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Abstract: Our recent work established existence and uniqueness results for Ck,αloc globally de-
fined linearizing semiconjugacies for C1 flows having a globally attracting hyperbolic fixed point
or periodic orbit (Kvalheim and Revzen, 2019). Applications include (i) various improvements—
such as uniqueness statements—for the Sternberg linearization and Floquet normal form
theorems, and (ii) results concerning the existence, uniqueness, classification, and convergence
of various quantities appearing in the “applied Koopmanism” literature (such as principal
eigenfunctions, isostables, and Laplace averages).
In this work we give an exposition of some of these results, with an emphasis on the Koopman
applications, and then consider their broadness of applicability. In particular we show that, for
“almost all” C∞ flows having a globally attracting hyperbolic fixed point or periodic orbit,
the C∞ Koopman eigenfunctions can be completely classified in a simple way generalizing one
known for analytic systems. In particular, for such systems every C∞ eigenfunction is uniquely
determined by its eigenvalue modulo scalar multiplication.

Keywords: Koopman operator, eigenfunctions, generic properties, isostables, periodic orbits
AMS subject classification: 37C10, 37C15, 37C20

1. INTRODUCTION

In this paper, we discuss Koopman eigenfunctions of
C1 flows Φ: Q × R → Q having a globally attracting
hyperbolic fixed point or periodic orbit. HereQ is a smooth
manifold; a common example is that of t 7→ Φt(x0) being
the solution to the initial value problem

d

dt
x(t) = f(x(t)), x(0) = x0

determined by a complete C1 vector field f on Q.

In our previous work (Kvalheim and Revzen, 2019) we ob-
tained existence and uniqueness results regarding globally
defined Ck linearizing semiconjugacies ψ : Q→ Cm which,
by definition, make the diagram

Q Q

Cm Cm

Φt

ψ ψ

etA

(1)

commute for some A ∈ Cm×m and all t ∈ R. Several appli-
cations of these results—including uniqueness of Sternberg
? The majority of this work was performed while Kvalheim was a
postoctoral researcher at the University of Michigan. Both authors
were supported by ARO grants W911NF-14-1-0573 and W911NF-
17-1-0306 to Revzen.

linearizations and Floquet normal forms—were discussed
by Kvalheim and Revzen (2019), but in this work we focus
on the applications to Koopman eigenfunctions, the special
case of linearizing semiconjugacies in (1) with m = 1.

The eigenfunction results of Kvalheim and Revzen (2019)
are most relevant to the “applied Koopmanism” literature
largely initiated by Dellnitz and Junge (1999); Mezić and
Banaszuk (2004); Mezić (2005) nearly a century after
Koopman’s seminal work (Koopman, 1931). 1 More specif-
ically, these results yield precise conditions under which
quantities such as principal eigenfunctions, isostables for
point attractors (Mohr and Mezić, 2016; Mauroy et al.,
2013), and isostable coordinates for periodic orbit attrac-
tors (Wilson and Moehlis, 2016; Shirasaka et al., 2017;
Wilson and Ermentrout, 2018; Monga et al., 2019) exist
and are unique. Such quantities have been the targets of
numerical algorithms, and their existence and uniqueness
is relevant to the well-posedness of such algorithms.

The contribution of the present work is to show that the
existence and uniqueness results for C∞ eigenfunctions
in Kvalheim and Revzen (2019) hold, in some sense, for
“most” C∞ vector fields having a globally asymptotically

1 See the references in Kvalheim and Revzen (2019) for many
additional examples of this literature omitted here due to space
constraints.



stable equilibrium or periodic orbit. More precisely, we
show that the set of such vector fields for which the C∞

results hold is open in the C1 compact-open topology and
dense in the C∞ Whitney topology. Moreover, we show
that the set of linearizations of such vector fields has full
Lebesgue measure.

The remainder of the paper is organized as follows. In §2
we first give preliminary definitions and discuss the results
of Kvalheim and Revzen (2019) relevant for Koopman
eigenfunctions. In §3 we prove most of the genericity
results. Finally, Appendix A contains the proof of the
measure-theoretic result mentioned above.

Lastly, we mention that the results of Kvalheim and

Revzen (2019) are stated in terms of Ck,αloc functions, but
in this work we simplify matters by stating less general
results in terms of Ck functions only.

2. PREVIOUS RESULTS

In §2.3 and 2.4 we present results from Kvalheim and
Revzen (2019, Sec. 3). Before that, we define Koopman
eigenfunctions and principal eigenfunctions in §2.1. §2.2
contains preliminary definitions needed to state the results
in §2.3 and 2.4.

We use the following notation in the sequel. Given a
differentiable map F : M → N between smooth manifolds,
in the remainder of this paper we use the notation DxF for
the derivative of F at the point x ∈ M . (Recall that the
derivative DxF : TxM → TF (x)N is a linear map between
tangent spaces (Lee, 2013), which can be identified with
the Jacobian of F evaluated at x in local coordinates.) In
particular, given a flow Φ: Q × R → Q and fixed t ∈ R,
we write DxΦt : TxQ → TΦt(x)Q for the derivative of the
time-t map Φt : Q→ Q at the point x ∈ Q.

2.1 Koopman eigenfunctions

Given a C1 flow Φ: Q × R → R, where Q is a smooth
manifold, we say that ψ : Q→ C is a Koopman eigenfunc-
tion with eigenvalue µ ∈ C if ψ is not identically zero and
satisfies

∀t ∈ R : ψ ◦ Φt = eµtψ. (2)
The following are intrinsic definitions of principal eigen-
functions and principal algebras which extend the defini-
tions for linear systems given in Mohr and Mezić (2016,
Def. 2.2–2.3). The condition ψ|M ≡ 0 was motivated in
part by the definition of a certain space FAc of functions in
Mauroy and Mezić (2016, p. 3358). Suppose that Φ has a
distinguished, closed, invariant subsetM ⊂ Q. We say that
an eigenfunction ψ ∈ C1(Q) is a principal eigenfunction if

ψ|M ≡ 0 and ∀x ∈M : Dxψ 6= 0. (3)

We define the Ck principal algebra AkΦ to be the complex
subalgebra of Ck(Q,C) generated by all Ck principal
eigenfunctions.

Remark 1. In the case that Φ|M×R is minimal (has no
proper, closed, nonempty invariant subsets)—(3) can be
replaced by the weaker condition

∃x ∈M : ψ(x) = 0 and ∃y ∈M : Dyψ 6= 0. (4)

This will be the case in the sequel, in which we consider
only the cases that M is either a fixed point or periodic
orbit.

2.2 Nonresonance and spectral spread

The following two definitions are essentially asymmet-
ric versions of some appearing in Sternberg (1957); Sell
(1985). When discussing eigenvalues and eigenvectors of a
linear map or matrix in this work, we always mean eigen-
values and eigenvectors of its complexification, although
we do not always make this explicit.

Definition 2. ((X,Y ) k-nonresonance). Let X ∈ Cd×d
and Y ∈ Cn×n be matrices with eigenvalues µ1, . . . , µd
and λ1, . . . , λn, respectively, repeated with multiplicities.
For any k ∈ N≥1, we say that (X,Y ) is k-nonresonant if,
for any i ∈ {1, . . . , d} and any m = (m1, . . . ,mn) ∈ Nn≥0

satisfying 2 ≤ m1 + · · ·+mn ≤ k,

µi 6= λm1
1 · · ·λmnn . (5)

(Note this condition vacuously holds if k = 1.) We say
(X,Y ) is ∞-nonresonant if (X,Y ) is k-nonresonant for
every k ∈ N≥1.

For the definition below, recall that the spectral radius
ρ(X) of a matrix is defined to be the largest modulus
(absolute value) of the eigenvalues of (the complexification
of) X.

Definition 3. ((X,Y ) spectral spread). Let X ∈ GL(m,C)
and Y ∈ GL(n,C) be invertible matrices with the spectral
radius ρ(Y ) satisfying ρ(Y ) < 1. We define the spectral
spread ν(X,Y ) to be

ν(X,Y ) := max
µ∈spec(X)
λ∈spec(Y )

ln(|µ|)
ln(|λ|)

. (6)

2.3 Principal eigenfunctions for fixed points and periodic
orbits

Differentiating (2) and using the chain rule immediately
yields Propositions 4 and 5, which have appeared in the
literature (see e.g. the proof of (Mauroy and Mezić, 2016,
Prop. 2)). In these results, d denotes the differential of
a function and T∗x0

Q denotes the cotangent space to x0;
dψ(x0) corresponds to Dx0

ψ after making the canonical
identification C ∼= Tψ(x0)C.

Proposition 4. Let x0 be a fixed point of the C1 flow
Φ: Q×R→ Q. If ψ is a principal Koopman eigenfunction
for Φ satisfying with eigenvalue µ ∈ C, then for any t ∈ R,
it follows that dψ(x0) ∈ (T ∗x0

Q)C is an eigenvector of the
(complexified) adjoint (Dx0

Φt)∗ with eigenvalue eµt.

Proposition 5. Let Γ be the image of a τ -periodic orbit of
the C1 flow Φ: Q × R → Q. If ψ is a principal Koopman
eigenfunction for Φ with eigenvalue µ ∈ C, then for any
x0 ∈ Γ, it follows that dψ(x0) ∈ (T ∗x0

Q)C is an eigenvector
of the (complexified) adjoint (Dx0

Φτ )∗ with eigenvalue
eµτ ; in particular, eµτ is a Floquet multiplier for Γ.

The following result is Kvalheim and Revzen (2019,
Prop. 6) and uses the following notation. Given i ≥ 0,
we let DixF denote the i-th derivative of F , which can
be identified with an i-multilinear map DixF : (TxM)i →
TF (x)N from (TxM)i to TxN . In local coordinates, DiF is
represented by the (1+ i)-dimensional array of i-th partial
derivatives of F evaluated at x. The result statement also
mentions the Ck compact-open (weak) topology (Hirsch,
1994, Ch. 2) on functions, which is the topology of uniform



convergence of a function and its first k derivatives on
compact sets.

Proposition 6. Let Φ: Q × R → Q be a C1 flow having
a globally attracting hyperbolic fixed point x0 ∈ Q. Fix
k ∈ N≥1∪{+∞}, fix µ ∈ C, and let ψ1 ∈ Ck(Q,C) be any
Koopman eigenfunction with eigenvalue µ ∈ C.

Uniqueness of Koopman eigenvalues and principal
eigenfunctions. Assume that ν(eµ,Dx0

Φ1) ≤ k.

(1) Then there exists m = (m1, . . . ,mn) ∈ Nn≥0 such that

eµ = em·λ,

where eλ1 , . . . , eλn are the eigenvalues of Dx0
Φ1 re-

peated with multiplicities and λ := (λ1, . . . , λn).
(2) Additionally assume that ψ1 is a principal eigenfunc-

tion so that eµ ∈ spec(Dx0
Φ1), and assume that

(eµ,Dx0
Φ1) is k-nonresonant. Then ψ1 is uniquely

determined by dψ1(x0), and if µ and dψ1(x0) are
real, then ψ : Q → R ⊂ C is real. In particular,
if eµ is an algebraically simple eigenvalue of (the
complexification of) Dx0

Φ1 and if ψ2 is any other
principal eigenfunction with eigenvalue µ, then there
exists c ∈ C \ {0} such that

ψ1 = cψ2.

Existence of principal eigenfunctions. Assume that
Φ ∈ Ck, that eµ ∈ spec(Dx0

Φ1), that (eµ,Dx0
Φ1) is k-

nonresonant, and that ν(eµ,Dx0
Φ1) < k. Let w ∈ (T∗x0

Q)C
be any eigenvector of the (complexified) adjoint (Dx0

Φ1)∗

with eigenvalue eµ.

(1) Then there exists a unique principal eigenfunction
ψ ∈ Ck(Q,C) with eigenvalue µ and satisfying
dψ(x0) = w.

(2) In fact, if P is any “approximate eigenfunction”
satisfying Dx0P = w and

P ◦ Φ1 = eµP +R (7)

with Dix0
R = 0 for all 0 ≤ i < k, then

ψ = lim
t→∞

e−µtP ◦ Φt, (8)

in the Ck compact-open topology.

Remark 7. (the C∞ case). In the case that k = ∞, the
hypotheses ν(eA,Dx0Φ1) < k and ν(eA,Dx0Φ1) ≤ k
become ν(eA,Dx0Φ1) < ∞ and ν(eA,Dx0Φ1) ≤ ∞, which
are automatically satisfied since ν(eA,Dx0Φ1) is always
finite. Hence for the case k =∞, no assumption is needed
on the spectral spread in Proposition 6 (and Proposition
10 below); we need only assume that (eA,Dx0Φ1) is ∞-
nonresonant.

Remark 8. (Laplace averages). Given P : Q → C, in the
Koopman literature the Laplace average

ψ := lim
T→∞

1

T

∫ T

0

e−µtP ◦ Φt dt

is used to produce a Koopman eigenfunction with eigen-
value µ as long as the limit exists Mauroy et al. (2013);
Mohr and Mezić (2014). Since convergence of the limit
(8) clearly implies convergence of the Laplace average to
the same limiting function, Proposition 6 yields sufficient
conditions under which the Laplace average of P exists
and is equal to a Ck principal eigenfunction satisfying
Dx0P = w.

Remark 9. For a detailed discussion on how Propositions
6 and 10 below relate to the literature on isostables and
isostable coordinates (Mauroy et al., 2013; Wilson and
Moehlis, 2016; Shirasaka et al., 2017), including the con-
vergence of certain limits in this literature, see Kvalheim
and Revzen (2019, Remark 10). For a discussion relating
Proposition 6 to the work of Mohr and Mezić (2016) on
principal eigenfunctions, see Kvalheim and Revzen (2019,
Rem 11).

The following result is Kvalheim and Revzen (2019,
Prop. 7). For an illustration of the conditions involving
ν(eµτ ,Dx0

Φτ |Esx0 ) below, see Figure 1.

Proposition 10. Fix k ∈ N≥1∪{∞} and let Φ: Q×R→ Q
be a Ck flow having a globally attracting hyperbolic τ -
periodic orbit with image Γ ⊂ Q. Fix x0 ∈ Γ and let
Esx0

denote the unique Dx0Φτ -invariant subspace comple-

mentary to Tx0
Γ. Let ψ1 ∈ Ck(Q,C) be any Koopman

eigenfunction with eigenvalue µ ∈ C.

Uniqueness of Koopman eigenvalues. Assume that
ν(eµτ ,Dx0

Φτ |Esx0 ) ≤ k.

(1) Then there exists m = (m1, . . . ,mn) ∈ Nn≥0 such that

µ ∈ m · λ+
2πj

τ
Z,

where eλ1τ , . . . , eλnτ are the eigenvalues of Dx0
Φτ |Esx0

repeated with multiplicities and λ := (λ1, . . . , λn).
(2) Additionally assume that ψ1 is a principal eigen-

function so that eµτ ∈ spec(Dx0Φτ |Esx0 ), and assume

that (eµτ ,Dx0
Φτ |Esx0 ) is k-nonresonant. Then ψ1 is

uniquely determined by dψ1(x0), and if µ and dψ1(x0)
are real, then ψ : Q → R ⊂ C is real. In particular,
if eµ is an algebraically simple eigenvalue of (the
complexification of) Dx0Φ1 and if ψ2 is any other
principal eigenfunction with eigenvalue µ, then there
exists c ∈ C \ {0} such that

ψ1 = cψ2.

Existence of principal eigenfunctions. Assume that
eµτ ∈ spec(Dx0Φτ |Esx0 ), that (eµτ ,Dx0Φτ |Esx0 ) is k-

nonresonant, and that ν(eµτ ,Dx0
Φτ |Esx0 ) < k. Let w ∈

(Esx0
)∗C be any eigenvector of the (complexified) adjoint

(Dx0Φτ |Esx0 )∗ with eigenvalue eµτ . Then there exists a

unique principal eigenfunction ψ1 ∈ Ck(Q,C) for Φ with
eigenvalue µ and satisfying dψ1(x0)|Esx0 = w.

For an example demonstrating that Propositions 6 and 10
are reasonably sharp, we refer the reader to Kvalheim and
Revzen (2019, Example 1).

2.4 Classification of all C∞ Koopman eigenfunctions

To improve the readability of Theorems 11 and 12 below,
we introduce the following multi-index notation. We de-
fine an n-dimensional multi-index to be an n-tuple i =
(i1, . . . , in) ∈ Nn≥0 of nonnegative integers, and define its

sum to be |i| := i1 + . . . in. For a multi-index i ∈ Nn≥0

and z = (z1, . . . , zn) ∈ Cn, we define z[i] := zi11 · · · zinn .
Given a Cn-valued function ψ = (ψ1, . . . , ψn) : Q → Cn,
we define ψ[i] : Q→ C via ψ[i](x) := (ψ(x))[i] for all x ∈ Q.
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Fig. 1. An illustration of the condition ν(eµ,D0Φ1) < k
of Proposition 6. Unwinding Definition 3, it follows
that this condition is equivalent to every eigenvalue
of D0Φ1 (represented by an “×” above) belonging to

the open disk with radius e
Re(µ)
k .

We also define the complex conjugate of ψ = (ψ1, . . . , ψn)
element-wise: ψ̄ := (ψ̄1, . . . , ψ̄n).

The following result is Kvalheim and Revzen (2019,
Thm 3).

Theorem 11. (Classification for a point attractor). Let
Φ: Q×R→ Q be a C∞ flow having a globally attracting
hyperbolic fixed point x0 ∈ Q. Assume that Dx0

Φ1 is
semisimple and that (Dx0

Φ1,Dx0
Φ1) is ∞-nonresonant.

Letting n = dim(Q), it follows that there exists an n-tuple

ψ = (ψ1, . . . , ψn)

of C∞ principal eigenfunctions such that every C∞ Koop-
man eigenfunction ϕ is a (finite) sum of scalar multiples
of products of the ψi and their complex conjugates ψ̄i:

ϕ =
∑

|i|+|`|≤k

ci,`ψ
[i]ψ̄[`] (9)

for some k ∈ N≥1 and some coefficients ci,` ∈ C.

For a globally attracting hyperbolic τ -periodic orbit of
a C∞ flow with image Γ, let W s

x0
be the global strong

stable manifold (isochron) through a point x0 ∈ Γ. 2 As
discussed in Kvalheim and Revzen (2019), there is a unique
continuous eigenfunction with eigenvalue µ = 2π

τ satisfying
ψθ|W s

x0
≡ 1, and this eigenfunction is in fact C∞. We use

this notation in the theorem below, where x0 is as in the
theorem statement.

The following result is Kvalheim and Revzen (2019,
Thm 4).

Theorem 12. (Classification for a limit cycle attractor). Let
Φ: Q×R→ Q be a C∞ flow having a globally attracting
hyperbolic τ -periodic orbit with image Γ ⊂ Q. Fix x0 ∈ Γ
and denote by Esx0

the unique τ -invariant subspace com-

2 See, e.g., Fenichel (1974, 1977); Hirsch et al. (1977); de la Llave
and Wayne (1995); Kvalheim and Revzen (2019).

plementary to Tx0
Γ. Assume that Dx0

Φτ |Esx0 is semisimple

and that (Dx0
Φτ |Esx0 ,Dx0

Φτ |Esx0 ) is ∞-nonresonant.

Letting n + 1 = dim(Q), it follows that there exists an
n-tuple

ψ = (ψ1, . . . , ψn)

of C∞ principal eigenfunctions such that every C∞ Koop-
man eigenfunction ϕ is a (finite) sum of scalar multiples
of products of integer powers of ψθ with products of the
ψi and their complex conjugates ψ̄i:

ϕ =
∑

|`|+|m|≤k

c`,mψ
[`]ψ̄[m]ψ

j`,m
θ (10)

for some k ∈ N≥1, some coefficients c`,m ∈ C, and
j`,m ∈ Z.

3. GENERICITY OF THE C∞ RESULTS

Let Hn ⊂ GL(n,R) denote the set of Hurwitz matrices.
Let Nn ⊂ GL(n,R) denote the set of real invertible
matrices A with distinct eigenvalues such that (A,A) is
∞-nonresonant.

Proposition 13. The Lebesgue measure of Hn \Nn is zero,
and Nn∩Hn is dense in Hn. Furthermore, Nn∩Hn is open
in Hn.

Proof. In Appendix A we show that GL(n,R) \ Nn has
measure zero (Corollary 20), and Hn is an open subset
of GL(n,R), so it follows that Hn \ Nn has measure zero.
Density of Nn ∩Hn in Hn follows (Lee, 2013, Prop. 6.8).

It remains to prove openness. Fix any A ∈ Nn. Since
ν(A,A) is always finite, we have ν(A,A) < k+ 1 for some
k ∈ N. Now it follows from Definitions 2 and 3 that ∞-
nonresonance of (B,B) is implied by (i) k-nonresonance
of (B,B) and (ii) ν(B,B) < k + 1. Since the eigenvalues
of a matrix depend continuously on the matrix (Palis
and De Melo, 1982, p. 53), the set of matrices satisfying
each of these latter conditions is open. Hence A has a
neighborhood in Hn contained in Nn as desired. This
completes the proof.

Let X∞fix(Q) (resp. X∞per(Q)) be the set of C∞ vector fields f
whose flows possess a globally asymptotically stable fixed
point xf (resp. periodic orbit Γf ). We use the notation Φf
for the flow of such a vector field f . We refer the reader to
Hirsch (1994, Ch. 2) for the definitions of the Ck Whitney
(strong) and compact-open (weak) topologies used in the
following results.

Lemma 14. The subset of vector fields f ∈ X∞fix(Q)
for which (DxfΦf ,DxfΦf ) is ∞-nonresonant is open in

X∞fix(Q) with respect to the C1 compact-open topology,
and dense in X∞fix(Q) with respect to the C∞ Whitney
topology.

Proof. The theorem holds vacuously if X∞fix(Q) = ∅; if
X∞fix(Q) 6= ∅ then Q is diffeomorphic to Rn (Wilson, 1967),
so we may henceforth assume that Q = Rn.

Density. Let f ∈ X∞fix(Rn) be arbitrary and let U ⊂ Q be
a precompact neighborhood of xf . Let ϕ : Rn → [0,∞) be
a C∞ function equal to 1 on a neighborhood of xf and
having support contained in U . The density portion of
Proposition 13 yields a sequence (eAn)n∈N of nonresonant



matrices converging to eDxf f = DxfΦ1
f in Hn. We define

a sequence (gn)n∈N of C∞ vector fields by

gn := f + ϕ · (An − Dxf f)

converges to f in the C∞ Whitney topology. All deriva-
tives of the gn converge uniformly to those of f on U ,
and gn is equal to f on Rn \ U , so gn converges to f in
the C∞ Whitney toplogy. It remains only to prove that
gn ∈ X∞fix(Rn) for all n sufficiently large, i.e., that xf is
globally asymptotically for gn for large n; this follows from
a general result of Smith and Waltman (1999, Thm 2.2).

Openness. Let f ∈ X∞fix(Rn) be a vector field for which
(DxfΦf ,DxfΦf ) is ∞-nonresonant. Let (gn)n∈N be a se-
quence vector fields in f ∈ X∞fix(Rn) converging to f in the
C1 compact-open topology; i.e., g and Dg converge to f
and Df uniformly on compact sets. Since the C1 compact-
open topology can be given the structure of a Banach
space, the (Banach space version of the) implicit function
theorem implies that xgn → xf and hence DxgnΦ1

gn =

eDxgn gn → Dxf f = DxfΦ1
f . It now follows from the open-

ness portion of Proposition 13 that (DxgnΦgn ,DxgnΦgn)
is ∞-nonresonant for all n sufficiently large. Since X∞fix
with the C1 compact-open topology is first countable, this
implies the desired openness condition and completes the
proof.

Given f ∈ X∞per(Q)), we let xf be an arbitrary point in
Γf , τf be the period of Γf , and Esxf be the subspace of
Proposition 10. The following lemma can be proved using
an argument analogous to the one used for Lemma 14.

Lemma 15. The subset of vector fields f ∈ X∞per(Q) for
which (DxfΦτf |Esxf ,DxfΦτf |Esxf ) is∞-nonresonant is open

in X∞per(Q) with respect to the C1 compact-open topology,
and dense in X∞per(Q) with respect to the C∞ Whitney
topology.

Lemmas 14 and 15 immediately imply the following

Theorem 16. The subset of vector fields f ∈ X∞fix(Q) for
which Φf satisfies all k = ∞ hypotheses of Proposition 6
and Theorem 11 is open in X∞fix(Q) with respect to the C1

compact-open topology, and dense in X∞fix(Q) with respect
to the C∞ Whitney topology.

Similarly, the subset of vector fields f ∈ X∞per(Q) for which
Φf satisfies all k = ∞ hypotheses of Proposition 10 and
Theorem 12 is open in X∞per(Q) with respect to the C1

compact-open topology, and dense in X∞per(Q) with respect
to the C∞ Whitney topology.
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Appendix A. NONRESONANT MATRICES HAVE
FULL MEASURE

In this appendix we use the fact that all smooth (Haus-
dorff, paracompact) manifolds have a well-defined notion
of measure zero, whereby a subset has measure zero if its
image in every coordinate chart in some atlas has Lebesgue
measure zero in Rn (Lee, 2013, Ch. 6). (This does not
mean that smooth manifolds are equipped with canonical
measures.)

In the following lemma, recall that a critical point p ∈
M of a smooth map f : M → N is a point at which
Dpf : TpM → Tf(p)N is not surjective.

Lemma 17. Let f : M → N be a smooth map between
smooth manifolds, and S ⊂ N a set of measure zero. If
the set C(f) ⊂M of critical points of f has measure zero,
then f−1(S) has measure zero.

Proof. Define M ′ := M \ C(f). Since the union of two
measure zero sets has measure zero, it suffices to prove
that f−1(S)∩M ′ has measure zero. By the rank theorem
(Lee, 2013, Thm 4.12), for every point p ∈ M there
are neighborhoods U 3 p and V 3 f(p) respectively
diffeomorphic to Rn × Rm−n and Rn, such that in these
coordinates f(x, y) = x. The image S′ ⊂ Rn of S ∩ V
through the latter diffeomorphism has measure zero, and
the image of f−1(S) ∩ U in Rn × Rm−n through the
former diffemorphism is S′ × Rm, so Fubini’s theorem
implies that f−1(S)∩U has measure zero (c.f. (Lee, 2013,
Lem 6.2)). Since M ′ is covered by countably many such
neighborhoods U , M ′ ∩ f−1(S) has measure zero. This
completes the proof.

Let Dn ⊂ GL(n,R) denote the set of real invertible
matrices having distinct eigenvalues. Let Mn ⊂ Cn be
the subset of n-vectors whose entries are all distinct, whose
non-real entries occur only in complex conjugate pairs, and
whose entries are sorted according to the following rules:

• Real eigenvalues appear first, and in increasing order.
• Eigenvalues forming a complex conjugate pair are ad-

jacent, and the eigenvalue having positive imaginary
part appears first in each such adjacent pair.
• Complex conjugate pairs are lexicographically or-

dered first by their real part, then by the absolute
value of their imaginary part.

Notice thatMn is the disjoint union of finitely many open
sets U1, . . . , U` (where ` depends on n in a way immaterial
for our purposes) defined according to which vector entries

have non-zero imaginary parts, and each of the Ui can
be identified with an open subset of Rn in an obvious
way. For example, define U1 to be the set of vectors of
the form (a1, . . . , an−2, an−1 + ian, an−1 − ian) with the
ai ∈ R ordered according to our rules (so, e.g., an > 0);
we identify such a vector with (a1, a2, a3, . . . , an) ∈ Rn.
Hence Mn is a real analytic manifold of dimension n.

Proposition 18. Let S ⊂ Mn be a set of measure zero.
Then the Lebesgue measure of the set of matrices in
GL(n,R) for which all eigenvalues belong to S has measure
zero.

Proof. Let N ⊂ GL(n,R) be the set of matrices with
eigenvalues belonging to S. It is well-known that GL(n,R)\
Dn has measure zero, 3 so it suffices to prove that N ∩Dn
has measure zero.

By construction of Mn, there is a uniquely defined map
E : Dn → Mn which sends a matrix in Dn to its vector
of eigenvalues ordered according to the definition of Mn.
Since matrices in Dn have only algebraically simple eigen-
values, and since such eigenvalues depend smoothly on the
matrix entries, it follows that E is smooth. Furthermore,
it is readily seen (by writing the matrices in Dn in real
canonical form and considering variations of the block di-
agonal entries) that E has no critical points. Thus Lemma
17 implies that N ∩Dn = E−1(S) has measure zero, which
completes the proof.

Let Nn ⊂ GL(n,R) be the set of real invertible matri-
ces A with distinct eigenvalues such that (A,A) is ∞-
nonresonant. We want to use Proposition 18 to prove that
GL(n,R) \ Nn has measure zero. To do this, we need the
following lemma.

Lemma 19. Let Sn ⊂ Mn ⊂ Cn be the set of n-vectors
λ = (λ1, . . . , λn) such that either (i) λj = λk for some
j, k or (ii) for some i ∈ {1, . . . , n} and some m =
(m1, . . . ,mn) ∈ Nn≥0,

λi − λm1
1 · · ·λmnn = 0. (A.1)

Then Sn has measure zero in Mn.

Proof. Taking the real and imaginary parts of (A.1)
yields for each i,m two equations which are polynomial
in the real and imaginary parts of the λj . Using the
previously described identification of each Ui with an open
subset of Rn, we see that each Sn ∩ Ui is identified with
an open subset of a countable union of zero level sets
of non-constant polynomials. Since the zero level set of
any non-constant analytic function Rn → R has measure
zero, it follows that each Sn ∩ Ui has measure zero. Since

Sn =
⋃`
i=1(Sn ∩ U`), it follows that Sn has measure zero

in Mn. This completes the proof.

Corollary 20. GL(n,R)\Nn has measure zero in GL(n,R).

Proof. Using Definition 2, we see that the set of eigen-
values in Mn coming from matrices in GL(n,R) \ Nn is
contained in the set Sn ⊂ Mn of Lemma 17. Lemma 17
implies that Sn has measure zero inMn, so Proposition 18
implies that GL(n,R) \ Nn has measure zero in GL(n,R).

3 Here is one proof: a matrix has multiple eigenvalues if and only
if its discriminant vanishes, the discriminant is a polynomial in the
matrix entries, and a level set of an analytic function has measure
zero (Mityagin, 2015).


