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a b s t r a c t

We consider C1 dynamical systems having an attracting hyperbolic fixed point or periodic orbit and
prove existence and uniqueness results for Ck (actually Ck,α

loc ) linearizing semiconjugacies – of which
Koopman eigenfunctions are a special case – defined on the entire basin of attraction. Our main
results both generalize and sharpen Sternberg’s Ck linearization theorem for hyperbolic sinks, and
in particular our corollaries include uniqueness statements for Sternberg linearizations and Floquet
normal forms. Using our main results we also prove new existence and uniqueness statements for
Ck Koopman eigenfunctions, including a complete classification of C∞ eigenfunctions assuming a C∞

dynamical system with semisimple and nonresonant linearization. We give an intrinsic definition of
"principal Koopman eigenfunctions" which generalizes the definition of Mohr and Mezić for linear
systems, and which includes the notions of "isostables" and "isostable coordinates" appearing in work
by Ermentrout, Mauroy, Mezić, Moehlis, Wilson, and others. Our main results yield existence and
uniqueness theorems for the principal eigenfunctions and isostable coordinates and also show, e.g.,
that the (a priori non-unique) "pullback algebra" defined in Mohr and Mezić (2016) is unique under
certain conditions. We also discuss the limit used to define the "faster" isostable coordinates in Wilson
and Ermentrout (2018), Monga et al. (2019) in light of our main results.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

This paper fills a significant technical gap between the lin-
arization results known from classical dynamical systems
heory – e.g., the linearization theorems of Poincaré-Siegel [1–3],
ternberg [4], Grobman–Hartman [5,6], and Hartman [7] – and
he growing interest in applied fields such as engineering and
luid dynamics in using linearizations based on Koopman theory.1
otivated largely by data-driven applications, this ‘‘applied Koop-
anism’’ literature has experienced a surge of interest initiated
y [9–11] around 70 years after Koopman’s seminal work [12].2
The practical application of computational Koopman eigen-

unction representations of dynamical systems is grounded in
i) eigenfunction existence theorems based on such classical

∗ Corresponding author.
E-mail addresses: kvalheim@seas.upenn.edu (M.D. Kvalheim),

hrevzen@umich.edu (S. Revzen).
1 Here ‘‘linearization’’ refers to a nonlinear change of coordinates in which
nonlinear dynamical system becomes exactly linear, and is distinct from

pproximate linearization. A recent paper extending and discussing some of the
tate of the art is [8].
2 See, e.g., [13–37].
 u

ttps://doi.org/10.1016/j.physd.2021.132959
167-2789/© 2021 Elsevier B.V. All rights reserved.
linearization theorems [15,16] and (ii) uniqueness theorems ap-
plying only to analytic eigenfunctions for certain analytic dynam-
ical systems [15]. Existence and uniqueness results are desirable
since, in analyzing the theoretical properties of any algorithm for
computing some quantity, it is desirable to know whether the
computation is well-posed [38], and in particular whether the
quantity in question exists and is uniquely determined.

The results in the present paper yield new precise conditions
under which various quantities in the applied Koopmanism lit-
erature – including targets of numerical algorithms – exist and
are unique, and are especially relevant to work on principal eigen-
functions and isostables for point attractors [15,22] and to work on
isostable coordinates for periodic orbit (limit cycle) attractors [39–
42]. Isostables and isostable coordinates are useful tools for non-
linear model reduction, and it has been proposed that they could
prove useful in real-world applications such as treatment design
for Parkinson’s disease, migraines, cardiac arrhythmias [43], and
jet lag [44].

1.1. Nontechnical overview of results

This paper was motivated by the following three questions. (A
Ck function is one which has continuous mixed partial derivatives
p to order k.)

https://doi.org/10.1016/j.physd.2021.132959
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2021.132959&domain=pdf
mailto:kvalheim@seas.upenn.edu
mailto:shrevzen@umich.edu
https://doi.org/10.1016/j.physd.2021.132959
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igenfunction uniqueness When – and in what sense – are Ck

(1 ≤ k ≤ +∞) Koopman eigenfunctions unique?

inearization uniqueness When – and in what sense – are full
Ck (1 ≤ k ≤ +∞) linearizing coordinate changes unique?

igenfunction existence Can the existence of specific Ck (2 ≤

k ≤ +∞) Koopman eigenfunctions be guaranteed under
assumptions which are weaker than those needed to in-
voke a classical result guaranteeing a full set of linearizing
coordinates exists?

e provide answers to each of these three questions for eigen-
unctions and coordinate changes defined on the basin of an
ttracting hyperbolic fixed point or periodic orbit. To the best
f our knowledge, our answers to the eigenfunction uniqueness
nd existence questions are new. During the review process of
his paper we discovered that an answer to the full linearization
niqueness question for the case k = +∞ (equivalent to our
nswer in that case) can also be obtained from results in the
ecent book [45, Thm 6.8.21, 6.8.22].

Sternberg’s work showed that, for Ck (1 ≤ k ≤ +∞) dynami-
cal systems such as those arising from a Ck ordinary differential
equation

d
dt

x(t) = f (x(t)) x(t) ∈ Rn

having an attracting fixed point x0 ∈ Rn, there is an intimate rela-
tionship between the eigenvalues of the derivative Dx0 f of f at x0
and the existence of Ck linearizing coordinates defined near x0 [4].
Our results establish a similarly intimate relationship between
certain eigenvalues and the answers to our three questions. In the
case of the eigenfunction uniqueness and existence questions, we
show that the corresponding relationship is less restrictive than
in Sternberg’s case. In particular, the answer to the eigenfunction
existence question is ‘‘yes’’ (especially in the case of the ‘‘slowest’’
principal eigenfunctions/isostable coordinates). The answer to
the linearization uniqueness question is this: under Sternberg’s
hypotheses guaranteeing that Ck linearizing coordinates exist
in the vicinity (hence also on the entire basin [16,46]) of an
attracting hyperbolic fixed point, these coordinates are uniquely
determined by their derivatives at the fixed point.

To obtain the answers to our three questions, we prove a
general result on the existence and uniqueness of Ck lineariz-
ing semiconjugacies (partial linearizations), of which Koopman
eigenfunctions and linearizing conjugacies are special cases. To
provide more refined answers to the same three questions, we
further examine the Ck,α

loc smoothness classes refining the familiar
Ck smoothness classes, wherein Ck

= Ck,0
loc . Our main results con-

cern the existence and uniqueness of linearizing semiconjugacies
defined on the basin of an attracting hyperbolic fixed point or
periodic orbit. Notable consequences worked out in this paper,
for dynamics in the basin of an attracting hyperbolic fixed point
or periodic orbit, include:

• a fairly tight relationship between properties of the system
eigenvalues/Floquet multipliers and the uniqueness of Ck,α

loc
principal eigenfunctions for C1 dynamics (Proposition 6) or
Ck,α
loc dynamics (Proposition 7);

• sufficient conditions for the existence of such Ck,α
loc principal

eigenfunctions when the dynamics are Ck,α
loc (Propositions 6

and 7);
• sufficient conditions for when such Ck,α

loc eigenfunctions (or
isostable coordinates) can be constructed by limiting pro-
cedures such as Laplace averages (Propositions 6 and 7 and

Remark 14);

2

• a full classification of all C∞ eigenfunctions in terms of
principal eigenfunctions for C∞ dynamics satisfying a non-
degeneracy assumption (Theorems 3 and 4); and

• sufficient conditions under which a full set of linearizing
Ck coordinates exist and are uniquely determined by their
first-order approximation (Propositions 2 and 3).

To the best of our knowledge, our uniqueness results for
principal Koopman eigenfunctions are the first uniqueness re-
sults known for non-analytic eigenfunctions. Similarly, our clas-
sification of all C∞ Koopman eigenfunctions appears to be the
first such classification theorem for non-analytic eigenfunctions.
While certain existence results for principal Koopman eigenfunc-
tions defined on the basin of an attracting hyperbolic equilibrium
or periodic orbit have been known for some time [15,16], we
believe our new existence results to be the strongest known for
Ck eigenfunctions with 2 ≤ k ≤ +∞. This is because prior exis-
tence results (cf. [29, Sec. 5, 7, 8]) construct Ck eigenfunctions by
pulling back linear eigenfunctions through the linearizing conju-
gacies provided by the Sternberg or Poincaré-Siegel linearization
theorems mentioned above, and the full hypotheses of one of
these linearization theorems must be assumed in order to invoke
it; in contrast, our existence result for specific principal eigenfunc-
ions requires much weaker assumptions. These assumptions are
xtremely mild in the case of the ‘‘slowest’’ principal eigenfunc-
ions/isostable coordinates; the following subsection contains a
recise statement (with more details in Remark 15) as part of a
ore technical overview of our results.

.2. Technical overview of results and organization of the paper

In this paper, we consider C1 dynamical systems Φ:Q ×T →

for which Q is the basin of attraction of a stable hyperbolic
ixed point or periodic orbit. Here Q is a smooth manifold, either

= Z or T = R, and Φ could be the restriction of a dynamical
ystem defined on a larger space (e.g., Rn) to some basin of
attraction Q . That Φ is a dynamical system means that Φ0

= idQ
and Φ t+s

= Φ t
◦ Φs for all t, s ∈ T, where Φ t

:= Φ( · , t); in
particular, it follows thatΦ t :Q → Q is a C1 diffeomorphism with
inverse Φ−t for any t ∈ T. When T = R, Φ is called a flow; a
common example is that of t ↦→ Φ t (x0) being the solution to the
initial value problem
d
dt

x(t) = f (x(t)), x(0) = x0

determined by a complete C1 vector field f on Q . Our main
contributions are existence and uniqueness results regarding Ck,α

loc
linearizing semiconjugacies ψ:Q → Cm defined on the entire
basin of attraction Q , where we do not assume that m has any
relationship to the dimension of Q ; in particular, ψ need not
be a diffeomorphism or a homeomorphism. By definition, such
a semiconjugacy makes the diagram

Q Q

Cm Cm

Φt

ψ ψ

etA

(1)

commute for some A ∈ Cm×m and all t ∈ T. By Ck,α
loc with k ∈ N≥1

and 0 ≤ α ≤ 1, we mean that ψ ∈ Ck(Q ,Cm) and that all kth
partial derivatives of ψ are locally α-Hölder continuous in local
coordinates, and by definition C∞,α

loc := C+∞,α
loc := C∞. We note

that Ck,0
loc = Ck, so the reader uninterested in Hölder continuity

can simply keep in mind the case Ck,0
loc = Ck and the fact that every

Ck+1 function is also Ck,α
loc for every 0 ≤ α ≤ 1. Our motivation for

including local Hölder continuity of derivatives is that, once it is
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ncluded, our main results become fairly close to optimal, at least
n the interesting case m = 1 of Koopman eigenfunctions ψ (see
xamples 2 and 3).
Linearizing semiconjugacies are also known as linearizing fac-

ors or factor maps in the literature and can be viewed as a
urther generalization of the generalized Koopman eigenfunctions
f [29,33]. We note that such semiconjugacies are distinct from
hose in the diagram

Q Q

Cm Cm

Φt

etA
K K (2)

obtained from (1) by flipping the vertical arrows (although the
diagrams are equivalent if, e.g., ψ and K are diffeomorphisms).
In (2) K is a factor of etA, whereas ψ is a factor of Φ t in (1).
Existence results for semiconjugacies of the type in (2) were
obtained by [47–49] in the context of proving invariant manifold
results using the parameterization method.

Our main result for the case of an attracting hyperbolic fixed
point both generalizes and sharpens Sternberg’s linearization the-
orem [4, Thms 2,3,4] which provides conditions ensuring the
existence of a linearizing local Ck diffeomorphism defined on a
neighborhood of the fixed point; the results of [16,46] show that
this local diffeomorphism can be extended to a Ck diffeomor-
phism ψ:Q → Rn

⊂ Cn defined on the entire basin of attraction
Q making (1) commute. Under Sternberg’s conditions, a corollary
of our main result is that this global linearizing diffeomorphism
is in fact uniquely determined by its derivative at the fixed point
(cf. [45, Thm 6.8.21, 6.8.22] for the case k = +∞). Additionally,
we sharpen Sternberg’s result from Ck to Ck,α

loc linearizations. For
the case of an attracting hyperbolic periodic orbit of a flow,
our main result also yields a similar existence and uniqueness
corollary for the Floquet normal form, a nonlinear change of
coordinates in which the dynamics become the product of a
linear system with constant-rate rotation on a circle [50–52]. We
remark that the Floquet normal form is a nonlinear generalization
of the comparatively well-known classical Floquet theory of linear
ime-periodic systems [53, Sec. III.7]

Using our two main results, we make the following con-
ributions to the theory of Koopman eigenfunctions. We give
n intrinsic definition of principal eigenfunctions for nonlinear
ynamical systems which generalizes the definition for linear
ystems in [22]. We provide existence and uniqueness results
or Ck,α

loc principal eigenfunctions, and we also show that the (a
riori non-unique) ‘‘pullback algebra’’ defined in [22] is unique
nder certain conditions. For the case of periodic orbit attractors,
rincipal eigenfunctions essentially coincide with the notion of
sostable coordinates defined in [41,42], except that the definition
n these references involves a limit which might not exist ex-
ept for the ‘‘slowest’’ isostable coordinate. Our techniques shed
ight on this issue, and our results imply that this limit does
n fact always exist for the ‘‘slowest’’ isostable coordinate if the
ynamical system is at least smoother than C1,α

loc with α > 0.
n fact, our results imply – assuming that there is a unique and
lgebraically simple ‘‘slowest’’ Floquet multiplier which is real
that a corresponding ‘‘slowest’’ C1,α

loc isostable coordinate with
> 0 always exists and is unique modulo scalar multiplication

or a C1,α
loc dynamical system (e.g., a C2 dynamical system), without

he need for any nonresonance or spectral spread assumptions.
imilarly, if instead there is a unique and algebraically simple
‘slowest’’ pair of Floquet multipliers which are complex conju-
ates, then a corresponding ‘‘slowest’’ complex conjugate pair of
1,α
loc isostable coordinates always exists and is unique modulo
calar multiplication for a C1,α

loc dynamical system with α > 0.
s a final application of our main results, we give a complete
3

classification of C∞ eigenfunctions for a C∞ dynamical system
with semisimple (diagonalizable over C) and nonresonant lin-
earization, generalizing known results for analytic dynamics and
analytic eigenfunctions [15,29].

The remainder of the paper is organized as follows. We explain
notation and terminology below to be used in the sequel. After
some definitions, in Section 2 we state Theorems 1 and 2, our
two main results, without proof. We also state a proposition on
the uniqueness of linearizing factors which does not assume any
nonresonance conditions. As applications we derive in Section 3
several results which are essentially corollaries of this proposition
and the two main theorems. Section 3.1 contains existence and
uniqueness theorems for global Sternberg linearizations and Flo-
quet normal forms. In Section 3.2 we define principal Koopman
eigenfunctions and isostable coordinates for nonlinear dynamical
systems and discuss how Theorems 1 and 2 yield corresponding
existence and uniqueness results. We then discuss the relation-
ship between various notions defined in [22] and our definitions,
and we also discuss the convergence of the isostable coordinate
limits in [41,42]. Section 3.3 contains our theorem which com-
pletely classifies the C∞ eigenfunctions of C∞ dynamical systems
n the basin of an attracting hyperbolic fixed point or periodic
rbit. Finally, Section 4 contains the proofs of Theorems 1 and 2.

.3. Notation and terminology

In this paper we employ the following mostly standard nota-
ion and terminology.

.3.1. Sets of numbers
We denote the real numbers by R, complex numbers by C,

ntegers by Z, and nonnegative integers by N. Given c ∈ R and
S ⊂ R, we define S≥c := {s ∈ S: s ≥ c} and S>c := {s ∈ S: s > c}
so that, e.g., Z≥0 = N≥0 = N.

1.3.2. Linear algebra
Given m ∈ N≥1, we denote by GL(m,C) ⊂ Cm×m the invertible

m × m matrices with entries in C and by GL(m,R) ⊂ GL(m,C)
those with entries in R. Given A ∈ Cm×m, we denote by spec(A) ⊂

the set of eigenvalues of A; given A ∈ Rm×m, we denote by
pec(A) ⊂ C the set of eigenvalues of A ∈ Rm×m

⊂ Cm×m

hen viewed as a complex matrix. If A: V → V is a linear self-
ap with V a complex vector space, spec(A) ⊂ C also denotes

he eigenvalues of A. If V is a real vector space, then its com-
lexification VC is the complex vector space given by all formal
inear combinations of vectors in V with complex coefficients
cf. [54, p. 64]); if A: V → W is an R-linear map between real
ector spaces, then the complexification AC: VC → WC of A is the
nique C-linear extension of A (cf. [54, p. 65]), and if W = V
e define spec(A) := spec(AC) ⊂ C. If E1, E2 ⊂ V are linear
ubspaces of a real or complex vector space V , we say that E1
nd E2 are complementary if V = {e1 + e2: e1 ∈ E1, e2 ∈ E2} and
f E1 ∩ E2 = {0}.

.3.3. Derivatives
Given a differentiable map F :M → N between smooth mani-

olds, we use the notation DxF for the derivative of F at the point
∈ M . (Recall that the derivative DxF : TxM → TF (x)N is a linear
ap between tangent spaces [55], which can be identified with

he Jacobian of F evaluated at x in local coordinates.) In particular,
iven a dynamical system Φ:Q × T → Q and fixed t ∈ T, we
rite DxΦ

t : TxQ → TΦt (x)Q for the derivative of the time-t map
t :Q → Q at the point x ∈ Q . A map F :M → N satisfies
∈ Ck(M,N) with k ∈ N≥0 ∪ {+∞}, or briefly F ∈ Ck, if every
∈ M is contained in a coordinate chart in which all mixed partial
erivatives of F of order less than k+ 1 exist and are continuous.
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or convenience, we define the 0-th derivative D0
xF := F (x) to

oincide with F for all x ∈ M .
Several of our results include conditions such as ‘‘Di

x0F = 0
for all integers 0 ≤ i < r ’’. This is to be interpreted to mean
that, in local coordinates, all mixed partial derivatives of F of
rder less than r vanish at x0. This can be made more formal in
he following way. Inductively, if i ≥ 2 and Dj

x0F : (Tx0M)⊗j
→

F (x0)N is well-defined and zero for all 1 ≤ j ≤ i − 1, then the
th derivative Di

x0F : (Tx0M)⊗i
→ TF (x0)N is a well-defined linear

ap from the ith tensor power (Tx0M)⊗i to TF (x0)N represented
n local coordinates by the (1+ i)-dimensional array of ith partial
erivatives of F evaluated at x0.3

2. Main results

Before stating our main results, we give two definitions which
are essentially asymmetric versions of some appearing in [4,56].
When discussing eigenvalues and eigenvectors of a matrix or
linear self-map (endomorphism) in the remainder of the paper,
we are always discussing eigenvalues and eigenvectors of its
complexification, although we do not always make this explicit.

Definition 1 ((X, Y ) k-nonresonance). Let X ∈ Cd×d and Y ∈ Cn×n

be matrices with eigenvalues µ1, . . . , µd and λ1, . . . , λn, respec-
tively, repeated with multiplicities. For any k ∈ N≥1 ∪ {+∞}, we
say that (X, Y ) is k-nonresonant if, for any i ∈ {1, . . . , d} and any
m = (m1, . . . ,mn) ∈ Nn

≥0 satisfying 2 ≤ m1 + · · · + mn < k + 1,

µi ̸= λ
m1
1 · · · λmn

n . (3)

(Note this condition vacuously holds if k = 1; i.e., any two
matrices are 1-nonresonant.) We also extend the definition of k-
nonresonance to general linear self-maps X, Y of finite-
dimensional complex vector spaces by identifying X, Y with their
matrix representations with respect to any choice of bases. We
say that linear self-maps (X, Y ) of finite-dimensional real vector
spaces are k-nonresonant if the complexifications (XC, YC) are
k-nonresonant.

For the definition below, recall that the spectral radius ρ(X) of
a matrix is defined to be the largest modulus (absolute value) of
the eigenvalues of (the complexification of) X .

Definition 2 ((X, Y ) Spectral Spread). Let X ∈ GL(m,C) and
Y ∈ GL(n,C) be invertible matrices with the spectral radius ρ(Y )
satisfying ρ(Y ) < 1. We define the spectral spread ν(X, Y ) to be

ν(X, Y ) := max
µ∈spec(X)
λ∈spec(Y )

ln(|µ|)
ln(|λ|)

= min
{
r ∈ R:

(
min

µ∈spec(X)
|µ|

)
≥

(
max

λ∈spec(Y )
|λ|r

)}
= min

{
r ∈ R: ρ(X−1) (ρ(Y ))r ≤ 1

}
.

(4)

e also extend the definition of ν(X, Y ) to general linear auto-
orphisms X, Y of finite-dimensional complex vector spaces by

dentifying X, Y with their matrix representations with respect
o any choice of bases. We extend the definition to linear au-
omorphisms (X, Y ) of real vector spaces by defining ν(X, Y ) :=

(XC, YC) to be the spectral spread of the complexifications.

The second line in (4) follows since ln(|µ|)/ln(|λ|) ≤ r if and
nly if ln(|µ|) ≥ r ln(|λ|), with the inequality flipping because
n(|λ|) < 0 since |λ| ≤ ρ(Y ) < 1, and this in turn holds if

3 To define Di
x0 F , use local coordinates. The inductive assumption that the

irst i − 1 derivatives are well-defined and zero at x0 ensures that the result is
ndependent of the choice of local coordinates, hence well-defined.
4

Fig. 1. An illustration of the condition ν(eA,Dx0Φ
1) < k+ α of Theorem 1. This

condition is equivalent to every eigenvalue of Dx0Φ
1 (represented by an ‘‘×’’

above) belonging to the open disk with radius given by raising the smallest
modulus of the eigenvalues of eA to the power 1

k+α .

and only if |µ| ≥ |λ|r . The third line follows from the defini-
tion of the spectral radius ρ(Y ). Fig. 1 illustrates the condition
ν(eA,Dx0Φ

1) < k + α in Theorem 1. Finally, we now recall the
definition of Ck,α

loc functions.

Definition 3 (Ck,α
loc Functions). Let M,N be smooth manifolds of

dimensions m and n, let ψ ∈ Ck(M,N) be a Ck map ψ:M → N
with k ∈ N≥0, and let 0 ≤ α ≤ 1. We will say that ψ ∈

Ck,α
loc (M,N) if for every x ∈ M there exist charts (U1, ϕ1) and
U2, ϕ2) containing x and ψ(x) such that all kth partial derivatives
f ϕ2 ◦ ψ ◦ ϕ−1

1 are Hölder continuous with exponent α. If k =

∞, we use the convention C+∞,α
loc (M,N) := C∞(M,N) for any

≤ α ≤ 1. If the domain and codomain M and N are clear from
ontext, we will sometimes write Ck and Ck,α

loc instead of Ck(M,N)
nd Ck,α

loc (M,N) and write, e.g., ψ ∈ Ck or ψ ∈ Ck,α
loc . We note that

k,β
loc ⊂ Ck,α

loc for any k ∈ N ∪ {+∞} and 0 ≤ α ≤ β ≤ 1, and that
∈ Ck,0

loc if and only if ψ ∈ Ck.

emark 1. Using the chain rule and the fact that compositions
nd products of locally α-Hölder continuous functions are again
ocally α-Hölder, it follows that the property of being Ck,α

loc on a
anifold does not depend on the choice of charts in Definition 3.

We now state our main results, Theorems 1 and 2, as well as
roposition 1. An example and several clarifying remarks follow
he statement of Theorem 1; in particular, see Remark 2 for
ntuitive remarks and Example 1 for concreteness. Simple analytic
counter-)examples demonstrating Theorems 1 and 2 in the case

= 1 of Koopman eigenfunctions – demonstrating in particular
he sharpness of the uniqueness statement – are Examples 2 and
of Section 3.2.
We emphasize that Theorems 1 and 2 do not assume that

he linear map B is invertible, and do not claim anything about
he semiconjugacy ψ:Q → Cm being a diffeomorphism (but see
ropositions 2 and 3); moreover, nothing is assumed about the
elationship of m to dim(Q ).

heorem 1 (Existence and Uniqueness of Ck,α
loc Global Linearizing

actors for a Point Attractor). Let Φ:Q ×T → Q be a C1 dynamical
ystem with Q the basin of an attracting hyperbolic fixed point

∈ Q , where Q is a smooth manifold with dim(Q ) ≥ 1 and either
0
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B
(

= Z or T = R. Let m ∈ N≥1 and eA ∈ GL(m,C) have spectral
adius ρ(eA) < 1, and let the linear map B: Tx0Q → Cm satisfy

∀t ∈ T: BDx0Φ
t
= etAB. (5)

Fix k ∈ N≥1 ∪ {+∞} and 0 ≤ α ≤ 1, assume that (eA,Dx0Φ
1) is

k-nonresonant, and assume that ν(eA,Dx0Φ
1) < k + α.

Uniqueness. Any ψ ∈ Ck,α
loc (Q ,C

m) satisfying

ψ ◦Φ1
= eAψ, Dx0ψ = B

is unique, and if B: Tx0Q → Rm
⊂ Cm and eA ∈ GL(m,R) ⊂

GL(m,C) are real, then ψ:Q → Rm
⊂ Cm is real.

Existence. If furthermore Φ ∈ Ck,α
loc , then such a unique ψ ∈

Ck,α
loc (Q ,C

m) exists and additionally satisfies

∀t ∈ T:ψ ◦Φ t
= etAψ. (6)

In fact, if P ∈ Ck,α
loc (Q ,C

m) is any ‘‘approximate linearizing factor’’
satisfying Dx0P = B and

P ◦Φ1
= eAP + R (7)

with Di
x0R = 0 for all integers 0 ≤ i < k + α, then

ψ = lim
t→∞

e−tAP ◦Φ t (8)

in the topology of Ck,α-uniform convergence on compact subsets of
Q if k < +∞, and in the topology of Ck′-uniform convergence on
compact subsets of Q for any k′

∈ N≥1 if k = +∞.

Remark 2. The spectral spread condition ν(eA,Dx0Φ
1) < k +

α means that, if λ is any eigenvalue of Dx0Φ
1, then |λ|k+α is

smaller than |µ| for every eigenvalue µ of eA. The k-nonresonance
condition means that no eigenvalue µ of eA can be written as a
product (with repetitions allowed) of ℓ ∈ {2, . . . , k} eigenvalues
of Dx0Φ

1. The uniqueness statement of Theorem 1 then says
that, under these two conditions, any linearizing semiconjugacy
ψ ∈ Ck,α

loc (Q ,C
m) is uniquely determined by its derivative at

the fixed point x0. Under the additional assumption that Φ ∈

Ck,α
loc rather than merely Φ ∈ C1, the existence statement of

Theorem 1 gives sufficient conditions ensuring that, given a linear
linearizing semiconjugacy B: Tx0Q → Cm for the linear dynamical
system (v, t) ↦→ Dx0Φ

t
· v, there exists a unique nonlinear

linearizing semiconjugacy ψ ∈ Ck,α
loc (Q ,C

m) for the nonlinear
dynamical system Φ satisfying Dx0ψ = B. Thus, the existence
statement can be thought of as supplying sufficient conditions
under which a linearizing semiconjugacy can be constructed from
an ‘‘infinitesimal’’ one.

Remark 3 (Weaker Nonresonance Assumption in the Case T = R).
Assume T = R in the setting of Theorem 1. Differentiating the
identity Φ t+s

= Φ t
◦Φs at x0 yields

∀t, s ∈ R:Dx0Φ
t+s

= Dx0Φ
t
◦ Dx0Φ

s. (9)

If Φ ∈ C1, then the map t ↦→ Dx0Φ
t is, a priori, merely contin-

uous. However, continuity together with (9) actually implies the
existence of a linear map J: Tx0Q → Tx0Q such that

∀t ∈ R:Dx0Φ
t
= etJ . (10)

See [57, Thm 2.9] and [57, p. 9, para. 1]. Let λ1, . . . , λn be the
eigenvalues of (the complexification of) J , repeated with mul-
tiplicities. Taking the natural logarithm of (3), we see that k-
nonresonance of (eA,Dx0Φ

1) means that, for any (possibly com-
plex) eigenvalue µ of A, any n-tuple (m1, . . . ,mn) ∈ Nn

≥0 sat-
isfying 2 ≤ m1 + · · · + mn < k + 1, and any ℓ ∈ Z,

µ ̸= m λ + · · · + m λ + i2πℓ, (11)
1 1 n n

5

where i =
√

−1. If c > 0 and we define the rescaled linear map
Ac := cA and the time-rescaled flow Φc := Φct , then we see that
BDx0Φ

t
c = BDx0Φ

ct
= ectAB = etAcB and ψ ◦ Φ t

c = ψ ◦ Φct
=

ectAψ = etAcψ for all t ∈ R. Thus, B and ψ satisfy (5) and (6) with
= R if and only if B and ψ satisfy (5) and (6) with A and Φ

replaced by Ac and Φc for every c > 0. Now, the k-nonresonance
ondition for (eAc ,Dx0Φ

1
c ) is obtained from (11) by multiplying

the eigenvalues µ and λ1, . . . , λn by c; dividing by c then yields

̸= m1λ1 + · · · + mnλn + i
2π
c
ℓ. (12)

ecause there are only finitely many eigenvalues of A and J , (12)
can be violated for all c > 0 if and only if it is violated with
ℓ = 0. It follows that, if T = R, the k-nonresonance assumption
in Theorem 1 (as well as in Theorem 3 and Propositions 2 and 6)
can be replaced with the less restrictive condition

µ ̸= m1λ1 + · · · + mnλn (13)

for all (m1, . . . ,mn) ∈ Nn
≥0 satisfying 2 ≤ m1 + · · ·mn < k + 1

and all (possibly complex) eigenvalues µ of A, where λ1, . . . , λn
are the eigenvalues of (the complexification of) J , repeated with
multiplicity.

Example 1. Consider the setting of Theorem 1 in the special
case that Q ⊂ Rn, T = R, and with Φ the flow of the ordinary
differential equation
dx
dt

= f (x)

with f ∈ C1 a complete vector field, so that f (x0) = 0. Let
∈ Cm×n be any matrix such that BDx0 f = AB for some A ∈ Cm×m.

For example, in the case m = 1, B is a left eigenvector of Dx0 f if
B ̸= 0.) It follows that Bh(tDx0 f ) = h(tA)B for any analytic function
h and t ∈ R, so in particular BetDx0 f = etAB. Since Dx0Φ

t
= etDx0 f

for all t ∈ R (because f (x0) = 0), it follows that BDx0Φ
t

= etAB
for all t ∈ R. Thus, Theorem 1 can be applied in this situation
as long as the spectral spread and nonresonance conditions are
satisfied. Since Dx0Φ

1
= eDx0 f in the present setting, satisfaction

of the spectral spread condition ν(eA,Dx0Φ
1) < k + α according

to Definition 2 (after taking logarithms) means that, if λ is any
(possibly complex) eigenvalue of Dx0 f , and if µ is any (possibly
complex) eigenvalue of A, then the real part Re(λ) < 0 satisfies

(k + α)Re(λ) < Re(µ).

Satisfaction of the k-nonresonance condition means that, for any
(possibly complex) eigenvalue µ of A, any n-tuple (m1, . . . ,mn) ∈

Nn
≥0 satisfying 2 ≤ m1 + · · · + mn < k + 1, and any ℓ ∈ Z,

µ ̸= m1λ1 + · · · + mnλn + i2πℓ, (14)

where λ1, . . . , λn are the (possibly complex) eigenvalues of Dx0 f ,
repeated with multiplicity, and i =

√
−1. By Remark 3, the k-

nonresonance condition of Theorem 1 can actually be replaced
with the less restrictive condition

µ ̸= m1λ1 + · · · + mnλn (15)

in the setting of the present example. To make easier the appli-
cation of the existence portion of Theorem 1, we note that if the
vector field f ∈ Ck,α

loc , then also the flow Φ ∈ Ck,α
loc [58, Thm A.6].

Remark 4. Definitions 1 and 2 are not independent. In particular,
if (X, Y ) is (ℓ − 1)-nonresonant and ν(X, Y ) < ℓ for ℓ ∈ N≥2,
then it follows that (X, Y ) is ∞-nonresonant. Hence an equiv-
alent statement of Theorem 1 could be obtained by replacing
k-nonresonance with ∞-resonance everywhere (alternatively, for
the existence statement only (k − 1)-nonresonance need be as-
sumed in the case α = 0). We prefer to use the stronger-sounding



M.D. Kvalheim and S. Revzen Physica D 425 (2021) 132959

s
o
t
a
a

R

e

R
ν

a

f

L

w

t
n

o
c
u
n
L
a
a

P
Φ

a
m
m
s
f

ϕ

T

ψ

T
F
0
a
a
t
m
l

B

A
ν

∀

a
ψ

tatement of the theorem above since it makes it clear that the set
f matrix pairs (eA,Dx0Φ

1) satisfying its hypotheses are open in
he space of all matrix pairs. Openness for k < +∞ is immediate,
nd openness for k = +∞ follows the fact that ν(eA,Dx0Φ

1) is
lways finite.

emark 5. The statement in Theorem 1 regarding the limit
in (8) actually holds without any nonresonance assumptions if
an approximate linearizing factor P ∈ Ck,α

loc (Q ,C
m) satisfying (7)

xists; see Lemma 5 in Section 4.1.2.

emark 6 (The C∞ Case). In the case that k = +∞, the hypothesis
(eA,Dx0Φ

1) < k + α becomes ν(eA,Dx0Φ
1) < +∞ which is

automatically satisfied since ν(eA,Dx0Φ
1) is always finite. Hence

for the case k = +∞, no assumption is needed on the spectral
spread in Theorem 1; we need only assume that (eA,Dx0Φ

1) is ∞-
nonresonant. Similar remarks hold for all of the following results
in this paper which include a condition of the form ν( · , · ) <
k + α.

Remark 7 (Sketch of the Proof of the Existence Portion of Theo-
rem 1). Here we sketch the proof of the existence statement of
Theorem 1, which is somewhat more involved than the unique-
ness proof. (The existence proof also yields uniqueness, but under
the additional assumption Φ ∈ Ck,α

loc not needed for the unique-
ness statement in Theorem 1.) Since the basin of attraction Q of
x0 is always diffeomorphic to Rn [59, Lem 2.1], we may assume
that Q = Rn and x0 = 0. For now we consider the case
k < +∞. First, the k-nonresonance assumption implies that we
can uniquely solve (7) order by order (in the sense of Taylor
polynomials) for P up to order k. Once we obtain a polynomial
P of sufficiently high order, we derive a fixed point equation for
the high-order remainder term ϕ, where ψ = P+ϕ is the desired
linearizing factor. Given a sufficiently small, positively invariant,
closed ball N centered at the fixed point, the proof of Lemma 5
shows that the spectral spread condition ν(eA,Dx0Φ

1) < k + α

implies that the restriction ϕ|N of the desired high-order term
is the fixed point of a map S: Ck,α(N,Cm) → Ck,α(N,Cm) which
is a contraction, with respect to the standard Ck,α norm ∥ · ∥k,α
making Ck,α(N,Cm) a Banach space, when restricted to the closed
linear S-invariant subspace F ⊂ Ck,α(N,Cm) of functions with
vanishing ith derivatives at the fixed point for all integers 0 ≤

i < k + α.4 In fact, S is the affine map defined by

S(ϕ|N ) := −P|N+e−A (P|N+ϕ|N) ◦Φ1. (16)

Hence we can obtain ϕ|N by the standard contraction map-
ping theorem, thereby obtaining the function ψ |N= ϕ|N+P|N∈

Ck,α(N,Cm) satisfying ψ |N◦Φ1
|N= eAψ |N . (The preceding tech-

niques are an extension of Sternberg’s [4] and owe much to
Sternberg’s work.) We then extend the domain of ψ |N using the
globalization techniques of [16,46] to obtain a function ψ ∈

Ck,α
loc (Q ,C

m) defined on the entire basin Q and satisfying ψ ◦Φ1
=

eAψ . To show that the function ψ satisfies (6) when T = R,
i.e., that ψ is actually a linearizing factor of Φ t for all t ∈ R,
we use an argument of Sternberg [4, Lem. 4] in combination with
the uniqueness statement of Theorem 1. We extend the result to
the case that k = +∞ using a bootstrapping argument.

Remark 8 (A Numerical Consideration). Our proof of the existence
portion of Theorem 1, outlined above, was inspired by Sternberg’s
proof of his linearization theorem [4, Thms 2, 3, 4] and also
has strong similarities with the techniques used to prove the

4 Note, however, that ∥ · ∥k,α must be induced by an appropriate underlying
dapted norm [47, Sec. A.1] on Rn to ensure that S is a contraction.
6

existence of semiconjugacies of the type (2) using the parame-
terization method [47–49]. We repeat here an observation of [47,
Sec. 3] and [49, Rem. 5.5] which is also relevant for numerical
computations of linearizing semiconjugacies of the type (1) (such
as Koopman eigenfunctions) based on our proof of Theorem 1.
Consider P ∈ Ck,α

loc (R
n,Cm) satisfying (7) as in Remark 7; N , S, and

F as in the same remark; and an initial guess ψ0|N= P|N+ϕ0|N
or a local linearizing factor with ϕ0|N∈ F . If

ip(S) ≤ κ < 1 ∥S(ϕ0|N ) − ϕ0|N∥ ≤ δ

where Lip(S) is the Lipschitz constant of S, then the standard
proof of the contraction mapping theorem implies the estimate

∥ϕ|N−ϕ0|N∥ ≤ δ/(1 − κ), (17)

here ϕ|N∈ F is such that ψ |N= P|N+ϕ|N is the unique actual
local linearizing factor. Thus equation (17) furnishes an upper
bound on the distance between the initial guess ϕ0|N and the
rue solution ϕ|N , and can be used for a posteriori estimates in
umerical analysis.

Theorem 1 gave conditions ensuring existence and uniqueness
f linearizing factors under spectral spread and nonresonance
onditions. Before stating Theorem 2, we state a result on the
niqueness of linearizing factors which does not assume any
onresonance conditions. Proposition 1 follows immediately from
emma 3 (used to prove the uniqueness statement of Theorem 1)
nd the fact that Q is diffeomorphic to Rdim(Q ) as mentioned
bove.

roposition 1. Fix k ∈ N≥1 ∪ {+∞} and 0 ≤ α ≤ 1, and let
:Q × T → Q be a C1 dynamical system with Q the basin of
n attracting hyperbolic fixed point x0 ∈ Q , where Q is a smooth
anifold with dim(Q ) ≥ 1 and either T = Z or T = R. Let
∈ N≥1 and eA ∈ GL(m,C) have spectral radius ρ(eA) < 1 and

atisfy ν(eA,D0F ) < k + α. Let ϕ ∈ Ck,α
loc (Q ,C

m) satisfy Di
x0ϕ = 0

or all integers5 0 ≤ i < k + α and

◦Φ1
= eAϕ.

hen it follows that ϕ ≡ 0. In particular, if ϕ = ψ1 − ψ2, then

1 = ψ2.

heorem 2 (Existence and Uniqueness of Ck,α
loc Global Linearizing

actors for a Limit Cycle Attractor). Fix k ∈ N≥1 ∪ {+∞} and
≤ α ≤ 1. Let Φ:Q ×R → Q be a Ck,α

loc flow with Q the basin of an
ttracting hyperbolic τ -periodic orbit with image Γ ⊂ Q , where Q is
smooth manifold with dim(Q ) ≥ 2. Fix x0 ∈ Γ and let Es

x0 denote
he unique Dx0Φ

τ -invariant subspace complementary to Tx0Γ . Let
∈ N≥1 and eτA ∈ GL(m,C) have spectral radius ρ(eτA) < 1, and

et the linear map B: Es
x0 → Cm satisfy

Dx0Φ
τ
|Esx0

= eτAB. (18)

ssume that (eτA,Dx0Φ
τ
|Esx0

) is k-nonresonant, and assume that
(eτA,Dx0Φ

τ
|Esx0

) < k + α.
Then there exists a unique ψ ∈ Ck,α

loc (Q ,C
m) satisfying

t ∈ R:ψ ◦Φ t
= etAψ, Dx0ψ |Esx0

= B, (19)

nd if B: Es
x0 → Rm

⊂ Cm and A ∈ Rm×m
⊂ Cm×m are real, then

:Q → Rm
⊂ Cm is real.

5 Note the case α = 0 which does not require vanishing of the kth derivative.
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emark 9. For the uniqueness statement of Theorem 1 (and
roposition 6) it is only assumed that Φ ∈ C1, whereas Φ ∈

Ck,α
loc is assumed for the uniqueness statement of Theorem 2

(and Proposition 7). This is because our proof of the unique-
ness statement of Theorem 2 relies on Ck,α

loc smoothness of the
isochrons [60] or (equivalently) strong stable manifolds [61–63]
of the periodic orbit, a property which is ensured by the assump-
tion that Φ ∈ Ck,α

loc . We leave open the question as to whether the
need for this additional assumption is merely an artifact of our
proof of Theorem 2.

Remark 10. By considering the Poincaré (first-return) map with
Poincaré section an isochron [60] and using Theorem 1, it is
readily seen that the linearizing factor ψ of Theorem 2 can also
e represented as a limit analogous to (8) which converges in the
ointwise sense. While we believe that this limit also converges
n the topology of Ck,α-uniform convergence on compact subsets
f Q as in Theorem 1, we did not attempt to prove this stronger
onvergence statement.

. Applications

In this section, we give some applications of Theorems 1
nd 2 and Proposition 1. Section 3.1 contains results on Stern-
erg linearizations and Floquet normal forms. Section 3.2 gives
pplications to principal Koopman eigenfunctions and isostable
oordinates. Section 3.3 contains our classification theorems for
∞ eigenfunctions of C∞ dynamical systems.

.1. Sternberg linearizations and floquet normal forms

The following result is an improved statement of Sternberg’s
inearization theorem for hyperbolic sinks [4, Thms 2,3,4]. Our
mprovements include: uniqueness of the linearizing conjugacy,
efined Ck,α

loc regularity rather than just Ck, and global definition of
he linearization on the entire basin of attraction Q rather than
ust on some small neighborhood of x0. Our techniques for glob-
lizing the domain of the linearization are essentially the same
s those used in [16,46]. For the case T = R, the k-nonresonance
ssumption in the following result can be replaced by the slightly
ess restrictive nonresonance condition in Remark 3.

roposition 2 (Existence and Uniqueness of Global Ck,α
loc Sternberg

inearizations). Fix k ∈ N≥1 ∪ {+∞} and 0 ≤ α ≤ 1. Let
:Q × T → Q be a Ck,α

loc dynamical system with Q the basin of
n attracting hyperbolic fixed point x0 ∈ Q , where Q is a smooth
anifold with dim(Q ) ≥ 1 and either T = Z or T = R. Assume

hat ν(Dx0Φ
1,Dx0Φ

1) < k + α, and assume that (Dx0Φ
1,Dx0Φ

1) is
k-nonresonant.

Then there exists a unique diffeomorphism ψ ∈ Ck,α
loc (Q , Tx0Q )

satisfying

∀t ∈ T:ψ ◦Φ t
= Dx0Φ

tψ, Dx0ψ = idTx0Q
. (20)

In writing Dx0ψ = idTx0Q
, we are making the standard and

canonical identification T0(Tx0Q ) ∼= Tx0Q .)

Remark 11 (Uniqueness of General Linearizing Conjugacies Mod-
ulo a Linear Coordinate Transformation). Under the hypotheses
of Proposition 2, let L1, L2: Tx0Q × T → Tx0Q be any linear
ynamical systems (i.e., such that each time-t map Lti is linear)
nd ψ1, ψ2 ∈ Ck,α

loc (Q , Tx0Q ) be any diffeomorphisms satisfying
i ◦ Φ

t
= Ltiψi for all t ∈ T and i ∈ {1, 2}. Differentiation at the

ixed point x0 using the chain rule yields Dx0ψiDx0Φ
t

= LtiDx0ψi
or all t ∈ T, so Lti = BiDx0Φ

tB−1
i where Bi := Dx0ψi. It follows that

−1
i ψi ◦Φ

t
= Dx0Φ

tB−1
i ψi for all t ∈ T, so B−1

i ψi satisfies (20) for
∈ {1, 2}. The uniqueness statement of Proposition 2 then implies
hat ψ = B ψ , from which it follows that ψ = B B−1ψ .
i i 1 1 2 2

7

roof. Identifying Tx0Q with Rn by choosing a basis and letting
∈ GL(n,C) be any matrix logarithm of Dx0Φ

1, we apply Theo-
em 1 with etA = Dx0Φ

t and B = idTx0Q
to obtain a unique ψ ∈

k,α
loc (Q , Tx0Q ) satisfying (20) and Dx0ψ = idTx0Q

. It remains only
o show that ψ is a diffeomorphism. To do this, we separately
how that ψ is injective, surjective, and a local diffeomorphism.
By continuity, Dx0ψ = idTx0Q

implies that Dxψ is invertible for
ll x in some neighborhood U ∋ x0. Since Q =

⋃
t≥0Φ

−t (U) by
symptotic stability of x0, (20) and the chain rule imply that Dxψ

s invertible for all x ∈ Q . Hence ψ is a local diffeomorphism.
To see that ψ is injective, let U be a neighborhood of x0 such

hat ψ |U :U → ψ(U) is a diffeomorphism, and let x, y ∈ Q
e such that ψ(x) = ψ(y). By asymptotic stability of x0, there
s T > 0 such that ΦT (x),ΦT (y) ∈ U , and (20) implies that

◦ ΦT (x) = ψ ◦ ΦT (y). Injectivity of ψ |U then implies that
T (x) = ΦT (y), and injectivity of ΦT then implies that x = y.
ence ψ is injective.
To see that ψ is surjective, fix any y ∈ Tx0Q and let the

eighborhood U be as in the last paragraph. Asymptotic stability
f 0 for Dx0Φ: Tx0Q × T → Tx0Q implies that there is T > 0 such
hat Dx0Φ

T
·y ∈ ψ(U), so there exists x ∈ U with Dx0Φ

T
·y = ψ(x).

ence y = Dx0Φ
−T

·ψ(x) = ψ ◦Φ−T (x), where we have used (20).
t follows that ψ is surjective. This completes the proof. □

The following is an existence and uniqueness result for the
k,α
loc Floquet normal form of an attracting hyperbolic periodic
rbit of a flow, a nonlinear change of coordinates in which the
ynamics become the product of a linear system with constant-
ate rotation on a circle. References discussing the Floquet normal
orm include [50, Sec. 26], [51, Sec. I.3], and [52, Sec. 4.3]; the
loquet normal form is a nonlinear generalization of the classical
loquet theory of linear time-periodic systems [53, Sec. III.7]. The
ollowing result is proved using a combination of Proposition 2
nd stable manifold theory [61–64] specialized to the theory of
sochrons [60]. For the statement, recall that a map between
anifolds is a C1 embedding if it is a homeomorphism onto its

mage (equipped with the subspace topology) and if its derivative
s everywhere one-to-one [65, p. 21]; a Ck,α

loc embedding is a Ck,α
loc

ap which is also a C1 embedding. A map between topological
paces is proper if the preimage of every compact subset is
ompact [55, p. 610].

roposition 3 (Existence and Uniqueness of Ck,α
loc Global Floquet

ormal Forms). Fix k ∈ N≥1 ∪ {+∞} and 0 ≤ α ≤ 1. Let
:Q × R → Q be a Ck,α

loc flow with Q the basin of an attracting
yperbolic τ -periodic orbit with image Γ ⊂ Q , where Q is a
mooth manifold with dim(Q ) ≥ 2. Fix x0 ∈ Γ and let Es

x0 ⊂

x0Q denote the unique Dx0Φ
τ -invariant subspace complementary

o Tx0Γ . Assume that ν(Dx0Φ
τ
|Esx0
,Dx0Φ

τ
|Esx0

) < k+α, and assume
hat (Dx0Φ

τ
|Esx0
,Dx0Φ

τ
|Esx0

) is k-nonresonant.
Then if we write Dx0Φ

τ
|Esx0

= eτA for some complex linear
: (Es

x0 )C → (Es
x0 )C, there exists a unique, proper, Ck,α

loc embedding
= (ψθ , ψz):Q → S1×(Es

x0 )C such that ψθ (x0) = 1, (Dx0ψz)|Esx0 =
Es
x0 ↪→ (Es

x0 )C), and

t ∈ R:ψθ ◦Φ t (x) = e2π i
t
τ ψθ (x), ψz ◦Φ t (x) = etAψz(x), (21)

here S1 ⊂ C is the unit circle and i =
√

−1. If A|Esx0
: Es

x0 →

Es
x0 ⊂ (Es

x0 )C is real, then ψz ∈ Ck,α
loc (Q , E

s
x0 ) is real, and the

codomain-restricted map ψ:Q → S1 × Es
x0 ⊂ S1 × (Es

x0 )C is a
diffeomorphism.

Proof. Theorem 2 implies that a map ψz ∈ Ck,α
loc (Q , (E

s
x0 )C)

satisfying all applicable conclusions above exists. Letting W s
x0

denote the global strong stable manifold (isochron) through x ,
0
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e have Tx0W
s
x0 = Es

x0 and Φτ (W s
x0 ) = W s

x0 . Since W s
x0 is

the stable manifold for the fixed point x0 of the Ck,α
loc diffeo-

morphism Φτ , it follows that W s
x0 is a Ck,α

loc submanifold [64,
pp. 2, 27; Thm 6.1] which is properly embedded (rather than
merely immersed) in Q because Γ is stable [46, pp. 4208–4209].
Proposition 2 then implies that ψz |W s

x0
:W s

x0 → Es
x0 ⊂ (Es

x0 )C is a
diffeomorphism onto its image Es

x0 .
6 Since Es

x0 is closed in (Es
x0 )C, it

follows that ψz |W s
x0
:W s

x0 → (Es
x0 )C is a proper Ck,α

loc embedding [55,
Prop. A.53(c)].

Define expA: (Es
x0 )C × R → (Es

x0 )C via expA(z, t) := etAz, let
K ⊂ (Es

x0 )C be any subset, define Kτ := expA(K × [−τ , 0]), and
define Jτ := (ψz |W s

x0
)−1(Kτ ). From the second equation of (21),

we have that

ψ−1
z (K ) =

⋃
t∈[0,τ ]

Φ t
(
(ψz |W s

x0
)−1(e−tAK )

)
⊂ Φ(Jτ × [0, τ ]).

If K is compact, then so are Kτ and Jτ by continuity of expA,
properness of ψz |W s

x0
, and the fact that W s

x0 is a closed subset of Q
since it is properly embedded [55, Prop. 5.5]. Thus, if K is compact,
continuity implies that ψ−1

z (K ) is a closed subset of the compact
set Φ(Jτ × [0, τ ]) and is therefore compact. This establishes that
ψz :Q → (Es

x0 )C is proper.
Since the vector field generatingΦ intersectsW s

x0 transversely,
a standard argument [54, p. 243] and the Ck,α

loc implicit function
theorem [58, Cor. A.4] imply that a real-valued Ck,α

loc ‘‘time-to-
impact W s

x0 ’’ function can be defined on a neighborhood of any
point. Using these facts, one can show that the function ψθ :Q →

S1 defined via ψθ (W s
x0 ) ≡ 1 and ψθ (Φ t (W s

x0 )) ≡ e2π i
t
τ is a Ck,α

loc
unction. By construction, this function ψθ satisfies ψθ (x0) = 1
nd (21). ψθ is unique among all continuous functions satisfying
hese equalities, since if ψ̃θ is any other such function, then
symptotic stability of Γ implies that the quotient (ψθ/ψ̃θ ) is
onstant on Q , and since (ψθ/ψ̃θ )(x0) = 1 it follows that ψ̃θ ≡ ψθ .
Note that, for all t ∈ R and x ∈ W s

Φt (x0)
= Φ t (W s

x0 ),

ker (Dxψθ ) = TxW s
Φt (x0)

and ker (Dxψz) ∩ TxW s
Φt (x0)

= {0},

with the second equality following since ψz |W s
Φt (x0)

= etA ◦ ψz |W s
x0

◦Φ−t
|W s

Φt (x0)
is a Ck,α

loc embedding. It follows that ψ := (ψθ , ψz):Q

→ S1 × (Es
x0 )C is an immersion, i.e., that Dxψ is injective for all

x ∈ Q . Furthermore, ψ is injective since the restriction of ψz to
any level set W s

Φt (x0)
of ψθ is the composition of injective maps

etA ◦ψz |W s
x0

◦Φ−t
|W s

Φt (x0)
. Let πz : S1× (Es

x0 )C → (Es
x0 )C be projection

onto the second factor. Sinceψ−1(K ) ⊂ ψ−1
z (πz(K )) for any subset

K , properness of ψz and continuity of πz and ψ imply that ψ is
also proper. Since (i) proper maps between manifolds are closed
maps [55, Thm A.57], (ii) closed injective continuous maps are
homeomorphisms onto their images [55, Lem. A.52.C], and (iii) ψ
is a Ck,α

loc injective immersion, it follows that ψ is a proper Ck,α
loc

embedding.
If A is real, then the image of the proper embedding ψ is

contained in S1 × Es
x0 ⊂ S1 × (Es

x0 )C. Since dim(S1 × Es
x0 ) =

dim(Q ), and since C1 proper embeddings between manifolds
of the same dimension are both open and closed maps [55,
Prop. 4.28, Thm A.57], it follows that the image of ψ is both open
and closed in S1 × Es

x0 . Since S1 × Es
x0 is connected, it follows that

the image of ψ is all of S1 × Es
x0 [55, Prop. A.39(e)]. Thus, ψ is a

Ck,α
loc diffeomorphism onto S1 × Es

x0 if A is real. This completes the
proof. □

6 Strictly speaking, Proposition 2 was – for simplicity – stated for smooth
anifolds. Hence in order to apply Proposition 2 here (and also in the proofs of
heorems 2 and 4) we must first give W s

x0 a compatible C∞ structure, but this
an always be done [65, Thm 2.2.9], so we will not mention this anymore.
 x

8

3.2. Principal Koopman eigenfunctions, isostables, and isostable co-
ordinates

Given a C1 dynamical system Φ:Q × T → Q , where Q is
smooth manifold and either T = Z or T = R, we say that
:Q → C is a Koopman eigenfunction if ψ is not identically zero
nd satisfies

t ∈ T:ψ ◦Φ t
= eµtψ (22)

or some µ ∈ C. The following are intrinsic definitions of prin-
ipal eigenfunctions and the principal algebra which extend the
efinitions for linear systems given in [22, Def. 2.2–2.3]; a more
etailed comparison is given later in Remark 16. The condition
|Γ≡ 0 was motivated in part by the definition of a certain space

FAc of functions in [21, p. 3358].

Definition 4. If Q is the basin of an asymptotically stable fixed
point x0 ∈ Q for Φ , we say that an eigenfunction ψ ∈ C1(Q ) is a
rincipal eigenfunction if ψ(x0) = 0 and Dx0ψ ̸= 0. If instead Q is
he basin of an asymptotically stable periodic orbit with image

⊂ Q for Φ , we say that an eigenfunction ψ ∈ C1(Q ) is a
principal eigenfunction if ψ |Γ≡ 0 and Dx0ψ ̸= 0 for all x0 ∈ Γ .7

n either case, we define the Ck,α
loc principal algebra Ak,α

Φ to be the
omplex subalgebra of Ck,α

loc (Q ,C) generated by all Ck,α
loc principal

igenfunctions.

Given a (real or complex) linear self-map Y : V → V , we say
hat a linear map w: V → C is a left eigenvector of Y with
igenvalue λ ∈ C if wY = λw. (If a basis is chosen for V ,
hen Y can be identified with a matrix and w can be identified
ith a row vector so that wY = λw in the usual sense of ma-
rix multiplication.) Differentiating (22) and using the chain rule
mmediately yields Propositions 4 and 5, which have previously
ppeared in the literature (see, e.g., the proof of [21, Prop. 2]; our
tability assumptions are for convenience of exposition and are
ot necessary).

roposition 4. Let Q be the basin of an asymptotically stable
ixed point x0 for the C1 dynamical system Φ:Q × T → Q . If
is a principal Koopman eigenfunction for Φ satisfying (22) with

xponent µ ∈ C, then for any t ∈ T, it follows that Dx0ψ is a left
igenvector of Dx0Φ

t with eigenvalue eµt .

roposition 5. Let Q be the basin of an asymptotically stable
-periodic orbit with image Γ ⊂ Q for the C1 dynamical system
:Q × R → Q . If ψ is a principal Koopman eigenfunction for
satisfying (22) with exponent µ ∈ C, then for any x0 ∈ Γ , it

follows that Dx0ψ is a left eigenvector of Dx0Φ
τ with eigenvalue eµτ ;

in particular, eµτ is a Floquet multiplier for Γ .

Remark 12. For a dynamical system with Q the basin of an
attracting compact invariant set M , any continuous eigenfunction
defined on Q satisfying (22) with exponent µ ∈ C must have
|eµ| ≤ 1. If this attracting set M is furthermore a hyperbolic fixed
point, then there is the stronger observations that either eµ = 1
or |eµ| < 1. These observations are straightforward consequences
of continuity and (22).

Remark 13. Let µ ∈ C and consider the case that Q is the
basin of an attracting hyperbolic fixed point x0 ∈ Q for the
C1 dynamical system Φ:Q × T → Q . Recall that the spectral
radius ρ(Dx0Φ

1) ∈ (0, 1) of Dx0Φ
1 is defined to be the largest

7 By (22) and the chain rule, it suffices to assume there exists one point
∈ Γ such that ψ(x ) ̸= 0 and D ψ ̸= 0.
0 0 x0
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odulus (absolute value) of the eigenvalues of (the complexifi-
ation of) Dx0Φ

1. From Eq. (4) of Definition 2, the spectral spread
ν(eµ,Dx0Φ

1) satisfies

ν(eµ,Dx0Φ
1) = min

{
r ∈ R: |eµ| ≥

(
ρ

(
Dx0Φ

1))r} . (23)

t follows that, for any r ∈ R ∪ {+∞},

(eµ,Dx0Φ
1) < r ⇐⇒ |eµ| >

(
ρ

(
Dx0Φ

1))r (24)

here
(
ρ

(
Dx0Φ

1
))+∞

:= 0 in the special case that r = +∞.

In light of Remarks 12 and 13 (taking r = k + α in (24)),
roposition 6 is now nearly immediate from Theorem 1 and
roposition 4. We prove the non-immediate portion following the
tatement of Proposition 6. We emphasize that, when k = +∞

n Proposition 6, the spectral spread condition

eµ| >
(
ρ

(
Dx0Φ

1))k+α
=

(
ρ

(
Dx0Φ

1))+∞
:= 0

s automatically satisfied since |eµ| > 0 for all µ ∈ C (cf.
emark 6).
For the case T = R, the k-nonresonance assumptions in the

ollowing result can be replaced by the slightly less restrictive
onresonance condition in Remark 3. Applications-oriented read-
rs may find it helpful to consult Example 1 with m = 1 for
emarks relevant to the following proposition.

roposition 6 (Existence and Uniqueness of Ck,α
loc Koopman Eigenval-

es and Principal Eigenfunctions for a Point Attractor). Let Φ:Q ×

→ Q be a C1 dynamical system with Q the basin of an attracting
yperbolic fixed point x0 ∈ Q , where Q is a smooth manifold with
im(Q ) ≥ 1 and either T = Z or T = R. Fix k ∈ N≥1 ∪ {+∞} and
≤ α ≤ 1, and assume that the spectral radius ρ

(
Dx0Φ

1
)

∈ (0, 1)
atisfies

eµ| >
(
ρ

(
Dx0Φ

1))k+α
n all of the following statements.

Uniqueness of Koopman eigenvalues and principal eigen-
unctions. Let ψ1 ∈ Ck,α

loc (Q ,C) be any Koopman eigenfunction
atisfying (22) with exponent µ ∈ C.

(1) Then there exists m = (m1, . . . ,mn) ∈ Nn
≥0 such that

eµ = em·λ,

where eλ1 , . . . , eλn are the eigenvalues of Dx0Φ
1 repeated

with multiplicities and λ := (λ1, . . . , λn).
(2) Assume that ψ1 is a principal eigenfunction so that eµ ∈

spec(Dx0Φ
1), and assume that (eµ,Dx0Φ

1) is k-nonresonant.
Then ψ1 is uniquely determined by Dx0ψ1, and if eµ and
Dx0ψ1 are real, then ψ1:Q → R ⊂ C is real. In particular, if
eµ is an algebraically simple eigenvalue of (the complexifica-
tion of) Dx0Φ

1 and if ψ2 is any other principal eigenfunction
satisfying (22) with the same exponent µ, then there exists
c ∈ C \ {0} such that

ψ1 = cψ2.

Existence of principal eigenfunctions. Assume that Φ ∈ Ck,α
loc

and that (eµ,Dx0Φ
1) is k-nonresonant. Let w: Tx0Q → C be any left

eigenvector of Dx0Φ
1 with eigenvalue eµ such that

∀t ∈ T:wDx0Φ
t
= eµtw.

(1) Then there exists a unique principal eigenfunction ψ ∈

Ck,α
loc (Q ,C) satisfying (22) with exponent µ and satisfying

D ψ = w.
x0 e

9

(2) In fact, if P ∈ Ck,α
loc (Q ,C) is any ‘‘approximate eigenfunction’’

satisfying Dx0P = w and

P ◦Φ1
= eµP + R (25)

with Di
x0R = 0 for all integers 0 ≤ i < k + α, then

ψ = lim
t→∞

e−µtP ◦Φ t (26)

in the topology of Ck,α-uniform convergence on compact sub-
sets of Q if k < +∞, and in the topology of Ck′-uniform
convergence on compact subsets of Q for any k′

∈ N≥1 if
k = +∞.

Proof. All of the claims are immediate from Theorem 1 and
Proposition 4 except for the first uniqueness claim, which we
now justify. Suppose (to obtain a contradiction) that the first
uniqueness claim does not hold. Then (i) eµ is not an eigenvalue
of Dx0Φ

1 and (ii) (eµ,Dx0Φ
1) is ∞-nonresonant. The first obser-

vation together with Proposition 4 implies ψ is not a principal
eigenfunction, i.e., Dx0ψ = 0. From Remark 13 and the unique-
ness portion of Theorem 1 (with A = µ and B = 0), it follows
that ψ ≡ 0 is identically zero. However, Koopman eigenfunctions
are (by definition) not identically zero, so we have obtained a
contradiction. □

Remark 14 (Laplace Averages). Given P:Q → C and T = R, in
the Koopman literature the Laplace average

ψ := lim
T→∞

1
T

∫ T

0
e−µtP ◦Φ t dt

is used to produce a Koopman eigenfunction satisfying (22) with
exponent µ as long as the limit exists [15,17]. (When T = Z, a
similar definition can be given with a sum replacing the integral.)
Since convergence of the limit (26) easily implies convergence of
the Laplace average to the same limiting function, the existence
portion of Proposition 6 gives sufficient conditions under which
the Laplace average of P exists and is equal to a unique Ck,α

loc
principal eigenfunction ψ satisfying Dx0ψ = Dx0P .

Remark 15 (Isostables and Isostable Coordinates). It follows from
the discussion after [15, Def. 2] that the definition of isostables
given in that paper – for Φ having an attracting hyperbolic fixed
point x0 with basin of attraction Q and with Dx0Φ

1 having a
unique eigenvalue eµ1 (or complex conjugate pair of eigenvalues)
of largest modulus – is equivalent to the following. Isostables
as defined in [15] are the level sets of the modulus |ψ1| of
a principal eigenfunction ψ1 defined on Q and satisfying (22)
with exponent µ = µ1. Because eµ1 is the ‘‘slowest’’ eigen-
value of Dx0Φ

1, Proposition 6 implies that, for any α > 0,
any such ψ1 ∈ C1,α

loc (Q ,C) satisfying (22) with exponent µ1 is
unique modulo scalar multiplication for a C1 dynamical system

without any further assumptions (since |eµ1 | > |eµ1 |
1+α

=

ρ
(
Dx0Φ

1
))1+α). Furthermore, such a unique eigenfunction al-

ays exists if Φ ∈ C1,α
loc and if wDx0Φ

t
= eµtw for all t ∈ T,

here w is a left eigenvector of Dx0Φ
1 with eigenvalue eµ.8 Since

he complex conjugate ψ̄1 is a principal eigenfunction satisfying
22) with exponent µ = µ̄1, it follows that the isostables as
efined in [15] are unique even if µ1 ∈ C \ R. A uniqueness
roof for analytic isostables under the additional assumptions
f (Dx0Φ

1,Dx0Φ
1) ∞-nonresonance and of dynamics generated

y an analytic vector field was given in [15, App. A]. For the

8 By Example 1, if T = R and Φ is the flow of a C1,α
loc vector field f , these

ssumptions are automatically satisfied if w is a left eigenvector of Dx0 f with
igenvalue µ.
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pecial case that the eigenvalue of largest modulus is real, unique,
nd algebraically simple, in [15, p. 23] these authors do point
ut that uniqueness of C1 isostables (if they exist) follows from
he fact that they coincide with the unique C1 global (strong)
table manifolds [46, pp. 4208, 4211] over9 an attracting, nor-
mally hyperbolic [46, p. 4207], 1-dimensional, inflowing invariant
manifold [46, p. 4211]; this argument works even if the dynam-
ical system is only C1 (see [46] for detailed information on the
global stable foliation of an inflowing invariant manifold). The
1-dimensional invariant ‘‘slow’’ manifold is itself generally non-
unique without further assumptions, but this does not affect the
isostable uniqueness argument. However, as pointed out in [15,
p. 23], this argument does not work when the eigenvalue of
largest modulus is not real, because in this case the isostables
can no longer be interpreted as strong stable manifolds (e.g., the
relevant slow manifold is now 2-dimensional, so the dimension
of the codimension-1 isostables is too large by 1).

For the case that T = R and Φ has an attracting hyper-
bolic periodic orbit, several authors have investigated various
versions of isostable coordinates without restricting attention to
the ‘‘slowest’’ isostable coordinate. The authors in [39, Eq. 5] de-
fined a ‘‘finite-time’’ approximate version of isostable coordinates
which provide an approximation of our principal eigenfunctions.
Subsequently, [40, Sec. 2] defined a version of ‘‘exact’’ isostable
coordinates (termed amplitudes and phases) directly in terms of
Koopman eigenfunctions, and in particular our Proposition 7 and
Theorem 4 can be used to directly infer existence, uniqueness and
regularity properties of these coordinates under relatively weak
assumptions. It appears that [41,42] intended to define a different
version of ‘‘exact’’ isostable coordinates close in spirit to the
approximate version in [39]. However, these definitions [41,42,
Eq. 24, Eq. 58] are given in terms of a limit which might not
exist for principal eigenfunctions other than the ‘‘slowest’’, as we
show in Example 3. In any case, it appears that principal Koopman
eigenfunctions provide a means for defining all of the isostable
coordinates for a periodic orbit attractor which does not require
such limits.

Remark 16 (Relationship to the Principal Eigenfunctions, Principal
Algebras, and Pullback Algebras of [22]). Given a nonlinear dynam-
ical system Φ:Q × T → Q with Q the basin of an attracting
hyperbolic fixed point x0, Mohr and Mezić defined (in our nota-
tion) the principal eigenfunctions for the associated linearization
Dx0Φ: Tx0Q ×T → Tx0Q to be those of the form v ↦→ w(v), where
w: Tx0Q → C is a left eigenvector of Dx0Φ

1 [22, Def. 2.2], and
they defined the principal algebra ADx0Φ

1 to be the subalgebra
of C0(Tx0Q ,C) generated by the principal eigenfunctions [22,
Def. 2.3]. Mohr and Mezić do not define principal eigenfunctions
or the principal algebra for the nonlinear system itself but, given
a topological conjugacy τ : Tx0Q → Q between Φ and Dx0Φ , they
define the pullback algebra(
ADx0Φ

1

)
◦ τ−1

:= {ϕ ◦ τ−1:ϕ ∈ ADx0Φ
1}. (27)

Assuming that Φ ∈ Ck,α
loc , Proposition 6 implies that the re-

lationship between the concepts in our Definition 4 and those
of [22] is as follows. If (Dx0Φ

1,Dx0Φ
1) is k-nonresonant and

ν(Dx0Φ
1,Dx0Φ

1) < k + α (see Definition 2), our principal eigen-
functions for Dx0Φ

1 coincide precisely with their principal eigen-
functions w: Tx0Q → C. This implies that our principal algebra

9 In general, the (strong) stable manifolds are the leaves of the unique global
strong) stable foliation [46, p. 4208] of the global (center-)stable manifold [46,
. 4208] of an (inflowing) normally hyperbolic invariant manifold [58,63,66];
hese leaves generalize the isochrons [60] of an attracting hyperbolic limit cycle.
10
Ak,α
Dx0Φ

1 coincides with their ADx0Φ
1 . Next, notice that the pull-

back algebra (27) is generated by the functions w ◦ τ−1 where
: Tx0Q → C is a principal eigenfunction of the linearization. If
e further assume that the conjugacy τ is a Ck,α

loc diffeomorphism,
hen the chain rule implies that each w ◦ τ−1 is a Ck,α

loc principal
igenfunction for Φ , and therefore

(
ADx0Φ

1

)
◦ τ−1

= Ak,α
Φ by

Proposition 6. In particular, under the above hypotheses it follows
that

(
ADx0Φ

1

)
◦τ−1 is independent of τ and generated by at most

n Ck,α
loc principal eigenfunctions for Φ . This is perhaps surprising

since (27) depends on the a priori non-unique conjugacy τ ; here
the assumption that τ is a Ck,α

loc diffeomorphism is essential.

For an attracting hyperbolic τ -periodic orbit of a Ck,α
loc flow

with image Γ and basin Q ⊃ Γ , stable manifold theory [60–
64] can be used to show that the global strong stable manifold
(isochron) W s

x0 through x0 ∈ Γ is a Ck,α
loc submanifold of Q , and

Φτ (W s
x0 ) = W s

x0 . Furthermore, any eigenfunction ϕ ∈ Ck,α
loc (W

s
x0 ,C)

f Φτ
|W s

x0
satisfying ϕ ◦ Φτ

|W s
x0

= eµτϕ admits the unique exten-
ion to an eigenfunction ψ ∈ Ck,α

loc (Q ,C) with exponent µ given
y

|W s
Φt (x0)

:= eµtϕ ◦Φ−t
|W s

Φt (x0)

or all t ∈ R. That ψ ∈ Ck,α
loc follows from considering locally-

efined Ck,α
loc ‘‘time-to-impact W s

x0 ’’ functions as in the proof of
roposition 3. This observation combined with Propositions 5
nd 6 yields the following result. (Alternatively, the statement
oncerning existence and uniqueness of principal eigenfunctions
ollows from Theorem 2 and Proposition 5.)

roposition 7 (Existence and Uniqueness of Ck,α
loc Koopman Eigen-

alues and Principal Eigenfunctions for a Limit Cycle Attractor). Fix
∈ N≥1 ∪{+∞} and 0 ≤ α ≤ 1. Let Φ:Q ×R → Q be a Ck,α

loc flow
ith Q the basin of an attracting hyperbolic τ -periodic orbit with

mage Γ ⊂ Q , where Q is a smooth manifold with dim(Q ) ≥ 2. Fix
0 ∈ Γ and let Es

x0 = Tx0W
s
x0 denote the unique Dx0Φ

τ -invariant
ubspace complementary to Tx0Γ . Assume that the spectral radius(

Dx0Φ
τ
|Esx0

)
∈ (0, 1) satisfies

eµτ | >
(
ρ

(
Dx0Φ

τ
|Esx0

))k+α

n all of the following statements.
Uniqueness of Koopman eigenvalues. Let ψ1 ∈ Ck,α

loc (Q ,C) be
ny Koopman eigenfunction satisfying (22) with exponent µ ∈ C
nd T = R. Then there exists m = (m1, . . . ,mn) ∈ Nn

≥0 such that
µτ

= e(m·λ)τ ,

here eλ1τ , . . . , eλnτ are the eigenvalues of Dx0Φ
τ
|Esx0

repeated with
ultiplicities and λ := (λ1, . . . , λn).
Existence and uniqueness of principal eigenfunctions. As-

ume that (eµτ ,Dx0Φ
τ
|Esx0

) is k-nonresonant. Let w: Es
x0 → C be any

eft eigenvector of Dx0Φ
τ
|Esx0

with eigenvalue eµτ . Then there exists
unique principal eigenfunction ψ ∈ Ck,α

loc (Q ,C) for Φ satisfying
22) with exponent µ and T = R and satisfying Dx0ψ |Esx0

= w.
dditionally, if µ and w are real, then ψ:Q → R ⊂ C is real.

A well-known example of Sternberg shows that, even for an
nalytic diffeomorphism Φ1 of the plane having the globally
ttracting fixed point 0, there need not exist a C2 principal eigen-
unction corresponding to eµ ∈ spec(D0Φ

1) if (eµ,D0Φ
1) is not

-nonresonant [4, p. 812]. Concentrating now on the issue of
niqueness of principal eigenfunctions, the following example
hows that our nonresonance and spectral spread conditions are



M.D. Kvalheim and S. Revzen Physica D 425 (2021) 132959

b
a
a

E
(

w
i
e
Φ

(
e
σ

k

h

a

h

a
e

µ

I
t
e
h
e
s
s
P
t
a
α

(
∞

b
u
2
(
f
c
e
P
s
S
i

a

|

t

α

d

oth necessary for the uniqueness statements of Propositions 6
nd 7 (hence also for the uniqueness statements of Theorems 1
nd 2).

xample 2 (Uniqueness of Principal Eigenfunctions). Consider Φ =

Φ1,Φ2):R2
× T → R2 defined by

Φ t
1(x, y) = e−tx

Φ t
2(x, y) = e−(k+α)ty

(28)

here k ∈ N≥1, 0 ≤ α ≤ 1, and either T = Z or T = R. Φ
s a diagonal linear dynamical system with x0 = 0 a globally
xponentially stable fixed point, and the eigenvalues of D0Φ

1
=

1 are e−1 and e−(k+α). Furthermore, for any irrational α ∈ [0, 1],
e−(k+α),D0Φ

1) is ∞-nonresonant; ∞-nonresonance also holds if,
.g., k = 1 and α = 0 (see Definition 1). However, if we define
α(x) := |x| for α > 0 and σα(x) := x for α = 0, then for any
∈ N≥1 and α ∈ [0, 1] both

1(x, y) := y (29)

nd

2(x, y) := y + σα(x)k+α (30)

re Ck,α principal eigenfunctions satisfying (22) with the same
xponent

= −(k + α).

n particular, this shows that Ck,α
loc principal Koopman eigenfunc-

ions are not necessarily unique (modulo scalar multiplication)
ven if the ∞-nonresonance condition is satisfied. Since here
2 ∈ Ck,α

loc (R
2,C) and r = (k + α) is the smallest r ∈ R satisfying

−(k+α)
≥

(
ρ

(
D0Φ

1
))r

= (e−1)r , this shows that the spectral
pread condition |eµ| >

(
ρ

(
Dx0Φ

1
))k+α is both necessary and

harp for the principal eigenfunction uniqueness statement of
roposition 6 to hold, at least in the case that α > 0.10 (Note
hat Proposition 6 does imply that Ck′,α′

loc principal eigenfunctions
re unique for any k′

+ α′ > k + α.) If instead k = 1 and
= 0, then h1 and h2 are both analytic eigenfunctions satisfying

22) with the same exponent µ = −1, while (e−1,D0Φ
1) is

-nonresonant, but now these eigenfunctions are distinguished
y their derivatives at the origin; this is consistent with the
niqueness statement of Proposition 6. On the other hand, if k =

and α = 0 so that (e−2,D0Φ
1) is not 2-nonresonant, (29) and

30) show that analytic eigenfunctions are not unique despite the
act that the spectral spread condition |e−2

| >
(
ρ

(
D0Φ

1
))+∞

= 0
ertainly holds. Hence the nonresonance condition is also nec-
ssary for the principal eigenfunction uniqueness statement of
roposition 6 to hold. Finally, by taking T = R, changing the
tate space R2 above to R2

× S1, and prescribing the unit circle
1

⊂ C with the decoupled dynamics Φ t
3(x, y, θ ) := eitθ (where

=
√

−1) yields an example showing that the spectral spread and
nonresonance conditions are both necessary for the uniqueness
statement in Proposition 7 to hold as well.

Example 3 (Existence of the Limit (26) and Isostable Coordinates).
Existence of the limit in (26) is not automatic if the ‘‘approximate
eigenfunction’’ P is not an approximation to sufficiently high
order. To demonstrate this, fix k ∈ N≥1, α ∈ [0, 1], r ∈ R≥1,
nd ϵ ∈ R>0. Define σα(x) := |x| for α > 0 and σα(x) := x for

10 In the terminology and notation of Theorem 1 with m = 1, the condition
eµ| >

(
ρ

(
D0Φ

1
))k+α is equivalent to the condition ν(eµ,D0Φ

1) < k+α, where
he spectral spread ν( · , · ) is defined in Definition 2. See Remark 13.
11
= 0, and consider the Ck,α
loc dynamical system Φ:R2

× T → R2

efined by

Φ t
1(x, y) = e−tx

Φ t
2(x, y) = e−rt (y − ϵσα(x)k+α) + ϵe−(k+α)tσα(x)k+α,

(31)

where either T = Z or T = R. To see thatΦ is indeed a dynamical
system (i.e., that Φ satisfies the group property Φ t+s

= Φ t
◦Φs),

define the diagonal linear system Φ̃ t (x, y) = (e−tx, e−rty) and the
Ck,α diffeomorphism H:R2

→ R2 via H(x, y) := (x, y+ϵσα(x)k+α),
and note that Φ t

= H ◦ Φ̃ t
◦ H−1. In other words, Φ is obtained

from a diagonal linear dynamical system via a Ck,α change of
coordinates; note also that this change of coordinates can be
made arbitrarily close to the identity by taking ϵ arbitrarily small.
Since x0 = 0 is a globally exponentially stable fixed point for Φ̃ ,
it is also so for Φ . We note that r0 = r ≥ 1 is the smallest r0 ∈ R
such that the spectral radius ρ

(
D0Φ

1
)

= e−1
∈ (0, 1) satisfies

|e−r
| ≥

(
ρ

(
D0Φ

1
))r0 .11 We further note that, for any choice of ϵ,

the analytic function P(x, y) := y satisfies

P ◦Φ1
= e−rP + R

where Dj
(0,0)R = 0 for all integers 0 ≤ j < k + α. However,

lim
t→∞

ertP ◦Φ t (x, y) = y − ϵσα(x)k+α + ϵσα(x)k+α lim
t→∞

e(r−(k+α))t

=

⎧⎨⎩
y − ϵσα(x)k+α 1 ≤ r < k + α

y r = k + α

+∞ r > k + α

(32)

for any x ̸= 0 and ϵ > 0. We see that the limit (32) diverges
when r > k + α (so that |e−r

| <
(
ρ

(
D0Φ

1
))k+α), but the limit

converges when r ≤ k + α (so that |e−r
| ≥

(
ρ

(
D0Φ

1
))k+α).

For the case that r < k + α and r ̸∈ N≥2, this is consistent
with Proposition 6 which guarantees that the limit converges
if Φ ∈ Ck,α

loc , if |e−r
| >

(
ρ

(
D0Φ

1
))k+α , and if (e−r ,D0Φ

1) is
k-nonresonant. When r = k + α and r ̸∈ N≥2, convergence
is also guaranteed by Proposition 6 for this specific example,
because then (i) (e−r ,D0Φ

1) is ∞-nonresonant, (ii) Φ is linear
(the nonlinear terms cancel when r = k + α) and hence C∞,
and (iii) Proposition 6 guarantees that this limit always exists if
Φ ∈ C∞ and (e−r ,D0Φ

1) is ∞-nonresonant because the spectral
spread condition |e−r

| >
(
ρ

(
D0Φ

1
))+∞

= 0 always holds. As
alluded to in Remark 5, the preceding reasoning can actually be
applied even without the assumption that r is not an integer if
Lemma 5 is used instead of Proposition 6 as the tool of inference
(i.e., nothing about nonresonance actually needs to be assumed
for this example). We emphasize that the divergence in (32)
is associated purely with the spectral spread condition since,
e.g., we can choose r ≥ 1 so that (e−r ,D0Φ

1) is ∞-nonresonant
and take α = 0 so that Φ is analytic.

Note that by taking T = R, changing the state space R2

to R2
× S1, and prescribing the unit circle S1 ⊂ C with the

decoupled dynamics Φ t
3(x, y, θ ) := eitθ (where i =

√
−1) yields

a corresponding example with a globally attracting hyperbolic
periodic orbit {(0, 0)} × S1. In this case, for this example [41,42,
Eq. 24, Eq. 58] would attempt to define the ‘‘faster’’ isostable coor-
dinate (principal eigenfunction in our terminology) ψ2 satisfying
(22) with exponent µ2 := −r via the limit (32), but (32) shows
that this limit does not exist if r > k+α. This phenomenon should
be compared with the explanation in the preceding paragraph
based on our general results.

11 That is, the spectral spread satisfies ν(e−r ,D0Φ
1) = r in the terminology of

Definition 2 and Theorem 1. See Remark 13.
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.3. Classification of all C∞ koopman eigenfunctions

otation. To improve the readability of Theorems 3 and 4, we
ntroduce the following multi-index notation. We define an n-
imensional multi-index to be an n-tuple i = (i1, . . . , in) ∈ Nn

≥0
f nonnegative integers, and define its sum to be |i| := i1 +

· · + in. For a multi-index i ∈ Nn
≥0 and z = (z1, . . . , zn) ∈ Cn,

e define z[i]
:= z i11 · · · z inn . Given a Cn-valued function ψ =

ψ1, . . . , ψn):Q → Cn, we define ψ [i]:Q → C via ψ [i](x) :=

ψ(x))[i] for all x ∈ Q . We also define the complex conjugate of
= (ψ1, . . . , ψn) element-wise: ψ̄ := (ψ̄1, . . . , ψ̄n).

For the case T = R, the ∞-nonresonance assumption in the
ollowing result can be replaced by the slightly less restrictive
onresonance condition in Remark 3. Applications-oriented read-
rs may find it helpful to consult Example 1 with m = 1 for
elevant remarks.

heorem 3 (Classification of all C∞ Eigenfunctions for a Point
ttractor). Let Φ:Q × T → Q be a C∞ dynamical system with Q
he basin of an attracting hyperbolic fixed point x0 ∈ Q , where Q is
smooth manifold with dim(Q ) ≥ 1 and either T = Z or T = R.
ssume that Dx0Φ

1 is semisimple (diagonalizable over C) and that
Dx0Φ

1,Dx0Φ
1) is ∞-nonresonant.

Letting n = dim(Q ), it follows that there exists an n-tuple

= (ψ1, . . . , ψn)

f C∞ principal eigenfunctions such that every C∞ Koopman eigen-
unction ϕ is a finite sum of scalar multiples of products of the ψj
nd their complex conjugates ψ̄j:

=

∑
|ℓ|+|m|≤k

cℓ,mψ [ℓ]ψ̄ [m] (33)

or some k ∈ N≥0 and some coefficients cℓ,m ∈ C.

roof. By Proposition 2 and linear algebra, there exists a C∞

mbedding Q ↪→ Cn which maps Q diffeomorphically onto
n R-linear subspace of Cn, maps x0 to 0, and semiconjugates
to the diagonal C-linear dynamical system Θ t (z1, . . . , zn) =

eλ1tz1, . . . , eλntzn).12 Thus, for simplicity, we may (and do) view
as a Θ-invariant R-linear subspace of Cn with Φ = Θ|Q×T. Let
∈ C∞(Q ,C) be any C∞ Koopman eigenfunction satisfying (22)
ith exponent µ ∈ C.
Write z = (z1, . . . , zn) ∈ Cn. For any k ∈ N≥0, Taylor’s theorem

mplies the existence of Rk ∈ C∞(Q ,C) satisfying 0 = Rk(0) =

0Rk = · · · = Dk
0Rk and coefficients cℓ,m such that

ϕ(z) =

∑
|ℓ|+|m|≤k

cℓ,mz[ℓ]z̄[m]
+ Rk(z) (34)

or all z ∈ Q . Defining λ := (λ1, . . . , λn) and writing the
igenfunction equation ϕ ◦ Θ1

= eµϕ in terms of the expansion
34) yields, for all z ∈ Q ,∑
ℓ|+|m|≤k

eℓ·λ+m·λ̄cℓ,mz[ℓ] z̄[m]
+Rk ◦Φ1(z) =

∑
|ℓ|+|m|≤k

eµ
(
cℓ,mz[ℓ] z̄[m]

+ Rk(z)
)
.

pon subtracting terms, we see that Sk := Rk ◦ Φ1
− eµRk is

he restriction of a kth order polynomial to Q . On the other
and, we infer that 0 = Sk(0) = D0Sk = · · · = Dk

0Sk from
he corresponding property of Rk. Thus, Sk is the zero function,
o Rk ◦ Φ1

= eµRk. Recall Definition 2 of the (always finite)
pectral spread ν( · , · ). If we choose k sufficiently large so that
> ν(eµ,D0Φ

1), Proposition 1 implies that Rk ≡ 0. From (34),
e then see that ϕ is equal to a sum of products of the principal
igenfunctions ψj(z) := zj, ψ̄j(z) = z̄j as desired. □

12 The standard definition of C∞ embedding is recalled preceding Proposi-
tion 3 (take α = 0 and k = +∞).
12
For a an attracting hyperbolic τ -periodic orbit of a Ck,α
loc flow

with image Γ and basin Q ⊃ Γ , let W s
x0 be the global strong

stable manifold (isochron) through the point x0 ∈ Γ . As discussed
in the proof of Proposition 3, there is a unique (modulo scalar
multiplication) continuous eigenfunction satisfying (22) with ex-
ponent µ = i 2π

τ
and T = R, where i =

√
−1, and this

eigenfunction is in fact C∞ for a C∞ flow. Moreover, such an
eigenfunction is constant on W s

x0 . In the theorem below, let ψθ
be the unique such eigenfunction satisfying ψθ |W s

x0
≡ 1, where the

oint x0 is as in the theorem statement. Explicitly, ψθ is given by

ψθ |W s
Φt (x0)

= ei
2π
τ t

for all t ∈ R. This defines ψθ on all of Q since Q =
⋃

t∈R W s
Φt (x0)

,
nd the definition makes sense since W s

Φ jτ (x0)
= W s

x0 for all j ∈ Z.

Theorem 4 (Classification of all C∞ Eigenfunctions for a Limit Cycle
Attractor). Let Φ:Q × R → Q be a C∞ dynamical system with
Q the basin of an attracting hyperbolic τ -periodic orbit with image
Γ ⊂ Q , where Q is a smooth manifold with dim(Q ) ≥ 2.
ix x0 ∈ Γ and denote by Es

x0 the unique τ -invariant subspace
omplementary to Tx0Γ . Assume that Dx0Φ

τ
|Esx0

is semisimple and
hat (Dx0Φ

τ
|Esx0
,Dx0Φ

τ
|Esx0

) is ∞-nonresonant.
Letting n + 1 = dim(Q ), it follows that there exists an n-tuple

= (ψ1, . . . , ψn)

f C∞ principal eigenfunctions such that every C∞ Koopman eigen-
unction ϕ is a finite sum of scalar multiples of products of integer
owers of ψθ with products of the ψj and their complex conjugates
¯ j:

=

∑
|ℓ|+|m|≤k

cℓ,mψ [ℓ]ψ̄ [m]ψ
jℓ,m
θ (35)

or some k ∈ N≥0, some coefficients cℓ,m ∈ C, and jℓ,m ∈ Z.

roof. Let W s
x0 be the C∞ global strong stable manifold through

0. We remind the reader of the facts Q =
⋃

t∈R W s
Φt (x0)

and
s
Φt (x0)

= Φ t (W s
x0 ) which are implicitly used in the remainder

f the proof.
First, we note that every eigenfunction χ ∈ C∞(W s

x0 ,C) of
j(x) := Φ jτ

|W s
x0
(x) satisfying (22) with exponent µ ∈ C and T =

admits a unique extension to an eigenfunction χ̃ ∈ C∞(Q ,C)
f Φ satisfying (22) with exponent µ and T = R; this unique
xtension χ̃ is defined via

˜ |W s
Φ−t (x0)

= e−µtχ ◦Φ t
|W s

Φ−t (x0)
(36)

or all t ∈ R. That χ̃ ∈ C∞ follows from considering locally-
efined C∞ ‘‘time-to-impact W s

x0 ’’ functions as in the proof of
roposition 3, and χ is a principal eigenfunction if and only if
ts extension χ̃ is.

Next, let ϕ ∈ C∞(Q ,C) be a eigenfunction satisfying (22) with
xponent µ and T = R. Theorem 3 implies that ϕ|W s

x0
is equal to

sum of products of principal eigenfunctions χ1, . . . , χn, χ̄1, . . . ,

¯n of Φτ
|W s

x0
of the form:

|W s
x0

=

∑
|ℓ|+|m|≤k

cℓ,mχ [ℓ]χ̄ [m] (37)

or some k ∈ N≥0, where χ = (χ1, . . . , χn). Let λ = (λ1, . . . λn) ∈
n be such that each χj satisfies χj ◦ Φτ

|W s
x0

= eλjτχj. Since ϕ
atisfies (22) with exponent µ, it follows that
µτ

= e(ℓ·λ+m·λ̄)τ (38)
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f

µ

f
w
p
a

ϕ

or all ℓ,m ∈ Nn
≥0 such that cℓ,m ̸= 0, so for such ℓ,m we have

= ℓ · λ+ m · λ̄+ i
2π
τ

jℓ,m (39)

or some jℓ,m ∈ Z, where i =
√

−1. By the previous paragraph,
e may uniquely write χ = ψ |W s

x0
= (ψ1|W s

x0
, . . . , ψn|W s

x0
) for

rincipal eigenfunctions ψj of Φ satisfying (22) with exponent λj
nd T = R.
Using (37),(39), and the extension formula (36), we obtain

|W s
Φ−t (x0)

=

∑
|ℓ|+|m|≤k

cℓ,me−µt
·
(
χ [ℓ]χ̄ [m]

)
◦Φ t

|W s
Φ−t (x0)

=

∑
|ℓ|+|m|≤k

cℓ,me−µt
·
(
ψ [ℓ]ψ̄ [m]

)
|W s

x0
◦Φ t

|W s
Φ−t (x0)

=

∑
|ℓ|+|m|≤k

cℓ,me−(i 2πτ jℓ,m)t
·
(
ψ [ℓ]ψ̄ [m]

)
|W s

Φ−t (x0)

=

∑
|ℓ|+|m|≤k

cℓ,m
(
ψ [ℓ]ψ̄ [m]ψ

jℓ,m
θ

)
|W s

Φ−t (x0)

for all t ∈ R as desired. To obtain the last equality we used the
fact that ψθ |W s

x0
≡ 1, so the extension formula (36) implies that

ψθ |W s
Φ−t (x0)

≡ e−i 2πτ t and hence also
(
ψ

jℓ,m
θ

)
|W s

Φ−t (x0)
≡ e−(i 2πτ jℓ,m)t .

This completes the proof. □

4. Proofs of the main results

4.1. Proof of Theorem 1

In this section we prove Theorem 1, which we repeat here for
convenience.

Theorem 1 (Existence and Uniqueness of Ck,α
loc Global Linearizing

Factors for a Point Attractor).Let Φ:Q × T → Q be a C1 dynamical
system with Q the basin of an attracting hyperbolic fixed point
x0 ∈ Q , where Q is a smooth manifold with dim(Q ) ≥ 1 and either
T = Z or T = R. Let m ∈ N≥1 and eA ∈ GL(m,C) have spectral
radius ρ(eA) < 1, and let the linear map B: Tx0Q → Cm satisfy

∀t ∈ T: BDx0Φ
t
= etAB. (5)

Fix k ∈ N≥1 ∪ {+∞} and 0 ≤ α ≤ 1, assume that (eA,Dx0Φ
1) is

k-nonresonant, and assume that ν(eA,Dx0Φ
1) < k + α.

Uniqueness. Any ψ ∈ Ck,α
loc (Q ,C

m) satisfying

ψ ◦Φ1
= eAψ, Dx0ψ = B

is unique, and if B: Tx0Q → Rm
⊂ Cm and eA ∈ GL(m,R) ⊂

GL(m,C) are real, then ψ:Q → Rm
⊂ Cm is real.

Existence. If furthermore Φ ∈ Ck,α
loc , then such a unique ψ ∈

Ck,α
loc (Q ,C

m) exists and additionally satisfies

∀t ∈ T:ψ ◦Φ t
= etAψ. (6)

In fact, if P ∈ Ck,α
loc (Q ,C

m) is any ‘‘approximate linearizing factor’’
satisfying Dx0P = B and

P ◦Φ1
= eAP + R (7)

with Di
x0R = 0 for all integers 0 ≤ i < k + α, then

ψ = lim
t→∞

e−tAP ◦Φ t (8)

in the topology of Ck,α-uniform convergence on compact subsets of
Q if k < +∞, and in the topology of Ck′-uniform convergence on
compact subsets of Q for any k′

∈ N if k = +∞.
≥1

13
We prove the uniqueness and existence portions of Theorem 1
in the following Section 4.1.1 and Section 4.1.2, respectively.
Some of our statements and proofs make use of higher-order
derivatives of maps between Euclidean spaces [51, Sec. A.5] and
the fact that a multilinear map is equivalent to a linear map out of
a tensor product (the ‘‘universal property of the tensor product’’).

4.1.1. Proof of uniqueness
In this section, we prove the uniqueness portion of Theorem 1.

The proof of uniqueness consists of an algebraic part and an
analytic part. The algebraic portion is carried out in Lemmas 1
and 2, and the analytic portion is carried out in Lemma 3.

Lemma 1. Let k ∈ N≥1 ∪ {+∞}, m, n ∈ N≥1, X ∈ Cm×m, and
Y ∈ Rn×n be such that (X, Y ) is k-nonresonant. For all 1 < i < k+1,
let L((Rn)⊗i,Cm) denote the space of linear maps from the i-fold
tensor product (Rn)⊗i to Cm, and define the linear operator

Ti:L((Rn)⊗i,Cm) → L((Rn)⊗i,Cm), Ti(P) := PY⊗i
− XP . (40)

(By this formula we mean that Ti(P) acts on tensors τ ∈ (Rn)⊗i via
τ ↦→ P(Y⊗i(τ )) − XP(τ ).)

Then for all 1 < i < k + 1, Ti is a linear isomorphism. (The
conclusion holds vacuously if k = 1.)

Proof. Let λ1, . . . , λn and µ1, . . . , µm respectively be the eigen-
values of Y and X repeated with multiplicity.

First assume that Y and X are both semisimple, i.e., diagonaliz-
able over C. Identifying Y with its complexification, let e1, . . . , en
∈ Cn be a basis of eigenvectors for Y and let e1, . . . , en ∈ (Cn)∗
be the associated dual basis. Let f1, . . . , fm ∈ Cm be a basis of
eigenvectors for X . Fix any integer i with 1 < i < k + 1,
any p ∈ {1, . . . ,m}, and any multi-indices ℓ, j ∈ Ni

≥1; defining
e⊗[ℓ]

:= eℓ1 ⊗ · · · ⊗ eℓi and similarly for e⊗[j], we compute

Ti
(
fp ⊗ e⊗[ℓ]

)
· e⊗[j] = λj1 · · · λjn · (e⊗[ℓ]

· e⊗[j])fp − µp · (e⊗[ℓ]
· e⊗[j])fp

= δℓj ·
(
λj1 · · · λji − µp

)
fp

(no summation implied), where the multi-index Kronecker delta
is defined by δℓℓ = 1 and δℓj = 0 if ℓ ̸= j. Hence the fp ⊗

e⊗[ℓ] are eigenvectors of Ti with eigenvalues
(
λℓ1 · · · λℓi − µp

)
,

and dimension counting implies that these are all of the eigen-
vector/eigenvalue pairs. The k-nonresonance assumption implies
that none of these eigenvalues are zero, so Ti is invertible if Y and
X are both semisimple.

Since the operator Ti depends continuously on the matrices
X and Y , since eigenvalues of a matrix depend continuously
on the matrix, and since semisimple matrices are dense, it fol-
lows by continuity that the eigenvalues of Ti are all of the form(
λℓ1 · · · λℓi − µp

)
even if one or both of X and Y are not semisim-

ple (cf. [67, p. 37]), and these eigenvalues are all nonzero by
the assumption that (X, Y ) is k-nonresonant. Hence Ti is still
invertible in the case of general X and Y . □

Lemma 2. Let F ∈ C1(Rn,Rn) have the origin as a fixed point,
where n ≥ 1. Let k ∈ N≥1 ∪ {+∞}, m ∈ N≥1, and X ∈ Cm×m be
such that (X,D0F ) is k-nonresonant. Assume that ψ ∈ Ck(Rn,Cm)
satisfies D0ψ = 0 and

ψ ◦ F = Xψ. (41)

Then it follows that ψ(0) = Xψ(0) and

Di
0ψ = 0

for all 1 < i < k + 1. (The conclusion holds vacuously if k = 1.)

Remark 17. We can restate the conclusion of Lemma 2 in the
language of jets [51,65,68]. If ψ is a linearizing factor such that
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he 1-jet j10(ψ − ψ(0)) = 0, then automatically the k-jet jk0(ψ −

(0)) = 0.

roof. That ψ(0) = Xψ(0) follows from setting x = 0 in (41) and
sing the assumption that F (0) = 0. We will prove the remaining
laim that Di

0ψ = 0 for 1 ≤ i < k + 1 by induction on i.
he base case of the induction, D1

0ψ = D0ψ = 0, is one of the
ypotheses of the lemma. For the inductive step, assume that
0ψ = · · · = Di

0ψ = 0 for an integer i satisfying 1 ≤ i < k.
f it were the case that F ∈ C i+1, one way to proceed would
e to differentiate (41) (i + 1) times and somehow deduce that
i+1
0 ψ = 0. However, we are assuming only that F ∈ C1, so that
pproach is problematic. We instead proceed as follows.
By Taylor’s theorem and the inductive hypothesis, we have

here x⊗ℓ denotes the tensor product of x with itself ℓ times)

(x) = D0F · x+ RF (x), ψ(x) = ψ(0)+D0ψ
i+1

· x⊗(i+1)
+ Rψ (x)

(42)

for all x, where the remainders satisfy limx→0
RF (x)
∥x∥ = 0 and

limx→0
Rψ (x)
∥x∥i+1 = 0. It follows that

ψ(F (x)) = ψ(0) + D0ψ
i+1

· (D0F · x)⊗(i+1)
+ R(x), (43)

here

(x) := Rψ (F (x))+D0ψ
i+1

·

i∑
ℓ=0

Cℓ[(D0F ·x)⊗ℓ⊗(RF (x))⊗(i+1−ℓ)
] (44)

for suitable combinatorially determined constants Cℓ > 0. Rewrit-
ing (41) using (42) and (43), we obtain

ψ(0)+D0ψ
i+1

·(D0F ·x)⊗(i+1)
+R(x) = Xψ(0)+XD0ψ

i+1
·x⊗(i+1)

+XRψ (x).

(45)

In order to deduce the information we need from (45), we now
show that limx→0

R(x)
∥x∥i+1 = 0. Using the tensor product property

p+qv⊗p
⊗w⊗q

= (av)⊗p
⊗ (aw)⊗q for a scalar a and vectors v and

, this follows from (44) and the computation

lim
x→0

R(x)
∥x∥i+1 = lim

x→0

Rψ (F (x))
∥F (x)∥i+1

∥F (x)∥i+1

∥x∥i+1

+ D0ψ
i+1

· lim
x→0

i+1∑
ℓ=1

Cℓ

[(
D0F · x
∥x∥

)⊗(i+1−ℓ)

⊗

(
RF (x)
∥x∥

)⊗ℓ
]

= 0.

(46)

he first limit on the right is zero since F (x) → 0 as x → 0 and
ince F ∈ C1, so ∥F (x)∥/∥x∥ ≤ max∥y∥≤1 ∥DyF∥ < +∞ when

∥x∥ ≤ 1 by the mean value theorem; the second limit on the
right is zero since ∥D0F · x∥/∥x∥ ≤ ∥D0F∥ < +∞.

Let r > 0 and x̂ be a unit vector. Set x = rx̂ in (45).
By the first sentence of the proof, ψ(0) = Xψ(0). Canceling
these equal terms from (45), dividing both sides of the resulting
equation by r i+1, and taking the limit as r → 0 using (46) yields
D0ψ

i+1(D0F )⊗(i+1)
· x̂⊗(i+1)

= XD0ψ
i+1

· x̂⊗(i+1) for all unit vectors
x̂. Since derivatives are symmetric tensors, the latter equation
has the form S · x̂⊗(i+1)

= T · x̂⊗(i+1) with symmetric tensors
S := D0ψ

i+1(D0F )⊗(i+1) and T := XD0ψ
i+1. Since symmetric

ensors are completely determined by their action on tensors of
he form x̂⊗(i+1) [69, Thm 1], it follows that 0 = S − T , or

= Di+1
0 ψ (D0F)⊗(i+1)

− XDi+1
0 ψ = T(i+1)(Di+1

0 ψ), (47)

here the linear operator T(i+1):L((Rn)⊗(i+1),Cm) → L((Rn)⊗(i+1),
m) is as defined in Lemma 1 (taking Y := D0F ). Lemma 1 implies
hat T is invertible since (X,D F ) is k-nonresonant, so (47)
(i+1) 0

14
implies that Di+1
0 ψ = 0. This completes the inductive step and

the proof. □

Lemma 3. Let F ∈ C1(Rn,Rn) be a diffeomorphism such that the
origin is a globally attracting hyperbolic fixed point for the dynamical
system defined by iterating F , where n ≥ 1. Fix k ∈ N≥1 ∪ {+∞}

and 0 ≤ α ≤ 1. Let eA ∈ GL(m,C) have spectral radius ρ(eA) < 1
and satisfy ν(eA,D0F ) < k + α. Assume ψ ∈ Ck,α

loc (R
n,Rm) satisfies

ψ ◦ F = eAψ (48)

and

Di
0ψ = 0 (49)

for all integers 0 ≤ i < k + α (note the case α = 0 which does not
require vanishing of the kth derivative). Then ψ ≡ 0.

Proof. We first observe that since (i) 0 is asymptotically stable for
the iterated dynamical system defined by F , (ii) ψ is continuous,
and (iii) ρ(eA) < 1, it follows that ψ(0) = 0 since

0 = lim
n→∞

enAψ(x0) = lim
n→∞

ψ(F n(x0)) = ψ(0) (50)

for any x0 ∈ Rn. The second equality follows from (48).
For the remainder of the proof, fix any r > 0 with ν(eA,D0F ) <

r < k + α, fix x0 ∈ Rn
\ {0}, and define xj := F j(x0) for j ∈ N. Let

0 ≤ k′ < r be the largest integer smaller than r . Taylor’s theorem
for Ck,α

loc functions [70, p. 162] says that

ψ(x) =

k′∑
i=0

Di
0ψ · x⊗i

+ R(x),

where limx→0
R(x)
∥x∥r = 0. Eqs. (49) and (50) imply that all of the

terms in the sum above vanish, so we obtain ψ = R. Using (48)
it follows that ejAψ = ψ ◦ F j

= R ◦ F j, and since xj = F j(x0) we
obtain

ejAψ(x0) = R(xj), lim
x→0

R(x)
∥x∥r = 0. (51)

enote by M := ρ(D0F ) < 1 the spectral radius of D0F . Since
(eA,D0F ) < r , (4) implies that all eigenvalues µ of eA satisfy
µ| > Mr . Since this inequality is strict, by continuity there is
> 0 such that 0 < (M + ϵ) < 1 and

µ ∈ spec(eA): |µ| > (M + ϵ)r . (52)

y replacing ∥ · ∥ with an adapted norm, we may assume that
D0F∥ < (M+ϵ/2).13 Since ∥F (x)−D0F ·x∥/∥x∥ → 0 as ∥x∥ → 0,
here exists b > 0 such that ∥F (x)∥ < (M + ϵ)∥x∥ if ∥x∥ < b
cf. [54, p. 281]). Since the origin is globally asymptotically stable
nd since {∥x∥ < b} is positively invariant by the preceding
entence (recall that (M + ϵ) < 1), there exists j0 ∈ N≥1 such
hat ∥xj∥ < b for all j ≥ j0. Hence for all j ≥ j0:

xj∥ < (M + ϵ)j−j0∥xj0∥ = C · (M + ϵ)j∥x0∥, (53)

here C := (M + ϵ)−j0∥xj0∥∥x0∥
−1.

Dividing both sides of (51) by ∥xj∥r , multiplying by 1 =
(M+ϵ)jr

(M+ϵ)jr
nd taking the limit as j → ∞ yields

= lim
j→∞

ejA
ψ(x0)
∥xj∥r = lim

j→∞

(
(M + ϵ)j

∥xj∥

)r (
eA

(M + ϵ)r

)j

ψ(x0). (54)

13 Such an adapted norm always exists. It can be constructed as the Euclidean
norm with respect to a choice of basis placing D0F in ‘‘ϵ-Jordan form’’ [54,
pp. 279–280], wherein the off-diagonal unity entries of the usual Jordan normal
form are replaced by ϵ. An alternative construction of an adapted norm proceeds
by suitably averaging a given norm along the dynamics linearized at the
fixed point [47, Sec. A.1]; an analogous technique also works in more general
situations.
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ince (52) implies that all eigenvalues of eA
(M+ϵ)r have modulus

strictly larger than 1, the moduli of all nonzero entries in the (up-
per triangular, complex) Jordan normal form of ( eA

(M+ϵ)r )
j approach

∞ as j → ∞.14 If ψ(x0) ̸= 0, it follows that the absolute value
of at least one component of ( eA

(M+ϵ)r )
jψ(x0) with respect to the

Jordan basis approaches ∞ as j → ∞. Moreover, (53) implies
that

(
(M+ϵ)j

∥xj∥

)r
> C−r

∥x0∥−r > 0 for all j, so the product of this

quantity with the diverging quantity ( eA
(M+ϵ)r )

jψ(x0) also diverges
as j → ∞. It follows that (54) holds if and only if ψ(x0) = 0.
Since x0 ∈ Rn

\ {0} was arbitrary, and since we already obtained
ψ(0) = 0 in (50), it follows that ψ ≡ 0 on Rn. This completes the
proof. □

Using Lemmas 2 and 3, we now prove the uniqueness portion
of Theorem 1.

Proof of the Uniqueness Portion of Theorem 1. Since x0 is
globally asymptotically stable, the Brown–Stallings theorem [59,
Lem 2.1] implies that there is a diffeomorphism Q ≈ Rn sending
x0 to 0, where n = dim(Q ), so we may assume that Q = Rn

and x0 = 0.15 Define the diffeomorphism F := Φ1 to be the
time-1 map. Let ψ1 and ψ2 be two functions satisfying D0ψi = B
and ψi ◦ F = eAψi for i = 1, 2. Then ψ := ψ1 − ψ2 satisfies
D0ψ = 0 and ψ ◦ F = eAψ . Lemma 2 implies that Di

0ψ = 0 for all
1 ≤ i < k+1, and Lemma 3 then implies that ψ1−ψ2 = ψ ≡ 0. If
eA and B are real, then we can define ψ2 := ψ̄1 to be the complex
conjugate of ψ1, and so the preceding implies that ψ1 = ψ̄1;
hence ψ1 is real if eA and B are real. This completes the proof
of the uniqueness statement of Theorem 1. □

4.1.2. Proof of existence
In this section, we prove the existence portion of Theorem 1.

As with the proof of the uniqueness portion, the proof consists
of an algebraic part and an analytic part. The techniques we use
in the existence proof are similar to those used in [4,47]. The
algebraic portion of our proof is carried out in Lemma 4, and the
analytic portion is carried out in Lemma 5.

Lemma 4 (Existence and Uniqueness of Approximate Polynomial
Linearizing Factors for Diffeomorphisms). Fix k ∈ N≥1 and let F ∈

Ck(Rn,Rn) have the origin as a fixed point, where n ≥ 1. Let
m ∈ N≥1 and X ∈ Cm×m be such that (X,D0F ) is k-nonresonant,
and assume B ∈ Cm×n satisfies

BD0F = XB.

Then there exists a unique degree-k symmetric polynomial P:Rn
→

Cm vanishing at 0 such that D0P = B and such that

P ◦ F = XP + R, (55)

where R satisfies Di
0R = 0 for all 0 ≤ i ≤ k. Furthermore, if

X ∈ Rm×m and B ∈ Rm×n are real, then this unique polynomial
P:Rn

→ Rm
⊂ Cm is real.

Remark 18. We state and prove Lemma 4 for the case of finite k
only and rely on a bootstrapping method to prove the existence
portion of Theorem 1 for the case k = +∞ at the end of this
section. We believe it is possible to prove a C∞ version of the
existence portion of Lemma 4 (loosely speaking) using the fact

14 The desire for this conclusion was part of what motivated our definition of
he spectral spread ν( · , · ).
15 For example, Wilson states in [59, Thm 2.2] this result for the special
ase of a flow generated by a C1 vector field, but his argument based on the
rown–Stallings theorem [59, Lem 2.1] works equally well for any C1 flow or
iffeomorphism having a globally asymptotically stable fixed point.
15
that for every formal power series there exists a C∞ function with
atching derivatives [67, p. 34], but we did not attempt to do

his.

roof. By Lemma 1, the linear operator

i:L((Rn)⊗i,Cm) → L((Rn)⊗i,Cm), Ti(Pi) := Pi(D0F )⊗i
− XPi

(56)

s invertible for all 1 < i ≤ k. Denoting by Symi((Rn)⊗i,Cm) ⊂

((Rn)⊗i,Cm) the linear subspace corresponding to symmetric
ultilinear maps (Rn)i → Cm via the universal property of the

ensor product, we see from (56) that T (Symi((Rn)⊗i,Cm)) ⊂

ymi((Rn)⊗i,Cm). Invertibility of Ti and dimension counting imply
he opposite inclusion, so Ti restricts to a well-defined linear
utomorphism of Symi((Rn)⊗i,Cm).
By Taylor’s theorem we may uniquely write F as a degree-k

ymmetric polynomial plus remainder, F (x) =
∑k

i=1 Fi · x
⊗i

+ R1,
here F1 = D0F and Di

0R1 = 0 for all 0 ≤ i ≤ k. Defining
⊗[j] := Fj1 ⊗ · · · ⊗ Fjℓ for any multi-index j ∈ Nℓ≥1 and using
he notation |j| := j1 + · · · + jℓ, (55) is equivalent to
k∑
ℓ=1

Pℓ ·

∑
j∈Nℓ

≥1
|j|≤k

F⊗[j] · x⊗|j|
= X

k∑
ℓ=1

Pℓ · x⊗ℓ, (57)

here j = |(j1, . . . , jℓ)| =
∑ℓ

i=1 ji, P(x) =
∑k

ℓ=1 Pℓ · x⊗ℓ, and P1 =

. It follows from an inductive argument (equating coefficients of
⊗i) that (55) is equivalent to

i ∈ {1, . . . , k}:

⎛⎜⎜⎜⎝
i∑

ℓ=1

Pℓ
∑
j∈Nℓ

≥1
|j|=i

F⊗[j]

⎞⎟⎟⎟⎠ · x⊗i
= XPi · x⊗i. (58)

f we require that all tensors Pℓ are symmetric then, for each
ixed i, the two tensors acting on x⊗i in (58) are symmetric. Since
ymmetric tensors are completely determined by their action on
ll tensors of the form x⊗i [69, Thm 1], it follows that (55) is
quivalent to

∀i ∈ {1, . . . , k}:
i∑

ℓ=1

Pℓ
∑
j∈Nℓ

≥1
|j|=i

F⊗[j] = XPi (59)

r, after rearranging terms,

∀i ∈ {1, . . . , k}:
i−1∑
ℓ=1

Pℓ
∑
j∈Nℓ

≥1
|j|=i

F⊗[j] = XPi − Pi(D0F )⊗i  
−Ti(Pi)

(60)

since D0F = F1. By our assumptions, XB − BD0F = 0 and P1 =

D0P = B. Moreover, as discussed above, Ti|Symi((Rn)⊗i,Cm) is a well-
defined linear automorphism of the subspace Symi((Rn)⊗i,Cm).
Thus, (60) can be inductively solved for the tensors P1, . . . , Pk, and
the preceding sentence implies that these solutions are unique
and symmetric. Thus, so is P .

Finally, assume that X ∈ Rm×m and B ∈ Rm×n are real, and
assume by induction that B = P1, P2, . . . , Pi−1 are real. Taking the
complex conjugate of (60), we see that Pi solves (60) if and only if
its complex conjugate P̄i solves (60). Invertibility of Ti thus implies
that Pi = P̄i, so Pi is real. By induction, P1, . . . , Pk are real. Thus,
so is P . This completes the proof. □

Lemma 5 (Making Approximate Linearizing Factors Exact). Fix k ∈

N≥1 ∪ {+∞}, 0 ≤ α ≤ 1, and let F :Rn
→ Rn be a Ck,α

loc diffeomor-
phism such that the origin is a globally attracting hyperbolic fixed
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oint for the dynamical system defined by iterating F , where n ≥ 1.
Let m ∈ N≥1 and eA ∈ GL(m,C) satisfy ν(eA,D0F ) < k + α, and
assume that there exists P ∈ Ck,α

loc (R
n,Cm) such that

P ◦ F = eAP + R,

where R ∈ Ck,α
loc (R

n,Cm) satisfies Di
0R = 0 for all integers 0 ≤ i <

k + α (note the case α = 0 which does not require vanishing of the
kth derivative).

Then there exists a unique ϕ ∈ Ck,α
loc (R

n,Cm) such that Di
0ϕ = 0

for all integers 0 ≤ i < k + α and such that ψ := P + ϕ satisfies

ψ ◦ F = eAψ.

In fact,

ψ = lim
j→∞

e−jAP ◦ F j

in the topology of Ck,α-uniform convergence on compact subsets of
Rn if k < +∞, and in the topology of Ck′-uniform convergence on
compact subsets of Q for any k′

∈ N≥1 if k = +∞. Furthermore, if
eA ∈ GL(m,R) is real and P ∈ Ck,α

loc (R
n,Rm) is real, then ϕ,ψ:Rn

→

Rm
⊂ Cm are real.

Proof. We first assume that k < +∞ and delay consideration of
the case k = +∞ until the end of the proof.

Adapted norms. Later in the proof we will require that the fol-
lowing bound on operator norms holds (needed following (72)):

∥e−A
∥∥D0F∥

k+α < 1. (61)

Due to our assumption that ν(eA,D0F ) < k + α, this bound
can always be made to hold by using an appropriate choice
of ‘‘adapted’’ norms (which induce the operator norms) on the
underlying vector spaces Rn and Cm, and so we may (and do)
assume that (61) holds in the remainder of the proof.

But first we argue that such norms can indeed be chosen. Let
λ ∈ spec(D0F ) and µ ∈ spec(eA) be the eigenvalues of D0F and eA
with largest and smallest modulus, respectively. For any κ > 0,
there exist adapted norms (both denoted by ∥ · ∥) on Rn and Cm

aving the property that the induced operator norms ∥e−A
∥ and

D0F∥ satisfy [54, pp. 279–280], [47, Sec. A.1]:

∥D0F∥ − |λ ∥≤ κ,
⏐⏐∥e−A

∥ − |µ|
−1

⏐⏐ ≤ κ. (62)

ow since ν(eA,D0F ) < k + α and since |λ| < 1, it follows
rom (4) that |µ|

−1
|λ|k+α < 1. The inequalities (62) imply that

e−A
∥∥D0F∥

k+α can be made arbitrarily close to |µ|
−1

|λ|k+α by
aking κ small, so choosing κ sufficiently small yields (61) as
laimed. For later use we also note (62) implies that D0F is a strict
ontraction if κ is small enough since |λ| < 1. This in turn implies
hat

(B) ⊂ B (63)

f B ⊂ Rn is a sufficiently small (adapted norm) ball centered at
he origin [54, p. 281]. We henceforth assume this is the case.

Definition of function spaces. Let U ⊂ Rn be a precompact
pen set and denote by Ū = cl(U) its compact closure. Given
ny Banach space X and k ∈ N≥0, let Ck(Ū, X) be the space of
ontinuous functions G: Ū → X having partial derivatives of order
ess than or equal to k which are uniformly continuous on U , in
hich case they extend to continuous functions on Ū . We equip
k(Ū, X) with the standard norm

G∥k :=

k∑
sup ∥Di

xG∥
i=0 x∈U

16
making Ck(Ū, X) into a Banach space [70]. For a Banach space Y
and 0 < α ≤ 1, we define the α-Hölder constant [H]α of a map
: Ū → Y via

H]α := sup
x,y∈U
x̸=y

∥H(x) − H(y)∥
∥x − y∥α

.

For 0 < α ≤ 1 we let Ck,α(Ū, X) be the subset of functions
G ∈ Ck(Ū, X) for which [DkG]α < +∞, and we equip Ck,α(Ū, X)
with the standard norm

∥G∥k,α := ∥G∥k + [DkG]α (64)

making Ck,α(Ū, X) into a Banach space [70].16 For α = 0, we
identify Ck,0(Ū, X) with Ck(Ū, X) and make the special definition

∥ · ∥k,0 := ∥ · ∥k.

In what follows, let B ⊂ Rn be a closed ball centered at the
origin and let F ⊂ Ck,α(B,Cm) denote the subspace of functions
ϕ such that Di

0ϕ = 0 for all integers 0 ≤ i < k + α; F is a closed
linear subspace of Ck,α(B,Cm), hence also a Banach space.

Preliminary estimates. For any ϕ ∈ F , x ∈ B, and all integers
1 ≤ i < k + α, we have that ∥Di−1

x ϕ∥ ≤ ∥x∥ ·
∫ 1
0 ∥Di

txϕ∥ dt
by the fundamental theorem of calculus, the chain rule, and the
definition of F . The derivatives Diϕ vanish at x = 0 for all integers
0 ≤ i < k + α by the definition of F , so the preceding sentence
and an induction argument imply that, for any ϵ > 0, if the radius
of B is sufficiently small then for any ϕ ∈ F:

∥ϕ∥k−1 ≤ ϵ∥Dkϕ∥0

∥ϕ∥k ≤ (1 + ϵ)∥Dkϕ∥0.
(65)

If α > 0, the additional fact that ∥Dk
xϕ∥ ≤ ∥x∥[Dkϕ]α further

implies that

∥ϕ∥k ≤ ϵ[Dkϕ]α

∥ϕ∥k,α ≤ (1 + ϵ)[Dkϕ]α

(66)

if the radius of B is sufficiently small.
Defining a linear contraction mapping on F . Recall that F :Rn

→

Rn is the diffeomorphism from the statement of the lemma.
By (63), all sufficiently small closed (adapted norm) balls B ⊂

Rn centered at the origin satisfy F (B) ⊂ B. Additionally, since
F ∈ Ck,α

loc (R
n,Rn) and B is compact, F |B∈ Ck,α(B,Rn). It follows

that there is a well-defined linear operator T : Ck,α(B,Cm) →

Ck,α(B,Cm) given by17

T (ϕ) := e−Aϕ ◦ F |B. (67)

Note that T (F) ⊂ F , so that F is an invariant subspace for T . We
claim that there is a choice of B so that T |F :F → F is a (strict)
contraction with constant β < 1:

∀ϕ ∈ F: ∥T (ϕ)∥k,α ≤ β∥ϕ∥k,α. (68)

To show this we give an argument essentially due to Sternberg,
but which generalizes the proof of [4, Thm 2] to the case of
linearizing semiconjugacies and to the Ck,α setting (allowing α >

16 Different Ck and Ck,α norms are actually used in [70, Def. 2.1, Def. 2.5],
namely, max0≤i≤k ∥DiG∥0 and max(max0≤i≤k ∥DiG∥0, [DkG]α), but these two
orms are equivalent (in the sense of norms) to the corresponding norms we
ave chosen.
17 That DkT (ϕ) is α-Hölder follows from the chain rule, the fact that the first
−1 derivatives of F and of ϕ are C1 and hence Lipschitz (hence also α-Hölder),

the fact that the composition of an α-Hölder function with a Lipschitz function
is again α-Hölder, and the fact that the product of bounded α-Hölder functions
is again α-Hölder (see, e.g., [58, Lem 1.19]).



M.D. Kvalheim and S. Revzen Physica D 425 (2021) 132959

0
j

U

∥

b
t
[

w
t
f

s
u
h
W

1
q
(
d
t
t
β
e
w
f
f
t

∥

a
f

s

a

). Using the notation D⊗[j]
x F := Dj1

x F ⊗· · ·⊗Dji
x F for a multi-index

∈ Ni
≥1, we compute

Dk
x(T (ϕ)) = e−ADk

F (x)ϕ · (DxF )⊗k
+ e−A

k−1∑
i=1

∑
j∈Ni

≥1
|j|=k

Ci,jD
i
F (x)ϕ · D⊗[j]

x F ,

(69)

where the integer coefficients Ci,j ∈ N≥1 are combinatorially
determined by Faà di Bruno’s formula for the ‘‘higher-order chain
rule’’ and are therefore independent of B.18 We choose B suf-
ficiently small that its diameter is less than 1 and note that,
by continuity and compactness of {∥x∥ ≤ 1} and the fact that
F ∈ Ck,α

loc , there exists a constant N0 > 0 such that19

k−1∑
i=1

∑
j∈Nℓ

≥1
|j|=k

Ci,j ·

[(
sup
∥x∥≤1

∥D⊗[j]
x F∥

)(
1 + sup

∥x∥≤1
∥DxF∥

α

)

+ sup
∥x∥,∥y∥≤1

x̸=y

∥D⊗[j]
x F − D⊗[j]

y F∥

∥x − y∥α

⎤⎦ < N0. (70)

sing (65) and (70) to bound the sum in (69), it follows that

DkT (ϕ)∥0 ≤ ∥e−A
∥(∥DF∥

k
0 + ϵN0)∥Dkϕ∥0. (71)

For the case that α > 0, we will now use (66) to obtain a
ound on [Dk

xT (ϕ)]α analogous to (71). In order to do this, we use
he estimate [x ↦→ Dk

F (x)ϕ]α ≤ [Dkϕ]α∥DF∥
α
0 and the product rule

fg]α ≤ ∥f ∥0[g]α + [f ]α∥g∥0 for Hölder constants (see, e.g., [58,
Lem 1.19]) to bound the first term of (69) by

∥e−A
∥
(
[Dkϕ]α∥DF∥

k+α
0 + ∥Dkϕ∥0[(DF )⊗k

]α

)
× ≤ ∥e−A

∥
(
∥DF∥

k+α
0 + ϵ[(DF )⊗k

]α

)
[Dkϕ]α,

here we have used (66) to bound the second term in paren-
heses on the left side. Next, we use (66), (70), the product rule
or Hölder constants again, and for 1 ≤ i ≤ k − 1 the estimates
[x ↦→ Di

F (x)ϕ]α ≤ [Diϕ]α∥DF∥
α
0 ≤ ϵ[Dkϕ]α∥DF∥

α
0 to bound the

econd term of (69) by ϵN0∥e−A
∥[Dkϕ]α . This last estimate we

sed follows from (66) and the fact that we are requiring B to
ave diameter less than 1, so that [Diϕ]α ≤ ∥Di+1ϕ∥0 ≤ ϵ[Dkϕ]α .
e finally obtain[
Dk
xT (ϕ)

]
α

≤ ∥e−A
∥
(
∥DF∥

k+α
0 + ϵ[(DF )⊗k

]α + ϵN0
)
[Dkϕ]α. (72)

The estimate (61) and continuity imply that ∥e−A
∥∥DF∥

k+α
0 <

if B is sufficiently small. Hence if ϵ is sufficiently small, the
uantities respectively multiplying ∥Dkϕ∥0 and [Dkϕ]α in (71) and
72) will be bounded above by some positive constant β ′ < 1. The
iscussion preceding (65) and (66) implies that we can indeed
ake ϵ this small after possibly further shrinking B, so it follows
hat ∥DkT (ϕ)∥0 < β ′

∥Dkϕ∥0 and, if α > 0, also [DkT (ϕ)]α <
′
[Dkϕ]α . We therefore obtain a contraction estimate on the high-
st derivative and its Hölder constant (if α > 0) only. However,
e can combine this observation with the second inequalities

rom each of the two displays (65) and (66), together with the
act that T (F) ⊂ F , to obtain in both cases (α = 0 and α > 0)
he following estimate involving all of the derivatives:

T (ϕ)∥k,α ≤ (1 + ϵ)β ′
∥ϕ∥k,α. (73)

18 The ‘‘higher-order chain rule’’, also known as Faà di Bruno’s formula, gives
general expression for higher-order derivatives of the composition of two

unctions (see [71] for an exposition).
19 Since we have not yet chosen B (other than stipulating that its diameter be
maller than 1), to avoid circular reasoning we are using {∥x∥ ≤ 1} in place of B
in (70) to make clear that the estimate holds for all closed balls B ⊂ {∥x∥ ≤ 1}
centered at 0.
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(This technique for the case α = 0 was also used in the proof of [4,
Thm 2].) Define β := (1+ϵ)β ′. Since β ′ < 1, if necessary we may
shrink B further to ensure that ϵ may be taken sufficiently small
that β < 1. It then follows that T |F is a (strict) contraction; this
completes the proof of (68).

Existence and uniqueness of a linearizing factor defined on B.
We will now find a locally-defined (i.e., defined on B rather than
on all of Rn) linearizing factor ψ̃ ∈ Ck,α(B,Cm) of the form
ψ̃ = P|B+ϕ̃, where ϕ̃ ∈ F and P:Rn

→ Cm is as in the
statement of the lemma. By definition, ψ̃ is linearizing if and only
if ψ̃ = e−Aψ̃ ◦ F |B= T (ψ̃), so we need to solve the equation
P|B+ϕ̃ = T (P|B+ϕ̃) for ϕ̃ ∈ F . (We are writing P|B rather than
P because ϕ̃ is a function with domain B rather than Rn, and also
because T is a linear operator defined on functions with domain
B.) Since T is linear, after rearranging we see that this amounts
to solving(
idCk,α (B,Cm) − T

)
ϕ̃ = T (P|B) − P|B. (74)

One of the assumptions of the lemma directly implies that(
P ◦ F − eAP

)
|B∈ F , and this implies that the right hand side of

(74) belongs to F since e−A
· F ⊂ F . Since T (F) ⊂ F , it follows

that we may rewrite (74) as

(idF − T |F ) ϕ̃ = T (P|B) − P|B. (75)

We showed earlier that T |F is a strict contraction, i.e., its operator
norm satisfies ∥T |F∥k,α < 1. It follows that (idF − T |F ):F →

F has a bounded inverse given by the corresponding Neumann
series, so that (75) has a unique solution ϕ̃ given by

ϕ̃ = (idF − T |F )
−1

· (T (P|B) − P|B) =

∞∑
n=0

(T |F )n · (T (P|B) − P|B) ,

(76)

and ψ̃ := P|B+ϕ̃ satisfies ψ̃ = e−Aψ̃ ◦ F |B= T (ψ̃) as discussed
above.

Extension to a unique global linearizing factor. Since x0 is glob-
ally asymptotically stable and since B is positively invariant, for
every x ∈ B there exists j(x) ∈ N≥0 such that, for all j > j(x),
F j(x) ∈ int(B). If j is large enough that F j(x) ∈ int(B) and ℓ > j,
then

e−ℓAψ̃(F ℓ(x)) = e−jA (
e(j−ℓ)Aψ̃ ◦ F (ℓ−j)

|B
)
(F j(x))

= e−jA (
T (ℓ−j)(ψ̃)

)
(F j(x)) = e−jAψ̃(F j(x)),

so there is a well-defined map ψ:Rn
→ Cm given by

ψ(x) := e−jAψ̃(F j(x)), (77)

where j ∈ N≥0 is any nonnegative integer sufficiently large that
F j(x) ∈ int(B). Since ψ̃◦F |B= eAψ̃ , it follows from (77) that ψ◦F =

eAψ . If x ∈ Rn and F j(x) ∈ int(B), then x has a neighborhood
U with F j(U) ⊂ int(B) by continuity, so ψ |U is given by (77)
with j constant on U . By the chain rule and standard properties
of locally α-Hölder functions (see Footnote 5), this shows that
ψ ∈ Ck,α

loc (R
n,Cm). From (77) we see that ψ and hence also

ϕ := ψ − P are uniquely determined by ψ |B= P|B+ϕ|B= P|B+ϕ̃,
which is in turn uniquely determined by ϕ̃, and since ϕ̃ is unique
it follows that ϕ and ψ are also unique. If eA ∈ GL(m,R) and
P ∈ Ck,α

loc (R
n,Rm) are real, then the complex conjugate ψ̄ = P + ϕ̄

lso satisfies ψ̄ ◦F = eAψ̄ with ϕ̄ ∈ F , so uniqueness implies that
ψ̄ = ψ and hence ψ, ϕ:Rn

→ Rm
⊂ Cm are real.

Convergence to the global linearizing factor. We now complete
the proof of the lemma by proving the sole remaining claim that
e−jAP ◦ F j

→ ψ in the topology of Ck,α-uniform convergence
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n compact subsets of Rn. To do this, we first inspect the finite
truncations of the infinite series in (76). We see that, since

j∑
n=0

(T |F )n · (T (P|B) − P|B) =

j∑
n=0

T n+1(P|B)− T n(P|B) = T j+1(P|B)− P|B

or each j ∈ N≥1, taking the limit j → ∞ shows that the series
n (76) is equal to −P|B+ limj→∞ T j(P|B), with convergence in the
anach space Ck,α(B,Cm). In other words,

˜ = lim
j→∞

e−jAP ◦ F j
|B (78)

ith convergence in Ck,α(B,Cm).
Next, let K ⊂ Rn be the closure of any precompact open

et (so that the Banach space Ck,α(K ,Cm) is defined as in the
ext containing (64)). Since 0 is globally asymptotically stable and
ince B contains a neighborhood of 0, there exists j0 > 0 such that
j(K ) ⊂ B for all j ≥ j0. We justify the following computation
elow:

lim
→∞

e−jAP ◦ F j
|K = lim

j→∞

e−j0A
(
e−jAP ◦ F j

|B
)
◦ F j0 |K

= e−j0A
(
lim
j→∞

e−jAP ◦ F j
|B

)
◦ F j0 |K

= e−j0Aψ |B◦F j0 |K

= ψ |K ,

with convergence in Ck,α(K ,Cm). Since we are considering con-
vergence in the space Ck,α(K ,Cm) – rather than mere pointwise
convergence – it is not obvious that we can move the limit inside
the parentheses to obtain the second equality. The reason this
is valid is that composition maps Ck,α(K ,Cm) → Ck,α(K ,Cm) of
the form g ↦→ f ◦ g ◦ h, where f ∈ C∞ and h ∈ Ck,α(K ,Cm),
are continuous with respect to the Ck,α normed topologies [70,
Prop. 6.1, Prop. 6.2 (iii)].20 This completes the proof for the case
k < +∞.

Consideration of the case k = +∞. For the case k = +∞,
repeating the proof above for any 1 ≤ k′ < +∞ such that
ν(eA,D0F ) < k′ yields unique Ck′ functions ϕ:Rn

→ Cm and
ψ := P + ϕ such that Di

0ϕ = 0 for all 0 ≤ i ≤ k′
− 1. By the

uniqueness statement already proved for the case k < +∞, these
functions ϕ,ψ are independent of k′ > ν(eA,D0F ), and since k′

is arbitrary it follows that ϕ,ψ ∈ C∞(Rn,Cm). Finally, for the
closure K of any precompact open set, we have already shown
that e−jA

◦P ◦F j
|K→ ψ |K in the Banach space Ck′ (K ,Cm) for every

k′
∈ N≥1, as desired. This completes the proof. □

Using Lemmas 4 and 5, we now complete the proof of Theo-
rem 1 by proving the existence portion of its statement.

Proof of the Existence Portion of Theorem 1. As in the proof of
the uniqueness portion of Theorem 1 at the end of Section 4.1.1,
we may assume that Q = Rn and x0 = 0. We first consider the
case that T = Z, and define the time-1 map F := Φ1.

First suppose that k < +∞. Lemma 4 implies that there exists
a polynomial P such that D0P = B and P ◦ F = eAP + R, where
R ∈ Ck,α

loc (R
n,Cm) satisfies Di

0R = 0 for all integers 0 ≤ i < k+α.21
Furthermore, P and R are real if eA and B are real. Lemma 5
then implies that there exists ϕ ∈ Ck,α

loc (R
n,Cm) such that ψ =

P + ϕ ∈ Ck,α
loc (R

n,Cm) satisfies D0ψ = D0P = B, ψ ◦ F = eAψ ,

20 We remark that, for maps between finite-dimensional spaces, there
re somewhat weaker assumptions ensuring continuity of such composition
aps [70, Rem. 6.5], but our present situation does not require this.

21 Actually, Lemma 4 implies that we can find P such that Di
0R = 0 for all

ntegers 0 ≤ i ≤ k, with the only difference arising when α = 0. However, we
do not need this in the following.
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e−jAP̃ ◦ Φ j
→ ψ Ck,α-uniformly on compact subsets of Rn for

any ‘‘approximate linearizing factor’’ P̃ satisfying the hypotheses
f Theorem 1 (such as P), and that ψ is real if eA and B are real.
his completes the proof for the case k < +∞.
Now suppose that k = +∞. Repeating the proof above for

inite k′ > ν(eA,D0) yields ψ ∈ Ck′ (Rn,Cm) satisfying D0ψ = B
nd ψ ◦F = eAψ . The uniqueness statement of Theorem 1 proved
n Section 4.1.1 implies that ψ is independent of k′ > ν(eA,D0F ),
o since k′ is arbitrary it follows that ψ ∈ C∞. Additionally, we
ave already argued above that e−jAP̃ ◦Φ j

→ ψ Ck′-uniformly on
ompact subsets of Rn for any k′

∈ N≥1 and any ‘‘approximate
linearizing factor’’ P̃ satisfying the hypotheses of Theorem 1. This
completes the proof for the case that T = Z.

It remains only to consider the case that T = R, i.e., the case
that Φ is a flow. By the proof of the case T = Z, there exists
ψ̃ ∈ Ck,α

loc (R
n,Cm) satisfying D0ψ̃ = B and ψ̃ ◦ Φ j

= ejAψ̃ for all
j ∈ Z. By adapting a technique of Sternberg [4, Lem 4], from ψ̃

we will construct a map ψ ∈ Ck,α
loc (R

n,Cm) satisfying D0ψ = B
and ψ ◦Φ t

= etAψ for all t ∈ R. In fact, we will show that

ψ :=

∫ 1

0
e−sAψ̃ ◦Φs ds (79)

has these properties. By Leibniz’s rule for differentiating under
the integral sign and standard properties of locally α-Hölder
functions (see Footnote 5), ψ ∈ Ck,α

loc (R
n,Cm), and using the

assumption (5) we have that

D0ψ =

∫ 1

0
e−sABD0Φ

s ds =

∫ 1

0
B ds = B.

To prove that ψ ◦Φ t
= etAψ for all t ∈ R, we compute

ψ ◦Φ t
=

∫ 1

0
e−sAψ̃ ◦Φs+t ds =

∫ 1+t

t
e(t−s)Aψ̃ ◦Φs ds

= etA
∫ 1

t
e−sAψ̃ ◦Φs ds + etA

∫ 1+t

1
e−sAψ̃ ◦Φs ds

= etA
∫ 1

t
e−sAψ̃ ◦Φs ds + etA

∫ 1+t

1
e−sA (

eAψ̃ ◦Φ−1)
◦Φs ds

= etA
∫ 1

t
e−sAψ̃ ◦Φs ds + etA

∫ t

0
e−sAψ̃ ◦Φs ds

= etAψ

as desired. We remark that, since ψ satisfies ψ ◦ Φ1
= eAψ and

D0ψ = B, the uniqueness result for the case T = Z actually
implies the (non-obvious) fact that ψ = ψ̃ .

Suppose now that k < +∞. Letting K ⊂ Rn be the closure of
any precompact open set (so that the Banach space Ck,α(K ,Cm)
is defined as in the text containing (64)) which is also positively
invariant, the map G: [0, 1] × Ck,α(K ,Cm) → Ck,α(K ,Cm) given
by G(r, f ) := e−rAf ◦ Φr

|K is continuous [70, Thm 6.10] and
satisfies G(r, ψ |K ) = ψ |K for all r ∈ [0, 1]. Thus, compactness
of [0, 1] implies that, for every neighborhood V ⊂ Ck,α(K ,Cm)
of ψ |K , there is a smaller neighborhood U ⊂ V of ψ |K such
that G([0, 1] × U) ⊂ V , i.e., e−rAϕ ◦ Φr

|K⊂ V for every ϕ ∈ U
and r ∈ [0, 1]. Fix any such neighborhoods V ,U and fix any
‘‘approximate linearizing factor’’ P ∈ Ck,α

loc (R
n,Cm) satisfying the

hypotheses of Theorem 1. By the proof for the case T = Z there
exists N ∈ N≥0 such that, for all j > N , e−jAP ◦ Φ j

|K∈ U . By the
definition of U it follows that e−tAP ◦ Φ t

|K⊂ V for all t > N + 1.
Since the neighborhood V ∋ ψ |K was arbitrary, this implies that

ψ |K= lim
t→∞

e−tAP ◦Φ t
|K (80)

with convergence in the Banach space Ck,α(K ,Cm). If instead k =

+∞, the same argument shows that (80) converges in the Banach
space Ck′ (K ,Cm) for every k′

∈ N . Since every compact subset
≥1



M.D. Kvalheim and S. Revzen Physica D 425 (2021) 132959

o
p
f
o
t
k

4

c
b

T
F
α
a
a
t
m
l

B

A
ν

∀

a
ψ

P
t
f
i
e
s

o
ψ

i
ψ

i
c

o
(

∀

T
s

∀

ψ

ϕ

d
P

D

c
t

f Rn is contained in the closure K of some positively invariant
recompact open set (e.g., a sublevel set of a smooth Lyapunov
unction [72,73]), this proves that e−tAP ◦Φ t

→ ψ in the topology
f Ck,α-uniform convergence on compact sets if k < +∞, and in
he topology of Ck′-uniform convergence on compact sets for any
′
∈ N≥1 if k = +∞. This completes the proof of Theorem 1. □

.2. Proof of Theorem 2

In this section we prove Theorem 2, which we repeat here for
onvenience. This proof invokes Theorem 1 and is much shorter
ecause of this.

heorem 2 (Existence and Uniqueness of Ck,α
loc Global Linearizing

actors for a Limit Cycle Attractor).Fix k ∈ N≥1 ∪ {+∞} and 0 ≤

≤ 1. Let Φ:Q × R → Q be a Ck,α
loc flow with Q the basin of an

ttracting hyperbolic τ -periodic orbit with image Γ ⊂ Q , where Q is
smooth manifold with dim(Q ) ≥ 2. Fix x0 ∈ Γ and let Es

x0 denote
he unique Dx0Φ

τ -invariant subspace complementary to Tx0Γ . Let
∈ N≥1 and eτA ∈ GL(m,C) have spectral radius ρ(eτA) < 1, and

et the linear map B: Es
x0 → Cm satisfy

Dx0Φ
τ
|Esx0

= eτAB. (18)

ssume that (eτA,Dx0Φ
τ
|Esx0

) is k-nonresonant, and assume that
(eτA,Dx0Φ

τ
|Esx0

) < k + α.
Then there exists a unique ψ ∈ Ck,α

loc (Q ,C
m) satisfying

t ∈ R:ψ ◦Φ t
= etAψ, Dx0ψ |Esx0

= B, (19)

nd if B: Es
x0 → Rm

⊂ Cm and A ∈ Rm×m
⊂ Cm×m are real, then

:Q → Rm
⊂ Cm is real.

roof. Let W s
x0 be the global strong stable manifold (isochron)

hrough x0 [46, Sec. 2.1]. Since W s
x0 is the stable manifold for the

ixed point x0 of the Ck,α
loc diffeomorphism Φτ , it follows that W s

x0
s a Ck,α

loc submanifold [64, pp. 2, 27; Thm 6.1] which is properly
mbedded (rather than merely immersed) in Q because Γ is
table [46, pp. 4208–4209].
After identifying Es

x0 with Rn, the uniqueness portion of The-
rem 1 applied to ψ |W s

x0
implies that ψ |W s

x0
is unique for any

satisfying the uniqueness hypotheses, and furthermore ψ |W s
x0

s real if A and B are real. Since ψ is uniquely determined by
|W s

x0
and (19) (which is true because Q =

⋃
t∈RΦ

t (W s
x0 )), this

mplies that ψ is unique and that ψ is real if A and B are real. This
ompletes the proof of the uniqueness statement of Theorem 2.
Under the existence hypotheses, the existence portion of The-

rem 1 similarly implies that there exists a unique ϕ ∈ Ck,α
loc

W s
x0 ,C

m) satisfying Dx0ϕ = B and

j ∈ Z:ϕ ◦Φ jτ
|W s

x0
= ejτAϕ. (81)

he unique extension of ϕ to a Ck,α
loc function ψ:Q → Cm

atisfying (19) is given by

t ∈ R:ψ |W s
Φ−t (x0)

:= e−tAϕ ◦Φ t
|W s

Φ−t (x0)
. (82)

is well-defined because Φτ (W s
x0 ) = W s

x0 and eτAϕ ◦ Φ−τ
|W s

x0
=

by (81). That ψ ∈ Ck,α
loc follows from considering locally-

efined Ck,α
loc ‘‘time-to-impact W s

x0 ’’ functions as in the proof of
roposition 3. This completes the proof. □
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