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Abstract
Thanks to their sprawled posture and multi-legged support, stability is not as hard to achieve for
hexapedal robots as it is for bipeds and quadrupeds. A key engineering challenge with hexapods
has been to produce insect-like agility and maneuverability, of which steering is an essential part.
However, the mechanisms of multi-legged steering are not always clear, especially for robots with
underactuated legs. Here we propose a formal definition of steering, and show why steering is
difficult for robots with 6 or more underactuated legs. We show that for many of these robots,
steering is impossible without slipping, and present experimental results which demonstrate the
importance of allowing for slipping to occur intentionally when optimizing steering ability. Our
results suggest that a non-holonomic multi-legged slipping model might be more appropriate than
dynamic models for representing such robots, and that conventional non-slip contact models
might miss significant parts of the performance envelope.

1. Introduction

Most animals and mobile robots move through the
world by moving parts of their body to generate reac-
tion forces from the environment and thereby pro-
pel themselves. Legged locomotion focuses on that
subset of locomotion that employs intermittent con-
tact forces generated by dedicated organs, the ‘legs’,
for that propulsion. This is distinct from using fluid
dynamic forces, as in fish swimming, or continous
contact forces, as in wheeled vehicles. There are very
few non-novelty commercial legged robots, and much
of the focus in the field of legged robotics has been
on bipedal or quarupedal robots. This is stark con-
trast to the natural world, where almost all animal
groups that employ legs, employ six or more legs.
Much of the objection to building robots with many
legs has been the mechanical complexity of the asso-
ciated device, which is directly tied to the number of
degrees of freedom (DoF) in each legs (both actuated
and unactuated).

In this paper we explore steering and slipping in
hexpedal robots with legs with 1 or 2 DoF, i.e. legs
whose point(s) of contact can only occupy a one- or
two-dimensional manifold with respect to the body
frame of reference. We draw attention to the impor-
tance and inherent difficulty of producing steering

from such legs. We offer two contributions: (1) exper-
imental results showing that slipping is highly bene-
ficial for obtaining an increased steering range, sug-
gesting that the practice of designing non-slip gaits
misses an important part of the operational enve-
lope of multi-legged robots; (2) evidence that despite
slipping, in our hexapods the relationship between
body frame motion and shape change appears to
be ‘geometric’, i.e. computable knowing only shape
and the rate of shape change, without knowing
forces.

Below we provide some background (section 1.1),
biological motivation (section 1.2), followed by the-
oretical preliminaries that precisely define the notion
of steering as we use the term (section 1.3). We then
discuss some of the impact of phase constraints on
steering gaits (section 1.4), discuss steering strategies
(section 1.5), and define the performance metrics we
use to evaluate steering (section 1.6).

1.1. Previous work on multi-legged robots
The conventional approach to studying steering
behavior in robots is to directly test proposed steer-
ing gaits on robot platforms and further explore
the experimental results to explain and improve the
achieved gaits. For fully actuated hexapod robots
(active DoF per leg d � 3) inverse kinematics has been
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used to plan footholds for precise quasi-static steering
[Duan et al 2009, Shekhar Roy and Kumar Pratihar
2014]. However, multi-legged robots do not require
fully articulated legs for dynamic stability. Even with
1 DoF or 2 DoF legs, hexapedal robots can still
achieve stability and maneuverability—for example
the RHex robot family [Galloway et al 2010, Saranli
et al 2001] and the Sprawl robot family [Kim et al
2006, McClung 2006]. With all the actuators concen-
trated in the body, such low-DoF hexapod robots have
lighter legs which can swing much faster than fully
articulated legs, and further boost the speed of loco-
motion. They are also simpler to build and less com-
plex to control compared with their fully articulated
counterparts.

Several investigators have looked at maneuver-
ability of hexapods: [McClung 2006] did a thorough
investigation of the dynamic maneuverability of
Sprawlettes (2 DoF per leg) and identified effective
parameters that can be used for steering. Many inter-
esting turning methods were also tested and studied
on the RoACH family of rapidly-prototyped palm-
size robots [Haldane and Ronald 2014, Pullin et al
2012, Zarrouk and Ronald 2015]. For OctoRoACH,
[Pullin et al 2012] applied a differential speed method
for dynamic turning by driving legs on different sides
with a different frequency. Haldane and Ronald [Hal-
dane and Ronald 2014] demonstrate that oscillations
in height and roll angle determine VelociRoACH’s
turning behavior and developed a steering gait for
VelociRoACH controlled by phase offset between
the left and right sets of legs. 1STAR in [Zarrouk
and Ronald, 2015] claimed to be the first steerable
robot with only one actuator; it generated rotation
by continuously accelerating and decelerating the
legs resulting in the compliance disparity between
alternate stance tripods. [Zarrouk et al 2015] also
summarized the turning performance of these three
palm-size robots and other famous multi-legged
robots.

1.2. Maneuverability in biological hexapods
Unlike bipedal and most quadrupedal vertebrates,
insects have legs sprawled outward in fore-aft and
lateral directions, which offers them additional sta-
bility and exceptional maneuverability in horizontal
plane, making them able to execute very tight turns
at high speeds [McClung, 2006]. Even with similar
sprawled structure, achieving such maneuverability in
hexapedal robots is challenging. Getting better under-
standing of the steering behaviors is an essential part
of improving planar maneuverability.

One approach is to study animal turning behav-
ior and build models and hypothesis that would
inspire robot design. Franklin et al [Franklin et al
1981] discovered two principal methods the cock-
roach Blattella germanica used to turn: increasing
step frequency or step length of legs on one side of
the body relative to the other, where the step length

change was achieved by changing either the leg arc
swing magnitude or functional length of the legs.
Some extreme changes of step length like pivoting one
leg in place or even moving one leg backwards were
observed in bee turning by Zolotov et al [Zolotov et al
1975]. Jindrich and Full [Jindrich and Full 1999]
measured the full dynamics of turning in the cock-
roach Blaberus discoidalis and analyzed the contribu-
tions of each leg to turning, concluding that turning
dynamics can be characterized as a minor modifica-
tion of straight-ahead running. To describe motion
of cockroaches in the horizontal plane, several mod-
els were developed by Proctor and Holmes [Proctor
and Holmes 2008]; Schmitt and Holmes [Schmitt and
Holmes 2000]; Seipel et al [Seipel et al 2004]. Our own
study of running B. discoidalis cockroaches [Sachdeva
et al 2018] observed that a large fraction of cockroach
foot motions are ‘slipping’ in the sense that the feet are
moving with respect to the ground while in contact
with it as shown in figure 1. It seems that the cock-
roaches exhibit far less non-slip ground contact than
assumed in published locomotion models.

1.3. Definition of steering with a periodic gait
Legged systems (animals and robots both) typi-
cally move using a periodic gait4: a cyclic shape-
change which produces (at least on average) a motion
through the world. The shape-change can be repre-
sented by the leg motions in the body frame of the
system. Thus, each leg is repeating the same motions
every period of a periodic gait, and the body is thereby
propelled in a similar way each cycle.

For moving on a horizontal plane, we typically
desire robots to allow us to control position and head-
ing. We will refer (by slight abuse of terminology) to
the rigid body motion generated (at least on average)
by a single period of a periodic gait as the holonomy
of that gait. The framework of geometric mechan-
ics provides a precise language for describing how
holonomies arise from periodic shape changes [Bloch
et al 2005, Marsden and Ostrowski 1998]. The parti-
tioning of system configuration into body frame and
(body) shape is so intuitive that most of the time
we assume its validity without careful examination,
however, as a technical point, we note that geometric
mechanics shows that when the mechanics of a system
are governed by a Lagrangian symmetric under the
Lie group SE(2), i.e. when the mechanics are the same
in all positions and orientations on a plane, the sym-
metry always induces a principal fiber-bundle struc-
ture allowing a configuration q of the system to be
represented in terms of a body frame5 pose g in the
world, and a shape b of the robot.

4 Some authors conflate the term ‘gait” with ‘periodic gait’; the
definition and discussion of non-periodic gaits is outside the scope
of this manuscript.
5 Although this may seem to childishly obvious, defining a body
frame for e.g. a slithering snake, is non-trivial and has significant
computational implications [Hatton and Choset, 2011].
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Figure 1. Cockroaches slip while running. We recorded 24 trials of B. discoidalis running at 15–77 cm s−1 on foamcore [Elmer’s
900803 Foam Board]. Averaged by trial, front, middle, and hind legs slipped 18%, 15%, 16% of their total travel distance. We
show the tarsus (foot) trajectories recorded in the world frame while moving forward relative to the body (blue), and while
moving backward (red). Note: synchronized side-view videos suggest that feet moving back with respect to the body are in
contact with the ground.

The instantaneous configuration q = (g, b)
is an element in the overall configuration space
Q = G × B. The shape space B is typically a compact
manifold in Rk for some k > 1, and represents the
possible shapes of the body, with the current shape
being b ∈ B. The instantaneous body frame g ∈ G
is an element of the group G, which for horizonal
motions is the group of rigid body motions in the
plane, SE(2).

Executing a cyclic shape change does not, in gen-
eral, correspond with a cycle in body frames. While
the shape starts and ends the same over a cycle, the
body frame changes, constituting motion.

Consider a system moving using a periodic gait
with period T, and configuration given by (b(t),
g(t)) ∈ B × G. The body shape b(t) must also be peri-
odic with period T. The holonomy of this gait would
be Δg := g(t + T)(g(t))−1, and is the same for all
choices of t. The theory of geometric mechanics tells
us that g(t) is completely defined by knowing g(0),
ġ(0) and b(t). To capture the fact that the gait is
defined by a periodic b(t) we will take the domain of
b(·) to be the unit circle S1 ⊂ C. Instead of thinking
of b(·) as a function of t, we shall take b(ϕ), ϕ ∈ S1,
and ϕ(t) = exp(i2πt/T).

A holonomy in our case is a rigid body motion and
can be represented in homogenous coordinates (see
equation (1)), where Δθ is the orientation change;
and Δx and Δy are the translation of body frame
origin as shown in figure 2.

Δg =

⎡
⎣

cos(Δθ) − sin(Δθ) Δx
sin(Δθ) cos(Δθ) Δy

0 0 1

⎤
⎦ (1)

We define steering to be the ability to select the rota-
tional component Δθ of the holonomy Δg within

an interval around 0 by employing a one-parameter
family of periodic gaits. Thus, a steering gait is a
function:b(ϕ, s) : S1 × [−θm, θm] → B, such that the
holonomy Δg(s) for the gait b(·, s) has a rotational
part Δθ equal to s. We further require that the map
Δg(s) be continuous in s, i.e. small changes in steer-
ing parameter lead to small changes in the resulting
holonomy. The astute reader may note that we have
omitted the discussion of T and its potential depen-
dence on s. For now, we will assume that a steering gait
has a common period T used for all choices s. How-
ever, it should be noted that if the motion is in practice
‘geometric’, as we will later claim, the holonomy is in
fact independent of the choice of T, making this issue
moot.

Steering and turning are two terms we often see
used in describing locomotion. We use the terms
‘steer’ and ‘turn’ to refer to different phenomena:
turning is the rotational component of the body
frame; steering is the ability to do so continuously
with magnitudes of turn in an interval containing
0 (pure translation) while at the same time also
translating. Thus, one can ‘turn in place’, but not
‘steer in place’. More interestingly, a robot might
have some acheivable discrete translation–rotation
motions available, i.e. the ability to ‘move and turn’,
without the ability to steer. This can happen, for
example, by doing two full steps on one side of the
body, while taking one full step on the other side.

1.4. Phase constraints limit periodic gaits
It should be noted that repeated motions of indi-
vidual legs do not, on their own, make a periodic
gait. To be periodic, the motion of all legs together
must be periodic. Thus, if one considers each leg
as an independent subsystem executing a periodic
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Figure 2. Coordinate frames for definition of steering.

motion, the periodicity of body motion implies a
constant phase difference constraint between the
‘sub-system phases’ [Revzen et al 2008] of the respec-
tive legs.

To illustrate why this phase constraint has impor-
tant implications, let us compare a legged system to
a typical wheeled vehicle with wheels on both sides
of an axle. When the vehicle turns by an angle, the
left and right wheels incur a permanent phase shift
representing the difference between the arc lengths
traveled by the two sides. It is for this reason that
wheeled vehicles have a ‘differential’ in their axle.
Because the wheels are symmetric under their axis
of rotation, they are symmetric under phase change,
and this phase shift is of no consequence for future
motions; to the best of our knowledge its only use
is the chalk marks made for parking enforcement,
which use this phase difference to detect if a car has
moved.

In legged systems, such shifts could produce sig-
nificant changes in motion. For example, the dif-
ference between trotting, pronking, and pacing in
quadruped gaits is primarily having a different, yet
constant, difference between the sub-system phases of
the legs [Wilshin et al 2017]. Not only do different
gaits have corresponding phase constraints, there typ-
ically are phase differences that do not generate viable
gaits. For example, there can be phase differences
which place no leg to support the body over a period
of time, resulting in the robot body falling on the
ground. To support the body, legs of a multi-legged
robot must maintain their phase differences within
a limited viable range. For example, many hexapods
can maintain quasi-static balance by ensuring that at
all times there is a set of legs contacting the ground
at points which surround the horizontal projection of
the center of mass (COM)—a constraint that can be
formulated in terms of phase locking.

1.5. The geometry of steering strategies
Each periodic gait b(·, s) embeds the circle S1 in the
shape space B. Thus b(·, s) is described entirely in
terms of a geometric object—its image in B, com-
prising a one-dimensional collection of body shapes
(see figure 3(a))—and the rate at which these shapes
are adopted. In those cases where the physics cre-
ate a ‘principal kinematic system’, that rate infor-
mation has no bearing on the resulting holonomy,
and the gait can be thought of as a purely geometric
entity—a loop in shape space. Changing holonomy to
steer must therefore require changing this loop (e.g. to
figure 3(b)).

1.5.1. Changing timing to steer

Consider the case of a robot with 1-DoF legs.
Each leg is mechanically constrained to a fixed one-
dimensional track; the only change available to such a
leg is changing its timing, e.g. changing the duration
it spends moving slowly vs moving quickly in a given
cycle (figures 3(c) and (d)). Even though the shape
of the physical motion of each leg cannot change,
and only its rate moving along its cycle can be mod-
ulated, this is not equivalent to being restricted to
merely changing the rate of a fixed gait. The key dif-
ference is that when changing the rate of a gait, all legs
change rate precisely the same way together. Even with
1-DoF legs, when the rates of individual legs along
their cycles is modulated differently in different legs,
the resulting shape-space loop is geometrically differ-
ent (figure 3(b)). However, because of the phase con-
straints (see section 1.4) that need to be maintained,
the rate modulation of individual legs must integrate
to an integer number of cycles after a period. Typi-
cally, that integral will be 0, implying that all legs exe-
cuted the same number of steps. While some legs can
be ‘sped up’ relative to other legs, they must then also
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Figure 3. Illustration of gaits and gait change. Gaits occupy a loop in shape space (a) since they are an image of the circle S1. To
modulate a gait we may change that image in shape space (b). Alternatively, viewing each leg’s motion as a cycle [(c) and (d)] with
fast (red) and slow (green) segments, a gait can be modulated by changing which parts of the cycle are executed at which speed
[(c) vs (d)] for each individual leg.

be ‘slowed down’ to resynchronize the legs at the end
of the cycle.

1.5.2. The special case of bilateral symmetry in the
plane
Consider a system (animal or robot) which is bilater-
ally symmetric. This implies the existence of a symme-
try map S : B → B and an associated Ŝ : se(2) → se(2)
which map body shape to its mirror image, and body
velocities to their mirror images. Both of these maps

must be involutions, i.e. S(S(b)) = b and Ŝ
2
= I. Fur-

thermore, in the case of planar motion in particular,
regardless of the choice of body symmetry axis, the
operator Ŝ flips the sign on rotational velocities.

It is quite common for bilaterally symmet-
ric organisms to employ ‘symmetric gaits’ for
translation, i.e. S(b(ϕ, 0)) = b(−ϕ, 0) (note: −ϕ

= exp(iπ)ϕ, the phase after a half-cycle). In such
gaits the cycle of body motions consists of two mirror
image halves; the first half cycle is the mirror image
of the second half cycle.

The associated body frame velocities g−1ġ sat-
isfy Ŝ · g−1(ϕ)ġ(ϕ) = g−1(−ϕ)ġ(−ϕ), i.e. they too are
mirrored after half a cycle, and therefore the rotational
velocities too are mirrored. In both 3D and 2D, the
rotational part of motion is unaffected by translation,
i.e. one can compute the total rotation of a sequence of
rigid body motions without knowing the translation.
This corresponds to the algebraic property of both
groups being semidirect products SE(3) = SO(3) �
(R3,+) and SE(2) = SO(2) � (R2,+). In the spe-
cial case of 2D, SO(2) is commutative, and therefore
the rotations occurring in the second half of the gait
cycle perfectly cancel those occurring in the first half,
leading to a pure translation.

Thus it is a special feature of 2D planar motion
(and of 2D planar motion only!) that symmetric
gaits always produce a net translation with no rota-
tion. Many organisms and robot designers employ
this feature to produce translation from legged
systems6.

6 The naive reader might assume that the translation created by a
symmetric gait must be along the axis of symmetry; this is untrue.
Rather, the set of translation directions acheivable is itself symmet-
ric; every gait that lists to left has a partner that lists to the right by
the same angle.

It further follows that by introducing a paramet-
ric change in one half of the cycle, one is likely to
introduce a net rotation, and that by introducing the
self-same parametric change in the other half cycle
containing the mirrored portion of the motion, one
may introduce a rotation of the same magnitude but
opposite sign. Then in-cycle modulation of such para-
metric asymmetry makes the original symmetric gait
a steering gait.

As humans it is hard for us to conceive of any
other way to produce translational motion and to
modulate it by steering, since bilateral symmetry is so
ingrained in our morphology. Still, we must exercise
caution in assuming all legged systems must use this
approach. For example, horses use a ‘rotary gallop’
gait which is not bilaterally symmetric when mov-
ing at high speeds; therefore they are likely to use
non-mirror strategies for steering left and steering
right.

1.6. Performance criteria for steering
Existing literature suggests different performance
metrics for quantifying steering. [McClung 2006]
suggest the metric of vθ̇ that combines the angular
turning rate θ̇ with forward speed v. This metric is
dimensional, and gives a natural advantage to high-
speed running robots with dynamic steering gaits.
Zarrouk et al [Zarrouk et al 2015] used the metric
of average heading change per step, which is esti-
mated from the average turning rate and the step
rate, to summarize the turning performance of a
dozen of famous multi-legged robot platforms. We
will use a similar metric—the turning angle per cycle
in (deg/cyc)—and also use a geometric measure of
turning: the turning radius in (mm).

Compared with the metric of turning angle per
step in Zarrouk et al [Zarrouk et al 2015], turning
angle per gait cycle can be applied to more cases, as
the notion of ‘step’ is only meaningful in symmetric
gaits. Typically in steering the two steps in one gait
cycle have noticeably different turning angle, making
turning angle per step bimodally distributed.

Turning radius is a world-frame measure which
represents how sharp a turn the steering gait can
achieve, and is thus an important parameter for
motion planning.
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Figure 4. Leg strokes in the body frame for a tripod of legs, assuming non-slip motion while steering (a) and while translating
without heading change (b). Note that leg strokes needed for non-slip steering and noslip translation have incompatible 2D
projections in the body frame, and thus cannot be the result of the same 1-DoF motion.

2. Multi-legged steering with low DoF
legs

From this section on we restrict our attention to
multi-legged systems which have sufficient friction
with the ground to justify the claim that COM
momentum (known as ‘group momentum’ in geo-
metric mechanics) dissipates quickly7. Typically, this
would be the consequence of having 3 or more point
contacts with the environment at all times; if contacts
can support torques, fewer contacts than 3 might suf-
fice. Our assumption rules out discussion of highly
dynamic gaits with low duty cycles, and the gaits of
bipeds, and the more rapid gaits of quadrupeds.

We will discuss legs with 1 or 2 DoF, where by DoF
we only include active DoF-s that can be directly con-
trolled. Passive DoF, like the deformations of elastic
legs, are not included. In this, the issues facing low-
DoF multi-legged robots are the converse of those fac-
ing the typical bipedal or quadrupedal robot: the for-
mer are over-constrained with respect to the ground,
whereas the latter are under-constrained.

2.1. Steering with these conditions is hard
To futher illustrate the importance of the investiga-
tion we conducted, consider the conditions for multi-
legged low DoF steering. Removing any one com-
ponent of ‘multi + legged + low DoF + steering’
produces an easier to solve problem.

If ‘legged’ is not a requirement: many wheeled
vehicle have low DoF multi-contacts with ground, but
such contacts are continuous. The continuous sym-
metry of the wheels allows them to have arbitrarily
accumulated phase from the phase difference intro-
duced with steering. This implies that wheeled vehi-
cles switch within an N − 1 dimensional family of
functionally identical periodic gaits (N number of
wheels), one for each possible choice of phase dif-
ferences between the wheels. In that sense, wheels or
treads solve a different, far easier problem.

7 By ‘quickly’ we mean that we are in the domain where the recent
results of [Kvalheim et al 2019] apply, implying that the equations of
motion can be written in an approximately geometric form (ibid).

Figure 5. BigAnt.

If ‘multi-’ is not a requirement: for bipedal robots
with low DoF legs, only one leg is touching the ground
for most of the time. Bipedalism creates substantial
problems in controlling an under-actuated, unsta-
ble plant. For bipedal robots, the bigger challenge
is to maintain heading and stability—a single pin-
joint contact, or even a toe and heel pair of contacts,
often generate heading and orientation changes that
can be exploited for steering. It should also be men-
tioned that with only two legs, 3 DoF per leg requires
only 6 motors, i.e. a device of comparable mechanical
and electrical complexity to a hexapod with low DoF
legs.

If ‘low-DoF’ is not a requirement: as soon as each
leg has 3 or more DoF, foot placement can be arbi-
trarily controlled within a volume, making the body
frame fully locally controllable in a kinematic sense.
At the cost of this extra complexity, steering becomes
much easier, at least at the low speeds we consider
here.

It is also important to notice that these conditions
do not make locomotion uniformly difficult; we have
only identified these difficulties in the case of steer-
ing. If the robot is not required to allow the heading
to be continuously controlled while moving, making
the robot bilaterally symmetric allows one to exploit
the trick described in section 1.5.2 to translate with-
out rotation. In particular, in the case of hexapod

6
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Figure 6. Leg trajectory in the body frame, with points indicated at equal phase intervals. Without steering (a) a clear Buehler
clock effect is visible. With steering at s = 0.55, the timing of ML (b) and MR (c) becomes different, even though the shape of the
trajectory is the same.

robots, a designer may use the alternating tripod gait.
In such a gait, the three feet in contact with the ground
form a triangle under the center-of-mass and trans-
late relative to the body without changing the shape
of the triangle. This uniquely defines the motion of
the body frame, and given bilateral symmetry, allows
for a walking gait with zero heading change.

From these examples, we can see that multi-legged
steering with low-DoF legs is particularly hard to
understand. Solving this problem would allow us to
better use multi-legged robots with a mechanical and
electrical complexity lower than that of today’s popu-
lar bipeds and quadrupeds.

2.2. 1-DoF steering creates conflicting constraints
To be able to translate using a set of non-slip foot con-
tacts, those foot contacts must themselves translate as
a rigid set of points in the body frame while in stance.
This geometric constraint must be designed into the
motion of any set of legs used for non-slip motion.
Note that this geometric constraint is necessary, but
not sufficient to make a gait have no slip: accelera-
tions or gravitational force components can be large
enough to break a contact outside its friction cone
and cause it to slip anyway. The gaits we describe are
slow enough, and stable enough where all slipping is
caused by incompatible foot motions.

The problem of incompatible foot motions
becomes starkly clear when considering a robot with
1-DoF legs (see figure 4). The feet of 1-DoF legs
follow a one-dimensional path in the body frame.
Whichever feet support the body while translating
(we assume a tripod in figure 4), they must follow
identical paths in the body frame. Whichever feet
support the body while steering along some arc,
the feet must follow different paths from each other
for non-slip contact because they are at different
radii from the center of rotation. Since the legs are
assumed 1-DoF, each individual leg can only follow
one path—showing that allowing a range of turning
radii creates conflicting constraints on the 1-DoF
path of the feet.

Naively, one might assume that hexapedal robots
with 1-DoF legs moving parallel to the body would
have trouble steering and turning. In practice,
direction changes merely force the robots break the

non-slip constraint. For example, RHex is highly
maneuverable [Johnson 2013] and turns easily, but it
does so with considerable slipping.

3. Results: low-DoF hexapods steer with
slipping

To verify our analysis about low-DoF multi-legged
steering and measure slipping behavior during steer-
ing, we used two types of robot platforms that have
different morphology and different effective DoF per
leg (1-DoF and 2-DoF) for our experiments. We
tested both robots on two substrates—a relatively
slippery linoleum floor, and higher friction interlock-
ing rubber tiles (C9 interlocking fitness mat; Target
Inc 2015). We tried a variety of steering parameters
and speeds. All the locomotion results were recorded
using a reflective marker motion tracking system (10
Qualisys Oqus-310+ cameras at 120 fps, running
QTM 2.17 build 4000, interfaced to custom SciPy
0.17.0 code using the Qualisys 1.9 Realtime API)

3.1. BigAnt 1-DoF hexapedal robot
Our 1-DoF robot tests were conducted on the BigAnt
robot. The design and development of BigAnt is out-
side the scope of this paper, and only summarized
briefly here. Its chassis structure and mechanisms
were manufactured using the PARF (plate and rein-
forced flexure) technique [Fitzner et al 2017, Miller
et al 2015] developed in our lab. Using PARF, the chas-
sis of BigAnt can be manufactured with minimal tool-
ing (a knife) and less than US$20 worth of materials
(Elmer’s Products Inc. foam board 508 × 762 × 7mm
and 3M Scotch #8959 fiber tape). With a laser cut-
ter instead of the knife, the chassis can be fabricated
within 7 h, which includes 30 min assembly. The fast
and inexpensive turnaround allowed the design of
BigAnt to be iterated quickly. Instead of simulating
each re-design we used experiments to directly mea-
sure and iteratively improve the robot (see figure 5 for
version used here).

Like the RHex family of robots [Galloway
et al 2010, Saranli et al 2001], BigAnt has six 1-DOF
legs. Each leg is actuated by a servo motor (Robotis
Dynamixel MX64), but rather than directly rotating a
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Figure 7. BigAnt joint angle output as a function of local phase ϕ within a gait cycle. When moving straight, the phase to joint
angle relationship is a ‘Buehler clock’ consisting of a fast constant speed phase for aerial motion and a slow constant speed phase
during expected ground contact (dashed blue line). With a steering input of s = 0.55 (see equation (2)), the mid left leg motion
(red) and mid right leg motion (green) are modulated in opposite ways, generating a steering motion to the right.

Figure 8. BigAnt motion in world frame (left) and steering results at different values of s (right). For gait frequency f = 0.22 Hz;
steering input s = 0.75, we plotted (left) leg tip trajectories (blue), with slipping highlighted (red dots; magnified in inset), and
the trajectory of the body frame origin O (yellow line) with the beginning of cycle indicated (yellow dots). We indicated the
markers that define the body frame (light green) at the beginning (triangles) and end (squares) of this 6 stride trial. To estimate
turning radius we fit a circular arc (dotted yellow) to the body frame origin. In this trial, BigAnt turns 23 deg/cyc and the turning
radius is 818mm. Exploring other values of s (right) we plotted the motion of the body frame origin at different values of the
steering parameter s (teal, yellow, red for 0.25, 0.55, 0.75 resp.), while leaving all other gait parameters unchanged. To each trial of
4 strides we fitted a circular arc (dashed green) and indicated the center of rotation (teal, yellow, red circles). Results suggest a
clear parametric dependence of turning radius on steering parameter value. See supplementary videos (available at
stacks.iop.org/BB/15/045001/mmedia) for illustrative examples.

leg like RHex robots do, the legs of BigAnt are driven
through a 4-bar mechanism. The leg trajectory was
chosen by exploring the space of possible 4-bar
designs for motions with a flattened backward stroke
and a high clearance when swinging forward (see
figure 6(a)). While other linkages exist that could
produce a flatter back stroke, those require significant
additional complexity or larger dimensions com-
pared with the current 4-bar design. The BigAnt leg
is highly modularized, making it easy to both replace
worn out legs, and install custom leg geometries for
different applications.

3.1.1. BigAnt steering gaits
While the 4-bar linkage defines the geometry and
position-dependent gearing ratio of BigAnt legs,
the instantaneous position of the leg along its
ovoid path is under (conventional PID based)
servo control. If all six legs are driven at constant

angular speed as two anti-phase tripods of legs
(‘left tripod’ FL-MR-HL containing [F]ront-[L]eft,
[M]iddle-[R]ight and [H]ind-[L]eft legs; and the
‘right tripod’ FR–ML–HR), the robot exhibits sub-
stantial up-down motions representing parasitic work
against gravity. To obtain a smoother motion, we
scheduled the motion of the shaft angles ψk, k ∈
{FL, FR, ML, MR, HL, HR} as a function of leg phase
ϕk using a two-speed schedule: a (typically) fast ‘aerial
phase’, and a (typically) slow ‘ground contact phase’
(see figure 7). To our knowledge, this idea comes from
work done by M. Buehler on the RHex robot, and
is sometimes referred to as a ‘Buehler clock’ in the
RHex literature. The Buehler clock is defined by 4
parameters. Often these are the ‘sweep’ angle through
which the leg moves in ground contact, a ‘duty cycle’
defining the fraction of the cycle in ground contact,
the stance angle ‘offset’ away from vertical, and the
phase at midstance. Because the choice of zero phase is
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Table 1. Slipping by leg for s = 0.75, f = 0.22 Hz. Motion capture error bounds
were ±3.5 mm at 99th percentile of error.

FL ML HL FR MR HR Mean

Slip/cyc (mm) 98 48 119 115 60 133 95
Slip ratio (%) 18.7 9.6 22.1 28.7 13.8 30.9 20.6
Abs. tangent (mm/cyc) 45 40 66 97 52 96 66
Abs. radial (mm/cyc) 79 18 81 49 20 77 54
Avg. tangent (mm/cyc) −9 26 31 25 −5 35 17
Avg. radial (mm/cyc) −47 5 44 −12 2 38 5

Figure 9. BigAnt foot motion in the body and wold frames. We show horizontal (x, y) projection (c) and saggital (x, z)
projections (a), (b), (d), (e) with side of the leg indicated by color (left—red; right—teal). In the body frame (b), (d), the
contralateral leg is also shown (transparent) to highlight that motions are symmetric in the body frame. Viewed with world frame
z (0 is ground), the left legs (a) have a longer ground stroke than the right legs (e). This highlights the counter-intuitive notion
that actual ground strokes can be quite different even with identically shaped trajectories, thanks to timing and slipping.

arbitrary, we always chose the liftoff phase to be 0,
leading to a Buehler clock defined by only 3 param-
eters.

We designed our gaits by tweaking these three gait
parameters at a moderate gait frequency (∼ 0.2Hz)
until the robot was both moving reliably and hardly
bouncing up and down. We then introduced steering
control by modulating the functions ψML and ψMR

with a steering input s. The overall phase change of
such a modulation must be 0; it is therefore a peri-
odic function of phase. We chose an obvious candi-

date—cos(2πϕ) which we used to advance/retard the
phase of one middle leg, and retard/advance the phase
of the other middle leg in an anti-symmetric way.
Letting b(ϕ) : ϕ �→ ψ be the Buehler clock function
chosen, our shaft angles were:

ψFL = ψHL := b(ϕ)

ψFR = ψHR := b(ϕ+ 1/2)

ψML := b(1/2 + ϕ+ s ks cos(2π ϕ)) (2)

ψMR := b(ϕ− s ks cos(2π ϕ))

9
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Figure 10. Turning rate dependencies on various parameters. To show dependence (or lack thereof) of turning rate on various
parameters, we binned data according to the parameter value and collected a bootstrap sample of size 1000, making the spread of
the various box-plots meaningful for comparison. We also present the numerical mean values of each box plot (number above
box-plot). First, we group data by which of the 3 comparable robots (R1, R2, R3; green, yellow with blue frame, orange) we took
data from, and at what value of the steering parameter s that trial was running (0.25, 0.55, 0.75 parts of the left sub-plot). Results
show a clear dependence of turning rate ω on s, which is consistent among all 3 robots. Since the influence of s and robot ID r
dominated variability in ω, we subtracted the average 〈ω〉(s, r) from ω to examine the data for any additional effects of gait
frequency (0.10 Hz to 0.34 Hz middle subplot), or ground-to-foot friction coefficient (right subplot). Results fail to reject the null
for these potential influences. Together, these results suggest that s alone governs the turning rate for each robot, and does so
reliably for all the robots of this type we built.

Figure 11. BigAnt slipping metrics, by leg and steering parameter value. We collected the slipping metrics for BigAnt platform R1
with f = 0.22 Hz, partitioned by s = 0.25, 0.55, and 0.75. We present the ratio of slipping distance to travel distance (a); average
distance slipped tangent to direction of motion along the turning arc (b); and average distance slipped radial to turning arc and
thus perpendicular to direction of motion (c). Slipping in (b) is non-productive for locomotion; slipping in (c) is necessary to
rotate the robot around its axis. Each metric is presented separately for each of the robot’s legs. We created each box-plot by
evaluating the metric by a bootstrap sample of 100 period-long windows from the relevant slice of the dataset. Note that with this
gait the robot arcs to the right.

where ks := 0.24 is a constant gain adjusting sensi-
tivity. The shaft angles with steering modulation of
s = 0.55 are shown in figure 7. The corresponding leg
trajectories at figures 6(b) and (c) give us an explicit
view of how the mid right leg is slowed down at
ground contact and how the mid left leg is sped up
at the same part of trajectory. With such modulated
tripod gait, we can now steer BigAnt by changing the
input parameter s to different values.

The strategy of steering by modulating middle
legs is itself bio-inspired, and based on the strategies
cockroaches often use for turning [Jindrich and Full
1999].

3.1.2. BigAnt steering gait test results
We tested the steering gait introduced in the previ-
ous subsection on BigAnt with different steering input
parameters and recorded the motion using Qualysis
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Figure 12. Mechapod is actuated by 7 highly geared down servo motors (Dynamixel MX106 and MX64): 4 of them are on the
spine controlling the spine yaw motion (motor 2, 3, 5, 6); the other 3 controls leg roll motion (motor 1, 4, 7). The 3 pairs of legs
are coupled by spring steels which offer compliance to the robot.

Figure 13. Overlay showing how Mechapod contains a
4-bar linkage. When the roll motors (orange cylinders) are
activated and holding stationary at equal angles, the robot
can be standing on a tripod (here FL, MR, HL) with
presumed point contacts at the feet (green dots for
FL, MR). The projection of the robot on the horizontal is
then a 4-bar linkage (blue dots and dashed lines).

motion capture systems. Figure 8 shows an example of
BigAnt walking on our lab floor; we provide detailed
plots and statistics for this trial which consisted of
6 strides at gait frequency f = 0.22 Hz and steering
input s = 0.75. Results from other trials were quite
similar, and so we do not provide such details from
every trial. We collected a total of N = 39 trials,
Ns = 225 strides, total time of∼ 1800 s at 120 fps for a
total of Nf = 2.16 × 105 frames of data, using Nr = 3
similarly constructed robots.

Additionally, we collected various metrics of slip-
ping: (1) the slipping distance; (2) the ‘slipping ratio’
of slipping distance to total leg motion distance. A
slipping ratio of 0 indicates a non-slip gait; a slipping
ratio of 100% represents a leg that always remains in
contact with the ground and is never in static fric-
tion. The average slipping ratio for the trial (figure 8)
we examined in details is 20.6%. To better under-
stand the kind of slipping taking place, we separate
slip into two components: slipping in the direction

tangent to the arc the robot is moving along, and slip-
ping in the direction radial relative to this arc. For the
slip in each components, we compute both the time-
averaged absolute value, and the time-averaged value
(see table 1).

We also examined the foot motions with respect
to the body frame. Our expectation was that foot
motions are, for all practical purposes, rigidly dic-
tated. Therefore, regardless of the value of s or which
of the 6 identical (up to mirror image) legs we observe,
we should see the same trajectory for the foot in the
body frame (see figures 9(b)–(d)).

To get more details about how the interaction
between leg and ground results in such steering
behavior, we plotted world frame z motion vs body
frame x (see figures 9(a) and (e)). These two subfig-
ures show a longer stroke in ground contact for all left
legs, compatible with the observation that the robot
turned to the right.

3.1.3. BigAnt turning rate results and slipping
results
At this point it should become quite clear that while
BigAnt is not hard to steer with our choice of steer-
ing gait (see figure 8 for steering with different inputs
of s), the actual mechanical interaction that produces
steering from the modulation of ψML and ψMR with s
is not at all obvious.

To better understand how BigAnt actually steers
we conducted a multi-robot, multi-parameter study,
summarized in figure 10. We compared the results
taken from 3 independently constructed copies of the
BigAnt robot, over a variety of gait frequencies, and
on both low friction and high friction substrates. The
purpose of this comparison was to establish whether it
was in fact s which controlled the steering behaviors,
or whether we merely created systems whose multi-
contact interaction too complex for us to understand
in some idiosyncratic way.

Since the experimental datasets are of slightly dif-
ferent sizes, and there is no reason to assume the
parameters we measure are normally distributed, we
used non-parametric methods for our statistical anal-
ysis. Each grouping of parameters was represented by
a bootstrap sample of size 1000; this size was cho-
sen because all groupings were at least of this size.
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Figure 14. Mechapod locomotion can be represented by the motion of two 4-bar linkages. We show 2 consecutive steps of
Mechapod walking left to right (top row; 3 photos of double stance configuration). We indicate the skeleton of the front half (red
lines; open circles for motors) and the previous leg positions (dashed yellow). Supporting legs in first step (solid green circles) and
in second step (solid blue circles) show the pivots of the abstracted 4-bar (bottom row). The first step 4-bar (green) and the second
step 4-bar (blue) share link lengths and there is a well defined relationship between the angles of the links before and after the
support switch for a fixed value of spine motor angles ψ2, ψ3. We denote the locations of the feet by A, B, A′, B′ , and by β the sweep
angle of the A–A′ leg. Since this is a kinematic model, we may arbitrarily choose the switchover time to be mid-cycle at t = T/2.

Figure 15. β(T) for all non-slip gaits of Mechapod. The overall turn β(T) (colored contours, center subplot) after a cycle of
non-slip motion for feasible non-slip gaits, and its value on the two boundaries of the feasible range (magenta dots in center; top
and bottom graphs), which also show the extremal values.

The use of bootstraps facilitates homoscedasticity of
the box-plots we use to represent the results, and
allows the spread to be meaningfully compared across
groupings. The results show that s reliably governed
steering across all 3 robots, and produced statistically
indistinguishable outcomes with them. They further
show that once the influence of s is removed, neither
gait frequency nor substrate friction have a detectable
influence on the rate of turning. This suggests a very

peculiar physics: one that is geometric by its inde-
pendence from time parameterization, includes sig-
nificant slipping, and yet is nearly independent of the
magnitude of the friction coefficients that govern this
slipping.

To gain further insight into how such a counter-
intuitive outcome might appear, we analyzed
several slipping metrics of individual legs at different
values of the steering parameter s, holding the
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Figure 16. Mechapod maximal predicted turning rate non-slip gait. We plotted the trajectories of the feet (solid hairine blue),
and highlighted their positions on the ground (red dots). We also plotted the motion of the body frame (green), indicating start
position (green triangles), end position (green squares), position at start of each cycle (yellow circle), position over time (yellow
line), and best-fit circular arc (dashed thick yellow line). The robot walked 4 cycles at a frequency of 0.33 Hz. Results show that
feet do in fact hardly slip at all. In this trial, Mechapod turns 8.0 deg/cyc and the turning radius is 2692 mm

Figure 17. Mechapod body frame foot motions from the trial shown in figure 16. Robot moves to the right. We determined
ground contact frames based on the vertical height of the feet from motion tracking. Since the legs are highly elastic, the feet did
bounce in and out of contact as shown.

remaining parameters constant. These results are in
figure 11, and come from the f = 0.22 Hz trials with
robot R1.

From figure 11(a) we observe that the slip ratio,
which equals total distance slipped divided by total
distance traveled, clearly increases with s. The change
is expressed mostly in the tangent direction, where
legs of the left tripod (FL, MR, HL) are retarded
more with higher s, and legs of the right tri-
pod (FR, ML, HR) are advanced. These changes are
straight-forward to anticipate from equation (2).
The radial direction harbors a surprise: FL and HL
respond to changes in s quite strongly and with
opposite sign, but their symmetric counter-parts
FR and HR do not. This suggests that during left
tripod stances with large s, FL moves radially in

(right) and HL moves radially out (left), whereas
in right tripod stances little to no radial motion is
observed.

3.2. Mechapod 2-DoF hexapedal robot
To explore the relationship of slipping and steer-
ing with 2-DoF legs, we used the ‘Mechapod’ robot,
a hexapedal robot drived from a previously stud-
ied ‘centipede robot’ [Sastra et al 2008, Sastra et al
2012]. Centipede attempted to be the first modu-
lar robot to exhibit a dyanmic gait with aerial (bal-
listic) phases using geared-down, conventional servo
motors. Mechapod consists of an articulated spine
with 7 motor modules, connected to 3 elastic legs that
extend side-to-side (see figure 12).
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Figure 18. Mechapod neutral position and its modulation for steering. When the Mechapod is moving without turning, its shape
oscillates around the shapes shown in the top row. By adding spine twist, the spine leans on average (bottom left); by adding spine
bend, the spine is arced on average (bottom right). See supplementary videos for illustrative examples.

Figure 19. Foot motions in body frame x, y and world z for
trial in figure 20. We plotted the motion of the left legs (top
subplot, red in middle subplot), and the right legs (bottom
subplot, teal in middle subplot). The twist-based steering
gait produced shorter ground strokes on the right than on
the left, commensurate with a turn to the right.

Defining a body frame for shape-changing
robots can be non-trivial [Hatton and Choset 2011].
Following previous work [Sastra et al 2012], we
associate a body frame with Mechapod by taking
the line connecting the center of one end-module
(‘front’) with the center of the opposite end-module
(‘back’) as the X axis, and constraining the center of
the middle module to the Y axis. With respect to this
body fame, each of the robot’s feet can be thought
of as under 2-DoF control: one ‘yaw’ DoF coming
from the adjacent Z-axis motor(s) on the spine, and

one ‘roll’ DoF coming from the X-motor to which
the leg is attached. The remaining 1-DoF that is
unaccounted for allows the spine to roll with respect
to the ground without moving the legs.

3.2.1. Mechapod non-slip steering gaits
We considered the problem of introducing steering
into the alternating tripod gait used for rapid motion
with the Mechapod. When engaging in this gait, the
roll motors in the front, middle, and hind modules are
typically set to the same fixed angle with alternating
signs. Under the assumption that this angle is small,
its cosine is nearly constant. This allowed us to plan
the motion of the 3D robot in terms of its 2D hor-
izontal projection, which consists of two 4-bar link-
ages tied together. Each 4-bar has one DoF allowing
the robot to move while maintaining non-slip con-
tact with the ground. The idea of embedding such a
4-bar linkage to allow non-slip motion was an insight
of the original ‘centipede robot’ designer (S. Sastra of
[Sastra et al 2008]; see figure 13).

We construct a periodic 4-bar gait as follows (refer
to figure 14). Assuming a cycle with period T, we
take t = 0 as start of support for one tripod, and
t = T/2 as switch to support by the other tripod. At
time t = T, the robot configuration needs to cycle
back to the same configuration as that at time t = 0
to have a periodic solution, so distances between
foot locations must satisfy |AB(0)| = |AB(T)| and
|A′B′(0)| = |A′B′(T)|. With the non-slip constraint,
the supporting legs are pinned to the ground. Dur-
ing the first step (0 � t � T/2), feet A, B are on the
ground; during the second step (T/2 � t � T), feet
A′, B′ are on the ground. Thus |AB(0)| = |AB(T/2)|
and |A′B′(T/2)| = |A′B′(T)|; together with the previ-
ous equalities, this gives:

|AB(0)| = |AB(T/2)| |A′B′(0)| = |A′B′(T/2)| (3)
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Figure 20. Mechapod motions with ktwist = 1, kbend = 0, s = 30◦ (left) and twist gait on low friction surface, for
s = 0, 10, 20, 30, 60(◦) (right). We plotted the trajectories of the feet (solid hairine blue), and highlighted their positions on the
ground (red dots). We also plotted the motion of the body frame (green), indicating start position (green triangles), end position
(green squares), position at start of each cycle (yellow circle), position over time (yellow line), and best-fit circular arc (dashed
thick yellow line). The robot walked 4 cycles at a frequency of 0.33 Hz and turned 22.3 deg/cyc, for a turning radius of 860 mm.
Results show that feet slipped a great deal. For other values of s = 0, 10, 20, 30, 60(◦) we plotted (right) location of body frame
(solid) with COM after each cycle (solid circles), best fit turning arc (green dashed) and center of rotation (open circle).

Assuming we start a step with [β(0),ψ2(0),ψ3(0)]
at t = 0, and by definition β(0) := 0, the 4-bar struc-
ture dictates the distances |AB| and |A′B′| as a func-
tion of β, and through β(t) as a function of t. The
solution of equation (3) thus uniquely selects possi-
ble values of β(T/2) as an implicit function of the
initial ψ2(0),ψ3(0). This implies that by exhaustively
scanning choices of these initial values we can dis-
cover all possible non-slip Mechapod gaits. We per-
formed such an analysis, showing β(T) as a result of
initial values ψ2(0),ψ3(0), also taking into account to
forbid poses that would cause self-interference (see
figure 15). The maximal turning rate this analysis pre-
dicted was 8.09 deg/cyc, given the dimensions of the
physical Mechapod.

We tested the maximal non-slip turning gait going
forward and back on the robot (total of N = 34
trials, Ns = 136 strides, Nf = 6.12 × 104 frames of
data; see one such trial in figure 16). Going for-
ward, the robot averaged 6.7 deg/cyc turning, and
going back 9.6 deg/cyc. Thus, on average this gait
produced 8.15 deg/cyc of turning while steering—a
very close correspondence to the theoretical predic-
tion of 8.09 deg/cyc. The turning angle difference
between forward and backward motion comes from
the fact that Mechapod is not perfectly symmetric.
Examining the foot motions in the robot body frame
(see figure 17) shows that right tripod stance tra-
jectories closely follow the concentric arcs expected
from the theoretical analysis in figure 4, whereas left
tripod stance motions are far less arced. The robot
turned strongly to the left in right tripod steps, and
then turned a little back to the right in left tripod
steps.

We note an additional complication of using this
method to produce non-slip steering: to steer we
need a parametric family of gaits controlled by a

steering parameter −1 � s � 1 (here ±1 chosen as
limits wlog). This requires being able to solve ψ2(t, s)
and ψ3(t, s) such that for every value of s we obtain
a non-slip motion—thus solving the 4-bar kinemat-
ics in real-time. We must then also choose a family
of non-slip gaits such that [ψ2(0, s),ψ3(0, s)] traces a
path from the extremal left turn at s = −1, through
a no-turning gait at s = 0, and finally to e.g. s = 1
for the extremal right turn. Ideally, this path should
be chosen such that the turn angle is proportional
to s. While these additional steps are straightforward
to implement, the goal of the current investigation
was to compare non-slip steering and steering which
employs slipping.

3.2.2. Mechapod steering gaits with slipping
As an alternative to producing a non-slip steering
gait, we explored steering the tripod gait with various
modulations. The gait we employed was of the form:

ψ1 = −ψ4 = ψ7 :=Aroll sin(ϕ)

ψ2 = −ψ6 :=Ayaw1 cos(ϕ) (4)

ψ3 = −ψ5 :=Ayaw2 cos(ϕ)

We then introduced two types of modulation
‘spine twist’ where all roll motors were given a con-
stant offset to the same side causing the robot to
lean to one side, and ‘spine bend’ where all yaw
motors were given a constant offset to the same
side causing the neutral shape of the spine to be
bent along an arc (see figure 18). These modulations
were introduced as follows: the updated motor angles
ψi

′(ϕ, s) were given by ψi
′(ϕ, s) = ktwists + ψi(ϕ)

for i ∈ {1, 4, 7}, and ψi
′(ϕ, s) = kbends + ψi(ϕ) for

i ∈ {2, 3, 5, 6}. This allowed us to introduce various
combinations of bending and twisting, and test their
efficacy at producing steering.
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Table 2. Steering and slipping results for trials in figure 20. Slip
in this table are averaged by leg then by gait cycle.

s (◦) Deg/cyc R (mm) Slip (mm/cyc) Slip ratio (%)

10 8.1 1802 129 26.5
20 14.2 1312 133 26.9
30 22.3 860 138 29.2
60 32.8 437 186 36.2

As expected, making either ktwist or kbend non-
zero produced reliable steering gaits. We presented
various combinations of bending and twisting in
[Zhao and Revzen 2016, Zhao et al 2015]. The
effect of bending (kbend > 0) followed intuition quite
well—when the spine was bent, the robot turned
around a center of rotation on the inside of the
average arc of the spine (although not around the
center of the spine’s arc). Twisting (ktwist > 0) pro-
duced even better steering performance, where lean-
ing to the left caused the robot to steer right; the
mechanism of this steering result remains somewhat
unclear.

We investigated the twist-based steering gait for
the Mechapod using similar analyses to those used
for BigAnt (see figures 19 and 20). Table 2 gives the
corresponding quantitative steering performance and
slipping metrics.

The largst twist steering parameter we used was
s = 60◦. With this value, the Mechapod turned
approximately 33 deg/cyc, about ×4 better than the
best non-slip steering performance. This turning rate
is far better than BigAnt and the robots investigated
by Zarrouk et al [Zarrouk et al 2015]. It is also worth
noting the slip ratios at approximately 36%, almost
double that of cockroaches.

4. Conclusion and discussion

Multi-legged robots are not in common use, despite
their inherent stability and the mechanical robustness
that can be achieved with three or more legs contact-
ing the ground at once. Two factors that might be lim-
iting their deployment are the mechanical complexity
of building many multi-DoF legs, and the difficulty
in understanding and planning for the multi-contact
regimes that arise when these robot morphologies are
employed. The first factor can be addressed by using
legs with only 1 or 2 DoF each, and this category of
robots was the topic of our study here. We presented
two hexapedal robots with 6 and 7 motors, respec-
tively. The 6 motor BigAnt has 1-DoF legs; the 7 motor
Mechapod has, for all practical purposes, 2-DoF
legs.

Under the assumption that we wish, at mini-
mum, to steer the robots on a horizontal plane, we
showed how these appealing low-complexity mor-
phologies raise unique problems related to multi-
legged locomotion in general, and underactuation in

particular. We showed that for the robots in ques-
tion, there exist natural ways to produce steering, and
illuminated some of the special relationship between
bilateral symmetry and steering. We showed that the
best steering gaits we produced do not obey the
non-slip contact conditions robot designers usually
employ in planning. For the BigAnt, non-slip condi-
tions would have precluded turning altogether. For
the Mechapod, non-slip steering gaits do exist, but
under-perform ad hoc steering gaits we tried by a
factor of ×4.

The careful examination of mechanism of turn-
ing in both BigAnt and Mechapod lead to some sur-
prising results. The relationship between Mechapod
shape modulation and steering outcome proved diffi-
cult to elucidate. More interestingly, BigAnt motions
proved to be independent of speed and friction coef-
ficient, suggesting that a geometric theory similar
to that which governs slithering snake robots [Gong
et al 2016] might be applicable. An initial foray into
how the viscous-friction-like relationships of geo-
metric mechanics arise from simple Coulomb fric-
tion models can be found in our recent publication
Wu et al [Wu et al 2019].

Taken together this evidence suggests that design
of multi-legged robot gaits raises some new issues
related to phase, but effective solutions for steering are
not hard to find, and do not require the full complex-
ity of 3 or more DoF per leg. The key issue is that steer-
ing gaits, and by extension, other high-performance
maneuvers, must assume that slipping will invariably
take place, and be an integral part of the planned
motion. This does not, however, imply that multi-
legged maneuvers require knowledge of friction coef-
ficients or planning in the full phase space, as some
might have assumed. At least for our robots, it seems
that some kind of geometric mechanics theory is lurk-
ing just around the corner, and with it we will be able
to reap the benefits of simple and robust multi-legged
robot morphologies.

5. Future work

One obvious important direction of future inves-
tigation is developing and validating physics codes
for multi-legged locomotion which can handle the
persistent slipping that we have discovered to be
necessary for effectively steering our robots. Besides
building better models that include slipping, another
interesting approach is to explore the potential of
non-slip gaits with low-DoF legs. We have shown
that Mechapod can have non-slip steering gaits with
only 7 motors; perhaps other low DoF per leg designs
can be produced which have better steering perfor-
mance. Yet another important direction to explore is
the high-speed limit: how do the approaches we stud-
ied here extend as robots move faster, inertia plays a
larger role, and power rather than torque limits the
motors?
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Figure A1. World frame z motion of BigAnt COM(top), pitch and roll (bottom) with s = 0.75f = 0.22Hz
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Appendix A. Pitch and roll data

Here we provide some examples (world frame
z motion of COM figure A1; pitch and roll angle
figure A1) of BigAnt, demonstrating its stability.
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