the
complex conjugate of (60), we see that P; solves (60) if and only if
its complex conjugate P; solves (60). Invertibility of T; thus implies
that P; = P;, so P; is real. By induction, Py, ..., P, are real. Thus,
so is P. This completes the proof. O

Lemma 5 (Making Approximate Linearizing Factors Exact). Fix k €
N>j U {400}, 0 <a <1, and let F:R" — R" be a Clko’c"‘ diffeomor-
phism such that the origin is a globally attracting hyperbolic fixed
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point for the dynamical system defined by iterating F, where n > 1.
Let m € Ns; and e* € GL(m, C) satisfy v(e, DoF) < k + «, and
assume that there exists P € Cl'f;c‘" (R™, C™) such that

PoF =¢"P+R,

where R € C"'“(R”, C™) satisfies D{)R = 0 for all integers 0 < i <

loc
k + a (note the case o« = 0 which does not require vanishing of the

kth derivative). 4
Then there exists a unique ¢ € Cl’f)’co‘(R", C™) such that Dy = 0
for all integers 0 < i < k 4 « and such that  := P + ¢ satisfies

¥ oF =é'y.
In fact,
Y = lim e #APoF

Jj—o0

in the topology of C**-uniform convergence on compact subsets of
R" if k < +oo, and in the topology of C¥ -uniform convergence on
compact subsets of Q for any k' € N> if k = 4-o00. Furthermore, if
e’ € GL(m,R)isrealand P € C]’f)‘f(R”, R™)is real, then ¢, : R" —
R™ C C™ are real.

Proof. We first assume that k < +oco and delay consideration of
the case k = +o0 until the end of the proof.

Adapted norms. Later in the proof we will require that the fol-
lowing bound on operator norms holds (needed following (72)):

e[ IDoF [t < 1. (61)

Due to our assumption that v(e?, DoF) < k + «, this bound
can always be made to hold by using an appropriate choice
of “adapted” norms (which induce the operator norms) on the
underlying vector spaces R" and C™, and so we may (and do)
assume that (61) holds in the remainder of the proof.

But first we argue that such norms can indeed be chosen. Let
X € spec(DoF) and . € spec(e?) be the eigenvalues of DoF and e*
with largest and smallest modulus, respectively. For any « > 0,
there exist adapted norms (both denoted by | - ||) on R" and C™
having the property that the induced operator norms |le~4| and
|IDoF|| satisfy [54, pp. 279-280], [47, Sec. A.1]:

-A
-

lIDoFIl — A <k, |lle Il ™' < k. (62)

Now since v(e”, DoF) < k + « and since |A| < 1, it follows
from (4) that || 'A[¥*® < 1. The inequalities (62) imply that
lle ™ |lIIDoF ||t can be made arbitrarily close to |u|~'|A|**® by
making « small, so choosing « sufficiently small yields (61) as
claimed. For later use we also note (62) implies that DgF is a strict
contraction if « is small enough since |A| < 1. This in turn implies
that

F(B)C B (63)

if B C R" is a sufficiently small (adapted norm) ball centered at
the origin [54, p. 281]. We henceforth assume this is the case.

Definition of function spaces. Let U C R" be a precompact
open set and denote by U = cl(U) its compact closure. Given
any Banach space X and k € N, let Ck(U, X) be the space of
continuous functions G: U — X having partial derivatives of order
less than or equal to k which are uniformly continuous on U, in
which case they extend to continuous functions on U. We equip
C*(U, X) with the standard norm

k
IGll := ) _ sup D\l
i—0 xeU
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making C¥(U, X) into a Banach space [70]. For a Banach space Y
and 0 < « < 1, we define the o-Hdlder constant [H], of a map
H:U — Y via

IH(Xx) — Il

[H], = sup :
Ix =yl

x,yeU
X#y
For0 < o < 1 we let C"'“(l_J,X) be the subset of functions

G e C¥U, X) for which [D*¥G), < +oo, and we equip C*(U, X)
with the standard norm

IGlko = Gk + [D*Gla (64)

making C**(U,X) into a Banach space [70].'° For « = 0, we
identify C*9(U, X) with C¥(U, X) and make the special definition

I leo =1+ llk-

In what follows, let B C R" be a closed ball centered at the
origin and let F ¢ C**(B, C™) denote the subspace of functions
¢ such that Dggo = 0 for all integers 0 <i < k + «; F is a closed
linear subspace of Ck%(B, C™), hence also a Banach space.

Preliminary estimates. For any ¢ € F, x € B, and all integers
1 < i < k+ a, we have that [Di '] < [Ix]| - [, DLl dt
by the fundamental theorem of calculus, the chain rule, and the
definition of 7. The derivatives D¢ vanish at x = 0 for all integers
0 <i < k + «a by the definition of F, so the preceding sentence
and an induction argument imply that, for any € > 0, if the radius
of B is sufficiently small then for any ¢ € F:

lelli—1 < €lD*ello
el < (1+ €)lID*pllo.

If « > 0, the additional fact that ||D¥p|| < [x||/[D*¢], further
implies that

(65)

el < e[D*¢l,
l@llke < (14 €)Drel,

if the radius of B is sufficiently small.

Defining a linear contraction mapping on F. Recall that F: R" —
R" is the diffeomorphism from the statement of the lemma.
By (63), all sufficiently small closed (adapted norm) balls B C
R" centered at the origin satisfy F(B) C B. Additionally, since
F € Cll;f‘(]R", R™) and B is compact, Flge C**(B, R"). It follows
that there is a well-defined linear operator T:C**(B,C") —

cke(B, c™) given by’

(66)

T(p) = e *p o Flp. (67)

Note that T(F) C F, so that F is an invariant subspace for T. We
claim that there is a choice of B so that T|: F — F is a (strict)
contraction with constant 8 < 1:

Vo € FiIT(@)lka < Bllelke-

To show this we give an argument essentially due to Sternberg,
but which generalizes the proof of [4, Thm 2] to the case of
linearizing semiconjugacies and to the C** setting (allowing « >

(68)

16 pifferent C* and C** norms are actually used in [70, Def. 2.1, Def. 2.5],
namely, maxo<i<t [D'Gllo and max(maxo<i< [DGllo, [D*G],), but these two
norms are equivalent (in the sense of norms) to the corresponding norms we
have chosen.

17 That D*T(¢) is a-Hélder follows from the chain rule, the fact that the first
k—1 derivatives of F and of ¢ are C! and hence Lipschitz (hence also «-Hélder),
the fact that the composition of an «w-Hoélder function with a Lipschitz function
is again w-Holder, and the fact that the product of bounded «-Hélder functions
is again «o-Holder (see, e.g., [58, Lem 1.19]).
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0). Using the notation D,?U]F = Df}F@- -® DﬂfF for a multi-index
Jj € Ni,, we compute

DY(T(¢)) = e "Dfye - (DF)® *AZ Y Dy - DEVIF,
i=1 JeN;
li\:7<
(69)

where the integer coefficients (;; € Ns; are combinatorially
determined by Faa di Bruno’s formula for the “higher-order chain
rule” and are therefore independent of B.'® We choose B suf-
ficiently small that its diameter is less than 1 and note that,
by contmu1ty and compactness of {||x| < 1} and the fact that
Fe ClOC , there exists a constant Ny > 0 such that'?

Z > G [(sup ||D,;®“]F||) (1 + sup ||DXF||“)
IxlI<1 [Ix[I<1

=1 et

lil=k

IogV'F — oy VF |
+ = 2 T <N (70)
el Iyl <1 lx — yll“
X#y

Using (65) and (70) to bound the sum in (69), it follows that
ID*T(@)llo < lle™*[I(IDF 1§ + €No)ID*pllo. (71)

For the case that « > 0, we will now use (66) to obtain a
bound on [DkT( Ne analogous to (71). In order to do this, we use
the estimate [x — D (p]a < [D¥ @], |IDF||g and the product rule
[fele < Wfllolgle + ]a||g||0 for Holder constants (see, e.g., [58,
Lem 1.19]) to bound the first term of (69) by

le™ Il (ID*@1u IDFIIET™ + ID*@llo[(DF)®¥])
x < [le”®| (IDF 1§ + €[(DF)®*1y) [D* ¢l

where we have used (66) to bound the second term in paren-
theses on the left side. Next, we use (66), (70), the product rule
for Hélder constants again, and for 1 < i < k — 1 the estimates
[X > Djyela < [D'plalDF|§ < €[D*¢l,|IDF|§ to bound the
second term of (69) by €Np|le~4||[D¥¢].. This last estimate we
used follows from (66) and the fact that we are requiring B to
have diameter less than 1, so that [Dig], < ||D*'¢]lo < €[D*@lq.
We finally obtain

[DiT(9)], < lle™ Il (IDFll§*™ + €[(DF)®*], + €No) [D* ¢l

The estimate (61) and continuity imply that [|e~||||DF||k™® <
1 if B is sufficiently small. Hence if € is sufficiently small, the
quantities respectively multiplying ||D*¢|lo and [D*¢], in (71) and
(72) will be bounded above by some positive constant 8’ < 1. The
discussion preceding (65) and (66) implies that we can indeed
take ¢ this small after possibly further shrinking B, so it follows
that |D*T(@)llo < B'lID*¢llo and, if « > 0, also [D*T(¢)l, <
B'[D¥¢p],. We therefore obtain a contraction estimate on the high-
est derivative and its Hoélder constant (if @ > 0) only. However,
we can combine this observation with the second inequalities
from each of the two displays (65) and (66), together with the
fact that T(F) C F, to obtain in both cases (¢« = 0 and o > 0)
the following estimate involving all of the derivatives:

IT(@)lke < (1+€)B @llke-

(72)

(73)

18 The “higher-order chain rule”, also known as Faa di Bruno’s formula, gives
a general expression for higher-order derivatives of the composition of two
functions (see [71] for an exposition).

9 Since we have not yet chosen B (other than stipulating that its diameter be
smaller than 1), to avoid circular reasoning we are using {||x|| < 1} in place of B
in (70) to make clear that the estimate holds for all closed balls B C {||x|| < 1}
centered at 0.
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(This technique for the case @« = 0 was also used in the proof of [4,
Thm 2].) Define B := (1+4¢)B’. Since B’ < 1, if necessary we may
shrink B further to ensure that ¢ may be taken sufficiently small
that 8 < 1. It then follows that T|x is a (strict) contraction; this
completes the proof of (68).

Existence and uniqueness of a linearizing factor defined on B.
We will now find a locally-defined (i.e., defined on B rather than
on all of R") linearizing factor ¥ € C**(B,C™) of the form
U Plg+p, where ¢ € F and P:R" — C™ is as in the
statement of the lemma. By definition, 1/~/ is linearizing if and only
if y = ey o Flg= T(y), so we need to solve the equation
Plg+@ = T(P|p+¢) for ¢ € F. (We are writing P|g rather than
P because ¢ is a function with domain B rather than R", and also
because T is a linear operator defined on functions with domain
B.) Since T is linear, after rearranging we see that this amounts
to solving

T)§ = T(Pls) -

One of the assumptions of the lemma directly implies that
(P oF — eAP) |g€ F, and this implies that the right hand side of
(74) belongs to F since e™ - F C F. Since T(F) C F, it follows
that we may rewrite (74) as

(idr = T|r) @ = T(P|g) — P|s.

We showed earlier that T| = is a strict contraction, i.e., its operator
norm satisfies ||T|#|lx« < 1. It follows that (id — T|#): F —
F has a bounded inverse given by the corresponding Neumann
series, so that (75) has a unique solution ¢ given by

(idC"-‘X(B,Cm) - P|B- (74)

(75)

[o¢)

- (T(P|g) — Plp) = Z(Tlf)" - (T(P|g) — Plp) »

n=0

¢ = (idr —T|5)~"

(76)

and ¥ = P|z+@ satisfies ¢y = ey o Flg= T(¥) as discussed
above.

Extension to a unique global linearizing factor. Since xq is glob-
ally asymptotically stable and since B is positively invariant, for
every X € B there exists j(x) € Nxo such that, for all j > j(x),
Fi(x) € int(B). If j is large enough that F/(x) € int(B) and ¢ > j,
then

e MY(F(x) = e (M o ) (F(x)

= e M (TUI() (F(x) = e (P (),
so there is a well-defined map v : R" — C™ given by
Y(x) = e MY (F(x),

where j € N5 is any nonnegative integer sufficiently large that
Fi(x) € int(B). Since v/ oF |z= e, it follows from (77) that yoF =
e’y. If x € R" and Fi(x) e int(B), then x has a neighborhood
U with Fi(U) C int(B) by continuity, so |y is given by (77)
with j constant on U. By the chain rule and standard properties
of locally «-Holder functions (see Footnote 5), this shows that
¥ € Geo(R",C™). From (77) we see that ¥ and hence also
@ = ¥ — P are uniquely determined by v = P|z+¢|p= P|z+,
which is in turn uniquely determined by ¢, and since ¢ is unique
it follows that ¢ and v are also unique. If e* € GL(m, R) and
Pe Cloc (R", R™) are real, then the complex conjugate w =P+¢
also satisfies ¥ oF = ey with ¢ € F, so uniqueness implies that
¥ = and hence ¥, : R" — R™ C C™ are real.

Convergence to the global linearizing factor. We now complete
the proof of the lemma by proving the sole remaining claim that
e P o F — 4 in the topology of C**-uniform convergence

(77)
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on compact subsets of R". To do this, we first inspect the finite
truncations of the infinite series in (76). We see that, since

i i _
> (T1#)" - (T(Pls) — Plg) = »_ T"*'(P|s) — T"(P|g) = T/*'(P|s) — Pls
n=0 n=0
for each j € N3, taking the limit j — oo shows that the series
in (76) is equal to —P|z+ lim;_, o, T(P|g), with convergence in the
Banach space Ck%(B, C™). In other words,
¥ = lim e AP o Fi|p

d®d

(78)

with convergence in Ck¢(B, C™).

Next, let K C R" be the closure of any precompact open
set (so that the Banach space C**(K,C™) is defined as in the
text containing (64)). Since 0 is globally asymptotically stable and
since B contains a neighborhood of 0, there exists j, > 0 such that
Fi(K) C B for all j > jo. We justify the following computation
below:

lim e P o F/|x = lim e (e4P o F/|g) o F|¢
j—o0

j—oo
= eJoA (lim e ApoF |B> o Flo|
Jj—o00
= ey |goF |
=¥k,

with convergence in C**(K, C™). Since we are considering con-
vergence in the space C*%(K, C™) - rather than mere pointwise
convergence - it is not obvious that we can move the limit inside
the parentheses to obtain the second equality. The reason this
is valid is that composition maps C**(K,C™) — C*¢(K, C™) of
the form g — f og o h, where f € C® and h € Ck*(K,C™),
are continuous with respect to the C** normed topologies [70,
Prop. 6.1, Prop. 6.2 (iii)].2° This completes the proof for the case
k < +oo0.

Consideration of the case k = +oc. For the case k 400,
repeating the proof above for any 1 < k' < +o0 such that
v(e?, DgF) < Kk’ yields unique C¥ functions ¢:R" — C™ and
¥ = P + ¢ such that Djp = 0 for all 0 < i < k' — 1. By the
uniqueness statement already proved for the case k < 400, these
functions ¢, ¥ are independent of k' > v(e*, DyF), and since kK’
is arbitrary it follows that ¢, ¢ € C*(R",C™). Finally, for the
closure K of any precompact open set, we have already shown
that e oPoF/|x— |k in the Banach space C¥ (K, C™) for every
k' € N5, as desired. This completes the proof. O

Using Lemmas 4 and 5, we now complete the proof of Theo-
rem 1 by proving the existence portion of its statement.

Proof of the Existence Portion of Theorem 1. As in the proof of
the uniqueness portion of Theorem 1 at the end of Section 4.1.1,
we may assume that Q = R" and xo = 0. We first consider the
case that T = Z, and define the time-1 map F := @.

First suppose that k < +00. Lemma 4 implies that there exists
a polynomial P such that DoP = B and P o F = e*P + R, where
R e Clko’c"‘(R", C™) satisfies DBR = 0 for all integers 0 < i < k+a.%!
Furthermore, P and R are real if e and B are real. Lemma 5
then implies that there exists ¢ € Clko’f(]R”, C™) such that ¥ =
P+ ¢ € CL¥(R",C™) satisfies Doy = DoP = B, ¥ o F = ey,

20 we remark that, for maps between finite-dimensional spaces, there
are somewhat weaker assumptions ensuring continuity of such composition
maps [70, Rem. 6.5], but our present situation does not require this.

21 Actually, Lemma 4 implies that we can find P such that DiR = 0 for all
integers 0 < i < k, with the only difference arising when « = 0. However, we
do not need this in the following.
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e P o @/ — 4y C**-uniformly on compact subsets of R" for
any “approximate linearizing factor” P satisfying the hypotheses
of Theorem 1 (such as P), and that v is real if e and B are real.
This completes the proof for the case k < +o0.

Now suppose that k = +oo. Repeating the proof above for
finite K > v(e?, Dg) yields ¥ e C"/(R”, C™) satisfying Doy = B
and ¥ oF = e1/. The uniqueness statement of Theorem 1 proved
in Section 4.1.1 implies that v is independent of k' > v(e*, DgF),
so since k' is arbitrary it follows that ¥ € C*. Additionally, we
have already argued above that e 7P o @/ — v C¥-uniformly on
compact subsets of R" for any k' € N-; and any “approximate
linearizing factor” P satisfying the hypotheses of Theorem 1. This
completes the proof for the case that T = Z.

It remains only to consider the case that T = R, i.e., the case
that @ is a flow. By the proof of the case T = Z, there exists
¥ € GEY(R", C™) satisfying Doy = B and / o @/ = ey for all
Jj € Z. By adapting a technique of Sternberg [4, Lem 4], from 1/}
we will construct a map v € Cllf)’f(R”, C™) satisfying Doyr = B
and ¥ o @' = ey for all t € R. In fact, we will show that

1
WY o= fo e M o @ ds (79)

has these properties. By Leibniz’s rule for differentiating under
the integral sign and standard properties of locally «-Holder

functions (see Footnote 5), ¢ € Clko’c"(R",Cm), and using the
assumption (5) we have that

1 1
Dol// = / eisABD()CDS ds = / Bds = B.
0 0
To prove that ¥ o ®f = e for all t € R, we compute
1 » 1+t N
Yol = f e~y o @St ds = / e o @S ds
0 t

1 1+t
=e / e o @5 ds + e / e o @ ds
t 1

1 1+t
em/ e’SAt/}o@DSdS—i—em/ et (Pod ) oo ds
¢ 1

1 t
e / e M o @° ds + e"“f e M o @ ds
t 0
etA'(/f

as desired. We remark that, since y satisfies ¢ o &' = ey and
Doy = B, the uniqueness result for the case T Z actually
implies the (non-obvious) fact that ¥ = .

Suppose now that k < +o0. Letting K C R" be the closure of
any precompact open set (so that the Banach space Ck*(K, C™)
is defined as in the text containing (64)) which is also positively
invariant, the map G: [0, 1] x C**(K,C™) — Cke(K, C™) given
by G(r,f) = e ™f o &"|¢ is continuous [70, Thm 6.10] and
satisfies G(r, ¥|x) = vk for all r € [0, 1]. Thus, compactness
of [0, 1] implies that, for every neighborhood V C Ck*(K,C™)
of ¥ |k, there is a smaller neighborhood U C V of | such
that G([0, 1] x U) C V, i.e, e™p o ®"|xC V for every ¢ € U
and r € [0, 1]. Fix any such neighborhoods V,U and fix any
“approximate linearizing factor” P € Cl’f)’f‘(R", C™) satisfying the
hypotheses of Theorem 1. By the proof for the case T = Z there
exists N € Nxg such that, for all j > N, e 7P o ®J|xe U. By the
definition of U it follows that e P o @f|yC V forall t > N + 1.
Since the neighborhood V 5 /| was arbitrary, this implies that

(80)

Ylk= tlg?o e "Podg

with convergence in the Banach space C¥*(K, C™). If instead k =
~+00, the,same argument shows that (80) converges in the Banach
space CK (K, C™) for every k' ¢ N> . Since every compact subset
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of R" is contained in the closure K of some positively invariant
precompact open set (e.g., a sublevel set of a smooth Lyapunov
function [72,73]), this proves that e"®Po &' — 1 in the topology
of C**_uniform convergence on compact sets if k < +o0, and in
the topology of C¥ -uniform convergence on compact sets for any
k' € N> if k = +o0. This completes the proof of Theorem 1. O

4.2. Proof of Theorem 2

In this section we prove Theorem 2, which we repeat here for

convenience. This proof invokes Theorem 1 and is much shorter
because of this.
Theorem 2 (Existence and Uniqueness of Cl’;c“ Global Linearizing
Factors for a Limit Cycle Attractor). Fix k € N>y U {400} and 0 <
a < 1lLlet®:Q xR —> Q bea Cloc flow with Q the basin of an
attracting hyperbolic t-periodic orbit with image I' C Q, where Q is
a smooth manifold with dim(Q) > 2. Fix xo € I" and let Ejo denote
the unique Dy, ®T-invariant subspace complementary to Ty, I". Let
m € Ny and e™ € GL(m, C) have spectral radius p(e™) < 1, and
let the linear map B: E,fo — C™ satisfy

BDy, P g = e™B. (18)
Assume that (e™, Dx0¢T|E;O) is k-nonresonant, and assume that
v(e® DXO¢T|55 )< k+ a.
Then there exists a unique ¥ € Cloc (Q, C™) satisfying
DXO lﬁ |E)S‘O = Ba

and if B:E; — R™ C C" and A € R™™ C C™™ are real, then
Yv:Q — R" ¢ " is real.

Vt € R: ¢ o @ = ey, (19)

Proof. Let W; be the global strong stable manifold (isochron)
through xo [46, Sec. 2.1]. Since WS is the stable manifold for the

fixed point xq of the C; ko dlffeomorphlsm @7, it follows that WS

loc
is a Cl’f)c” submanifold [64, pp. 2, 27; Thm 6.1] which is properly
embedded (rather than merely immersed) in Q because I” is
stable [46, pp. 4208-4209].

After identifying E; with R", the uniqueness portion of The-
orem 1 applied to 1/f|Ws implies that ¥|ys is unique for any
Y satisfying the umqueness hypotheses, ancf furthermore 1/r|Ws
is real if A and B are real. Since ¥ is uniquely determined by
¥lws and (19) (which is true because Q = Urer @ (W)fo)), this
implies that v is unique and that v is real if A and B are real. This
completes the proof of the uniqueness statement of Theorem 2.

Under the existence hypotheses, the existence portion of The-
orem 1 similarly implies that there exists a unique ¢ € Cl’f)‘f‘
(Wy,, C™) satisfying Dy, = B and
VjeZ:god|y s—d“‘ (81)
The unique extension of ¢ to a Cloc function ¥:Q — C™
satisfying (19) is given by

vVt € R: WW(;,[ ):
(xo

¥ is well-defined because (W, ) = Wy and epod~ “lwg, =

¢ by (81). That ¢ € Cllf)c“ follows from considering locally—

defined Cl'f)c"‘ “time-to-impact W)fo" functions as in the proof of

Proposition 3. This completes the proof. O

“po @ lws (82)

“tixg )
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