
Bioinspir. Biomim. 17 (2022) 026004 https://doi.org/10.1088/1748-3190/ac3b9c

RECEIVED

9 March 2021

REVISED

28 August 2021

ACCEPTED FOR PUBLICATION

19 November 2021

PUBLISHED

24 January 2022

PAPER

Data-driven geometric system identification for
shape-underactuated dissipative systems

Brian Bittner1,2,∗ , Ross L Hatton3 and Shai Revzen1,4

1 Robotics Institute, University of Michigan, Ann Arbor, United States of America
2 Johns Hopkins University Applied Physics Lab, Laurel, MD, United States of America
3 Collaborative Robotics and Intelligent Systems (CoRIS) Institute & School of Mechanical, Industrial, and Manufacturing Engineering,

Oregon State University, Corvallis, United States of America
4 Electrical Engineering and Computer Science Department & Ecology and Evolutionary Biology Department, University of Michigan,

Ann Arbor, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: brian.bittner@jhuapl.edu, ross.hatton@oregonstate.edu and shrevzen@umich.edu

Keywords: soft robotics, viscous swimmers, dissipative systems, system identification

Supplementary material for this article is available online

Abstract
Modeling system dynamics becomes challenging when the properties of individual system
components cannot be directly measured, and often requires identification of properties from
observed motion. In this paper, we show that systems whose movement is highly dissipative have
features which provide an opportunity to more easily identify models and more quickly optimize
motions than would be possible with general techniques. Geometric mechanics provides means for
reduction of the dynamics by environmental homogeneity, while the dissipative nature minimizes
the role of second order (inertial) features in the dynamics. Here we extend the tools of geometric
system identification to ‘shape-underactuated dissipative systems (SUDS)’—systems whose
motions are more dissipative than inertial, but whose actuation is restricted to a subset of the body
shape coordinates. Many animal motions are SUDS, including micro-swimmers such as nematodes
and flagellated bacteria, and granular locomotors such as snakes and lizards. Many soft robots are
also SUDS, particularly robots that incorporate highly damped series elastic actuators to reduce the
rigidity of their interactions with their environments during locomotion and manipulation. We
motivate the use of SUDS models, and validate their ability to predict motion of a variety of
simulated viscous swimming platforms. For a large class of SUDS, we show how the shape velocity
actuation inputs can be directly converted into torque inputs, suggesting that systems with soft
pneumatic or dielectric elastomer actuators can be modeled with the tools presented. Based on
fundamental assumptions in the physics, we show how our model complexity scales linearly with
the number of passive shape coordinates. This scaling offers a large reduction on the number of
trials needed to identify the system model from experimental data, and may reduce overfitting. The
sample efficiency of our method suggests its use in modeling, control, and optimization in
robotics, and as a tool for the study of organismal motion in friction dominated regimes.

1. Introduction

Rigid, fully actuated mechanisms are the classic face of
robotics. The development of passive elements [1–5]
and soft actuators [6–9] offers the potential for break-
through improvements for the design of future sys-
tems. Passive elements have the potential to assist in
designing mechanisms that are safer, cheaper, more

energy efficient, and more resilient to impact damage.
Inspiration from and mimicry of biology has played a
strong role in the way that passive elements have been
integrated into new types of mechanical devices. For
example, [10] demonstrated a soft quadrupedal robot
which, while slow, was highly resilient—it could be
run over by a car and experience no damage [11];
presented a set of soft robotic designs that could
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achieve biomimetically competitive speeds, yet main-
tain at least some damage resilient properties thanks
to their compliant nature. In [12], a soft robot mim-
icking squid propulsion provided a way to achieve
high efficiency swimming. In all these cases these
design improvements typically come at the cost of
precise control of the internal state of the system. Both
the degree of underactuation of internal state and
the complexity of the dynamics of soft mechanisms
exacerbate this problem.

Early robotics research showed that a convenient
way to add compliance to a mechanism is to add
a spring in series with a motorized joint [1]. The
‘series elastic actuator (SEA)’ has been introduced to
humanoids [13] and snake robots [14] with the goals
of providing compliant, torque controlled interaction
with the environment and higher damage resilience.
The design advantages of SEAs come at the expense
of high-bandwidth position control. It becomes dif-
ficult to execute precise body-shape trajectories that
would be possible in the fully actuated, otherwise
identical, systems. In robots with soft actuators, the
shortcomings in position control are exacerbated
by the sensitive nonlinear dynamics of pneumatic
devices, dielectric elastomers, and other soft actua-
tion techniques [15, 16]. The challenges of precise
fabrication and assembly make it difficult to reliably
reproduce dynamical outputs across copies of these
devices. Some recent work demonstrated data-driven,
model predictive control of a soft robot comprised
of McKibben actuators using Koopman theory based
global linearization [17]. Such an approach is criti-
cally dependent on the success of the linearizing trans-
formation that converts this problem to one amenable
to linear model predictive control. Unlike the global
linearization attempted by that Koopman analysis,
whose domain of validity is still poorly understood,
the approach we present here includes guarantees that
the local models we build of the dynamics are accu-
rate and truly linear in the shape velocity, at least to
the extent that our assumptions about the physics
hold. Our results focus on a class of friction domi-
nated robots, where we demonstrate an algorithmic
procedure producing a complete and concise repre-
sentation of the dynamics, informed by physics and
geometry.

For fully actuated dissipative systems, previous
work has provided sample-efficient techniques to
model locomotion systems with noisy shape control
using cyclic behavioral data [18, 19]. Seminal work by
Shapere, Wilczek, Marsden, Kelly, Ostrowski, Bloch
and others [20–25] showed that the mechanics of
locomotion can be refactored into a kinematic term
(the mechanical connection of [23]) and a momen-
tum term. At the limit of large friction, the momen-
tum term becomes negligible relative to the kinetic
term, and the body velocity thus becomes a func-
tion of shape and shape velocity. Previous work has
demonstrated that this class of models are amenable

to system identification [18]. Further, with finite-but-
large dissipation, the influence of momentum can be
folded into a nonlinear correction to the connection,
with only a small increase in the complexity of the
model identification process [19]. Models for pre-
dicting the influence of shape input on body velocity
can thus be built strictly from observation without
any mechanical analysis specific to the system—all
that is needed is ‘sufficiently rapid’ dissipation of
momentum.

In [18, 19] we modeled the dynamics within
‘closed tube’ regions of the configuration space using
data from noisy periodic gaits that cycle within
those tubes. A key building block for these mod-
els is the ability to extract a reliable average peri-
odic behavior from an ensemble of trajectories
and re-express the observed trajectories in terms
of phase in this periodic behavior plus a pertur-
bation. A video documenting the modeling pro-
cess can be found in the supplementary materi-
als (https://stacks.iop.org/BB/17/026004/mmedia) of
[18].

By having the ability to build local models, we
gained the ability to modify maneuvers to maxi-
mize some behavioral reward, through incrementally
improving the maneuvers in each local model. A sur-
prising conclusion of [18] was that friction domi-
nated systems can learn relatively high DOF opti-
mal maneuvers (e.g. for an eight-jointed system) with
only 30 cycles of data. We showed these methods to
be robust to actuator noise in section 8.2 of [18]
and observation noise in section 5.3 of [26]. In the
presence of high actuator noise, robots optimizing
behavioral efficiency tended toward higher amplitude
motion, possibly because those are likely more robust
to the experienced actuator noise.

One of the important consequences of the pre-
vious work is that it demonstrated we can produce
a sample efficient behavioral model for systems that
are hard to simulate, and for which we do not have
model parameters such as inertia or drag matrices.
Traditional robot simulations rely on the kinematic
and mass matrix information of each sub-system, but
there are many practical scenarios where it would be
preferable not to need this information. For the data
driven algorithms in [18, 19], we do not require such
detailed mechanical information; we can select the
appropriate algorithm by understanding (at a high
level) how the friction and inertia interact in the
system.

In the current work, we extend these ideas to
underactuated systems. First, we identify the class
of ‘shape-underactuated dissipative systems (SUDS)’
(see section 3) to which our methods apply. Infor-
mally, these are systems that have fewer actuators
than internal degrees of freedom and whose mechan-
ics are governed primarily by frictional and damping
forces, rather than by inertial forces. We assert that
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SUDS are a highly useful and broad class of dynami-
cal systems in practice. We then show how data-driven
geometric modeling techniques can be extended and
used to identify predictive models for SUDS (see
section 3). For the subclass of SUDS whose internal
dissipation is linear, the technique further allows us to
collapse our model complexity, achieving a com-
plexity that grows linearly in the degree of under-
actuation (see section 4). To demonstrate the effi-
cacy of our approach, we examine its performance
on simulated viscous swimming data (see section 5),
validating that predictive SUDS models can be iden-
tified for soft, high dimensional systems with small
amounts of trial data. Finally, we discuss the rel-
evance of SUDS identification in modern robotics
applications.

2. Background: data-driven connection
modeling

In the field of geometric mechanics, the equations
of motion arise from dynamical constraints derived
from Lagrangian or Hamiltonian descriptions, after
which group symmetries are applied to gener-
ate a reduced form of the dynamics [22, 25].
The representation of these equations incorporates
the uniformity of the operating environment and is
achieved by ‘quotienting the dynamics by symme-
try under a group’, i.e. exploiting the environmen-
tal homogeneity to re-write the equations of motion
only in terms of body velocities and shape, without
any dependence on absolute position and absolute
orientation.

A common and representative case of group
reduction is based on the symmetry that a body’s
interactions with a uniform environment do not
depend on its position and orientation in that
environment.5 Under these circumstances we can re-
write the equations of motion using a ‘reconstruction
equation’ [24], which appears as

◦
g = A(r)ṙ + I

−1(r)p, (1)

ṗ = f (r, ṙ, p), (2)

where
◦
g is a velocity in the body frame, r is an inter-

nal shape, and p is momentum in the body frame.
These tools express in a formal and complete way the
intuition that symmetry in the environment should
allow us to write equations of motion relative to the
body frame, and that shape changes can result in body

5 While our work applies without modification to other Lie group
symmetries, we will tacitly assume that the symmetry is a subgroup
of SE(3) and use the terms ‘body frame’ and ‘body shape’ for the
‘fiber’ and ‘base space projection’ that appear in the fiber bundle
formulation of this theory.

motions either by directly pushing on the environ-
ment or by affecting the system’s momentum.

Assuming viscous friction, as expressed in
Lagrangian mechanics using a Rayleigh dissipation
function, can further simplify behavior of the system.
At the upper limit of this friction, it is long known
that a ‘viscous connection’ emerges [27]. Rayleigh
dissipation captures forces that are proportional
to velocity. Here, body velocity and momentum
are both functions of shape and shape velocity, but
neither is determined as a function of the other.
This connection governing the relationship between
body and shape motion can arise as a result of
constraints as well. We can describe motion as being
governed by linear constraints on the velocity; these
are sometimes known as ‘Pfaffian constraints’, and
also result in a connection-governed system. For
moving systems with environmental symmetries,
Pfaffian constraints often come in the form of body
frame velocity constraints (e.g. no sideways slipping).
These systems are ‘principally kinematic’ in the sense
that their motion depends only on the path of their
body configuration curve, but not on the rate.

The most well known, principally kinematic loco-
motors are viscous swimmers acting in low Reynolds
environments [28]. By exploiting the structure of the
connection, tools have been developed for coordinate
system selection, gait identification, and behavioral
optimization [29–33].

Predictive global models are often challenging to
obtain for real animals and for physical hardware.
System identification techniques [28, 34–36] allow
for data-driven modeling of animals and robots but
require a large amount of experimental data. Typ-
ically some reduction of the representation of the
shape space is needed to make these methods pro-
duce tractable models of complex animals and robots.
Thus, there is a real need for modeling techniques
with lean data requirements that can handle high
dimensional representations of the body shape.

In [18], previous work developed a data-driven
approach to geometric modeling and optimization. It
allows for the identification of a connection that gov-
erns a rhythmic motion with very little data (e.g. on
the order of 30 cycles for a nine-link Purcell swim-
mer). This estimation framework was built by com-
bining oscillator theory [37–39] and geometric gait
optimization [33, 40]. Using a phase estimator from
[38], phase is computed from observed cyclic shape
data. Grouping measurements by phase allows for
the computation of a Taylor series approximation
of the connection at each phase using linear regres-
sion across data gathered from multiple cycles. Fur-
ther theoretical analysis showed that when momen-
tum decays quickly but not instantly, there exists a
nonlinear A(r, ṙ) close to the linear connection; this
additional nonlinearity was straightforward to cap-
ture with the inclusion of additional terms of the
order of the momentum decay time-constant [19].
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3. Shape-underactuated dissipative
systems (SUDS)

The locomotion model for systems whose dynamics
have the structure of a connection take the form

◦
g = A(r)ṙ, (3)

where r ∈ R
n spans the shape space R, g is an ele-

ment of a Lie group G, and A(r) is an infinitesimal
lift from shape velocities to body velocities. The nota-

tion
◦
g denotes the world velocity ġ written in the body

frame, computed as g−1ġ for matrix Lie groups.
As discussed in [28, 33], the internal wrenches

along the shape degrees of freedom for a viscous-drag-
dominated system can be written as:

τ = −M(r)ṙ, (4)

where M is a Riemannian metric on the shape space
generated by pulling back the local drag on individ-
ual portions of the system through its kinematics and
the local connection. Because Riemannian metrics are
positive definite, the negation in equation (4) implies
that τ · ṙ � 0, i.e. that the system is dissipative and
that changing shape always consumes energy.6

For underactuated systems, arbitrary choice of
instantaneous shape velocity ṙ is infeasible. Conse-
quently, the form of equation (3) is not directly
useful for planning system motions. To reformulate
equation (3) in a more useful structure, we split the
shape configuration and force vectors as

r = ra ⊕ rp τ = τa ⊕ τp, (5)

where a indicates controlled degrees of freedom and
p indicates passive degrees of freedom. These passive
degrees of freedom are governed by some dynami-
cal relationship in which the wrench on the passive
joint is a function of shape, shape velocity, and body
velocity,

τp = f̃(r, ṙ,
◦
g). (6)

We substitute equation (3) into equation (6) to
reduce this relationship to a mapping from shape and
shape velocity to the internal wrenches on passive
joints

τp = f (r, ṙ). (7)

Following the same reasoning as in [41], we can use
the a ⊕ p splittings of r and τ to break M into four
blocks,

M =

[
Maa Map

Mpa Mpp

]
, (8)

where for brevity we suppress the dependence of M
on r. We can then represent the passive wrenches in
two ways, drawing from equations (4) and (7), such
that

τp = −Mpaṙa − Mppṙp = f (r, ṙ), (9)

6 In control theory this property is referred to as being ‘passive’.

and after rearranging,

− Mppṙp = f (r, ṙ) + Mpaṙa. (10)

Noting that many physical systems, such as animals
and robots, exhibit linear or nearly linear dissipa-
tion, we add the assumption that we may rewrite f,
the wrenches applied to the passive elements, as an r
dependent affine (linear plus a constant) function of
ṙ,

f (r, ṙ) = fo(r) + F(r)ṙ = fo + Faṙa + Fpṙp, (11)

where we again suppress the dependencies of fo and
F on shape for brevity of notation. Combined with
equation (10), we arrive at a force balance in which
each term is constant or linear in shape velocity,

− Mppṙp = fo + Faṙa + Fpṙp + Mpaṙa. (12)

Rearranging terms in this expression gives

− (Mpp + Fp)ṙp = fo + (Fa + Mpa)ṙa, (13)

demonstrating that ṙp is affine in ṙa.
Now we show that (Mpp + Fp) is full rank, which

will prove that the affine relationship between ṙp and
ṙa is not degenerate. Term Mpp is positive definite as it
is a diagonal block of M, which we have established is
itself positive definite. Term Fp is semi-positive def-
inite because any damped system will have a non-
negative power dissipation from damping ṙT

p Fpṙp. The
sum of a positive definite matrix and a semi-positive
definite matrix is itself positive definite, and thus
(Mpp + Fp) is invertible.

Because equation (3) is linear (and thus affine) in

ṙ, and ṙp is affine in ṙa, we obtain that
◦
g must be affine

in ṙa. The equations for (
◦
g, ṙp) are affine in ṙa:

◦
g = Aa(r)ṙa +

◦
go(r), (14)

ṙp = −(Mpp + Fp)−1
[
fo + (Fa + Mpa)ṙa

]
. (15)

In many control applications the control input is τ a

rather than ṙa. Substituting (4) into (15) provides an
explicit affine formula relating τ a to ṙa

τa = −Mapṙp − Maaṙa. (16)

We define a ‘SUDS’ as a mechanical system operating
within the dynamical constraints of equations (3) and
(4). We focus on SUDS containing linear passive ele-
ments of the constrained form given by equation (11).
These systems are therefore governed by motion mod-
els comprised of equations (14) and (15). When com-
bined these equations lead to the observation that

(
◦
g, ṙp)T = C̃(r) + B(r)ṙa, (17)

i.e. the dynamics of SUDS are a nonlinear function of
shape r, and are affine in the directly controlled shape
velocity ṙa.
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4. Estimation for SUDS

Now that we have established a dynamical charac-
terization of SUDS, we can discuss the ramifications
of this characterization for the estimation of motion
models from data. If analytical models are available,
methods derived in [41] provide a way to perform
gait optimization on drag dominated systems with
an elastic joint. However, when analytical models
are not available, sample-efficient methods for sys-
tem identification can greatly accelerate data-driven
behavioral optimization. We will show that the
characterization presented in section 3 will be
important for data-efficient system identification
of highly underactuated systems. Following the
approach described in our previous work [18], we
focus on identifying the dynamics within a ‘tube’
around a nominal (phase-averaged) trajectory θ by
expressing the shape as r := θ + δ. We produce the
nominal trajectory for a gait by logging the internal
shape r as a multivariate time series, obtaining an esti-
mate of the asymptotic phase of every sample in the
series, and taking the nominal trajectory θ to be a
Fourier series average of the shape r as a function of
the phase. Thus, the nominal trajectory is computed
entirely from data. The critical step of obtaining a
good estimate of asymptotic phase is non-trivial; we
used the phaser algorithm [38].

At the end of this process δ expresses deviation
from the computed nominal trajectory θ.7 We then

consider the approximation of (
◦
g, ṙp) by a first-order

Taylor expansion in (δ, δ̇) as

(
◦
g, ṙp)T ≈ C̃(θ) +

∂C̃

∂r
(θ)δ + B(θ)(θ̇a + δ̇a)

+
∂B

∂r
(θ)δ(θ̇a + δ̇a). (18)

However, because θ̇ is a predetermined function of
θ, we can combine terms (suppressing the (θ) for
readability)

C := C̃ + Bθ̇a, (19)

Cr :=
∂C̃

∂r
+

∂B

∂r
θ̇a, (20)

which provide the following linear regression
problem at each θ,

(
◦
g, ṙp)T ∼ C + Crδ + Bδ̇a + Brδδ̇a. (21)

The regression in equation (21) expresses the
instantaneous body and shape velocities given the
current shape (referenced from r, δ) and the control
input (referenced by δ̇a) to the system.

7 A convenient feature of this computed nominal trajectory is that
it gets around the difficulty that the phase averaged trajectory of the
internal state is hard to anticipate a priori when a good model is not
already present. Here, the region of the dynamics we are estimating
is adapted to be relevant in the space of observed behaviors of the
system.

4.1. SUDS balance compactness of model with
capability to approximate dynamics
A primary challenge in system identification is to
select the model whose parameters will be extracted
from the data. Choosing too few parameters can cause
underfitting while choosing too many parameters can
often cause overfitting. Here we show that the charac-
terization of SUDS dynamics allows for a compact yet
descriptive set of parameters to seed system identifi-
cation. In particular, we pay attention to the ability
of the parameters to remain descriptive and concise
at high degrees of underactuation, which is a preva-
lent feature of soft systems. By highly ‘descriptive’ we
mean that the models maintain the capacity to explain
the broad range of phenomena exhibited by SUDS. By
highly ‘concise’ we mean that the number of regres-
sors (also called ‘features’ in machine learning) used
to construct the model is small, allowing even small
datasets to identify good models.

The overall shape space dimension is n := na + np,
the number of directly controlled DoF and the num-
ber of passive DoF in the system respectively. Com-
pare now the regressors of equation (11) to those of a
more general SUDS

(a) δ, δ̇ for a first-order Taylor approximation of a
general SUDS, having O(n) unknowns.

(b) δ, δ̇a, δ ⊗ δ̇a for a first-order Taylor approxima-
tion of a passive Stokesian system constrained as
per equation (11), having O(nna) unknowns.

(c) δ, δ̇, δ ⊗ δ̇, δ2, δ̇2 for a second order Taylor
approximation of the general SUDS, having
O(n2) unknowns.

Thus estimation (b) provides the structural con-
text beyond (a) to accurately model system behavior
while avoiding the O(n2) growth of estimation (c).
This has a clear advantage for soft systems, which typi-
cally have a small number of control inputs and a high
dimensional shape space.

5. Examples of SUDS swimmers

To illustrate our method we examined several sys-
tems that are amenable to this estimation architec-
ture. In these systems, a viscous (‘Stokes’) flow regime
produced the affine constraints via Newtonian force
balance.

5.1. Linear passive swimmer
The linear passive swimmer (first row of figure 1) con-
sists of a shape-changing ‘T-shaped’ paddle connected
to a payload volume via a spring-damper. The T shape
is comprised of a horizontal bar of fixed width and
variable length r2, affixed to the midpoint of a vertical
bar which has a fixed width and a dependent height
L − r2. As r2 varies, the faces of the paddle interact
with a low Reynolds fluid, generating reaction forces.
The spring-damper connection to the payload has rest
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length lk, instantaneous length r1, spring constant k,
and internal damping coefficient d. The viscous forces
are modeled as a product of the length of the interact-
ing face and the relative velocity of the face to the flow,
scaled by a constant drag coefficient c. Due to symme-
try, the linear passive swimmer exerts no torques and
it is constrained to move along the x axis. The single
Pfaffian constraint that describes the motion model
is:

l cẋ + cr2(ẋ + ṙ1 − ṙ2) = 0, (22)

leading to the motion model

◦
g =

−cr2

c(l + r2)

[
1 −1

] [ṙ1

ṙ2

]
, (23)

(in which
◦
g = ẋ). This exact mechanical connec-

tion persists in the presence of shape-underactuation,
which acts only to restrict what shape trajectories (and
therefore group trajectories) can be expressed. Note
that we have not canceled c from the equation as a
reminder of the fact that in more general cases the
drag c is a positive matrix rather than a scalar.

For this system, the internal forces can be written
as

lcẋ = k(r1 − lk) + dṙ1 + ω, (24)

cr2(ẋ + ṙ1 − ṙ2) = k(lk − r1) − dṙ1 + ω, (25)

where ω is the wrench that the world exerts on the
system (in this case a force along the x-axis).

Combining the equations for external force bal-
ance (equation (23)) and internal force balance
(equations (24) and (25)) provides three equations

and three unknowns (
◦
g, ṙ3,ω). We write the equations

such that inversion of the matrix on the left-
hand side will provide a locomotion model for the
system’s motion, given r1(t), r2(t), r3(t = 0). Stacking
the equations, we write

⎡
⎣cl + cr2 0 cr2

cl −1 −d
cr2 −1 (d + cr2)

⎤
⎦
⎡
⎣ ẋ
ω

ṙ1

⎤
⎦

=

⎡
⎣cr2

0
cr2

⎤
⎦ ṙ2 +

⎡
⎣ 0

k(r1 − lk)
−k(r1 − lk)

⎤
⎦ .

(26)

The dynamics for the linear passive swimmer
fit into the form of equations (14) and (15) where
ra = r2 and rp = r1. As a driving signal for this
swimmer, we used ra := 1 − sin(ft)/2, where f is
a frequency parameter. For physical constants, we
used L = 2, l = 0.5, c = 1, d = 0, and lk = 1. While
the internal damping coefficient in this and other
platforms is set to zero, the viscous regime cre-
ates a damping-like resistance against internal body
motions.

5.2. Pushmepullyou swimmer
This symmetric viscous swimmer (second row of
figure 1), introduced in [42] as the ‘pushmepullyou
swimmer’, is constrained such that the pairs of links
on the left and on the right open symmetrically about
the center-line of the swimmer. The symmetry allows
us to assume the system moves only along the x axis.
By exciting r1 and making r2 passive, we obtained
a small forward displacement over every cycle. We
chose L = 1, k = 10, and rk =

1
2π.

The single Pfaffian constraint that drives the
motion model is

0 = Lẋ + 2(Lc2
1 + 2Ls2

1)ẋ + 2L2s1 ṙ1

+ 2(Lc2
2 + 2Ls2

2)ẋ + 2L2s2 − ṙ2, (27)

where for brevity, we denote si, ci := sin(ri), cos(ri) for
i = 1, 2. This leads to the motion model

ẋ = α
[
−Ls1 Ls2

]T
[

ṙ1

ṙ2

]
= 0, (28)

α =
1

1
2 + c2

1 + 2 s2
1 + c2

2 + 2 s2
2

. (29)

We place a spring on the left pair of joints such that
r1 is driven to rk = 0.5 rad via spring constant k = 1.
We write the internal torque balance on the passive
joint as

k(r1 − r0) = (−2L2ṙ1 + 2Ls1ẋ)L +
L3

12
ṙ1. (30)

This resulted in the equations

[
α−1 Ls1

γ1 γ2

] [
ẋ
ṙ1

]
=

[
Ls2

0

]
− ṙ2 +

[
0

k(r1 − rk)

]
,

(31)

γ1 = 2L2s1 γ2 = −2L3 +
L3

12
, (32)

which match the form of equations (14) and (15),
where ra = r2 and rp = r1. We drove this model with
ra := 1

2π + 1
3π sin(ft).

5.3. Purcell swimmer and nine-link viscous
swimmer
The Purcell swimmer and nine-link viscous swim-
mer (third and fourth rows of figure 1) are known
to have connection models [42]. Previous work [18]
studied the ability to model and optimize gaits with
these platforms. The force balance that induces the
Pfaffian constraints is presented in [28]. Torsional
springs and dampers can act at the joints within the
specified form of equation (11), and the model will
maintain the form of equations (14) and (15). In this
work, we use the model and equations of [28]. We
use segment length L = 1 with a spring at each pas-
sive joint having a rest angle of 0. For the three-link
Purcell swimmer, we drove the controlled joint with
ra := 1.4 sin(ft) and placed a spring with constant

6
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Figure 1. Predictive quality of data-driven SUDS models for several systems. We examined the predictive ability of regressions in
equation (21) on simulated gait data for a linear passive swimmer, a pushmepullyou swimmer, a three-link Purcell swimmer, and
a nine-link Purcell swimmer (top to bottom). The pulleys in the cartoon (first row of first column) indicate the constraints under
which the bladder of the linear passive swimmer can deform. In the cartoons of these systems (first column), we indicated
controlled joints (black) and passive joints (red). We plotted the raw gait data (second column) including training data (red) and
testing data (blue). We also include the phase-averaged gait of the training data (black) for each system. We cycled each system at
1 Hz (such that f = 2π for each gait) for 30 cycles of training data and 30 cycles of testing data. The metric Γ provides a reference
of how accurate the data-driven connection model is with respect to the phase averaged model. We compared the two models
(third and fourth columns), plotting the residuals of data-driven body velocity model (blue) and passive shape velocity (red) on
top of the phase averaged model residuals (gray). We also plotted passive shape and body velocity (black) with phase averaged
model indicated (gray), demonstrating that while the phase averaged models are quite good, the data-driven connection model
greatly improved the fidelity of the model, explained by the Γ metric on the right.

k = 2 on the passive joint. For the nine-link Pur-
cell swimmer, we drove a traveling wave through the
controlled joints (1, 2, 3, 4) with ra,i := 1.4 sin(f(t −
iφ)) for i ∈ [1, 4] and φ = 1

4π. We placed springs
with constants k = (20, 15, 10, 5) for joints (5, 6, 7, 8)
respectively.

6. Estimator accuracy

We sample the position and shape space of each of
these systems at 100 time-steps per cycle for a 50 cycle
trial. The control inputs to the system were driven
by a Stratonovich stochastic differential equation, in
a process identical to that used in [18]. In summary,
this process involves an input that is perturbed via
Brownian noise while being exponentially attracted
to a reference signal. The reference is periodic, defin-
ing the gait or limit cycle that the system is perturbed
about. We select gaits for each system such that they
noticeably excited the passive degrees of freedom. We
drive each gait at 1 Hz frequency as this was suf-
ficient to produce excitation across all mechanisms.
System length, frequency, and viscosity combine into

Reynolds number, which can tell us how to adjust
frequency to accommodate different physical param-
eters. Likewise, this relationship can inform us how
to change physical parameters to accommodate a
required timing. Choices such as the viscosity of the
fluid and lengths of the swimmers can affect the
timescales at which inputs excite the passive elements
of the systems. We compute each data-driven model
by fitting the regressions equation (21) to the trial data
using the same method as [18] (a fairly naive least
squares regression approach).

To assess the quality of our data-driven models,
we compare our SUDS regression models with the
predictions obtained from a phase-averaged behavior
of the same system. Such phase-averaged behaviors
can be viewed as the simplest ‘template’ model of the
dynamics, whereby all periodic locomotion gaits can
be viewed as oscillators [43]. We employ the phaser
algorithm of [38] to reconstruct a phase from the
‘observation’ data produced by the simulation, as this
algorithm has been shown to be effective in producing
phase driven models for many animal and robot loco-

motion systems [44–46]. Here, we denote by
◦
g and
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ṙ, the ground truth body velocity and shape veloc-

ity samples (respectively). By
◦
gT and ṙT , we denote

the predicted value for these quantities projected onto

the phase model of the system.8 Finally, by
◦
gD and ṙD

we denote the data-driven model-predicted values of
these same variables.

We define an accuracy metric for our predictions
as one minus the ratio of the error in the data-driven
prediction to the error in the phase-only predictions,

Γ∗ = 1 −
∑m

i=1|∗D − ∗|∑m
i=1|∗T − ∗| , (33)

for m samples and ∗ = {◦
g, ṙ}. Γ∗ = 1 indicates per-

fect prediction of the ground truth velocity, and
Γ∗ = 0 means the model has no predictive improve-
ment over using the phase-averaged behavior. The
data-driven models were notably more predictive
than the template models, as illustrated in the right
columns of figure 1.

7. Discussion and conclusions

We have shown that the broad class of ‘SUDS’ gives
rise to dynamics that have an affine structure in the
shape-velocity of their controlled DoF. As a conse-
quence, it was possible for us to formulate an efficient
regression model of these dynamics and to demon-
strate that for several simple models, these regressions
would in fact improve prediction accuracy by a sub-
stantial factor. Thus, we expanded on the capabilities
of methods that can optimize analytical SUDS models
[41] with methods that can fit SUDS models to data.
It is surprising that the first order Taylor approxima-
tion of a general SUDS can obtain an accurate model
of the Purcell swimmer with just 30 cycles of eight-
dimensional shape data. This result is important for
two reasons:

• Eight dimensions is sufficient to capture
fairly complex and broad ranges of internal
geometries.

• The method is portable to systems that inhabit
complicated environments that we have little
chance of successfully modeling in simulation.
The requirements are that the dynamics do
not change under translation and rotation of
the body, momentum is rapidly dissipated, the
process noise is not too large to build a reli-
able model, and the dynamics are not nonlin-
ear in a way that the Taylor expansion of the
SUDS model cannot describe the physics of the
observed motion.

This result also suggests that the in the Purcell
swimmer A(r) is not very different from its first
order Taylor approximation, at least for the gaits
we explored. This observation is consistent with our

8 Equivalently, this can be considered a projection to the template
system, which is a phase oscillator on the phase-averaged trajectory.

practical experience with simulated low-Reynolds
number swimmers and with physical robots which
use legs or undulatory motion, A is only weakly
nonlinear in δ for gaits θ which move the robot,
i.e. approximating by its first order Taylor expan-
sion around θ works quite well. However, even if the
near-linearity we employ in our approximation broke
down badly at some points on the cycle, as long as
A(r) remained bounded in value, the effects would
be mitigated by the fact that the results go through
a path-ordered integral.

The similarity of the results here to our previous
work [18, 19] suggests that this would make it possi-
ble to rapidly learn behaviors in such underactuated
systems. It suggests that underactuation in SUDS does
not pose nearly the same difficulties as in other under-
actuated systems—the strong dissipation improves
the stability of the passive dynamics under repeated
but perturbed control inputs.

As is true of any attempt to experimentally deter-
mine equations of motion, the quality of the model
we create is limited by the measurement noise and
the amount of available data. Because we use system
noise to identify a model of the δ and δ̇ dependence of
A(θ + δ), our method depends on the measurement
noise being smaller than the system noise, and the
system noise being small enough that a Taylor expan-
sion of A(θ + δ) in δ is still of good predictive value.
One natural extension of our approach which could
reduce its sensitivity to the scale of system noise is to
use a more general non-linear function fitting method
for capturing the δ dependence, e.g. support vector
regression, or any of the myriad other multivariate
function fitting methods available currently or in the
future. In this regard, our most important contribu-
tion is to note that much of the body velocity depen-
dence on shape is actually affine due to the underlying
physics, and thus easy to learn from data.

One particularly promising direction is model-
ing and control of soft systems with e.g. soft pneu-
matic actuators or systems with long, passive, flexible
tails. Many such biomimetic robots exist. Earthworm-
inspired robots [47] provide an opportunity to learn
more about the engineering capabilities of our tools
when applied to real hardware. Applications to robots
that move on varying surfaces, such as crawling on
new branches [48], may warrant methods that can
build models with little data. Analyses of simulation
data for soft robotic behaviors like pipe navigation
[49] can be complemented or supported with infor-
mation from behavioral models that can be gener-
ated from minutes of experimental data using our
methods.

We have shown that our model identification
regressions grow only linearly in complexity with the
number of passive degrees of freedom. Thus, we can
reasonably hope to process high dimensional rep-
resentations of the continuous (and thus ‘infinite-
dimensional’) shape of soft objects. As long as the
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dimension of the representation provides a reliable
state—in the sense of having good enough predic-
tive ability—our work here provides good reason
to believe the SUDS model identification will be
tractable and produce predictive results.

From a biological perspective, we note that most
animals are small (by human standards) and thus
more dissipative because viscous friction (the phe-
nomena which produces velocity proportional forces
for the viscous swimmers) scales with area or length,
whereas inertia scales with volume. Furthermore,
dynamic Coulomb friction can produce viscous-like
properties, the analysis of which is a topic for future
work. The simplicity of SUDS modeling suggests that
the control problem that small, and even more so
small and aquatic, animals solve is thus fundamen-
tally easier than the control problem faced by large
terrestrial creatures such as ourselves. We, therefore,
offer the hypothesis that the neuromechanical control
of animals is ancestrally geared for controlling SUDS
and that the motor control ability of large-bodied
extant species builds upon a more basal ability to learn
to control SUDS.

A great part of the appeal of data-driven mod-
eling to the robotics practitioner is the potential of
our approach to systematically model the interactions
of robots with unmodeled environments, even when
these are potentially soft, compliant, and complex
robots. Because the model regressions are efficient
and easy to update, one can envision online identifica-
tion leading to a broadly applicable form of adaptive
control. This could allow robots to be highly adapt-
able to environmental changes and internal damage
while retaining the ability to plan using the SUDS
regression derived self-model.

The phase dependence of body velocity is rela-
tively easy to estimate, but the linear dependence of
the body velocity on changes in shape and shape
velocity—the terms linear in δ, δ̇, and δ ⊗ δ̇—can
more easily be obscured by noise in actuation and
sensing. To estimate these terms requires that the per-
turbations δ and δ̇ be larger than the intrinsic sys-
tem noise. The resulting estimate is, in a sense, a
stochastic linearization of the underlying linear gains
(see e.g. [50] for a modern treatment of stochastic
linearization in control).

Having provided a generalized framework for
modeling SUDS from data, we hope to inspire imple-
mentations in locomotion, manipulation, and even
biomedical devices. For such applications, one needs
to be sure that damping dominates inertia, and that
the controlled subspace of the robot’s shape is con-
trolled in a responsive and accurate way. Having
these, the practitioner has access to a system identi-
fier that is sample efficient enough to work in situ,
i.e. in the actual operating environment, offering a
broader space of practical applications for soft robots.
These could include planetary exploration, disaster

scenarios with poorly characterized environments,
and biomedical procedures.
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