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LIST OF FIGURES

Figure

2.1 Key elements of the geometric paradigm, drawn from to [HC11b;
HDC17]. Given a locomoting system (left), the system dynamics
and constraints produce a relationship between changes in shape and
changes in position (center). When the system executes a cyclic
change in shape (bottom), the net displacement induced by this gait
corresponds to how much curvature of the constraints the gait encom-
passes, and the time-effort cost of executing this gait is the length
of the path it traces out in the shape space (right). In the bottom
animation, the top row indicates the phase of the swimmer in a gait,
with the shape at each phase shown in the bottom row. The motion
can be viewed from left-to-right or right-to-left, with the vertical bar
(red) serving as a static reference point. . . . . . . . . . . . . . . . . 20

2.2 Data-driven Floquet analysis applied to a Hopf oscillator with system
noise. Trajectories of the oscillator converge to a (noisy) cycle (left
plots, three colors, one per trajectory). This cycle appears as a circle
in state-space (extreme left) and as sinusoidal time series (second
from left). By differentiation, we obtain vector field samples at the
data points (middle). We estimate the limit cycle as a function of
phase (second from right) computed using the phase estimator from
[RG11] providing a canonical map from every trajectory point to a
point with identical phase on the limit cycle (thin black lines, right
plots). Such surfaces of constant phase — isochrons — form radial
lines in the (particularly simple) case of the Hopf oscillator. . . . . . 26
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2.3 Illustration of the connection estimation process. We take the rhyth-
mic data, group it by phase, and average using a Fourier series to
obtain a periodic gait (left; red cycle). We collect shape velocity and
body velocity data (middle; rooted arrows) within the neighborhood
of point on the gait (black oval, left; zoomed in area, middle). Using
these data we fit a first-order approximation of the connection model
(black planes; right). We repeat this process for a collection of points
on the gait cycle at fixed phase intervals, and fit the parameters of
the estimated models with a Fourier Series to obtain a model of the
connection that smoothly varies with phase. Further detail in §2.4.2. 30

2.4 Comparison of model accuracy for 3 link and 9 link swimmers. [A]
We drove each platform to follow the extremal gait for the three-
link swimmer (black) generating 30 strokes (blue and red; plotted on
first two principal components). Of these, we plotted Cycles 13-18
(red) in the time domain [B], showing the additional motion predicted
beyond the template model by the ground truth model (black), the
data-driven model (teal), and the analytic model (red). Because both
analytic and data-driven models follow the ground truth closely, we
also plotted a scatter plot of their errors as a function of phase [C],
showing that the data-driven model (teal) has zero average error,
unlike the analytic (red) model. As the number of DOF grows (right;
9 link plots) the mean (solid) and variance (dashed) of the data-driven
model (teal) become smaller than those of the analytic model (red). 36

2.5 Comparing analytic and data-driven approximations. Given the same
input gait and attraction laws of Figure 2.4, we plotted the accuracy
of both models (data-driven in red; analytic in teal) over a range of
system noise values (0.5η, η and 2η example trajectories in insets),
and indicated the range of estimation error observed for x velocity
over an ensemble of 20 trials at each noise level. System noise can be
seen to strongly degrade the accuracy of the analytic model, whereas
the data-driven model retains accuracy at high levels of noise, at the
expense of accuracy at low noise levels. . . . . . . . . . . . . . . . . 37

2.6 Illustration of gait parameterization as an ellipse with bump func-
tions. In this parameterization each gait starts out as an ellipse – the
image of a first-order Fourier series (black). To this we added a col-
lection of overlapping, compactly supported, cosine window bumps.
The number of bumps is the only order parameter for complexity of
the model (here order 30). The sum of the circle and the plotted
individual bumps (teal) combine together to give a diamond shaped
gait cycle (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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2.7 Optimization is insensitive to initial gait. We provided 28 different
initial gaits (cartoons top) each with a different pair of joints (red dots
in cartoon) following ri(ϕ) = sin(ϕ), with all other joints set to con-
stant angle 0. We optimized each initial gait 3 times, for a total of 84
optimization runs, and plotted the mean (black dots) and covariance
ellipsoid (red) of the ensemble of gaits at every simulation iteration
on axes of cost and displacement. In these axes, cost of transport
(COT) corresponds to a slope. The initial gaits hardly move, giv-
ing a distribution along the horizontal axis, which improves to COT
36.9 after one iteration. As optimization progressed, all gaits moved
toward the COT = 7.0 line, with the final (30th) iteration showing
almost no progress and a fairly tight clustering of cost and displace-
ment (black ellipse). Each optimization procedure converged to a
serpenoidal motion, although these were not identical and retained
some hint of the original choice of active joints. We used the initial
gait highlighted (gray circle) for the noise regime testing in Figs. 2.8
and 2.9. By using reciprocal motions for initial gaits, we ensured
(using the Scallop Theorem; see e.g. [Pur76; Lau11]) that all initial
gaits have zero net displacement. . . . . . . . . . . . . . . . . . . . 41

2.8 Visualization of gaits throughout an optimization. We projected all
gaits onto the first two principal components of the final gait (viewed
as embedded in R8) and plotted the projection of the x motion con-
nection on that subspace (arrows). The initial gait (top cartoon),
allowing only two joints to move (red dots in cartoon swimmer), is a
line in the shape space coordinates (black line). The following itera-
tions expand this contour as an ellipse and eventually embellish the
ellipse with bumps (red closed ovals) leading to the final gait (black
oval) and the serpenoid shape (bottom cartoon). . . . . . . . . . . 44

2.9 Course of optimization under different levels of noise. We started
with the same initial gait (gray circle highlight in Figure 2.7 and top
cartoon in Figure 2.8), but multiplied the noise level η of Eqn. (2.18)
by 0.5, 1., 1.5, 2 (colors yellow, red, teal, and green, respectively). For
each noise level we plotted an example simulation to illustrate the
noise level (ovals framed in color; top). We ran 48 optimizations at
each noise level, allowing 60 iterations of 30 swimming cycles each,
and plotted the mean (circle marker) and covariance (translucent
ellipses) of these trials at every iteration of the algorithm, highlighting
the final mean (black dot) and covariance (black ellipse). All gaits
started unable to move, and reached COT 7.3 ± 0.4 with high-noise
optimal gaits being slightly less efficient than low noise gaits (COT of
mean 7.7 vs. 6.9). The two lower noise level achieved indistiguishable
cost. It is notable that at higher noises, optimization moved away
from the origin, producing larger motions with larger cost. . . . . . 45
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2.10 A pair of wheels under each module decreased friction along the x-axis
of a given module, as defined by the coordinate axis on the middle
module. The coordinate axis of the middle module defines the body
x-axis for the entire system, with the y-axis as shown making up the
lateral axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.11 This figure documents the first trial on the five-link snake hardware in
the loop optimization. The first gait provided to the optimizer was to
oscillate the tail joint with an amplitude of 1 radian, driven at 1

2Hz.
The robot barely moved (top left, initial and final position after 5
cycles image blended with alpha=50; initial module locations also as
red squares). We plotted the mean of the forward displacement per
cycle and orientation displacement per cycle (bottom left, with means
shown as red ’x’s and standard deviations as blue dots connected by
a black straight line). We plotted the score of the objective function
across the 80 cycles of each iteration (bottom right, with means shown
as a black line and standard deviations as black dashes). We also
plotted the history of the trajectories sampled on the system along
the primary 3 components of the sampling space (top right, average
shape trajectory shown in red and added perturbations in blue). We
computed the principal components via singular value decomposition
on the entire sampling set after the 9 iterations of 80 cycles across 4
joints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.12 This figure documents the final trial on the five-link snake hardware in
the loop optimization. We saw that after 9 iterations and 27 minutes
of experimental data, the robot had found an effective strategy for
locomotion on the high friction rubber mat. The meanings of the
subplots are identical to those highlighted in Figure 2.11. While the
optimization yielded a useful behavior, the cycles required to build
the model took longer than those in simulation. . . . . . . . . . . . 51
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2.13 This figure documents the first trial on the nine-link snake hardware
in the loop optimization. The first gait provided to the optimizer was
to oscillate the third joint from the left with an amplitude of 1 radian,
driven at 1

2Hz. The robot barely moved (top left, initial and final
position after 10 cycles image blended with alpha=50; initial module
locations also as red squares). We plotted the mean of the forward
displacement per cycle and orientation displacement per cycle (bot-
tom left, with means shown as red ’x’s and standard deviations as
blue dots connected by a black straight line). We plotted the score of
the objective function across the 30 cycles of each iteration (bottom
right, with means shown as a black line and standard deviations as
black dashes). We also plotted the history of the trajectories sam-
pled on the system along the primary 3 components of the sampling
space (top right, average shape trajectory shown in red and added
perturbations in blue). We computed the principal components via
singular value decomposition on the entire sampling set after the 12
iterations of 30 cycles across 8 joints. . . . . . . . . . . . . . . . . . 52

2.14 This figure documents the final trial on the nine-link snake hardware
in the loop optimization. We saw that after 12 iterations and only
12 minutes of experimental data, the robot had found an effective
strategy for locomotion on the laboratory floor. The meanings of the
subplots are identical to those highlighted in Figure 2.13. The ability
of a robot to optimize its behavior across 8 joints over 12 iterations
of 30 cycles per iteration is comparable to the results we found in
simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 Illustration of composing gait cycles. Here, the two group actions
(MA,MB) are applied in various orders and combinations. An n-
step finite horizon planner considers words, a concatenation of group
action letters, of length n. For a two letter action library, n step
planners consider 2n paths (trees in the left panel). We illustrated
a possible case of such motions. By assuming that the robot is ori-
ented tangent to the direction of motion, the resulting motions can
be represented by their projection on the translational plane (right
panel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Expressive power of the coverage cost. One has a variety of choices
for placement and weighting of coverage points. We provided some
suggestions for various design goals on the space of planar rigid body
motions. A user can prioritize versatility (panel A), zero-rotation
translation (panel B), or right lateral movement (panel C). Volumes
and planes are suggested regions for the user to evenly distribute
uniformly weighted coverage points Gi. . . . . . . . . . . . . . . . . 60
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3.3 Here we describe two mechanical systems that may appear as uncon-
ventional travelers. The two-slider swimmer (left) can move spheres
along prismatic joints. The motion simultaneously induces a thrust
on the system while changing the geometry of drag forces acting on
the system. We plotted the gaits selected for the two-slider swim-
mer on the rotational connection vector field [HC10] of the two-slider
swimmer (middle). This provided insight into how shape change can
influence body velocity. We can see that paths (shown in red) that
start in the corner at the origin, travel along a shape axis, sweep
at a constant radius to another axis, then return to the origin. The
connection vector field aided gait selection of the two-slider swimmer,
which is discussed in §3.4.2.1. The three-branch swimmer (right) has
three links that can rotate, fixed to the end of a triangle. Since the
shape space of the three-branch swimmer is not restricted to planar
representations, we selected gaits in a different way. . . . . . . . . . 62

3.4 Both systems were able to explore their local environments in a way
that is unrestricted to translation in the plane. We plotted paths
to show the number of steps required to arrive at a target pose,
projecting out the orientation (θ) component of the full SE(2) pose.
At 5 steps (cyan), the system had a strong variety of poses at its
disposal. We plotted motions available in 5 steps (1=black, 2=green,
3=blue, 4=magenta, and 5=cyan) Both systems appear to be capable
of navigating through environments with sparse obstacles. . . . . . . 63

3.5 When composing motions, one has to consider the sequencing of gaits
(like A and B pictured left) that may be separated in the shape space
R. Planning in the Stokes regime offers some convenient structure
for the composition of motions. In this regime, cycles in the internal
state generate group motions irrespective of the point along the cycle
that the motion starts. For example, the extremal gait (bold black
line on the right) for the three-link Purcell swimmer can be started
at any point on the loop (such as the purple markers). Execution
of a cycle from any point will generate the same body motion. This
structure greatly simplifies requirements for sequencing motions on
principally kinematic systems. . . . . . . . . . . . . . . . . . . . . . 68
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3.6 Purcell swimmers of varying complexity, such as the nine-link (pic-
tured bottom left) were optimized for three gaits that maximize cov-
erage. See §3.6.1 and §3.6.2 for details on the setup of the experiment.
We plotted the mean (top, solid lines) and standard deviation (trans-
parent bands) over 30 separate simulations of the average distance
of goal motions to the nearest available motion, denoted h. We can
see how h changes across trials and the number of joints used by the
swimmer (2=blue, 3=green, 4=red, 5=cyan, 6=magenta, 7=yellow,
8=black). At iteration 30 (marked by a vertical grey line), we plot-
ted how well the swimmers adapt to having the maximal amplitude
joint locked. We also observed how the quality of the coverage of the
library varies by the number of joints used by the swimmer (bottom
right) before (blue box plots) and after (green box plots) joint locking. 72

3.7 This provides a detailed look at two optimization process for a four-
link and five-link swimmer in the study summarized in Figure 3.6. We
plotted the 4 step horizon (1=black, 2=green, 3=blue, 4=magenta)
at various trials on the plane (left in each section) and on SE(2)
(right in each section). For reference, we plotted the unit volume
in SE(2) (gray box) over which the coverage points were uniformly
distributed. For the four-link swimmer, we showed the optimal policy
before injury in trial 22 (top right), the consequence of a locked joint
(grey dot) on the optimal policy in trial 30 (top middle), and the
optimal policy recovered while the joint remains locked in trial 52
(bottom right). The four-link swimmer was strongly impeded in its
ability to recover a high coverage collection of gaits post-injury. For
the five-link swimmer, we showed the optimal policy before injury in
trial 17 (top right), the consequence of a locked joint (grey dot) on
the optimal policy in trial 30 (top middle), and the optimal policy
recovered while the joint remains locked in trial 54 (bottom right).
The five-link swimmer was not impeded in its ability to recover a
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ABSTRACT

The tools of geometric mechanics provide a compact representation of locomotion

dynamics as “the reconstruction equation”. We have found this equation yields a con-

venient form for estimating models directly from observation data. This convenience

draws from the method’s relatively rare feature of providing high accuracy models

with little effort. By little effort, we point to the modeling process’s low data require-

ments and the property that nothing about the implementation changes when substi-

tuting robot kinematics, material properties, or environmental conditions, as long as

some intuitive baseline features of the dynamics are shared. We have applied data-

driven geometric mechanics models toward optimizing robot behaviors both physical

and simulated, exploring robots’ ability to recover from injury, and efficiently creat-

ing libraries of maneuvers to be used as building blocks for higher-level robot tasks.

Our methods employed the tools of data-driven Floquet analysis, providing a phase

that we used as a means of grouping related measurements, allowing us to estimate

a reconstruction equation model as a function of phase in the neighborhood of an

observed behavior. This tool allowed us to build models at unanticipated scales of

complexity and speed. Our use of a perturbation expansion for the geometric terms

led to an improved estimation procedure for highly damped systems containing non-

trivial but non-dominating amounts of momentum. Analysis of the role of passivity

in dissipative systems led to another extension of the estimation procedure to robots

with high degrees of underactuation in their internal shape, such as soft robots. This

thesis will cover these findings and results, simulated and physical, and the surprising

practicality of data-driven geometric mechanics.
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CHAPTER I

Introduction

1.1 Motivation

The field of robotics has succeeded in producing a variety of capable platforms

for exploration. These range from wheeled vehicles to platforms that walk, crawl,

slither, swim, and fly. In many cases, the roboticist adds a degree of freedom to

the mechanism, expanding its range of expressions. The added joint’s potential to

create new, better, safer, and more useful behaviors is inhibited by the added ex-

ponential increase in sampling complexity that is now required to catalog and cache

the expanded space of robot maneuvers. Here the infamous curse of dimensionality

inhibits the roboticist from designing an arbitrarily complex robot and immediately

arriving at a portfolio of useful behaviors for locomotion. Algorithms that can handle

behavior discovery and optimization on complex robots have long been of interest to

robotics researchers, and challenges in their development persist today.

Some methods, including blackbox nonliear optimization [Wei+02; Cal+14] and

reinforcement learning [Gu+17; Haa+18; Ha+20] considered the robot to have no ex-

ploitable dynamical structure. During the optimization of behaviors, an action of the

robot is conventionally represented by some parametrization. These methods treated

the sampling of a behavior or gait1 parametrization as a direct experiment on the
1A gait is a rhythmic behavior.
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robot. Here, the purpose of each experiment is to measure some performance metric

that is being optimized. Some typical metrics include speed, efficiency, accuracy, and

stability. These methods possess the advantage of getting real-world experimental

validation with each experiment. However, these methods are sampling inefficient

because they never use a dynamical model to inform the search for useful behaviors.

In the time it took to sample one gait on the robot, thousands of offline samples

could have been passed through a dynamical model to simulate (predict) what the

result of the experiment would have been. Researchers have used neural nets to model

dynamical systems from data, providing the capability to sample trajectories offline

[Ban+16; Nag+18]. The neural net data-driven approximation of the dynamics could

then guide the search for a useful policy or control strategy on the robot. As more

parameters and layers are added to a given neural net, its capacity to represent more

general dynamical systems behavior improves. The cost of this generality feature is

the tendency to overfit low quality models to datasets of limited size. Unfortunately,

there is very limited structural knowledge in the field of machine learning to inform

how much shrinking of a neural net is required to reduce overfitting, or how large a

neural net must be to maintain its ability to capture complex system behaviors.

Other robotics researchers attempted to use dynamics and physical models as a

structural guide for the optimization of behaviors. In the extreme, roboticists modeled

the robot via submission of the full body configuration to a finely tuned physics

engine [Tod11; Hee+17; Ana+18; Mae+18]. These model intensive methods allowed,

as mentioned above, for the sampling of many trajectories offline. For model intensive

behavior optimization algorithms, the solutions produced are fundamentally limited

by the fidelity of the model used. When these models were accurate with respect to

real-world robot encounters, the methods were quite successful. However, when true

features of the robot interaction were not captured by the model, it substantially

limited the utility of these methods. The challenge of extending simulation based
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results to the real world is well documented [Sün+18; Tan+18; MJD18].

Deriving models from first principles (such as by Newtonian, Lagrangian, or

Hamiltonian mechanics) allowed for the use of well developed methods for control

and stability analysis [BLM; Wes+18] and even the analytical derivation of optimal

gaits [HC11a]. Some gait optimization methods yielded successful results on robots

such as bipeds using the full complexity of first principles models [Kaj+; GG17].

Typically, methods using analytical models require precise accounting of the shape

and mass distribution of the robot components. As complexity increases, analysis

of the model becomes more opaque and specific to the system. If this complexity

involves adding a degree of freedom, behavioral optimization becomes more sampling

intensive.

A theory for reduced-order control architectures in robots and animals [FK99;

Sei+17] provided a way to think about useful model reductions for these systems.

Analogous to the case of dropping layers and parameters in neural nets, reduced-

order models here involve dropping degrees of freedom in the mechanical model or

introducing coarse representations of the robot’s mass distribution or morphology.

Some popular simplistic models (termed ”templates”) for legged systems include the

lateral leg spring (LLS) model [SH00b; SH00a], and the spring loaded inverted pendu-

lum (SLIP) model [BF93]. Here, reductions allow for a lower space of control inputs

and behavioral outputs to be studied, making analysis and sampling more tractable.

For example, researchers analytically explored the passive dynamics of reduced-order

models of bipedal and quadrupedal gaits to generate a continuum of stable gaits span-

ning various walking strategies [Gan+15; Gan+18]. However, just as in the case of

neural nets, it is formally unclear when these reduced-order, first principles models

lose the representational capacity critical to predict accurate motions on the physical

hardware. Some current research explores optimizing the ability of a reduced-order

model [CP20] or pair of reduced or models [GP07] to generate useful modeling and
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control architectures for higher-order systems. The use of Gaussian processes [DR11]

and representation learning frameworks [BZL06] suffer a similar issue. It is often un-

clear what level of reduction is acceptable to fully represent even a local neighborhood

of the dynamics.

In this thesis work, we provided a framework for data-driven modeling where re-

ductions are informed by geometry and physics. The first reduction involved the well

understood Lagrangian reduction under symmetry [CMR01; Blo+96]. This formu-

lation used homogeneity in the environment to remove dependence on the position

of the robot from the dynamics. The second reduction involved the insight that as

the role of generalized momentum in the dynamics is minimized, the dynamics col-

lapse to a first-order model captured by a mechanical connection [MO98]. Through

quotienting position dependence and second-order dynamics from the space of mo-

tion model constraints, we maintained precise knowledge of what representational

capacity is lost. Employing the tools of data-driven Floquet analysis, we obtained

a phase-sample pairing that we used as a means of grouping related measurements.

This allowed us to estimate a reconstruction equation model as a function of phase

in the neighborhood of an observed behavior. By using this approach, we fit a data-

driven model to system behavior that is both general to the expressive capacity

of the systems being analyzed and compact enough to quickly fit observation data

without overfitting. The ability to system identify quickly and the clarity of the re-

quired physical assumptions involved in the reduction make this an attractive method

for roboticists using field-deployed systems. It is a low effort, high accuracy system

identifier. The cost of access to use these rare qualities is to be able to specify the

relative roles of inertia and damping in the system, as well as to specify the existence

of environmental symmetries. In order to use the tools developed in this work, the

robot must have an interaction with the environment that is not dependent on where

it is placed in the environment. Additionally, friction must dominate inertia in the
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dynamics of the system. We will specify more concretely the mathematical meaning

of these statements, but they remain physically intuitive.

In this thesis, we approach the curse of dimensionality by building data-driven

models of behaviors in their operating environment that are highly sample efficient

(we show results where models are built on eight degree of freedom systems with

30 cycles of data). We took advantage of the ability to compute behavioral models

with small amounts of data to inform iterative behavioral modifications via a policy

gradient approach. This method allowed robots to optimize various navigation-related

goal functions within minutes, making such strategies realistic for use in the field.

Next, we will discuss the background of modeling systems through the perspectives

of geometric mechanics and oscillator theory. The technical tools developed there

provide the structure for the key contributions to data-driven modeling presented in

this thesis.

1.2 Background

1.2.1 Geometric Mechanics

In the field of geometric mechanics, a system’s dynamical constraints and group

symmetries can generate a reduced system [CMR01; Blo+96]. The dynamical con-

straints are typically derived from Lagrangian or Hamiltonian conservation laws,

whereas group symmetries typically extend from symmetry in the environment. These

reduced systems and their consequently simplified models allow deeper insight and

analysis to the behavior of systems (such as the snakeboard [Ost96]) whose equations

take an otherwise opaque form, requiring inspection by numerical simulation [Ost+].

Writing control systems with the structure of a reduced Lagrangian [OB98], the equa-

tions of motion can be split into separate pieces consistent with the geometric features

induced by the symmetries of the system. This controllable form has value to the
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field of robotic locomotion, where the equations for internal variables, position, and

momentum are all factored as dependent but distinct equations.

Analysis of the equations leads to a simple observation that zero momentum sys-

tems can encounter a subsequent reduction. Systems whose pfaffian constraints fully

determine a locomotion map can be further reduced to a first-order dynamical sys-

tem, a mechanical connection [MO98] that linearly maps internal shape velocities to

body velocities of the system. This class of systems includes those with no initial mo-

mentum operating under momentum conservation laws (such as a floating astronaut

[MO98] or high Reynolds swimmer [HC13]). For these examples, starting from rest

in the absence of a gravitational field eliminates the ability to start or accumulate

momentum. Another way to arrive at a connection is to add a Rayleigh dissipation

function that dominates the dynamics. In the case of the swimmer, adding dominat-

ing drag forces can push it into the low Reynolds regime [HC13].

The work of [HC11a; HC15; RH19] used the insights provided by the structure

of the mechanical connection to develop new approaches to coordinate system se-

lection, gait identification, and behavioral optimization. The work in those papers

used a global analytical model. However, for real-world animals and robots, high fi-

delity global models are often challenging to obtain. System identification techniques

[HC13; Dai+; Sch+19] allowed for data-driven model extraction via a large sampling

of animal or robot maneuvers. A limitation of these methods is that in the field,

one can often not afford to spend resources collecting observation data. Modeling

techniques that are lean on data requirements can be used and deployed more easily.

Furthermore, requiring little data to update or re-compute models enables a modeling

approach to be more adaptive to environmental and internal changes. One way to

reduce data requirements of previous work may involve modeling the connection in

the neighborhood of a behavior, rather than trying to measure more global properties

of the connection. In the next section, we discuss an approach to modeling rhythmic
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behaviors from observation data.

1.2.2 Data-Driven Oscillator Theory

Animal and robot locomotion often exhibit rhythmic qualities. Like in [Sei+17],

we consider a rhythmic behavior to be one that has an exponentially stable periodic

solution in the configuration space. A phase oscillator offers a very simplistic model

for this type of behavior, where a phase points to a value on a cycle in the config-

uration space (including the internal shape and velocity in the body frame). The

projection of a complex oscillating system to the reduced-order structure of a cycle

inherited some perspective from [FK99], which outlined a theory of reduced-order

control architectures in animals and robots. This level of simplicity is valuable for

the analysis of many systems, but more complex models can capture more detailed

features of system locomotion. A more general asymptotically stable oscillator for the

system can be hypothesized, such that a differential equation governs the dynamics

around a gait (cycle on the phase oscillator) within some stability basin [Sei+17].

For systems that meet these criteria, some natural questions to ask when observing

locomotion data are: What is the period of the gait? What is the average behav-

ior of an oscillation with respect to phase? What are the dynamics of attraction to

this average behavior? Data-Driven Floquet Analysis provides closed form solutions

to these answers [Rev09]. The estimator assumes a general, asymptotically stable

oscillator, which has been shown to apply even for some classes of hybrid systems

[BRS15; RK15a]. While this generality in representation can lead to models that can

be applied to a broad class of systems, large quantities of data are typically needed

to compute predictive models. If a system were to exhibit only first-order dynamical

structure, such as the mechanical connections of the previous section, it would likely

reduce the data requirements needed to compute these predictive oscillator models.

Another contribution from data-driven oscillator theory is the development of
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algorithms for the estimation of phase. There are heuristic examples of phase assign-

ment which are applied to various use cases, such as prosthetic limbs [Gre+14]. A

data-driven phase estimator called phaser [RG08] computes the asymptotic phase map

given raw oscillation data and specification of a Poincare section. This asymptotic

phase map estimates what phase any data point would have if it were projected onto

its value on a phase oscillator. For the most recent developments on improvements

to this estimation, see [Kva09].

One use of phaser is for the grouping of noisy data to build phase-ordered models

of robot actions. It can also be used to investigate hypotheses about the neuro-

mechanical control architectures of animals [RKF09]. The inspiration of these tools

included various hypotheses about the role of phase feedback in locomotion, such

as phase reduction in the nervous system [HC85] and the effects of the structure of

coupled oscillators on central pattern generators [Gol+99].

1.3 Contributions

1.3.1 Chapter 2: Designed a sample efficient estimator for the connection

governing a periodic motion

The technical contributions of this chapter are the construction of the data-driven

geometric modeling framework and the subsequent data-driven geometric gait opti-

mizer. We showed in this chapter that for systems with the structure of a mechanical

connection (reduced lagrangian with no momentum), noisy robot behaviors can be

modeled from data in a highly sample efficient way. We built these models by applying

data-driven oscillator theory and assuming the first-order dynamical structure of the

mechanical connection. This resulted in a data-driven geometric modeling technique

that can be plugged into a broad class of dissipative systems acting in homogenous

environments.
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1.3.2 Chapter 2: Designed a policy gradient method that uses the con-

nection estimator

We complemented the ability to compute local models in the vicinity of behav-

iors with the development of a policy gradient optimizer. We call this framework

data-driven geometric gait optimization, detailing useful ways to parametrize princi-

pally kinematic gaits and step through the parameter space in between optimization

iterations.

1.3.3 Chapter 2: Validated the optimization method on simulated Purcell

swimmers and physical wheeled snake robots

Using the three-link and nine-link Purcell swimmer, we showed that with 30 cy-

cles of following an extremal gait under nontrivial noise perturbations, high fidelity

models could be computed from the data for the swimmers. This validated the ca-

pacity of the modeling framework to yield predictive models for systems of small and

high dimension. The data-driven geometric gait optimizer was validated through its

consistent convergence to high efficiency behaviors, provided a wide variety of initial

gaits and levels of perturbation influence. The validation of these tools is detailed

in the online publication [BHR18]. Using the same algorithm, we showed that the

implementations of [BHR18] were successful on hardware platforms in §2.9, such as

the five-link and nine-link wheeled snake and various other robots. The modeling and

optimization of simulated systems covered in this Chapter were published in Springer

Nonlinear Dynamics [BHR18].

1.3.4 Chapter 3: Developed a primitive library optimization metric termed

coverage

Individual performance criteria, such as robustness and efficiency, often drive be-

havior selection in mobile robotic platforms. However, navigational capabilities can
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rely heavily on the coordination of all behaviors available to the robot, rather than

the performance of one behavior. Here, we studied how a collection of available gaits

(cyclic internal motions) can be related to the variability and density of external mo-

tions that a system can achieve on its position space represented as a Lie group. We

attempted to capture this capability, termed "coverage", with an associative fast-to-

compute cost function that can be used to simultaneously optimize a collection of

gaits. The cost function can be weighted such that users may specify the importance

of various classes of external motions. The technical contribution of this chapter is

the development of the coverage metric for gait optimization. We highlighted the

advantage of valuing a collection of behaviors for the qualities of their composition

rather than their individual qualities.

1.3.5 Chapter 3: Validated this optimization on Purcell swimmers that

experience injury and a robot made of tree branches

We designed two unconventional viscous swimming robots, called a two-slider

swimmer and the three-branch swimmer. The two-slider swimmer cannot translate

without rotating while executing a gait that does not intersect itself. The three-

branch swimmer lacks the bilateral symmetry typically seen in robotic platforms. We

showed that both of these systems are able to achieve a collection of useful poses for

navigation by composing a small collection of gaits. This demonstrated the value of

querying the ability of a gait library to cover a space of local pose variations rather

than the individual qualities of the gaits. By placing this new metric into the data-

driven geometric gait optimization framework, we presented the ability of the Purcell

swimmer to find high coverage collections of gaits under a variety of circumstances.

We tested convergence to high coverage gait libraries while changing the number of

links of the swimmer and the initial gaits available to the optimizer [BR19]. We

extended these results by taking the swimmers’ post coverage optimization and lock-
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ing the joint exhibiting maximal amplitude. We saw that swimmers with four or

more joints are able to quickly recover a high coverage collection of gaits of similar

quality. Finally, we plugged a robot made of tree branches into the framework. The

system was able to find a collection of gaits for navigation with just 10 minutes and

24 seconds of experimental data [BR20a].

1.3.6 Chapter 4.1: Designed a sample efficient estimator for shape-underactuated

dissipative systems

The technical contribution here is the extension of the data-driven geometric mod-

eling tool from fully actuated dissipative systems to shape-underactuated systems. We

propose this for modeling of systems like soft robots, which typically have a handful

of control inputs and a high dimensional internal state. We also showed that the

control inputs for these systems could be converted to the space of forces and torques

rather than shape velocities. This is more compatible with the control of actuators

that are typically used in soft systems.

1.3.7 Chapter 4.1: Validated the model accuracy of the estimator on a

collection of simulated shape-underactuated dissipative systems

We showed that a first-order Taylor expansion of the geometric model, with light

assumptions on the passive dynamics, contains a different collection of regression

terms than a naive first-order and second-order Taylor expansion of the dynamics.

The proposed approximation contains more precise regressors than the naive first-

order Taylor expansion. The proposed approximation also contains regressors that

scale linearly with the number of passive elements, rather than the quadratic growth

seen in the naive second-order approximation. The ability of the proposed approx-

imation to remain compact as the number of passive elements increases could have

strong ramifications for soft robotic systems, which typically have a high degree of un-
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deractuation. We demonstrated the ability of the proposed approximation to model

a variety of shape-underactuated viscous swimming platforms. We started with the

simple swimmers that can only achieve linear motion and built our way up to sys-

tems with six underactuated degrees of freedom (via the nine-link Purcell swimmer).

Chapter 4.1 is avaiable on arXiv [BHR20].

1.3.8 Chapter 4.2: Designed a sample efficient estimator for systems in

the perturbed Stokes regime

Our collaborator Kvalheim applied results from singular perturbation theory to

show that when momentum decays quickly, it exponentially converges to a function

of shape and shape velocity. Thus, momentum is an output rather than a state

variable. Our contribution to the work was to extend the class of regressors available

for modeling the connection so that it could capture this additional term.

1.3.9 Chapter 4.2: Validated that the perturbed Stokes models are ben-

eficial in intermediate Reynolds numbers

Using a simulation of a paddleboat over Reynolds numbers ranging from 1
10 to

10 we demonstrated that the perturbed Stokes estimation offers consistently higher

predictive quality than the connection estimation. We showed that this beneficial

performance is consistent for nominal gaits and gaits that are extremal in the viscous

limit. We also showed that the benefits of the perturbed Stokes model persisted when

adding joints to the system. The results of Chapter 4.2 were published in Springer

Nonlinear Dynamics[KBR19].

1.4 Discussion

In this thesis, we demonstrate the ability to rapidly engineer behaviors for a va-

riety of complex systems. These have numerous important ramifications for the field
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of robotics. Because we model the robots over a space of dynamical constraints rele-

vant to dissipative systems, robots can be made of many shapes, sizes, materials, and

actuation methodologies and still be modeled by the exact same algorithm. This alto-

gether avoids the cumbersome burden of supplying the morphology, mass distribution,

and compliance properties to a simulator or first principles modeling framework. This

yields low effort, high accuracy modeling for the engineer that could facilitate new

levels of performance for field robots, such as in the following examples. Robotic fleets

can be deployed in the field for exploration tasks and persist autonomously through

substantial environmental changes (gravel to sand) or internal injuries (motor fail-

ures). The ability to self-model (Chapters II and IV) and produce a compact set of

behaviors for useful navigation policies (Chapter III) can enable systems to quickly

get back up and running. These methods naturally extend to the use of imprecisely

fabricated robots acting in locations with uncharacterized environmental properties.

Robots made by some nontraditional fabrication methods can include ones made of

paper and tape [Fit+17], soft robots made of fastened pneumatic actuators [Bru+20],

and dielectric elastomers [SBC15]. For these systems, the ability to system identify

quickly allows for the construction and deployment of robots without precision book-

keeping of their mechanical parameters. Furthermore, robots are getting smaller,

often for the purposes of biomedical applications [Ric+17]. These systems are ex-

pected to experience low Reynolds interaction with the environment due to their size.

Other biomedical applications, such as an artificial heart muscle, appear to act in

friction dominated environments [Par+20]. These robots have complicated sources of

actuation, and their operating environment can vary greatly. Having efficient sam-

pling algorithms that make behavior engineering procedural and time-efficient could

open new possibilities in the field of biomedical engineering.

The methods of this thesis are suitable for systems that are imprecise in both

fabrication and control. A strength of the algorithms presented is their ability to

13



model high noise behaviors. These methods are informed by experiences in biology

[Rev09], where organisms are known to experience substantial variation in internal

motion while executing cyclic behaviors like walking, crawling, and slithering. Meth-

ods for the assignment of phase [RG08] permit organization and analysis of noisy

behaviors. The use of such tools positions our methods to be used to model both

animal behaviors with low precision or robotic systems with low gain control. By

building intelligent algorithms that admit design and control sub-optimalities, we

suggest an expansion of the robotics community’s interpretation of what constitutes

a practically useful mechanism. Cost effective robots are more likely to make their

capabilities accessible to a broader audience, mitigating financial barriers to engaging

with valuable technologies, whether these values lie in healthcare, education, manu-

facturing, transportation, or leisure.

A major advantage of the methods of this thesis is that it makes robotic engineer-

ing with low cost hardware more accessible. While the methods result from rigorous

dynamical systems analysis, the assumptions for implementation are physically in-

tuitive in nature. An understanding of friction, inertia, environmental homogeneity,

and basic trajectory design are the primary requirements for successfully engineering

systems by this methodology. Understanding of advanced physics, control theory,

inverse kinematics, Denavit-Hartenberg tables, hard and soft constraints, and hyper-

parameter tuning are not necessary to use these tools.

Lastly, we will touch upon how the tools of this thesis may allow us to test new

hypotheses in biomechanics and evolution. The results from Chapter IV §4.2 give us

a way to think about how features of the dynamics change as the roles of inertia and

friction are modified. This allows us to ask interesting questions about the evolution

of locomotion strategies and morphologies in biological organisms. Earth’s earliest

organisms may have been microswimmers, inhabiting friction dominated regimes. If

so, as branches of their evolutionary trees began to leverage inertia as a contribu-
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tor to locomotion, what changes occurred in the system morphology and nervous

system? Were there some changes that were particularly advantageous from the ge-

ometric viewpoint? These are questions we now have the tools to test hypotheses

about. For some of today’s biological movers, we observe thought provoking trends.

Agile animals like gazelles appear to have less mass distribution in their appendages,

removing some complexity and nuance that could otherwise result in the dynamics

on p. For example, we can see through principles of momentum conservation that,

during an aerial phase, low mass appendages can diminish the impact of shape change

on change in the angular momentum of the center of mass. This is desirable from

the perspective of building an estimator for body velocity that has a smaller number

of dependent variables. Does this make it easier to learn behavioral strategies for

perching and leaping? For example, is there a consequently simpler organization of

the neural system that relates to feedback for maneuver execution? The tools of this

thesis are limited to the Stokes and perturbed Stokes regime, but future work could

extend these estimators to systems like birds and gazelles, where momentum plays a

more significant role in important behaviors. Using data-driven geometric mechanics,

we can build the ability to assess the degree of complication in the dynamics in a

way that can be compared across systems of vastly different morphologies. Robotics

offers a testbed to further explore such hypotheses and ascertain which geometric

principles can be embedded usefully in mechanism design. Moving to the friction

dominated regime, animals like snakes and octopi appear to have maneuvers that are

dominated by contact and friction forces rather than inertia. The ramifications of

this on the dynamical model, highlighted by the geometric formulation, are that the

simple, Jacobian-like mechanical connection model governs the dynamics. By being

friction dominated, the system avoids any interaction with the complexity-inducing

momentum. These systems happen to have much more widely distributed mass than

their agile counterparts. According to data-driven geometric mechanics, there is no
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body velocity estimator complexity cost to mass distribution in friction governed

systems. With data-driven geometric mechanics, we have a toolbox for systems engi-

neering, but also a toolbox to investigate hypotheses about the advantages of various

biological behaviors and morphologies.
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CHAPTER II

Data-Driven Modeling and Optimization in the

Stokes Regime

2.1 Motivation

The ability to move effectively through the environment is both a defining property

of animals and a highly desirable capability for man-made systems such as robots and

vehicles. Locomotion (aquatic, terrestrial, and aerial) is most commonly achieved by

having a moving body change shape in a way that produces reaction forces from

the environment; these reaction forces in turn propel the body. A key question in

both robotics and animal research is thus: Does a given gait cycle optimally exploit

this propulsive relationship, and if not, what changes to the gait would improve its

performance?

This paper details a new approach to answering these questions, by presenting a

practical extension of geometric gait optimization theory that incorporates techniques

from the data-driven modeling of gaits as oscillators. By efficiently producing a local

geometric mechanics model of the observed motion, we can then employ this model

to rapidly evaluate the gradient of a goal function with respect to gait parameters.

Because this performance simulation is very fast, the number of gait parameters being

optimized can be so large that estimating such a gradient by direct experimentation
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is nigh impossible; in this chapter we give an example with 264 parameters optimized

in 30 trials of 30 cycles each.

The framework presented in this paper is made possible by combining work in

two fields that have developed largely in parallel. In the field of geometric mechanics,

Hatton has developed a framework for characterizing gait efficiency in terms of the

length and area of the cycle in the shape space [HC11b; HC15; HDC17; RH16;

RH17]. Applying these principles to systems that lack an analytical model remains an

open area of investigation, especially when high-dimensionality makes the exhaustive

exploration of system dynamics from [Hat+13; Dai+] infeasible, or when considering

an animal whose motions we cannot directly command.

In the field of oscillator theory, Revzen developed a set of tools for extracting

oscillator-like motion models from noisy and irregularly-spaced data [Rev09; RG08;

RG11]. In addition to the method’s robustness to the intrinsic system noise of bi-

ological and physical systems, it extends well to high dimensional shape spaces. A

limitation, however, is the lack of insight that these models provide for gait improve-

ments.

Applying the data-driven oscillator and geometric approaches together enhances

their respective capabilities: the data-driven oscillator tools can provide the geometric

models with the specific information needed for evaluating a performance criterion

and its gradient, improving their predictive power relative to the quantity of available

data. Conversely, by viewing the system as a mechanical connection (as a opposed

to a general second-order dynamical system) the data-driven oscillator models can

ignore certain aspects of the system dynamics that are irrelevant to the optimality of

the gait, thus significantly reduce the algorithmic complexity of model extraction.

Here, we lay out a framework for combining the geometric insights from Hatton’s

work with the data-driven oscillator model construction from Revzen’s work. Our

combined approach uses noise in the dynamics of a system that follows a nominal
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gait cycle to build a model of the system dynamics in the neighborhood of this gait

cycle. Inserting this model into our geometric tools then provides estimates of both

how optimal this gait is relative to nearby cycles and what perturbations can be

applied to the cycle to best improve its performance. This estimation technique has

two primary use cases.

• The first is as a tool that allows for verification of postulated goal functions for

observed animal locomotion.

• The second is in field robotics, where an efficient, noise resistant gait optimiza-

tion algorithm can potentially enable learning effective gaits without requiring

precise analytical models of the robot or its interactions with the environment.

The approach presented in this paper offers a collection of advantages in speed,

scalability, and model reduction for the estimation of motion models and subsequent

optimization of gaits. These advantages derive from the use of geometric mechanics

models governed by a connection (the "principal kinematic case" in the language of

[OB98]). The absence of a momentum term in the equation of motion implies that the

contribution of different segments of motion do not strongly depend on each other,

allowing motion models to be integrated in parallel instead of sequentially in time.

With multi-processor computing becoming cheaper, this offers the opportunity for

dramatic speedups in the computation of motion plans. Additionally, connections

expose the fact that the systems they govern are, for practical purposes, half the

dimension of general mechanical systems. As the very name “geometric mechanics”

suggests, in these systems the geometry of motion in body shape space governs the

outcome of motions, admitting a description with only one dimension per degree of

freedom, instead of the two needed in conventional Newtonian mechanics. Despite this

great promise of geometric mechanics models, little work has been done on producing

them in a data-driven way. Developing a tool for the data-driven creation of such
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Figure 2.1: Key elements of the geometric paradigm, drawn from to [HC11b; HDC17].
Given a locomoting system (left), the system dynamics and constraints produce a
relationship between changes in shape and changes in position (center). When the
system executes a cyclic change in shape (bottom), the net displacement induced by
this gait corresponds to how much curvature of the constraints the gait encompasses,
and the time-effort cost of executing this gait is the length of the path it traces out in
the shape space (right). In the bottom animation, the top row indicates the phase of
the swimmer in a gait, with the shape at each phase shown in the bottom row. The
motion can be viewed from left-to-right or right-to-left, with the vertical bar (red)
serving as a static reference point.

models allows us to explore their value for both scientific and engineering applications.

Below we review the geometric and data-driven approaches, and then synthesize

them into a tool for simultaneously estimating and optimizing locomotion models.

Using simulated mechanical swimming platforms, we illustrate the precision of these

data-driven geometric mechanics models, and demonstrate that optimal gaits can be

learned with very few trials. Finally, we discuss the utility of the new methods for

both system identification and field robotics.

2.2 Geometry of Locomotion

The first thread of prior work that this paper draws upon is geometric modeling of

locomotion. When analyzing a mobile deformable system, it is convenient to separate

its configuration space Q (i.e. the space of its generalized coordinates q) into a position

space G and a shape space R, such that the position g ∈ G locates the system in
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the world, and the shape r ∈ R gives the relative arrangement of the particles that

compose it.1

During locomotion, changes in the system’s shape provoke reaction forces from

the environment that in turn drive changes in the system’s position. For the purposes

of this paper, we adopt a (geometric) locomotion model

◦
g = A(r)ṙ, (2.1)

where A, the local connection, linearly maps the shape velocity ṙ to the body velocity
◦
g = g -1ġ (i.e., the position velocity in the body frame’s current forward, lateral, and

rotational directions). The local connection acts similarly to the Jacobian map of a

kinematic mechanism — it takes the velocity of joints to the position velocity (here,

of the body frame instead of end effector) that they generate under the constraints

imposed on the system.

We model the cost of changing shape as corresponding to the length s of the

trajectory through the shape space,

s =
ˆ √

drTM(r) dr =
ˆ T

0

√
ṙTM(r) ṙ dt, (2.2)

whereM is a Riemannian metric on the shape space that weights the costs of changing

shape in different directions.

This connection-and-metric model applies to systems that move by pushing di-

rectly against their environment with negligible accumulated momentum in “glid-

ing” modes, and whose energetic costs are dominated by internal or external dis-

sipative effects. This model has been analytically derived for swimmers in viscous

fluids [AR08; HDC17], and experimentally validated for several robots in dry granu-
1In the parlance of geometric mechanics, this assigns Q the structure of a (trivial, principal) fiber

bundle, with G the fiber space and R the base space.
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lar media [Hat+13; Dai+; McI+16].

The meaning of the cost encoded by the metricM depends on the system physics,

but at a high level it can be considered as the time it will take the system to execute the

motion given a unit power budget. For systems moving in dry-friction environments,

s can be specifically taken the energy dissipated while executing the motion [Dai+];

for the viscous friction model we consider in this paper, s is the time-integral of the

square root of power dissipated [HDC17].

2.2.1 Extremal and optimal gaits

Locomoting systems typically move by repeatedly executing gaits — cyclic changes

in shape that produce characteristic net displacements in position. Such cycles can

be chained together to produce larger motions through the world.

Geometrically, a gait θ is a cyclic trajectory through the shape space with period

T ,

θ : [0, T ]→ R (2.3)

θ(0) = θ(T ), (2.4)

and the system shape at any time t while executing the gait is r = θ(t).

Under the locomotion model in equation 2.1, the net displacement over one cycle

of a gait is equal to the path integral of the local connection A over that trajectory.

By an extension of Stokes’ theorem, this displacement can be approximated2 as the

integral of the curvature of A over a surface θa bounded by the gait,
2The quality of this approximation depends on the choice of body frame for the system, which

can be optimally selected once A is calculated in an arbitrary convenient frame. See [HC11b; HC13;
HC15] for further discussion of this point.
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gθ =
‰
θ

gA(r) dr ≈
¨
θa

curvature DA︷ ︸︸ ︷
dA +∑[Ai,Aj>i

]
. (2.5)

The curvature DA (formally, the total Lie bracket or covariant exterior derivative

of A [HC15]) measures how much the coupling between shape and position motions

changes across the cycle, and thus how much displacement the system can extract

from a cyclic motion. Its components dA and [Ai,Aj] are the exterior derivative

(curl) and local Lie bracket of the system constraints, and respectively capture the net

forward-minus-backward motion and parallel-parking motion available to the system.

They are calculated as

dA =
∑
j>i

(
∂Aj

∂ri
− ∂Ai

∂rj

)
dri ∧ drj (2.6)

and

[Ai,Aj] = g -1
(
∂(gAj)
∂g

Ai −
∂(gAi)
∂g

Aj

)
dri ∧ drj (2.7)

=


Ay
iAθ

j −Ay
jAθ

i

Ax
jAθ

i −Ax
i Aθ

j

0

 dri ∧ drj, (2.8)

where the wedge product dri ∧ drj is the basis area spanned by the ith and jth basis

vectors.

For systems with two shape variables, dA and [Ai,Aj] have only a single compo-

nent (on the dr1∧dr2 plane), and equation 2.5 reduces to a simple area integral whose

integrand is the magnitude of DA. Extremal gaits for these systems (maximizing net

displacement per cycle) lie along zero-contours of DA, maximizing the sign-definite

region they enclose.
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As a general rule, these extremal gaits are more interesting mathematically than

as a motion for a robot or animal to follow. With the exception of sports such as

basketball that explicitly count steps, displacement-per-cycle is not a useful quantity

to optimize, as it leads to wasting time or energy eking out all the available dis-

placement in the cycle, instead of executing smaller but more productive cycles more

times. When considering the optimality of a gait, it is thus typically more useful to

measure its efficiency by dividing the displacement the gait induces over each cycle

by the effort or time required to execute it.

In our model, we take the efficiency γ as the ratio between net displacement gθ

it induces and the path-length cost s calculated in equation 2.2, γ := gθ
s
. The path

length cost, s, which in the viscous case determines the energy dissipated over a cycle

under optimal pacing, can be computed independently of the pacing of the gait. This

enables γ to represent the proper notion of efficiency for such systems [HDC17]. Note

that maximizing this efficiency is equivalent to maximizing speed at a given power

(or minimizing power for a given desired speed), and so gaits with this property are

always the most desirable for effective locomotion, even when the goal is “move fast”

instead of “move efficiently.”

As discussed in [HDC17], optimally-efficient gaits are contracted versions of ex-

tremal gaits: they give up low-yield regions of DA in exchange for a shorter path

length, and thus a smaller expenditure of power or time. These gaits lie along curves

where the gradient of efficiency with respect to changes in the gait parameters p,

∇pγ = ∇p
gθ
s

= 1
s
∇pgθ −

gθ
s2∇ps (2.9)

is equal to zero. As further discussed in [RH16; RH17], the gradient terms in equa-

tion 2.9 can be expanded in terms of DA, M and ∇M evaluated along the gait.

Given these expansions, the dynamics of optimizing γ resemble those seen in a soap
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bubble, with an inflating pressure provided by DA balanced against a surface tension

corresponding to s.

2.2.2 Empirical geometric models

The geometric approach described above was originally developed for systems

whose equations of motion can be shown from first principles to have the form in

equation 2.1. Building on these results, we demonstrated [Hat+13; Dai+] that the

constraint curvature DA is also a useful tool for understanding the locomotion of

systems whose dynamics are less “clean,” and are only tractable through numerical

modeling or empirical observation.

In these previous works, we first used nonlinear models [Hat+13] or experimental

measurements [Dai+] to sample the relationship between ◦
g and ṙ across the tangent

bundle TR. We fit a linear form to this relationship on a grid of tangent space base-

points TrR, giving A on a sampling of the shape space, from which we then calculated

the components of DA as per equation 2.6 and equation 2.7. Plotting the curvature

over the shape space then allowed us to directly identify effective gaits for translation

and rotation for three-link and serpenoid system geometries, following the procedure

illustrated in Figure 2.1.

2.3 Oscillators and Data-Driven Modeling

The second thread of prior work that this paper draws upon is a robust theory

of gaits as oscillators, combined with a statistical approach to data-driven model

construction. For an observed physical system, it is not always known a priori what

this limit cycle is, what the dynamics of attraction to the limit cycle are, or even what

the precise period of oscillation is. These properties of the gait can be extracted using

techniques of data-driven Floquet analysis (DDFA)[Rev09; RK15a], the key elements

of which we review below.
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Figure 2.2: Data-driven Floquet analysis applied to a Hopf oscillator with system
noise. Trajectories of the oscillator converge to a (noisy) cycle (left plots, three
colors, one per trajectory). This cycle appears as a circle in state-space (extreme left)
and as sinusoidal time series (second from left). By differentiation, we obtain vector
field samples at the data points (middle). We estimate the limit cycle as a function of
phase (second from right) computed using the phase estimator from [RG11] providing
a canonical map from every trajectory point to a point with identical phase on the
limit cycle (thin black lines, right plots). Such surfaces of constant phase — isochrons
— form radial lines in the (particularly simple) case of the Hopf oscillator.

For simplicity exposition, we will assume all observations come in a single regularly

sampled time-series consisting of (gn, rn) position and shape samples, which can be

numerically differentiated (e.g., with a second-order Kalman smoother [RTS65; RG])

to augment the samples with velocities ġn, ṙn, and ◦
gn = g -1

n ġn. From oscillator

theory [GH83; RK15a] we know that every exponentially stable oscillator (which we

assume this to be) can be parameterized with a phase coordinate ϕ : R→ [0, T ) ⊂ R

based on the following rules:

1. Each point on the limit cycle has a unique phase value, spaced such that limit

cycle trajectories advance in phase at rate ϕ̇ = 1.

2. Each point not on the limit cycle inherits its phase value from a corresponding

point on the limit cycle, selected such that trajectories starting at the two

points ultimately converge. The set of all points sharing a value of ϕ are called

an isochron of the oscillator, and the trajectories of the oscillator advance across

isochrons such that ϕ̇ = 1 everywhere.

Our modeling process was as follows: we assigned each sample n a phase ϕn via a
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phase estimator such as that presented in [RG08], which takes the multivariate time-

series of measured data from an oscillator and gives a phase estimate for every data

point. Figure 2.2 provides a visual example.

Once we grouped the samples by phase, we modeled the limit cycle (nominal-

gait-as-executed) by computing a pair of Fourier series θ0 and ω with respect to the

phase: θ0(ϕn) ≈ rn was fitted to the sampled shapes, and ω(ϕn) ≈ ṙn was fitted

to the shape velocities. Because each of θ0 and ω is computed from its own noisy

dataset, the condition θ̇0 = ω need not be satisfied after this fitting procedure. We

create a self-consistent model θ of the limit cycle by producing the analytical integral

of ω, and using a matched filter to combine this integral with the θ0 estimate to

obtain a single self-consistent cyclic trajectory. Past experience [Rev09] has shown

that this estimation procedure provides a better representation of the limit cycle than

the directly fitted shape model θ0.

2.4 Data-Driven Modeling of the Connection

The gait analysis methods described in §2.2 provide a powerful link between gaits’

optimality and their geometry. Their utility, however, depends on having a model for

how small shape changes induce body motion changes. For systems that experience

complex interactions with their environments, such models are not readily available

from first principles (even if their net effect can be modeled as the linear relationship

in (2.1)), and exhaustive empirical evaluations [Dai+] become infeasible as we move

to system with many shape variables and/or limited control affordances.

Conversely, the data-driven methods described in §2.3 are able to extract a mean-

ingful model of a system from noisy measurements. This model, however, is limited

to the specific gait being executed and does not provide context for comparing the

gait against other motions the system could execute, or for optimizing the motion.

Our key innovation in this paper is based on the observation that the data-driven
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modeling approach can allow us to quickly build up a first-order model of the con-

nection in a tube around a given gait cycle. In turn, the first-order model allows

us to rapidly compute the influence of any gait change within the model’s domain

of validity. Such computations allow us to numerically approximate, at this given

gait cycle, the gradient at of any goal function computed from a gait with respect

to any parameterization of gaits — even when this parameterization is fairly high

dimensional and requires a great many “simulations” of gaits.

In this innovation, we exploit two properties of the geometric model: [1] the

variational optimizer/definition of optimality described in equation 2.9 only needs to

know DA along the given gait to identify the direction in which that gait can be

perturbed to best improve performance. [2] DA, being a two-form and thus a linear

map, can be reconstructed at every point along a gait cycle using regressions applied

to the relationship between g and r collected from experiments.

2.4.1 Analytic approximation of the connection near a gait

In this section, we introduce an approximation of the mechanical connection and

the cost metric, both centered about a nominal gait. We then construct a procedure

to estimate the local model elements from data. As discussed in §2.3, a gait cycle θ(·)

can be extracted from shape data r via data-driven Floquet analysis. Perturbations

from this phase-averaged behavior are written as δ(t) := r(t) − θ(t). These terms

can be used to construct a first-order approximation of A(·) in a neighborhood of the

point-set Im θ using its Taylor series,

Ak
i (r)ṙi = Ak

i (θ + δ)ṙi ≈
[
Ak
i (θ) + ∂Ak

i

∂rj
(θ)δj

]
ṙi, (2.10)

where, as per Einstein index notation, Ak
i corresponds to the element in the k-th row

and i-th column of A. Including the derivative of the connection across the shape
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space allows us to estimate the connection for behaviors that aren’t on the current

gait cycle θ(·), and that thus provide velocity samples in nearby, but not identical,

tangent spaces of the shape space.

It is important to stress that ∂Ak

∂r
is not simply the Hessian matrix of gk with

respect to r around points on the gait, i.e. it is not the gradient of a gradient. The

Hessian could only be computed if g were a function of r, but it is not. In fact,

locomotion via gaits would be impossible if it were such a function since a cyclical

change in r could not induce a net change in g. In particular, Hessians are symmetric

operators, and the difference term that appears when calculating dAk in equation 2.6

directly measures the system’s ability to locomote along the k-th direction in terms

of the asymmetry of ∂Ak

∂r
. Similarly, the [Ai,Aj] term from equation 2.7 measures

the the covariant asymmetry of ∂gA
∂g

when the connection is expanded from local to

global coordinates.

2.4.2 Estimating A(θ) and DA(θ) from data

Our input data was time series of the system shape rn, shape velocity ṙn, and observed

body velocity ◦
gn, at sufficiently many time points n = 1 . . . N . We begin our system

identification process by applying the gait extraction algorithm described in §2.3,

producing Fourier series models of θ(·) and of θ̇(·). We then select M evenly spaced

values of phase, ϕ1 . . . ϕM , to obtain θm := θ(ϕm) and θ̇m := θ̇(ϕm) — the shapes and

shape velocities of a system that is following the gait cycle precisely. We use these as

the points at which we estimate the connection and its derivative.

For each cycle point θm we collect all shapes rn that are sufficiently close, i.e.

n such that ‖rn − θm‖ < δmax. For notational simplicity, when both index n and

index m appear in an equation below, we take the values of n to be restricted to only

those sufficiently close time series points. We now define the offset between the shape

sample and its current on-gait reference point as δn := rn − θm.
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Figure 2.3: Illustration of the connection estimation process. We take the rhythmic
data, group it by phase, and average using a Fourier series to obtain a periodic gait
(left; red cycle). We collect shape velocity and body velocity data (middle; rooted
arrows) within the neighborhood of point on the gait (black oval, left; zoomed in area,
middle). Using these data we fit a first-order approximation of the connection model
(black planes; right). We repeat this process for a collection of points on the gait
cycle at fixed phase intervals, and fit the parameters of the estimated models with a
Fourier Series to obtain a model of the connection that smoothly varies with phase.
Further detail in §2.4.2.

Within each θm neighborhood, we now estimate the local connection and its deriva-

tives by using a linear regression to find the slopes of the relationship between ◦
g, ṙ,

and δ. Naively, this regression is the solution to the Generalized Linear Model formed

by placing the Taylor-series expansion of A from equation 2.10 into the locomotion

model from equation 2.1:

◦
gkn ∼

(
Ak
i

)
ṙin +

(
∂Ak

i

∂rj

)
δjnṙ

i
n, (2.11)

where
(
Ak
i

)
are the M separate estimates of Ak

i (θm) and
(
∂Ak

i

∂rj

)
are the M separate

estimates of ∂Ak
i

∂rj
(θm).

When applied to samples generated from an oscillator as illustrated in Figure 2.2,

this straightforward regression is biased by the shape velocity samples being centered

around ṙ = θ̇m rather than ṙ = 0. We correct for this bias by re-centering the

regression around A(θm)θ̇m. We separate the perturbations of the shape velocity
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away from the gait cycle velocity from the influence of the gait cycle velocity itself

by defining δ̇n := ṙn − θ̇m, and re-writing the GLM of equation 2.11 as (for velocity

component k and each value of m):

◦
gkn ∼Ck + Bk

j δ
j
n +

(
Ak
i

)
δ̇
i

n +
(
∂Ak

i

∂rj

)
δjnδ̇

i

n (2.12)

where Ck := Ak
i θ̇
i is the connection applied to the (unmodified) gait cycle shape

velocity, and Bk
j := ∂Ak

i

∂rj
θ̇i is the interaction effect of shape offset and shape velocity

applied to the (unmodified) gait cycle shape velocity. Here Ck is a constant (with k,

m fixed); and Bk is a (“co-”)vector that acts on shape offsets from the gait, rather

than on conventional tangent vectors. The
(
Ak
i

)
element is a true co-vector that acts

on velocity offsets away from the typical gait velocity, and
(
∂Ak

i

∂rj

)
is the interaction

matrix of shape offsets and shape velocity offsets, offset being taken relative to the

nominal gait cycle θ.

We compute the regression by writing it in matrix form and thereby posing the

least-squares problem (for each k and m; indices k and m elided below for clarity):


◦
g1

...
◦
g
N

 =


1, δ1 , δ̇1 , δ̇1 ⊗ δ1

... ... ... ...

1, δ
N
, δ̇

N
, δ̇

N
⊗ δ

N

 ·
[
Ĉ, B̂j, Âi,

∂̂Ai

∂rj

]T
(2.13)

where ̂ indicates “estimated” and ⊗ is the outer product. For a d dimensional shape

space, the row of unknowns on the right consists of 1 + d+ d+ d2 elements.

Once we have the model for every m, we construct a Fourier series model of each

of the matrices of the GLM, allowing them to be smoothly interpolated at any phase

value.
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2.4.3 Estimating the metric

In the same manner as we estimatee A, we can estimate a Riemannian effort-

metric M on the shape space by recording the differential cost of motion ṡ along

with the system kinematics, and then fitting these costs to a linearized expansion of

equation 2.2 taken at the points θm using the matching n indices,

ṡ2
n ∼ ṙn

T
[
M+

(
∂M
∂rj

)
δjn

]
ṙn. (2.14)

This regression suffers from the afore-mentioned bias stemming from the ṙ values

being centered around θ̇ instead of 0;, so we recenter it in a similar manner as in

equation 2.13. Additionally, because M is a symmetric tensor, only
(
d
2

)
elements

need to be estimated, reducing by about half the number of quantities to estimate.

Details of this regression calculation are in the Appendix of [BHR18].

2.4.4 Comparison of estimates to previous work

This process is analogous to the processes we described for empirically estimating

A and its derivatives in [Hat+13; Dai+], but offers some distinct advantages.

In our previous work, the shape velocity samples to identify A at a point all had

to be in the tangent space of that point. Here, we have relaxed that requirement by

fitting to a linearized expansion of equation 2.1 instead of equation 2.1 itself.

Furthermore, since our regression here uses intrinsic noise in the system, it provides

an estimate of the average behavior under noise. The average behavior of a system

when noise is added depends also on the variance of the noise. In the analysis here

we account for the actual noise present in the system, rather than treating it as mere

measurement error of a deterministic system.

The presence of system noise and the form of the linearized expansion allow for

collection of data over a singular repeated gait cycle, rather than collection over the
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whole shape space (as was done for the prior model estimation methods).

2.4.5 Assumptions for the modeling estimation:

We make the following assumptions for modeling: (1) the deterministic part of

the system’s time evolution is governed by a connection; (2) the dynamics are subject

to sufficient IID (independent and identically distributed) system noise to allow them

to be identified; (3) noise is sufficiently small to allow a distinct rhythmic motion

to be observed and modeled as a limit cycle oscillator representing a gait. For gait

optimization, we further assume that the system is fully actuated and able to follow

(on average) any trajectories we command.

2.5 Performance of the data-driven models

To benchmark the accuracy of our data-driven geometric modeling process, we

compared its prediction of the body velocity for a test system against three system

models that had various levels of knowledge about the “true” system dynamics used

in the simulation. The test system had a geometric locomotion model of the form in

equation 2.1, and its shape trajectories were generated via a noisy oscillator like that

illustrated in Figure 2.2.

2.5.1 Reference models

As described in §2.4, we used a data-driven process to construct a phase varying

first-order model of A at points θm along our observed gait cycle. Each rn data point

from the (noisy) trial was associated with a corresponding (phase-matched) point θn

on the gait cycle,3 which allowed us to compare several different models for the body

velocity:
3These phase-matched θn points can be individually computed for each rn, and so are not re-

stricted to the previously-sampled θm values. Similarly, the estimates of A and its derivative from
§2.4.1 are computed as Fourier series, and can thus be interpolated to any θn.
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1. The ground truth model
◦
gG,n = A(rn)ṙn, (2.15)

in which each (rn, ṙn) pair is passed directly to the simulator dynamics, giving

2. The fully data-driven model, where the regression estimates of the Taylor ex-

pansion of A are used to approximate A at points off of the gait cycle, and ◦
gD,n

is given by (2.12), used with the quantities estimated from (2.13).

3. An analytic model
◦
gA,n = A(θn)ṙn + ∂A

∂r
(θn)δnṙn (2.16)

that uses a Taylor-series expansion of the simulator model computed at the same

point as the data-driven model, without using any regression or simulation data.

This model tests the correctness of the regression in the data-driven model.

4. A template projection model

◦
gT ,n = A(θn)θ̇n. (2.17)

that projects each (rn, ṙn) data point onto its corresponding (θn, θ̇n) values for

the gait cycle that was used to derive the data-driven model. This approxi-

mation tests how much additional information is gained from the higher order

term in the Taylor expansion.

Note that the template approximation in equation 2.17 can be considered as the

leading term of the analytical approximation (after separating ṙn into θ̇n and δ̇n

components), and that the partial-derivative terms in equation 2.12 and equation

2.16 contain the information required to predict the effect of modifying the gait limit

cycle.
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2.5.2 Simulation setup: swimming with system noise

For our baseline system model, we used a three-link Purcell swimmer [Pur76]

modeled as described in [HC13]. This system moves through a viscous fluid with

linear drag, which we take as having a 2 : 1 lateral/longitudinal ratio. To demonstrate

the ease with which we can extend our approach to systems with higher-dimensional

shape spaces, we also considered a nine-link swimmer. Both are pictured in Figure

2.4 part A.

To simulate the effects of noise in the shape dynamics (e.g., weak or impre-

cise shape control), we generated the shape trajectories from sample paths of a

(Stratonovich) stochastic differential equation, injected into the shape space:

dϕ = 1 dt+ η ◦ dWθ

dδ = −(α δ) dt+ η ◦ dWδ, (2.18)

r(t) := θREF(ϕ(t)) + δ(t).

where θREF(·) was a reference motion we specified as a Fourier series; α was the

coefficient of attraction bringing the system back to the reference gait cycle; and η

was a noise magnifier for the Weiner processes dW driving both phase noise and shape

noise.

For all simulations in this paper α = 0.05 and η = 0.025, chosen based on the

superficial similarity the noisy trajectory ensembles have to experimental data we

have worked with.

2.5.3 Model accuracy results

To illustrate the performance of our data-driven models, we examined the differ-

ences between motion predicted by the models in §2.5.1 when the reference gait was

the extremal gait maximizing motion in the x direction, known from [TH07; HC13].
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Figure 2.4: Comparison of model accuracy for 3 link and 9 link swimmers. [A] We
drove each platform to follow the extremal gait for the three-link swimmer (black)
generating 30 strokes (blue and red; plotted on first two principal components). Of
these, we plotted Cycles 13-18 (red) in the time domain [B], showing the additional
motion predicted beyond the template model by the ground truth model (black), the
data-driven model (teal), and the analytic model (red). Because both analytic and
data-driven models follow the ground truth closely, we also plotted a scatter plot of
their errors as a function of phase [C], showing that the data-driven model (teal) has
zero average error, unlike the analytic (red) model. As the number of DOF grows
(right; 9 link plots) the mean (solid) and variance (dashed) of the data-driven model
(teal) become smaller than those of the analytic model (red).
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Figure 2.5: Comparing analytic and data-driven approximations. Given the same
input gait and attraction laws of Figure 2.4, we plotted the accuracy of both models
(data-driven in red; analytic in teal) over a range of system noise values (0.5η, η
and 2η example trajectories in insets), and indicated the range of estimation error
observed for x velocity over an ensemble of 20 trials at each noise level. System noise
can be seen to strongly degrade the accuracy of the analytic model, whereas the data-
driven model retains accuracy at high levels of noise, at the expense of accuracy at
low noise levels.

37



We specifically chose an extremal gait as our example because non-extremal gaits

should be even easier to model — perturbations around them have first-order effects.

These results are shown in Figure 2.4.

In high noise regimes, the data-driven approach yields better models than the

analytic Taylor expansion of the dynamics around the gait cycle. This effect is il-

lustrated in Figure 2.5, which shows estimation error as a function of noise level for

our example gait. The data-driven model also outperforms the analytic model when

the system dynamics are very nonlinear, as for the nine-link swimmer at the right of

Figure 2.4(C), and when the system noise is large.

These differences stem from the fact that the analytic model is a linearization of

the system dynamics that extrapolates the system dynamics from their values on the

gait cycle, whereas the data-driven approximation acts like a secant approximation

to a curve, and averages the rate of change of the system dynamics across the neigh-

borhood of the cycle. At the limit of large samples and small noise, the data-driven

model approaches the analytic model. Thus, at the limit for many samples and fi-

nite noise, the data-driven model should always out-perform the analytic model —

giving the best linearization for prediction over the available data, rather than the

linearization locally at the gait cycle. However, with finite sample sizes the accuracy

of the estimated linearization can suffer, allowing the analytic model to out-perform

the data-driven one.

2.6 Data-Driven Geometric Gait Optimization

Given both the model of the connection (from §2.4.2), and the model of the

cost metric (from §2.4.3) we can evaluate the efficiency of gait cycles in a Sobolev

neighborhood of an initial gait cycle. In particular, this allows us to compute the

gradient of efficiency (as in equation 2.9) and use a gradient ascent optimization

scheme to optimize gait efficiency.
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elliptical approximation

phase-partitioned splines

full shape trajectory

Figure 2.6: Illustration of gait parameterization as an ellipse with bump functions.
In this parameterization each gait starts out as an ellipse – the image of a first-
order Fourier series (black). To this we added a collection of overlapping, compactly
supported, cosine window bumps. The number of bumps is the only order parameter
for complexity of the model (here order 30). The sum of the circle and the plotted
individual bumps (teal) combine together to give a diamond shaped gait cycle (red).

In implementing the gait optimization procedure two key choices to be made: (1)

How is the space of gaits to be represented? (2) How big a step should the optimizer

take along the gradient each time it is computed?

2.6.1 Gait parametrization

For our reference implementation of the gait optimization process, we constructed

gaits in which the motion of each shape variable (here, joint angle) as the sum of a

set of compactly supported bump functions added to first-order Fourier series. Each

shape-space coordinate of the gait θi(t) is thus given, for an orderNo parameterization,

as:

ri(t) := ci + ai sin(Ωt+ φi) +
No∑
k=0

ui,k w
(
t− k 2π

No

)
(2.19)

w(x) :=


1 + cos(xNo) |xNo| < π

0 |xNo| ≥ π

, (2.20)
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with gait parameters

pi = (ci, ai, φi, {ui,k}). (2.21)

By construction, only 30 window functions from the sum in Equation (3.11) can be

non-zero at any time in the gait — making the sum fast to compute, and restricting

the influence of each ui,k to only 1/No of the gait cycle. The expressiveness of this

representation in a two-dimensional shape space is illustrated in Figure 2.6.

2.6.2 Choosing a step size

Once we have identified an efficiency gradient vector p̂ = ∇pγ on the parameter

space, our optimizer must decide how large a step α to take along the gradient. This

step size should be informed by the size of the neighborhood around the current gait

which was sampled in the most recent trial, which is in turn determined by the level

of system noise in the trial.

To compute the step size, we first measure the noise at each phase bin m as

the covariance matrix of off-cycle displacements in the neighborhood of that bin,

Ĉm := E
[
δnδn

T
]
, which we can interpolate to any phase ϕ via a Fourier series. We

then take:

• θ0 as the current gait;

• p0 as the parameters of this gait;

• pα = p0 +αp̂ as the parameters reached by stepping along the efficiency gradient

by α; and

• θα as the gait defined by these parameters,

and calculate the Mahalanobis distance with respect to the sampling noise [Mah36]
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Figure 2.7: Optimization is insensitive to initial gait. We provided 28 different initial
gaits (cartoons top) each with a different pair of joints (red dots in cartoon) following
ri(ϕ) = sin(ϕ), with all other joints set to constant angle 0. We optimized each initial
gait 3 times, for a total of 84 optimization runs, and plotted the mean (black dots)
and covariance ellipsoid (red) of the ensemble of gaits at every simulation iteration on
axes of cost and displacement. In these axes, cost of transport (COT) corresponds to
a slope. The initial gaits hardly move, giving a distribution along the horizontal axis,
which improves to COT 36.9 after one iteration. As optimization progressed, all gaits
moved toward the COT = 7.0 line, with the final (30th) iteration showing almost no
progress and a fairly tight clustering of cost and displacement (black ellipse). Each
optimization procedure converged to a serpenoidal motion, although these were not
identical and retained some hint of the original choice of active joints. We used the
initial gait highlighted (gray circle) for the noise regime testing in Figs. 2.8 and 2.9.
By using reciprocal motions for initial gaits, we ensured (using the Scallop Theorem;
see e.g. [Pur76; Lau11]) that all initial gaits have zero net displacement.
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between the the updated and current gait cycles as

Z(α) := 1
2π

ˆ
S1

(θα − θ0)TC−1(θα − θ0) dϕ, (2.22)

where θα,θ0 and C are all functions of a phase parameter ϕ which we elide for clarity.

This distance measures the uncertainty of our data-driven modeling process and,

generally speaking, grows with α. Presuming this growth to be monotonic, we can

use a line search (e.g., a bisection search) to locate (to a user-selectable relative error

tolerance; we used 5%) the α value at which Z(α) crosses some threshold value. For

the experiments in the next section we used a threshold constant of 9.5.

The gait optimization framework can be summarized as a gradient ascent algo-

rithm with careful considerations for the parametrization of the gait and step selec-

tion. Given an initial parametrization (detailed in §2.6.1), we collect experimental

data (30 cycles in our results section) and compute the local motion-and-metric mod-

els. We extract a gradient on the efficiency of a motion with respect to the gait

parameters by sampling many gaits in the neighborhood of the current policy, using

the estimated local model to predict the performance of each sampled gait. We then

determine the magnitude of the step size as described in §2.6.2. This allows the next

gait parametrization to represent a behavior that is reliably informed by the data of

the prior trial. Once the next gait is selected, we collect experimental data, repeating

the above process. The termination criterion for the gradient ascent algorithm is a

pre-specified number of iterations. A more advanced termination criterion will be

explored in future work.

2.7 Swimming Gait Optimization Results

As a demonstration of our gait optimization framework, we applied our algorithm

to a 9-link chain “swimmer”. All swimming behaviors shown were optimized with
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respect to the efficiency metric γ = gθ
s
, which we report in units of body lengths

per unit time at unit power. For any given power budget, this efficiency is inversely

proportional to the mechanical cost of transport.

2.7.1 Optimization is robust to choice of initial condition

One important test of an optimization algorithm is its ability achieve good out-

comes irrespective of initial conditions. To test this ability, we provided the system

with gaits in which two selected joints follow identical sinusoidal inputs (no phase off-

set and amplitude of 1), the other joints attempt to hold at zero angle, and all joints

are subjected to noise as discussed in equation 2.18. The power costs of these gaits

depended on the lengths of the segments between the active joints, and, as illustrated

in Figure 2.9, as reciprocal motions they produced no net displacement.

From each of these initial conditions, our optimizer consistently converged (within

30 trials at 30 cycles per trial) to gaits with a cost of transport of 7.0 ± 0.7. As

illustrated in Figure 2.8, these resulting motions were very close to ellipses embedded

in the eight-dimensional shape space, and produced serpenoid undulations traveling

along the length of the swimmer. Qualitatively, the motions are in agreement with

the conclusions about optimal swimming behavior in [SW89a], with the exception

of maximizing the amplitude of the undulations at the mid-body of the swimmer.

In this case, the amplitudes of the discovered gait are typically maximized near the

joints that are excited in the initial gait. The reason for the discovery of this family

of gaits and their relation to the global optimum in [SW89a] will be the subject of

future work.

2.7.2 Robustness to noise level

A second test of optimizer performance, which is of particular importance to

hardware-in-the-loop optimization, is its ability to tolerate a variety of noise levels
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Figure 2.8: Visualization of gaits throughout an optimization. We projected all gaits
onto the first two principal components of the final gait (viewed as embedded in R8)
and plotted the projection of the x motion connection on that subspace (arrows). The
initial gait (top cartoon), allowing only two joints to move (red dots in cartoon swim-
mer), is a line in the shape space coordinates (black line). The following iterations
expand this contour as an ellipse and eventually embellish the ellipse with bumps (red
closed ovals) leading to the final gait (black oval) and the serpenoid shape (bottom
cartoon).
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Figure 2.9: Course of optimization under different levels of noise. We started with the
same initial gait (gray circle highlight in Figure 2.7 and top cartoon in Figure 2.8),
but multiplied the noise level η of Eqn. (2.18) by 0.5, 1., 1.5, 2 (colors yellow, red, teal,
and green, respectively). For each noise level we plotted an example simulation to
illustrate the noise level (ovals framed in color; top). We ran 48 optimizations at each
noise level, allowing 60 iterations of 30 swimming cycles each, and plotted the mean
(circle marker) and covariance (translucent ellipses) of these trials at every iteration of
the algorithm, highlighting the final mean (black dot) and covariance (black ellipse).
All gaits started unable to move, and reached COT 7.3± 0.4 with high-noise optimal
gaits being slightly less efficient than low noise gaits (COT of mean 7.7 vs. 6.9). The
two lower noise level achieved indistiguishable cost. It is notable that at higher noises,
optimization moved away from the origin, producing larger motions with larger cost.

45



and produce comparably good results. To demonstrate this ability, we took a single

starting gait (in which the active joints are each set two links in from the end, as

illustrated in Figure 2.8) and optimized its motion under different levels of system

noise.

For all four noise regimes tested, the system converged to serpenoidal motions

with geometrically similar shapes (similar ratio of wavelength to amplitude), but

with different numbers of waves along the body. As illustrated in Figure 2.8, the

gaits found at different noise levels have similar costs of transport (with mean values

ranging from 6.9 to 7.7), but the systems at higher noise levels tended towards gaits

that were high-cost/high-displacement, at the expense of some efficiency.

Additionally, we note that at all noise levels, the systems initially modified their

gait to increase their net displacement, then “pulled left” on the graph to reduce the

cost of producing this displacement. The step sizes between trials are smaller on the

low-noise systems, as they experience smaller perturbations during the trials, and

thus have a lower bound on step size as discussed in§2.6.2.

2.8 Discussion and Conclusions

We have presented two main contributions: (1) a method for locally modeling a

connection and a cost metric in the neighborhood of a gait cycle, based solely on the

observation of noisy trajectories; (2) an algorithm for gait optimization that employs

this method for gradient climbing.

Our modeling relied strongly on system noise to produce sufficient excitations to

allow us to employ regression and identify the structure of the dynamics at every

phase of the cycle. In this there is both a strength and a weakness. The strength

comes from exploiting noise and being able to model systems with levels of noise

comparable to those we have observed in animal and robot data. The weakness

comes from relying on noise to be “system” noise – i.e. arising from true changes
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in the system state rather than from measurement errors. Measurement noise could

mask some of the structure we expose by regression. It could also suggest to the

optimization to move in a direction that is not achievable by the actual hardware. In

experiments on hardware, constraints must be placed to avoid entering problematic

configurations.

The great strength of our gait optimization algorithm is that it decouples the

dimension of the gait parameter space from the dimension of the shape space and the

number of trials needed. Once the model is identified for a gait, numerical evaluations

of gait perturbations are very quick and allow the goal function to be differentiated

with respect to hundreds of variables with little effort.

Some interesting features of the method emerged from the simulations run in

[BHR18]. The nine-link Purcell swimmer was able to persistently converge to high

efficiency swimming behaviors throughout various levels of process noise (injected

perturbations into the shape space). This suggests that robustness to perturbations

experienced may be a feature of the method. The stronger the experienced perturba-

tions, the higher amplitude and lower efficiency the gait the swimmers converged to.

It could be the case that the low amplitude, highest efficiency behaviors we observed

were unavailable to the system under high process noise due to lower robustness quali-

ties. This suggests that the process noise may dictate a robustness-efficiency tradeoff.

Elaborating further on the relationship between noise level and which gaits are op-

timal may provide new insights into biological mechanisms of robust locomotion.

Additionally, the swimmers converged to similar efficiency swimming behaviors from

28 separate initial gaits, all of which had an initial displacement of zero. This suggests

that the modeling and optimization process was insensitive to the initial condition

for the swimmers. An interesting research project might involve an investigation of

the relationship between actuator redundancy and this property of insensitivity to

the initial condition. In Chapter III, we explored the relationship between actuator
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redundancy and the ability to learn gait libraries for navigation under a variety of

initial conditions as well as actuator malfunctions. In our investigation, we find that

redundancy improves both the rate of learning gait libraries and the ability to recover

from injury.

Some natural extensions of our work include expanding to a broader class of

data-driven models outside those systems which admit connection-like models [Ost99;

Blo+96; Baz+17]. One natural question which arises is that of systems that are

“nearly” Stokesian – is there a useful and easy way to identify the notion of “nearly”

Stokesian that translates to good predictive ability of the presented modeling tool?

We investigate this for systems with momentum in Chapter IV §4.2. Remaining

in the class of Stokesian systems, there is work to be done on how to extend this

method to systems that are underactuated in the shape space. Some work has been

done modeling and selecting gaits for systems that have Stokesian mechanics and

elastic joints [Dea+20; RH20]. Of interest to us is the ability to model a general class

of shape-underactuated, Stokesian systems from data. This interests us due to the

ability to extend system identification and optimization techniques to the space of

soft and compliant robots.

2.9 Optimization on Hardware

We tested the policy gradient optimizer on two experimental platforms. Like the

swimmers, these robots consisted of a linked set of joints. To test the viability of the

method, we ran the optimization process on a robot with four joints and the same

robot with eight joints.

2.9.1 Methods for five-link wheeled snake

First, we implemented the optimization on a physical five-link wheeled snake

robot. Under each link, a pair of wheels were co-aligned to decrease friction in the
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Figure 2.10: A pair of wheels under each module decreased friction along the x-axis
of a given module, as defined by the coordinate axis on the middle module. The
coordinate axis of the middle module defines the body x-axis for the entire system,
with the y-axis as shown making up the lateral axis.

direction along the link. Figure 2.10 provides a picture of the system along with

labeling of the body coordinate system. We captured the robot’s position and orien-

tation with three markers tracked with Qualisys Oqus motion capture cameras. We

were able to pass joint trajectories to the Dynamixel RX-64 modules from a lab CPU

(Intel Xeon CPU E3-1246 v3 running at 3.50GHz) over a CAT5 cable, which also

supplied power to the system.

The parameterization for each of the four joints was an ellipse with 18 bump func-

tions, using the representation motivated in §2.6.1. The corresponding optimization

used 9 iterations of 80 cycles, with results reported in Figures 2.11 and 2.12. The

objective function was to optimize displacement per cycle in the body frame with a

quadratic penalty (scaled by α) on radial displacement per cycle (θ). To be specific,

α = π
L
, where L was the body length of the robot (approximately 45cm).

2.9.2 Results for five-link wheeled snake

We seeded the geometric gait optimizer with a gait that oscillates a single joint

and achieves no displacement per cycle. After 9 iterations of 80 cycles, we produced a
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Figure 2.11: This figure documents the first trial on the five-link snake hardware in
the loop optimization. The first gait provided to the optimizer was to oscillate the tail
joint with an amplitude of 1 radian, driven at 1

2Hz. The robot barely moved (top left,
initial and final position after 5 cycles image blended with alpha=50; initial module
locations also as red squares). We plotted the mean of the forward displacement per
cycle and orientation displacement per cycle (bottom left, with means shown as red
’x’s and standard deviations as blue dots connected by a black straight line). We plot-
ted the score of the objective function across the 80 cycles of each iteration (bottom
right, with means shown as a black line and standard deviations as black dashes). We
also plotted the history of the trajectories sampled on the system along the primary
3 components of the sampling space (top right, average shape trajectory shown in
red and added perturbations in blue). We computed the principal components via
singular value decomposition on the entire sampling set after the 9 iterations of 80
cycles across 4 joints.

motion that achieved 45% body length per cycle translation motion while optimizing

over 84 parameters. Running the system at 0.5 Hz, the optimization took 24 minutes.

Results can be viewed in Figures 2.11 and 2.12.

2.9.3 Methods for nine-link wheeled snake

We added four more links to the robot and removed the high friction mat. Other

than that, the methods are the same as for §2.9.1. We made this change because the

nine-link wheeled snake was not strong enough to control shape on the high friction
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Figure 2.12: This figure documents the final trial on the five-link snake hardware in
the loop optimization. We saw that after 9 iterations and 27 minutes of experimental
data, the robot had found an effective strategy for locomotion on the high friction
rubber mat. The meanings of the subplots are identical to those highlighted in Figure
2.11. While the optimization yielded a useful behavior, the cycles required to build
the model took longer than those in simulation.

mat. Another challenge we observed for this system was a tendency to accumu-

late substantial lateral displacement over the course of a few cycles, so we placed a

quadratic penalty on it in the subsequent optimization.

2.9.4 Results for nine-link wheeled snake

We found that our robot could build predictive models with just 30 cycles. Results

can be viewed in Figures 2.13 and 2.14. After 360 cycles (12 trials of 30 cycles), the

robot found an effective motion for translation. These results confirmed that the

quality of results we saw on the Purcell swimmer could extend to relatively affordable

and noisy hardware.
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Figure 2.13: This figure documents the first trial on the nine-link snake hardware in
the loop optimization. The first gait provided to the optimizer was to oscillate the
third joint from the left with an amplitude of 1 radian, driven at 1

2Hz. The robot
barely moved (top left, initial and final position after 10 cycles image blended with
alpha=50; initial module locations also as red squares). We plotted the mean of the
forward displacement per cycle and orientation displacement per cycle (bottom left,
with means shown as red ’x’s and standard deviations as blue dots connected by a
black straight line). We plotted the score of the objective function across the 30
cycles of each iteration (bottom right, with means shown as a black line and standard
deviations as black dashes). We also plotted the history of the trajectories sampled on
the system along the primary 3 components of the sampling space (top right, average
shape trajectory shown in red and added perturbations in blue). We computed the
principal components via singular value decomposition on the entire sampling set
after the 12 iterations of 30 cycles across 8 joints.
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Figure 2.14: This figure documents the final trial on the nine-link snake hardware
in the loop optimization. We saw that after 12 iterations and only 12 minutes of
experimental data, the robot had found an effective strategy for locomotion on the
laboratory floor. The meanings of the subplots are identical to those highlighted in
Figure 2.13. The ability of a robot to optimize its behavior across 8 joints over 12
iterations of 30 cycles per iteration is comparable to the results we found in simulation.

2.9.5 Discussion on Hardware Results

The eight joint system built predictive models with less data than the four joint

system. We think this was likely due to the smoother interaction between the wheels

and the contact surface. For the five-link wheeled snake, the mat was creating stiction

between the wheels and rubber, introducing nonsmooth estimates of the velocity of

the robot by the motion capture system. Noisy velocity estimates may have been the

phenomena that required us to sample more cycles to build models on the five-link

wheeled snake.
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CHAPTER III

Data-Driven Planning for Stokesian Systems

3.1 Motivation

One of the most common sub-problems in modern robotics is path-planning, and

the choice of path is usually framed as a precise or approximate optimal control prob-

lem. When restricted to mobile robots moving through many practical environments,

the path planning problem enjoys an additional important symmetry. Given the con-

figuration of the robot body, the short-horizon movements it can execute are the same

at nearly every point in space. This allows short time horizon primitives to be opti-

mized offline and pre-cached, later to be composed sequentially to produce solutions

to the full path planning problem. For example, a humanoid robot such as ATLAS

can execute the same walking steps at any point on flat, unobstructed ground. To

plan the motions of the robot walking through a building, one can sequence primi-

tives for generating a collection of steps in the correct order instead of solving the full

high-dimensional planning problem.

Unfortunately, the primitives often seen in such library-based plans are usually

selected and created by hand. Primitives are often generated with constraints that

help reduce the complexity of an individual planning problem. For example, a com-

mon choice for 2D motion, dating back to the turtle robots of the 1950s [Wal54], is

to have linear translation and turning in place as primitives. However, this particular
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choice for generating movements is entirely arbitrary. A given robot may be far more

efficient moving diagonally or turning while moving on an arc. The ability to optimize

for a library of useful primitives can come to have critical importance when a robot

is damaged, and the choice of available primitives might no longer correspond to any

motion obvious to a human operator.

Here we present a method to optimize an entire primitive library concurrently so

as to achieve the ability to efficiently plan over the space of body motions with that

library. By optimizing for the coverage goal function we define, the library selected

will be able to express desired short-horizon plans through composition of primitives

from the library.

One approach for approximate optimal planning is to construct a state lattice

[PKK09; KM09] – a discrete collection of states that can be generated by a library

of primitives. Planning consists of sequencing primitives to travel along the lattice to

approximate the total desired motion. Such previous work on state lattices suggests

that a good collection of primitives are:

• complete – the space of desirable motions is densely populated

• fast-to-compute – the robot is able to select and generate primitives in real time

• path optimal – each individual primitive should be similar to a globally optimal

path available between its start and end states.

When generating primitives, one has a variety of options to chose from [FMJ02;

FDF05; Sch+05; Hau+08; PK11]. Strategies can include learning from demonstration

as well as prioritizing spatial properties of the output trajectories of the system. Large

primitive libraries are often winnowed down to save run time or increase the planning

update rate. Our work can be viewed in part as a means for generating very small,

very expressive libraries of primitives.
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Our work can also be seen as a way to relax the standard assumption used in

optimizing gaits, namely pre-specifying the direction [HC10; GGC] or turn rate of

motion [Da+16; HDG17] over a single cycle. We observe that most of the value a

primitive has is not intrinsic, but rather in its contribution to support other compo-

sitions of primitives available to a planner and the overall needs of the planning task.

We thus provide a way to evaluate libraries of primitives rather than their individ-

ual characteristics. Primitives that have negligible exploration value in isolation may

be critical to more densely maneuvering through space. We demonstrate how our

coverage measure values such primitives rather than discards them.

Using our approach is nearly paradigmatically opposite to traditional behavior

learning in robotics. We allow for the optimizer to “ask” the robot what ways are

convenient to move, rather than dictating how the robot should move apriori. A

subsequent advantage is that mechanical designers can rethink common design criteria

for locomotors. Typically robots acting on a planar workspace are designed to have

at least one mode by which gaits translate the system without rotating it. This

preference may simply be the result of anthropocentric bias. It is how humans move

to avoid disorientation and dizziness, but it is not a universal requirement for effective

locomotion. The coverage measure, being devoid of such biases, allows a broader range

of robot mechanisms to score highly. Crucially, it can also potentially allow broken

robots to recover their ability to plan motions by rapidly regenerating a primitive

library while damaged.

3.1.1 Overview of the sequel

Below we briefly review Lie groups in §3.2. This representation lent itself to

the coordination of primitive libraries as a sequence of group actions acting on a

Lie group of body locations. Using this representation, we defined coverage in §3.3

and provided examples of how it can be computed on the rigid body groups SE(2)
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and SE(3). In §3.4 we used this coverage to discuss a collection of toy systems

whose locomotion ability becomes easy to appreciate through our approach. Following

this, we translated this framework of primitive optimization to the world of gait

driven systems in §3.5. There we paid special attention to highly damped systems,

where the task of chaining primitives can be highly simplified. We presented coverage

optimization of gait libraries for some Purcell swimmer models in §3.7. After this, we

used coverage as a tool to investigate the ability of the Purcell swimmer to recover

from joint locking in §3.8. Finally, we emphasized the ability of the optimization to

work on unintuitive robots, even when we do not specify the robot kinematics, mass

distribution, or material properties. We demonstrated this by the ability of a robot

made of tree branches to gain the ability to navigate with less than eleven minutes

of experimental data by optimizing for coverage.

3.2 Expressing Motion Through the Space of Discrete Ac-

tions

To represent motion, we assumed that the configuration space Q of our moving

robot could be factored as a product of a shape R and a (generalized) position G.

This generalized position is a Lie group, typically a sub-group of the rigid body

motions SE(3). In this work, we restricted our attention to motion in the ground

plane, SE(2). We produced motion using gaits, which we take to mean periodic

changes in shape that produce a predictable body motion, i.e. a gait b is a function

γb : S1 → R that produces a body motion Mb ∈ G. For example, a stride consisting

of a left step followed by a right step is a gait cycle of human walking. Given a finite

selection of gaits and a means for switching between them, a planner can produce

any motion that corresponds to a word in the group elements (letters) those gaits

generate. For example, with gaits γa and γb, and provided any sequence is allowed,
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Figure 3.1: Illustration of composing gait cycles. Here, the two group actions
(MA,MB) are applied in various orders and combinations. An n-step finite hori-
zon planner considers words, a concatenation of group action letters, of length n. For
a two letter action library, n step planners consider 2n paths (trees in the left panel).
We illustrated a possible case of such motions. By assuming that the robot is oriented
tangent to the direction of motion, the resulting motions can be represented by their
projection on the translational plane (right panel).

one can produce the motions (I,Ma,Mb,M
2
a ,MaMb,M

2
b ,MbMa,M

3
a , . . .). Figure 3.1

provides visualization of what this representation looks like for motion planning in a

planar workspace.

In this paper, we restricted our discussion to primitive libraries consisting of single

cycles of different gaits as the primitives. Here, we assumed the gaits are connected

in internal state at their start and end configuration. This is not generally the case

and requires careful treatment in §3.5.

3.3 Specifying the Loss Function

As conventionally practiced, a motion planner is given some parameters x, a means

to generate motions M(x) ∈ G, and some loss function which it will minimize. Be-
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cause we focused on reachability, we took the loss function

η̃ : G→ R+ (3.1)

to be purely a function of endpoint. Including additional factors in the loss functions

for individual primitives is only a matter of book-keeping, provided the loss function

of the overall path is additive in those of its constituent primitives. We assumed that

the loss function is written relative to some desired goal position G of the motion,

and defined a relative (local) loss function using the Lie algebra η(ξ) := η̃(exp(ξ)G).

We then optimized for the parameters x of the primitive with respect to the loss

function x 7→ η ◦ log(M(x)G−1). Any left invariant distance metric for SE(2) or SE(3)

provides practical implementation of η̃. Picking such a metric boils down to a choice

of a constant that relates the loss of translation errors to the loss of orientation errors,

and thus this choice is application specific. In this work, we chose this parameter to

make a half rotation on any axis equal to a body length displacement.

We set up our optimization as follows: let G := {Gi}ni=1 be a set of goal motions

and W := {wi}ni=1 ⊂ R+ be a corresponding set of weights. Let M := {Mj}mj=1 be a

set of achievable motions.

We defined the coverage cost

h(M) :=
∑
i

wi min
j
η ◦ log(MjG

−1
i ). (3.2)

We further defined hk(M) as the cost of the set of words of k or fewer elements of M.

The coverage cost is the sum of the costs of the best approximations available for Gi,

given the achievable Mj and weighted by the weights wi for each Gi.
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Figure 3.2: Expressive power of the coverage cost. One has a variety of choices
for placement and weighting of coverage points. We provided some suggestions for
various design goals on the space of planar rigid body motions. A user can prioritize
versatility (panel A), zero-rotation translation (panel B), or right lateral movement
(panel C). Volumes and planes are suggested regions for the user to evenly distribute
uniformly weighted coverage points Gi.

3.3.1 Higher order maneuvers

One of the surprising insights of nonlinear control is that the non-commutativity

of control actions can make reachable the iterated Lie brackets of a control distri-

bution [SM92; Sas13]. The discrete primitive library equivalent of this insight is the

observation that the commutator word MaMbM
−1
a M−1

b can at times reach directions

that no word of the form Mn
aM

m
b could reach. Thus, designing hk(·) such that k ≥ 4

allows these higher-order maneuvers to be included. It is, however, important to note

that the coverage computation time scales exponentially with k. For this reason, we

used k = 4 in our implementations here.

3.3.2 Design choices for coverage points

The coverage cost presented offers a user the ability to specify both the placement

and weighting of coverage points. The selection of the points and weights can radically

change the priorities of the optimizer. A user prioritizing versatility may want the

robot to be able to reach all parts of its local position space. They can place a
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uniformly weighted set of points distributed evenly within some volume around the

identity motion (Figure 3.2 A). Another user may wish to find a combination of gaits

that translate while preserving orientation. That might correspond to a coverage

point distribution in a thin wedge near the 2D slice of SE(3) corresponding to no

rotation (Figure 3.2 B). Such maneuvers might be useful for an inspection robot that

needs to maintain a visual field of view while moving. If one had a more specific

navigational goal, e.g. finding a way to translate laterally to the right, such a goal

can also be captured (Figure 3.2 C).

The wi weighted collection of coverage goal points Gi can be seen as a discrete

approximation to a measure on the group. Increasing the number of goal points in

a region while keeping the total weight constant implies a preference for higher reso-

lution in that region. Changing the weight while keeping the goal points unchanged

implies an increase or decrease in the importance of approximating those goal motions

with the primitive library.

3.4 Coverage Invites Non-traditional Mechanical Designs

Here we intentionally designed two robots that move in unconventional ways. The

first cannot translate without rotating. The second has a trilateral symmetry. Often,

roboticists do not consider such systems because their mobility is non-intuitive. Yet

we have shown below that both systems can move quite effectively in SE(2).

3.4.1 Introducing two new mechanisms

Both of the mechanical system models we present are swimmers that operate at

the limit of low Reynolds number fluid dynamics [Pur76], where friction dominates

inertia. The motion of these systems is fully dominated by the drag forces induced

by the internal velocities of the robots shape variables r ∈ R and body velocities
◦
g ∈ TSE(2). The motions of these systems can be usefully inspected using the tools
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Figure 3.3: Here we describe two mechanical systems that may appear as uncon-
ventional travelers. The two-slider swimmer (left) can move spheres along prismatic
joints. The motion simultaneously induces a thrust on the system while changing the
geometry of drag forces acting on the system. We plotted the gaits selected for the
two-slider swimmer on the rotational connection vector field [HC10] of the two-slider
swimmer (middle). This provided insight into how shape change can influence body
velocity. We can see that paths (shown in red) that start in the corner at the origin,
travel along a shape axis, sweep at a constant radius to another axis, then return to
the origin. The connection vector field aided gait selection of the two-slider swimmer,
which is discussed in §3.4.2.1. The three-branch swimmer (right) has three links that
can rotate, fixed to the end of a triangle. Since the shape space of the three-branch
swimmer is not restricted to planar representations, we selected gaits in a different
way.
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Figure 3.4: Both systems were able to explore their local environments in a way that
is unrestricted to translation in the plane. We plotted paths to show the number of
steps required to arrive at a target pose, projecting out the orientation (θ) component
of the full SE(2) pose. At 5 steps (cyan), the system had a strong variety of poses
at its disposal. We plotted motions available in 5 steps (1=black, 2=green, 3=blue,
4=magenta, and 5=cyan) Both systems appear to be capable of navigating through
environments with sparse obstacles.

of [HC10; HC13; RH16].

3.4.1.1 Two-slider swimmer model:

The two-slider swimmer in Figure 3.3 moves via the prismatic joints driven by

strictly positive displacements r1 and r2. The viscous force on each sphere is linear

in translational velocity and cubic in rotational velocity. The full model is:


3d 0 0

0 3d 0

−dr2 −dr1 d(r1
2 + r2

2) + d3

4


◦
g = R(α)


0 d

−d 0

0 0

 ṙ (3.3)

α = −π2

where R takes input parameters to a rotation about the origin on SE(2).
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3.4.1.2 Three-branch swimmer model:

We also designed the three-branch swimmer (see Figure 3.3), another viscous

swimmer. Three links are free to rotate from the points of the triangle. For bio-

logical intuition for how a system like this might move, a starfish might move like

a pentagonal five-branch system with longer segments of links at each vertex. The

links interact via the slender body theory of Cox [Cox70], the same that was used for

the swimmer in [HC13] and paddles in [KBR19]. The drag of the triangular piece is

represented by three static links that point from the center of the triangle to their

respective attachment points.

3.4.2 Hand selecting gaits

3.4.2.1 Gait selection for two-slider swimmer:

By inspection of the connection vector field of the rotational component of the

two-slider swimmer (see Figure 3.3), we saw that a variety of turning modes could be

excited. Hand-selected gaits all started at the origin of the base space, travel along

the axis of one shape variable, then translated at a constant radius from the origin,

traveling from one positive end of a shape axis to the other. Each path was then sent

to the origin via the other shape variable. We can see from the curl of the vector

field that clockwise gaits will yield positive rotation, and counter-clockwise gaits will

yield negative rotation. The three paths printed in red represent three magnitudes of

turning the system can choose. The larger the radius, the greater the turn will be,

as explained in Figure 3.3. Each gait also induces a translational displacement of the

system from its starting location.
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3.4.2.2 Gait selection for three-branch swimmer:

The three-branch swimmer is less amenable to inspection by the connection vec-

tor field methods since it has a third shape variable. Reduction methods (such as

[Rie+19]) can make such gait analysis useful for more complex Stokesian systems.

Geometric gait optimization can also be employed on this analytical system to obtain

a collection of gaits, maximizing various objective functions [RH19]. We avoided these

methods to reinforce that principled gait design concepts are not needed to design

a functional gait library for the swimmer. Here, we selected three gaits primarily

for their symmetrical features, enclosed shape space volume, and aversion of self-

intersections. Two links oscillated in anti-phase, providing a thrust that acts through

a line from the midsection of their attachment points to the third link’s attachment

point. The third link oscillated out of phase by a quarter cycle. We designed the

gaits as:

rmod(k,3)+1 = sin(ϕ) (3.4)

rmod(k+1,3)+1 = 1− cos(ϕ) (3.5)

rmod(k+2,3)+1 = −1 + cos(ϕ) (3.6)

for ϕ ∈ S1 with gaits γk enumerated k = (1,2,3). These three gaits generate three

group actions, which can also be run backward in ϕ, generating three inverse group

actions.

Each system had six gaits at its disposal. By inspection of Figure 3.4, we observe

the local planning ability of the systems, only using the six gaits as possible actions

(letters) of their total motion (word). We highlight the key takeaway of this section.

Behaviors that were not useful in isolation were critical to providing dense coverage.

Furthermore, these behaviors may lie outside the scope of typical behaviors that a
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roboticist may prescribe for a system.

3.5 Connecting Gait and Motion

The algebraic structure for computing available motions is straightforward. Sep-

arate gaits were concatenated as a string of group multiplications. What dynamical

properties were required for such assumptions? We cover the assumptions we made

in this section, using the language of geometric mechanics. For general dynamical

systems, combining gaits would require a transition behavior that matches the inter-

nal state (r, ṙ, p) of the endpoint of one gait and connects it with the internal state

(r, ṙ, p) of the starting point of the next gait. There exist a class of systems where

the matching requirements are highly relaxed.

3.5.1 Planning simplifications in principally kinematic systems

The class of systems we focused on in this work inhabit the Stokes regime [KM95],

which encompass the dynamic qualities of the principally kinematic case covered in

[OB98]. A well known example of such systems is low Reynolds number swimmers

[KM]. However, we recently accumulated evidence that this theory applies to multi-

legged locomotion [WZR19; CHG20]. The function A(·) connects gaits, as body shape

loops, to the motion they induce, called the “holonomy” of the loop.

It’s known from Stokes Theorem that a closed loop integral on a vector field is

equal to the area integral of the volume enclosed by the loop. This theorem extends

to higher dimensional spaces and provides the flexibility of inducing equivalent group

actions no matter where the closed loop starts or stops. Furthermore, any path in the

kernel distribution of A(·) can connect such loops to one-another without introducing

an additional motion in the group. In practice, however, obtaining this kernel from

data requires cumbersome sampling and system identification.
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3.5.2 Representational simplifications

Given a gait γb, the body frame motion Mb it produces could, in principle, be

a function of the initial point in the gait cycle and the speed with which this cycle

is executed. For systems where momentum is dominated by friction or constraints

(Stokesian systems), this is not the case. In those systems there exists a map A(r) :

r ∈ R 7→ L(Tr, g) taking shapes to linear maps from shape velocities to the Lie

Algebra g of G. This leads to the “reconstruction equation” ġ = LgA(r)ṡ where

Lg : g = Te → Tg is the lifted left action of the group element g. Thus, if two base

loops are connected at any point, the combination of their actions can be represented

as a group multiplication of their respective g elements.

There are infinite ways to take a gait library and coordinate it into a complete

motion planner. Typically people have a scheme for transitioning between gaits. The

overhead of finding such transitions for systems with no model can be large.

When selecting a collection of gaits for computing coverage, we required that each

shares a point in the base space and thereby allowing gait cycles to be applied in any

order.

3.6 Setup for Discovering a High Coverage Gait Library

To illustrate the approach on a more classical system, we simultaneously optimized

three gaits on Purcell swimmers to provide coverage of a portion of SE(2) surrounding

the identity using their h4(·) cost.
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Figure 3.5: When composing motions, one has to consider the sequencing of gaits
(like A and B pictured left) that may be separated in the shape space R. Planning
in the Stokes regime offers some convenient structure for the composition of motions.
In this regime, cycles in the internal state generate group motions irrespective of the
point along the cycle that the motion starts. For example, the extremal gait (bold
black line on the right) for the three-link Purcell swimmer can be started at any point
on the loop (such as the purple markers). Execution of a cycle from any point will
generate the same body motion. This structure greatly simplifies requirements for
sequencing motions on principally kinematic systems.
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3.6.1 Coverage point selection

This coverage point distribution included equally weighted points derived from all

possible combinations of the following values, totaling 125 points:

x = [−1,−0.5, 0, 0.5, 1] (3.7)

y = [−1,−0.5, 0, 0.5, 1] (3.8)

θ = [−π,−π2 , 0,
π

2 , π] (3.9)

where units for translation were body lengths and units for rotation were in radi-

ans. These spanned the translational bounds of moving by one body length and the

rotation bounds of rotating by a half of a full rotation.

3.6.2 Model extraction and motion parametrization

A single iteration of learning involved experimentally running each of the three

gaits for 30 noisy cycles, modeling and optimizing their motion via the framework of

[BHR18]. We parametrized the gaits in a modified version of the ellipse with bump

function parametrization also used in [BHR18]. The following parametrization p is

a modification that allows the base point, bi, of the three gaits to be an explicit

parameter:

ri(t) :=ci + (bi − ci) cos(Ωt) + ai sin(Ωt)+ (3.10)
No−2∑
k=0

ui,k w
(
t− k 2π

No

)

w(x) :=


1 + cos(xfNo) |xfNo| < π

0 |xfNo| ≥ π

, (3.11)
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with gait parameters

pi = (ci, bi, ai, ui,k). (3.12)

In this work, we used No = 18 and f = 3, totaling 16 bumps. Two bumps were elided

(k = 17, 18) via this representation such that base point b is left unshifted.

3.7 Finding Coverage with Purcell swimmers

Our first investigation was to see how well Purcell swimmers can optimize three

gaits simultaneously for the uniformly distributed set of coverage points of §3.6.1.

We observed how the ability to optimize these gaits changed as we added joints to

the swimmer. We started with two joints (the three-link Purcell swimmer) and built

our way up to eight joints. We repeated the optimization process 30 times for each

swimmer.

At the beginning of each optimization, a random joint was stimulated with a sine

wave. The stimulated joint was distinct for each gait. The only exception to this was

that for the three-link Purcell swimmer, a gait had to be repeated since there were

three initial gaits and only two joints. The swimmers used 30 cycles at each gait to

build a model. Then, the swimmers used the models provided by [BHR18] to predict

how changing the parametrization of their three gaits could be combined to optimize

a 4-step plan over the coverage points provided1. An iteration of the optimization

involved stepping along the policy gradient of three gaits (step size computed via

[BHR18]) and simultaneously updating the three gaits. The results are recorded in

Figure 3.6.

We ended the optimization after 30 iterations. The test showed that the swimmers

were able to use the coverage metric to consistently find a gait library for local motion

planning. Having two joints were sufficient to find a functional library, but having
1Using 4 steps allowed us to include knowledge of the commutator motions noted in §3.3.1.

70



three joints presented a notable improvement. This jump in performance was less

surprising after considering that the third joint allowed the swimmer to become fully

actuated (when in non-singular configurations) with respect to SE(2). After the third

joint was added, the convergent behavior of the swimmers was consistently within

the performance noise window of adding another joint.

The convergence rate of the swimmers improved when adding the third and fourth

joints. For all swimmers containing 3 or more joints, the standard deviation of per-

formance reached h = 0.4 by the tenth trial. Here, we calculated h as the average

normed distance to a coverage point. Converging at this expedient rate required ex-

actly 900 cycles of robot data. If we ran the robots at 3Hz, the optimizations would

have converged after collecting just five minutes of experimental data, even on the

nine-link swimmers.

3.8 Investigating the Ability of the Purcell Swimmer to Re-

cover from Joint Locking

In trials 30-60 of Figure 3.6, we tested the ability of the Purcell swimmer to

recover from “injury”. We took the optimal collection of gaits from the first 30 trials

and found the joint that used the highest amplitude behavior. We locked this joint at

its value taken at the base point of the parametrization. We then asked the swimmers

to take this optimal policy from the first 30 trials and use it to find a new optimal

policy despite the fact that one of its joints had been turned into a static kink.

The three-link swimmer was unable to move as a result of the injury, a consequence

of the scallop theorem in Stokesian systems [Lau11]. The four-link swimmer was able

to partially recover. It was equipped with two functional joints, yet was unable

to achieve the coverage scores of the un-injured three-link Purcell swimmer. This

may suggest that the injury resulted in a body geometry that was less equipped to
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Figure 3.6: Purcell swimmers of varying complexity, such as the nine-link (pictured
bottom left) were optimized for three gaits that maximize coverage. See §3.6.1 and
§3.6.2 for details on the setup of the experiment. We plotted the mean (top, solid
lines) and standard deviation (transparent bands) over 30 separate simulations of
the average distance of goal motions to the nearest available motion, denoted h. We
can see how h changes across trials and the number of joints used by the swimmer
(2=blue, 3=green, 4=red, 5=cyan, 6=magenta, 7=yellow, 8=black). At iteration
30 (marked by a vertical grey line), we plotted how well the swimmers adapt to
having the maximal amplitude joint locked. We also observed how the quality of the
coverage of the library varies by the number of joints used by the swimmer (bottom
right) before (blue box plots) and after (green box plots) joint locking.
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Figure 3.7: This provides a detailed look at two optimization process for a four-link
and five-link swimmer in the study summarized in Figure 3.6. We plotted the 4 step
horizon (1=black, 2=green, 3=blue, 4=magenta) at various trials on the plane (left in
each section) and on SE(2) (right in each section). For reference, we plotted the unit
volume in SE(2) (gray box) over which the coverage points were uniformly distributed.
For the four-link swimmer, we showed the optimal policy before injury in trial 22 (top
right), the consequence of a locked joint (grey dot) on the optimal policy in trial 30
(top middle), and the optimal policy recovered while the joint remains locked in trial
52 (bottom right). The four-link swimmer was strongly impeded in its ability to
recover a high coverage collection of gaits post-injury. For the five-link swimmer, we
showed the optimal policy before injury in trial 17 (top right), the consequence of a
locked joint (grey dot) on the optimal policy in trial 30 (top middle), and the optimal
policy recovered while the joint remains locked in trial 54 (bottom right). The five-
link swimmer was not impeded in its ability to recover a high coverage collection of
gaits post-injury.
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optimize coverage than the conventional three-link Purcell swimmer. As more joints

were added, the redundancy of joints both minimized the dynamical impact of injury

and provided a larger space of solutions for recovery.

One might pose the question: How many joints does the Purcell swimmer need

to be robust to a single joint locking? One could make a case that four joints were

a justified selection. The five-link swimmers were notably better at finding high

coverage libraries during recovery than the four-link swimmers and remained within

the standard deviation of performance of the six-link swimmers. The top row of

Figure 3.7 details one optimization process for a swimmer with three joints. It is

clear that before injury, the swimmer was able to achieve local poses. The injury

greatly handicapped this ability, even with the opportunity to recover. Likewise, the

bottom row of Figure 3.7 details one optimization process for the swimmer with four

joints. Before injury, the swimmer also found a useful gait library. The injury clearly

hindered its ability to move, but given the opportunity to recover, the swimmer

persisted in finding a new collection of behaviors that adapt to cover the local space.

As a result of this analysis, one could make the claim that up to adding a fourth

joint, redundancy only aided the optimization process. This is a rare statement

to make since adding a degree of freedom typically involves a substantial increase

in sampling requirements, both lengthening the convergence rate and making it less

certain. In this example, convergence rate was either improved or stays approximately

the same as joints are added. Here, combining the methods of [BHR18] and the

coverage metric allowed redundancy in the internal state to be an asset for behavior

optimization rather than a liability.

3.9 Implementation on Hardware

Here we communicate the general and noise-robust qualities of our approach by

optimizing coverage on real hardware with an unknown model. We did not have
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Figure 3.8: This robot (top right) was built from dynamixel modules and tree branches
available nearby (left and middle left). The trajectories showcase the available 1 to
4 cycle motions of the system (bottom right) from the robot’s origin before (green)
and after (blue) the coverage optimization.

explicit knowledge of the kinematics, mass distribution, or material properties of this

system when running the modeling and optimization algorithms.

3.9.1 Methods on hardware

Day 1: Inspired by the hardware used in [Mae+18], we traveled into the woods

foraging for tree branches. We gathered such elements, transferred them to the lab,

and sectioned the branches into viable robot appendages. We then constructed a

robot by fixing tree branches to the endpoints of a chain of three Dynamixel actuator

modules.

Day 2: We equipped the robot with motion capture markers and connected it

to a computer running the gait modeling and optimization algorithms. We used the

same equipment that was used in 2.9.1. To build a physics model centered at a given
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gait, we collect 20 cycles of noisy input data on the robot and fit a regression informed

by physics and geometry [BHR18]. We then compared the outcomes of two different

optimizations for the (x, y, θ) outcomes of a gait or gaits, taking the position of the

robot prior to application of a gait cycle as the origin.

(1) Find one gait to move forward without turning: We designed a gait

optimization to maximize x− y2 − θ2 (per cycle) given the coordinates of Figure 3.8

and units of body lengths (1
3m) and radians.

(2) Find three gaits that optimize coverage in a volume of SE(2): Given

the ability to use the 3 gaits in up to 4 combined cycles, we designed a gait li-

brary optimization to minimize the distance (computed on the Lie group), from

125 points distributed across all combinations of coordinates x = [−1,−1
2 , 0,

1
2 , 1],

y = [−1,−1
2 , 0,

1
2 , 1], θ = [−π

2 ,−
π
4 , 0,

π
4 ,

π
2 ]. The gray volume in Figure 3.8 contains

all of the coverage points.

3.9.2 Results on hardware

For the first goal function, we seeded a zero motion gait oscillating the middle

joint with a sinusoidal input. We executed 15 iterations of our data-driven gait

optimization algorithm, each consisting of 20 cycles of motion. Running at 1
2Hz, each

trial took 40 seconds. After the 8th iteration, the robot was able to travel 40% of its

body length per cycle with a turning rate of 0.10 radians per cycle.

For coverage, we first completed an exploratory sampling of motions (12 cycles).

From these 12 different gaits, we selected the subset of 3, which performed the best

on the coverage metric. After 5 iterations of trials (60 cycles, 20 for each gait), the

system found a more complementary set of gaits improving the coverage score from

0.97 to 0.76 average distance to the coverage points.
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3.10 Discussion and Conclusions

In this paper, we introduced a new metric for the optimization of robot motions.

This metric involved calculation of the composition of motions from a small library

of primitives, determining their utility in “covering” some region of the local position

space, formulated as a Lie group. What is novel about this approach is that

• It eliminated human bias from prescribing a limited set of allowable primitives

for a robot.

• It allowed for the use of unconventional robot designs for navigation.

• It allowed malfunctioning robots to quickly recover the ability to move through

space.

We showed the Purcell swimmers’ ability to recover from injury using the data-

driven geometric gait optimizer, guided by the coverage metric. Some interesting

trends emerged during these tests. The swimmers converged to a high coverage gait

library (containing three gaits) despite variation in the number of links and initial

gaits. This suggests insensitivity in the gait optimization when using the coverage

metric.

Furthermore, coverage allowed us to investigate the role that redundancy might

play in the ability of the swimmers to recover high coverage gait libraries post-injury.

We found that around four degrees of freedom, the addition of a joint no longer

provides a substantial change in the ability of the swimmer to recover. The ability

to apply this analysis to other robots could help inform what degree of complexity is

appropriate when designing a robot.

Finally, the coverage optimization on a robot made of tree branches was unable

to find gaits that translate without substantial rotation. The tree branch robot was

able to find a useful portfolio of maneuvers for navigation on a timescale that is

competitive with an implementation of reinforcement learning by Google [Ha+20].
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The tree branch robot example speaks to the morphology agnostic properties of

data-driven geometric gait optimization. The tree branch robot used in this frame-

work could be substituted with robots of many unexpected forms. As long as the

system acts near the Stokesian regime of locomotion, the methods of Chapter II

assist in building behavioral models that inform performance improvements.
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CHAPTER IV

Data-Driven Geometric Modeling Extensions

4.1 Modeling Extensions to Shape-Underactuated Dissipa-

tive Systems

4.1.1 Motivation

Rigid, fully actuated mechanisms are emblematic of the classical field of robotics.

The development of passive elements [PW; RMH14; KRC15; AB97; SBK01] and soft

actuators [KCH99; Tol+14; Seo+13; Pel00; SBC15] offers the potential for break-

through improvements for the design of future systems. Passive elements have the

potential to assist in designing mechanisms that are safer, cheaper, more energy ef-

ficient, and more resilient to impact damage. However, these design improvements

typically come at the cost of precise control of the internal state of the system. The

degree of underactuation of internal state and the complexity of soft mechanisms can

both exacerbate this problem.

Early robotics research showed that a convenient way to add compliance to a

mechanism is to add a spring in series with a motorized joint [PW]. The “Series

Elastic Actuator (SEA)” was introduced to humanoids [Rad+15] and snake robots

[Rol+14] with the goals of providing compliant, torque controlled interaction with

the environment and higher damage resilience. The design advantages of SEAs come
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at the expense of high-bandwidth position control. It became difficult to execute

precise body-shape trajectories that would be possible in the fully actuated, otherwise

identical, systems. In robots with soft actuators, the shortcomings in position control

are exacerbated by the sensitive nonlinear models of pneumatic devices, dielectric

elastomers, and other soft actuation techniques [WJ10; RT15]. The challenges of

precise fabrication and assembly make it difficult to reliably reproduce dynamical

outputs across copies of these devices.

The elusive nature of obtaining predictive models for highly underactuated sys-

tems shares features of the challenges of modeling their high degree of freedom, fully

actuated counterparts. For fully actuated dissipative systems, we have previously

published sample-efficient techniques to model locomotion systems with noisy shape

control using cyclic behavioral data [BHR18; KBR19]. Seminal work by Shapere,

Wilczek, Marsden, Kelly, Ostrowski, Bloch and others [SW89b; KM95; Blo+96;

MO98; OB98; CMR01] showed that the Newtonian physics of locomotion can be

refactored into a kinematic term (the mechanical connection of [MO98]) and a mo-

mentum term. At the limit of large friction, the momentum term disappears, leaving

a class of models which we have shown to be easy to system identify [BHR18]. Fur-

ther, with finite-but-large dissipation, the influence of momentum can be folded into

a nonlinear correction to the connection, with only a small increase in the complexity

of the model identification process [KBR19]. Thus models for predicting the influence

of shape input on body velocity can be built strictly from observation without any

mechanical analysis specific to the system – all that is needed is “sufficiently rapid”

dissipation of momentum.

In the current work, we extend these ideas to underactuated systems. First, we

identify the class of “Shape-Underactuated Dissipative Systems” (see §4.1.3) to which

our methods apply. Informally, these are systems that have fewer actuators than

internal degrees of freedom and whose mechanics are governed primarily by frictional
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and damping forces, rather than inertial ones. We claim that SUDS are a highly

useful and broad class of dynamical systems in practice. We then show how data-

driven geometric modeling techniques can be extended and used to identify predictive

models for SUDS (see §4.1.3). For the subclass of SUDS whose internal dissipation

is linear, the technique further allows us to collapse our model complexity, achieving

a complexity that grows linearly in the degree of underactuation (see §4.1.4). To

demonstrate the efficacy of our approach, we examine its performance on simulated

viscous swimming data (see §4.1.5), validating that predictive SUDS models can be

identified for soft, high dimensional systems with small amounts of trial data. Finally,

we discuss the relevance of SUDS identification in modern robotics applications.

4.1.2 Background: Data-Driven Connection Modeling

In the field of geometric mechanics, the equations of motion arise from dynamical

constraints derived from Lagrangian or Hamiltonian descriptions, after which group

symmetries are applied to generate a reduced form [CMR01; Blo+96]. The represen-

tation of these equations incorporates the uniformity of the operating environment.

This involves a systematic reduction of the dynamics, achieved by quotienting the

dynamics by its dependence on group. A common and representative case is the

symmetry expressing the fact that a body’s interactions with a uniform environment

do not depend on its position and orientation in that environment1. Under these

circumstances we can re-write the equations of motion using a “reconstruction equa-

tion”[OB98]. This appears as

◦
g = A(r)ṙ + I−1(r)p

ṗ = f(r, ṙ, p). (4.1)

1While our work applies without modification to other Lie group symmetries, we will tacitly
assume that the symmetry is a subgroup of SE(3) and use the terms “body frame” and “body
shape” for the “fibre” and “base space projection” that appear in the fibre bundle formulation of
this theory.
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These tools express in a formal and complete way the intuition that symmetry in the

environment should allow us to write equations of motion relative to the body frame.

As was shown for the case of the reduced Lagrangian, one can separate the in-

fluence on body frame motions into two factors, a kinematic contribution and a mo-

mentum contribution. Particularly, when one of these contributions dominates the

other, we gain strong insight into the key influences and features of the locomotion

model. They also introduce a significant simplification – the momentum p appearing

in them is of dimension equal to that of the group. In the general case, this reduces

the number of dynamical equations by the dimension of the group, since ◦
g is now

an output rather than a state. More profoundly, since in the realm of robotics the

body shape r(t) can often be dictated with high-gain feedback, the dimension of the

remaining equations is the dimension of p.

When the motion is governed by linear constraints on the velocity, the dimension

of p further reduces; these are sometimes known as “Pfaffian constraints”. For moving

systems with environmental symmetries, Pfaffian constraints often come in the form

of body frame velocity constraints (e.g., no sideways slipping). Friction, in the form

of a Rayleigh dissipation function, can further dissipate the momentum p → 0, and

if it does so quickly enough, the results are similar to those of a system governed

by Pfaffian constraints. With momentum gone, the equation retains only the A(r)ṙ

term, known as the “mechanical connection” [MO98]. These systems are “principally

kinematic” in the sense that their motion depends only on the shape of their body

configuration curve, but not on the rate.

The most well known, principally kinematic locomotors are viscous swimmers

acting in low Reynolds environments [HC13]. By exploiting the structure of the

mechanical connection, tools have been developed for coordinate system selection,

gait identification, and behavioral optimization [HC11a; WL13; HC15; WO16; RH19].

Predictive global models are often challenging to obtain for real animals and for
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physical hardware. System identification techniques [HC13; Dai+; Sch+19; Ast+20]

allow for data-driven modeling of animals and robots but require a large amount of

experimental data. Typically some reduction of the representation of the shape space

is needed to make these methods produce tractable models of complex animals and

robots. Thus, there is a real need for modeling techniques with lean data requirements

that can handle high dimensional representations of the body shape.

In [BHR18], we developed a data-driven approach to geometric modeling and op-

timization. It allows us to identify a mechanical connection that governs a rhythmic

motion with very little data (e.g. on the order of 30 cycles for a nine-link Pur-

cell swimmer). We built this estimation framework by combining oscillator theory

[Rev09; RG08; RK15b] and geometric gait optimization [RH17; RH19]. Using a phase

estimator from [RG08], we computed phase from observed cyclic shape data. Group-

ing measurements by phase allowed us to compute a Taylor series approximation of

the mechanical connection at each phase using linear regression. Further theoretical

analysis showed that when momentum decays quickly but not instantly, there exists

a nonlinear A(r, ṙ) close to the linear mechanical connection; this additional nonlin-

earity was straightforward to capture with the inclusion of additional terms of the

order of the momentum decay time-constant [KBR19].

4.1.3 Shape-Underactuated Dissipative Systems (SUDS)

The locomotion model for systems whose dynamics have the structure of a me-

chanical connection take the form:

◦
g = A(r)ṙ (4.2)

where r ∈ Rn spans the shape space R, g is an element of a Lie group G, and A(r) is

an infinitesimal lift from shape velocities to body velocities. The notation ◦
g denotes
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the world velocity ġ written in the body frame, computed as g−1ġ for matrix Lie

groups.

Previous work [HC13; HC15] showed that for mechanical connections dominated

by drag, the internal wrenches along the degrees of freedom of the shape can be

written as:

τ = −M(r)ṙ, (4.3)

whereM is a Riemannian metric of the shape space that weights the cost of changing

shape in various directions. BecauseM is positive definite, its negation in equation

4.3 means that the system is “passive” in the sense used in control theory – changing

shape always consumes energy.

For underactuated systems, arbitrary choice of instantaneous shape velocity ṙ is

infeasible. Consequently, the form of equation 4.2 is not directly useful for planning

system motions. We split the shape configuration and force vectors as

r = ru ⊕ rp τ = τu ⊕ τp (4.4)

where u indicates controlled degrees of freedom and p indicates passive degrees of free-

dom. These passive degrees of freedom are governed by some dynamical relationship

in which the wrench on the passive joint is a function of

τp = f̃(r, ṙ, ◦
g). (4.5)

We substitute equation 4.2 into equation 4.5 to reduce this relationship to a mapping

from shape and shape velocity to the internal wrenches

τp = f(r, ṙ). (4.6)
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The u⊕ p splittings of r and τ breakM into four blocks

M =

Muu Mup

Mpu Mpp

 (4.7)

where for brevity we supress the dependence ofM on r. We now can represent the

passive wrenches in two ways, drawing from equations 4.3 and 4.6, such that

τp = −Mpuṙu −Mppṙp = f(r, ṙ), (4.8)

and after rearranging,

−Mppṙp = f(r, ṙ) +Mpuṙu. (4.9)

Noting that many physical systems of consequence exhibit linear or nearly linear

dissipation, we add the assumption that we may rewrite f as an r dependent affine

function of ṙ,

f(r, ṙ) = fo(r) + F (r)ṙ = fo + Fuṙu + Fpṙp. (4.10)

Combined with equation 4.9, we arrive at an equation where each term is constant

or linear in shape velocity

−Mppṙp = fo + Fuṙu + Fpṙp +Mpuṙu. (4.11)

This expression is equivalent to

−(Mpp + Fp)ṙp = fo + (Fu +Mpu)ṙu, (4.12)

which allows us to show that ṙp can be written in a form that is affine in ṙu.

Now we show that (Mpp + Fp) is full rank, which will prove that the affine rela-

tionship between ṙp and ṙu is not degenerate. TermMpp is positive definite since it

85



is a diagonal block ofM, which we have established is itself positive definite. Term

Fp is semi-positive definite since any damped system will have a non-negative power

dissipation from damping ṙTp Fpṙp. The sum of a positive definite matrix and a semi-

positive definite matrix is itself positive definite, and thus (Mpp + Fp) is invertible.

Because equation 4.2 is linear (and thus affine) in ṙ, and ṙp is affine in ṙu, we

obtain that ◦
g must be affine in ṙu. The equations for (◦

g, ṙp) are affine in ṙu:

◦
g = Au(r)ṙu + ◦

go(r) (4.13)

ṙp = −(Mpp + Fp)−1
[
fo + (Fu +Mpu)ṙu

]
(4.14)

In many control applications the control input is τu rather than ṙu. Using equation

4.3 we can solve by substituting equation 4.14 to give an explicit affine formula for

τu from ṙu

τu = −Mupṙp −Muuṙu (4.15)

We define a “Shape-Underactuated Dissipative System (SUDS)” as a mechanical

system operating within the dynamical constraints of equation 4.2 and equation 4.3.

We focus on SUDS containing linear passive elements of the constrained form given

by equation 4.10. These systems are therefore governed by motion models comprised

of equations 4.13 and 4.14. When combined these equations lead to the observation

that

(◦
g, ṙp)T = C̃(r) +B(r)ṙu, (4.16)

e.g. the dynamics of SUDS are a nonlinear function of shape r, affine in the directly

controlled shape velocity ṙu.
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4.1.4 Estimation for SUDS

Now that we have established a dynamical characterization of SUDS, we can dis-

cuss the ramifications of this characterization for the estimation of motion models

from data. If analytical models are available, methods derived in [RH20] provide a

way to perform gait optimization on drag dominated systems with an elastic joint.

However, when analytical models are not available, sample efficient methods for sys-

tem identification are required for data-driven behavioral optimization. We will show

that the characterization presented in §4.1.3 will be important for data-efficient sys-

tem identification of highly underactuated systems. Following the approach we took

in previous work [BHR18], we focus on identifying the dynamics within a “tube”

around a nominal trajectory θ by expressing the shape as r := θ+δ. Here δ expresses

deviation from the nominal trajectory. We then consider the approximation of (◦
g, ṙp)

by a first-order Taylor expansion in (δ, δ̇) as

(◦
g, ṙp) ≈C̃(θ) + ∂C̃

∂r
(θ)δ +B(θ)(θ̇u + δ̇u)

+ ∂B

∂r
(θ)δ(θ̇u + δ̇u). (4.17)

However, because θ̇ is a predetermined function of θ, we can combine terms (sup-

pressing the (θ) for readability)

C := C̃ +Bθ̇u (4.18)

Cr := ∂C̃

∂r
+ ∂B

∂r
θ̇u (4.19)

which provide the following linear regression problem at each θ,

(◦
g, ṙp) ∼ C + Crδ +Bδ̇u +Brδδ̇u. (4.20)
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The regression in equation 4.20 expresses the instantaneous body and shape veloc-

ities given the current shape (referenced from r, δ) and the control input (referenced

by δ̇u) to the system.

4.1.4.1 SUDS balance compactness of model with capability to approxi-

mate dynamics

A primary challenge of system identification is to select the unknown parameters to

solve for the model governing the system dynamics. Choosing too few parameters can

cause underfitting while choosing too many parameters can often cause overfitting.

Here we show that the characterization of SUDS dynamics allows for a compact yet

descriptive set of parameters to seed system identification. In particular, we pay

attention to the ability of the parameters to remain descriptive and compact at high

degrees of underactuation, which is a prevalent feature of soft systems.

The overall shape space dimension is n := nu+np, the number of directly controlled

DoF and the number of passive DoF in the system respectively. Compare now the

regressors of equation 4.10 to those of a more general SUDS

1. δ, δ̇ for a first-order Taylor approximation of a general SUDS, having O(n)

unknowns.

2. δ, δ̇u, δ⊗ δ̇u for a first-order Taylor approximation of a passive Stokesian system

constrained as per equation 4.10, having O(nnu) unknowns.

3. δ, δ̇, δ ⊗ δ̇, δ2, δ̇2 for a second order Taylor approximation of the general SUDS,

having O(n2) unknowns.

Thus estimation (2) provides the structural context beyond (1) to accurately model

system behavior while avoiding the O(n2) growth of estimation (3). This has a clear

advantage for soft systems, which typically have a small number of control inputs and

a high dimensional shape space.
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4.1.5 Examples of SUDS Swimmers

To illustrate our method we examined several systems that are amenable to this

estimation architecture. In these systems, a viscous (“Stokes”) flow regime produced

the affine constraints via Newtonian force balance.

4.1.5.1 Linear Passive Swimmer

The linear passive swimmer (first row of Figure 4.1) consists of a shape-changing

“T-shaped” paddle connected to a payload volume via a spring-damper. The T shape

is comprised of a horizontal bar of fixed width and length r2, affixed to the midpoint

of a vertical bar which has a fixed width and a variable height L − r2. As r2 varies

between 0 and L, the change of shape of the paddle interacts with a Stokes fluid,

generating reaction forces. The spring-damper connection to the payload has rest

length lk, instantaneous length r1, spring constant k, and damping coefficient c. Due

to symmetry, the linear passive swimmer exerts no torques and it is constrained to

move along the x axis. The single Pfaffian constraint that drives the motion model

is:

lcẋ+ cr2(ẋ+ ṙ1 − ṙ2) = 0 (4.21)

leading to the motion model

◦
g = −cr2

cl + cr2

[
1 −1

] ṙ1

ṙ2

 (4.22)

(in which ◦
g = ẋ). The group used here G = R is abelian, so connection vector field

(CVF) analysis provides exact solutions rather than approximations [HC11a]. This

exact mechanical connection persists in the presence of shape-underactuation, which

acts only to restrict what shape trajectories (and therefore group trajectories) can be

expressed.
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Figure 4.1: Predictive quality of data-driven SUDS models for several systems. We ex-
amined the predictive ability of regressions in equation 4.20 on simulated gait data for
a linear passive swimmer, a pushmepullyou swimmer, a three-link Purcell swimmer,
and a nine-link Purcell swimmer (top to bottom). In the cartoons of these systems
(left column), we indicated controlled joints (black) and passive joints (red). We plot-
ted the raw gait data (red; 30 cycles at 0.5Hz) and the phase-averaged gait (black)
for each system (second column). The metric Γ provides a reference of how accurate
the data-driven connection model is with respect to the phase averaged model. We
compared the two models, plotting the residuals of data-driven body velocity model
(blue) and passive shape velocity (red) on top of the phase averaged model residuals
(gray). We also plotted passive shape and body velocity (black) with phase averaged
model indicated (yellow), demonstrating that while the phase averaged models are
quite good, the data-driven connection model greatly improved the fidelity of the
model, explained by the Γ metric on the right.

90



For this system, the internal forces can be written as

lcẋ = k(r1 − lk) + dṙ1 + ω (4.23)

cr2(ẋ+ ṙ1 − ṙ2) = k(lk − r1)− dṙ1 + ω, (4.24)

where ω is the wrench that the world exerts on the system (in this case a force along

the x-axis).

Combining the equations for external force balance (equation 4.22) and internal

force balance (equations 4.23 and 4.24) provide three equations and three unknowns

(◦
g, ṙ3, ω). We write the equations such that inversion of the matrix on the left-hand

side will provide a locomotion model for the system’s motion, given r1(t), r2(t), r3(t =

0). Stacking the equations, we write


cl + cr2 0 cr2

cl −1 −d

c(r2) −1 (d+ c(r2))




ẋ

ω

ṙ1

 =


− c(r2)

0

−c(r2)

 − ṙ2 +


0

k(r1 − lk)

−k(r1 − lk)

 (4.25)

The dynamics for the linear passive swimmer fit into the form of equations 4.13

and 4.14 where ru = r2 and rp = r1. As a driving signal for this swimmer, we used

ru := 1 + sin(t)/2. For physical constants, we used L = 2, l = 0.5, c = 1, d = 1, and

lk = 1.

4.1.5.2 Pushmepullyou Swimmer

This symmetric viscous swimmer (second row of Figure 4.1), introduced in [AR08],

is constrained such that the pairs of links on the left and on the right open symmet-
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rically about the center-line of the swimmer. The symmetry allows us to assume

the system moves only along the x axis. By exciting r1 and making r2 passive, we

obtained a small forward displacement over every cycle. We chose L = 1, k = 1, and

rk = 1
2 .

This swimmer is also called a “pushmepullyou” swimmer, as it describes a com-

mon approach of offset motions of the left and right link pairs. The single Pfaffian

constraint that drives the motion model is

0 = Lẋ+ 2(Lc2
1 + 2Ls2

1)ẋ+ 2L2s1ṙ1

+ 2(Lc2
2 + 2Ls2

2)ẋ+ 2L2s2 − ṙ2 (4.26)

where for brevity, denote si, ci := sin(ri), cos(ri) for i = 1, 2. This leads to the motion

model

ẋ = α
[
−Ls1 Ls2

]T ṙ1

ṙ2

 = 0 (4.27)

α = 1
1
2 + c2

1 + 2s2
1 + c2

2 + 2s2
2
. (4.28)

We place a spring on the left pair of joints such that r1 is driven to rk = 0.5rad via

spring constant k = 1. We write the internal torque balance on the passive joint as

k(r1 − r0) = (−2L2ṙ1 + 2Ls1ẋ)L+ L3

12 ṙ1. (4.29)

This resulted in the equations

α−1 Ls1

γ1 γ2


 ẋ
ṙ1

 =

Ls2

0

 − ṙ2 +

 0

k(r1 − rk)

 (4.30)

γ1 = 2L2s1 γ2 = −2L3 + L3

12 (4.31)

92



which match the form of equations 4.13 and 4.14, where ru = r2 and rp = r1. We

drove this model with ru := 2 + sin(t)/2.

4.1.5.3 Purcell Swimmer and nine-link viscous swimmer

The Purcell Swimmer and nine-link viscous swimmer (third and fourth rows of

Figure 4.1) are known to have connection models [AR08]. In [BHR18], we studied

the ability to model and optimize gaits with these platforms. The force balance

that induces the Pfaffian constraints is presented in [HC13]. Torsional springs and

dampers can act at the joints within the specified form of equation 4.10, and the

model will maintain the form of equations 4.13 and 4.14. In this work, we use the

model and equations of [HC13]. We use segment length L = 1
2N with a spring at each

passive joint having a rest angle of 0 and a spring constant of kτ = 5. We drive the

three-link Purcell swimmer with ru := sin(t), and the nine-link Purcell swimmer with

ru := [sin(t), cos(t)].

4.1.6 Estimator Accuracy

We sample the position and shape space of each of these systems at 100 time-

steps per cycle for a 50 cycle trial. The control inputs to the system were driven by

a Stratonovich stochastic differential equation, in a process identical to that used in

[BHR18]. In summary, this process involves an input that is perturbed via Brow-

nian noise while being exponentially attracted to a reference signal. The reference

is periodic, defining the gait or limit cycle that the system is perturbed about. We

select gaits for each system such that they noticeably excited the passive degrees of

freedom. We drive each gait at a half Hz frequency since this was sufficient to produce

excitation across all mechanisms. We compute each data-driven model by fitting the

regressions equation 4.20 to the trial data use the same method of as [BHR18] (a

fairly naive least squares regression approach).
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To assess the quality of our data-driven models, we compare our SUDS regression

models with the predictions obtained from a phase-averaged behavior of the same

system. Such phase-averaged behaviors can be viewed as the simplest “template”

model of the dynamics, whereby all periodic locomotion gaits can be viewed as os-

cillators [Sei+17]. We employ the phaser algorithm of [RG08] to reconstruct a phase

from the “observation” data produced by the simulation, as this algorithm has been

shown to be effective in producing phase driven models for many animal and robot

locomotion systems [Mau+15; Wil+17; CR20]. In the sequel, we denote by ◦
g and ṙ,

the ground truth body velocity and shape velocity samples (respectively). By ◦
gT and

ṙT , we denote the predicted value for these quantities projected onto the phase model

of the system 2. Finally, ◦
gD and ṙD denote the data-driven model-predicted values of

these same variables.

We define an accuracy metric for our predictions as one minus the ratio of the

error in the data-driven prediction to the error in the phase-only predictions,

Γ∗ = 1−
∑m
i=1 | ∗D − ∗ |∑m
i=1 | ∗T − ∗ |

, (4.32)

for m samples and ∗ = {◦
g, ṙ}. Γ∗ = 1 indicates perfect prediction of the ground truth

velocity, and Γ∗ = 0 means the model has no predictive improvement over using the

phase-averaged behavior. The data-driven models were notably more predictive than

the template models, as illustrated in the right columns of Figure 4.1.

4.1.7 Discussion and Conclusions

We have shown that the broad class of “Shape-Underactuated Dissipative Systems

(SUDS)” gives rise to dynamics that have an affine structure in the shape-velocity

of their controlled DoF. As a consequence, it was possible for us to formulate an
2Equivalently, this can be considered a projection to the template system, which is a phase

oscillator on the phase-averaged trajectory.
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efficient regression model of these dynamics and to demonstrate that for several simple

models, these regressions would in fact improve prediction accuracy by a substantial

factor. The similarity to our previous work [BHR18; KBR19; BR20b] suggests that

this would make it possible to rapidly learn gaits and libraries of maneuvers in such

underactuated systems [BR19; BR20a]. It suggests that underactuation in SUDS

does not pose nearly the same difficulties as in other underactuated systems — the

strong dissipation improves the stability of the passive dynamics under repeated but

perturbed control inputs.

One particularly promising direction is modeling and control of soft systems with

e.g. soft pneumatic actuators or systems with long, passive, flexible tails. We have

shown that our model identification regressions grow only linearly in complexity with

the number of passive degrees of freedom. Thus, we can reasonably hope to process

high dimensional representations of the continuous (and thus “infinite-dimensional”)

shape of soft objects. As long as the dimension of the representation provides a

reliable state – in the sense of having good enough predictive ability – our work here

provides good reason to believe the SUDS model identification will be tractable and

produce predictive results.

From a biological perspective, we note that most animals are small (by human

standards) and thus more dissipative because viscous friction scales with area or

length, whereas inertia scales with volume. The simplicity of SUDS modeling sug-

gests that the control problem that small, and even more so small and aquatic, animals

solve is thus fundamentally easier than the control problem faced by large terrestrial

creatures such as ourselves. We, therefore, offer the hypothesis that the neurome-

chanical control of animals is ancestrally geared for controlling SUDS and that the

motor control ability of large-bodied extant species builds upon a more basal ability

to learn to control SUDS.

A great part of the appeal of data-driven modeling to the robotics practitioner
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is the potential of our approach to systematically model the interactions of robots

with un-modeled environments, even when these are potentially soft, compliant, and

complex robots. Because the model regressions are efficient and easy to update, one

can envision online identification leading to a broadly applicable form of adaptive

control. This could allow robots to be highly adaptable to environmental changes

and internal damage while retaining the ability to plan using the SUDS regression

derived self-model.

Having provided a generalized framework for modeling shape-underactuated dis-

sipative systems from data, we hope to inspire implementations in locomotion, ma-

nipulation, and even biomedical devices. For such applications, one needs to be sure

of the dominance of damping and fairly high bandwidth control in a subspace of the

shape of the robot. Having these, the practitioner has access to a system identifier

that is sample efficient enough to work in situ, offering a broader space of practi-

cal applications for soft robots. These could include disaster scenarios with poorly

characterized environments and biomedical procedures.

4.2 Modeling Extensions to the Perturbed Stokes Regime

4.2.1 Motivation

In this work, we provided tools for the modeling of animal and robot behaviors

from data, specifically attending to the case where damping forces dominate inertial

forces. A key consideration of this work was accounting for non-zero inertial forces,

turning our attention to the perturbed Stokes regime [EJ16]. The geometric mechan-

ics literature has historically paid very close attention to the dynamical regime where

the inertia-damping ratio is zero [KM; KM95; HC11a; HC13; BHR18], resulting in

the Stokesian limit of motion characterized by "living life at low Reynolds number"

[Pur76]. This friction dominated dynamical regime can also result from nonholonomic
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constraints [Bre81; Kar81; Eld16].

Of specific interest in this work is the ability to model, analyze, and optimize

animal and robot behaviors from data. The work of [BHR18] made progress in our

ability to do this, combining tools from geometric mechanics and oscillator theory.

A limiting feature of the methods was the required assumptions that the agent is

restricted to act kinematically, restricted to the expressive capacity of the viscous

connection [KM95]. One could argue that the method [BHR18] could be applied to

systems with inertial effects, as long as the system acts approximately like a Stokesian

system. This work showed that such an approach results in suboptimal modeling of

system behaviors. In this work, we developed a data-driven modeling algorithm for

systems inhabiting the perturbed Stokes regime, providing corrections to the model

of [BHR18] that account for structural changes in the dynamics that happen when

adding inertia to an otherwise fully viscous system. We showed that this model is

more accurate than the viscous model for a range of inertia-damping ratios.

We arrived at a model for perturbed Stokesian behavior by applying normally hy-

perbolic invariant manifold theory (abbreviated NHIM theory) [Fen71; Fen74; HPS77;

Fen79; Eld13] within a singular perturbation representation. Here the partitioning

of fast and slow dynamics is governed by a scalar inertia-damping ratio. We showed

that the slow manifold of this system acts like a viscous connection at a small inertia-

damping ratio. At the lower limit of this ratio, we show that the system acts exactly

like the Stokesian systems studied in [KM; KM95; HC11a; BHR18]. This represen-

tation is convenient since it provides a single constant that can scale us from purely

viscous systems through the perturbed Stokes regime to what the geometric mechan-

ics community calls the mixed kinematic dynamic regime. The representation has

practical utility in that the singular perturbation representation allowed us to com-

pute correction terms for the system dynamics when it is off of the slow manifold. This

is a conventional use of geometric singular perturbation theory [Fen79; Jon95]. Re-
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searchers have used these methods in the past for robots with flexible joints [SKK87].

Please see subsections 2 and 3 of [KBR19] for details of the approach.

4.2.2 Designing Tests to Determine Performance Advantages of the Per-

turbed Stokes Model

After motivating a new set of regressors to plug into the modeling framework of

[BHR18], we moved on to testing the utility of the new perturbed Stokes regressors.

We designed a mechanical system for which an inertia-damping ratio can be pre-

scribed as a scalar, allowing for the sampling of dynamics in the Stokesian, perturbed

Stokesian, mixed kinematic dynamic, and inertial regimes. We showed that over a

consistent region of the inertia-damping ratio, the perturbed Stokesian regressors offer

predictive improvements over the Stokesian regressors. To be able to make this type

of comparison, we introduced metrics for the evaluation of both model quality and

comparative model performance. These metrics are computable from data, unlike the

inertia-damping ratio, which is a prescribed variable. The methods here extended the

sampling efficiency and morphology agnostic characteristics of [BHR18] to systems

with momentum. The methods detailed in this work also increased the breadth of

the approach of data-driven geometric modeling.

A key insight of this work is the derivation of a new collection of regressors based

on the perturbed Stokesian dynamics, as characterized in [KBR19]. Here, we augment

the modeling process of [BHR18] to use this new collection of regressors for estimating

the motion model in the neighborhood of a behavior. This allows us to take an

approach designed for systems acting at the limit of friction and extend to a class

of systems with measurable momentum in the perturbed Stokes regime. In order

to showcase the utility of this model, we simulate the dynamics of a collection of

swimming platforms at various Reynolds numbers. We document the difference in

the accuracy of the Stokes and perturbed Stokes data-driven models across these
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Figure 4.2: Schematic representation of our swimming model. A single body (ellipses
with center of mass marked) of mass m and moment of inertia mĪ is attached to two
identical paddles each comprising 1 (left), 2 (middle), or n segments (right). The
length of the body is L, and the length of the paddles is d, with each segment of
length d/n.

varying dynamical regimes. 3.

4.2.3 Designing a Swimming Platform that Scales through Dynamical

Regimes

We designed a swimming model to test the accuracy of the two models. The

system in Fig 4.2 has a central body (with uniformly distributed mass) and two

chains of massless links, which we call paddles, that extend from the center of mass.

Each paddle can be equally segmented into n pieces, which always sum to the same

unit length L
2 . At n = 1, the system reminds us of a boat with oars, whereas n

approaches inf, the system reminds us of a bacterial cell with two flagella.

The system is constrained to move within a planar workspace, where the dynamics

in the body frame are assumed to be invariant to the position and orientation in the

plane. We represent this position and orientation on the plane as a group element

g ∈ SE(2). This element is defined g = [x, y, θ]T for the equations below.
3Are simulations are not intended to provide high fidelity characterization of fluid-fluid interac-

tions at higher-Reynolds number. We did not focus on real-world physical fidelity at this range of
Reynolds number since it is unlikely to showcase behavior we consider to be perturbed Stokesian.
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The velocity in the body frame is defined as

◦
g = R−1(θ)ġ =


cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

 ġ. (4.33)

The main body (length L) and the paddle links (length d) are treated as slender mem-

bers. We use drag forces according to Cox theory [Cox70] to model the environmental

forces on the system as

C
D

= c


Cxd 0 0

0 Cyd 0

0 0 1
12d

3Cy

 , C
L

= c


CxL 0 0

0 CyL 0

0 0 1
12L

3Cy

 . (4.34)

Factor c > 0 is written such that it can be used in our analyis as a scaling factor for

the influence of drag in the system. According to Cox theory, at the limit of thinness

in links (which we use here), the drag coefficient ratio can be as high as 2. [HC13].

Using these assumptions, we can write the drag forces and drag moments on the ith

segment as

Fi = cF̄i −R(αi)CD


cos(αi) sin(αi) 0 0

− sin(αi) cos(αi) d
2

d
2

0 0 1 1




◦
g

α̇i

 . (4.35)

For the main body, we can write the drag force and drag moment as

Fbody = cF̄body = −C
L

◦
g. (4.36)

Provided that the body has a uniformly distributed mass m and moment of inertia

I = mĪ about its midpoint (remember that the oars/segments are massless), the
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dynamics in the world frame are :

g̈ =


ẍ

ÿ

θ̈

 = 1
ε


1 0 0

0 1 0

0 0 1
Ī

R(θ)
F̄d1 + F̄d2 + F̄body

, (4.37)

where ε := m
c
is the dimensionless ratio of inertia to damping. For dimension counting,

remember thatm and c are dimensionless, making the diagonal terms of equation 4.37

have units of 1
time

.

Thus, by adjusting the ratio of inertial to frictional forces in the system, we can

directly modify ε. Now we can easily modify the regime the paddle operates in by

dialing a single constant, ε. As ε approaches zero, the system acts in the fully viscous

regime. Here the system is driftless; when the paddles stop, the system stops. As

ε approaches inf, the system is governed by conservation of momentum. At some

point, while increasing epsilon, the system will break the assumptions required to

consider it a perturbed Stokesian system. The best way to see when this matters for

our modeling assumptions is to test it. Next, we will compare the performance of

data-driven models (Stokesian and perturbed Stokesian) at a variety of ε values that

span the low to high Reynolds regimes.

4.2.4 Comparison of the Estimated Models

For the simulations run, we select drag coefficients Cx = 1 and Cy = 2, inertial

coefficient Ī = 1, and kinematic parameters L = 1 and d = 0.5. In the simulations, we

will modify the value of ε, which governs the rate of attraction to the slow manifold

as well as the ratio of inertial to viscous forces. Previous work [BHR18] documents

the process for simulating and modeling systems from data, which is identical to the

implementation used here. To summarize, we obtain a noisy trajectory in shape that

is attracted to follow some nominal gait. This trajectory contains 30 cycles that
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loosely follow the nominal gait and are then integrated through equation 4.37.

The sampled outputs of the simulation are recorded and stored. The “ground

truth” samples of the body velocity are referenced here as ◦
gG. For each of these

samples, we obtain a velocity that is forecasted with a data-driven perturbed Stokes

model, which we call ◦
gp. Likewise, we obtain velocities forecasted by the Stokes

model, which we call ◦
gs.

As a “zeroth-order” phase model of the dynamics, we constructed a Fourier series

model of ◦
gG with respect to the estimated phase, which we denote by ◦

ga. For any

data point, the zeroth-order model prediction is ◦
ga(ϕ) for the phase ϕ of that data

point.

We computed the RMS errors ek∗ for each component k of the body velocity and

each model ∗ = p, s, a by ek∗ := 〈|◦gk∗ −
◦
gkG|2〉1/2. Since the numerical value of these

errors means little, we defined the metric Γk∗ := 1− ek∗/eka for ∗ = p, s to indicate how

much better the regression models were performing compared to the zeroth-order

phase model ◦
ga. A Γk∗ of 0 indicates doing no better than the zeroth-order model,

whereas a 1 indicates a perfect model. To further highlight the difference in prediction

quality, we also plot ∆k := Γkp − Γks .

4.2.4.1 Algorithm comparison using manually selected gaits

We chose to first test the modeling approaches on a collection of simple, manually

selected behaviors. These include behaviors we term “twist in place” and “symmetric

flapping” gaits, both of which initialize with paddles aligned at a quarter turn away

from the body (as depicted in the two-segment model in Figure 4.2), and respectively

involve anti-symmetric and symmetric sinusoidal movement of the paddles with am-

plitude 1. The “symmetric flapping gait” primarily moves in the direction of the x

body axis, while the “twist in place gait” primarily changes the θ body coordinate.

Finally, we considered a “circle” gait, which also initializes the paddles at a quarter
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�p ± �(�p)

�s ± �(�s)

� ± �(�)
Selected Gaits

Circle Amp. 1

Twist in Place

Symmetric Flap

1

Figure 4.3: Comparison of model prediction quality when using the perturbed Stokes
regressors versus the Stokes regressors on three gaits, in terms of the Γ and ∆ quality
metrics. We have plotted the components of ∆, representing the relative advantage
of perturbed Stokes regressors (top row; (A)), and Γ, representing model prediction
quality (bottom row; (B)), against 6 orders of magnitude variation in the inertial to
viscosity ratio ε (logarithmic scale; sampled at 25 values (vertical gray lines). We
present three gaits, whose shape space loci are in-phase paddle angle (which leads
to anti-phase paddle motions; “Twist in Place”; left column; blue line in shape-space
plot), anti-phase paddle angle (bilaterally symmetric paddle motions; “Symmetric
Flap”; middle column; green line in shape-space plot), and quarter-cycle out of phase
paddle angles (“Circle Amp. 1”; right column; red line in shape-space plot). All three
gaits have paddle angles ranging between −1 and 1 radians. For each value of ε we
performed 8 simulation trials each consisting of 30 (noisy) gait cycles, and plotted
mean and standard deviation of ∆ and Γ for each component of the se(2) body motion
(X blue; Y orange; θ red; saturated for ∆ and Γp, pale for Γs). Consistently for all
components and gaits, the perturbed Stokes regressors provide a better model for
an order of magnitude or a wider range of ε around ε = 1. For Twist in Place and
Symmetric Flap gaits, both models are accurate for large and small ε (Γ close to 1);
for the Circle Amplitude 1 gait, the prediction is only accurate for the Stokes regime
(small ε).
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Figure 4.4: Comparison of model prediction quality when using the perturbed Stokes
regressors versus the Stokes regressors on two extremal gaits, in terms of the Γ and
∆ quality metrics. Plots consist of the same types as those in Fig 4.3. We only plot
the X (blue) and Y (orange) components of Γ (middle column; saturated color Γp;
pale colors Γs) and ∆ (right column). We selected the gait to maximize either the X
component of total body frame motion (top row) or the Y component (bottom row).
The gaits are extremal in the Stoke regime (ε = 0) and selected by taking the zero
level set of the connection curvature (method from [HC11a; HC13]). Following their
approach, we plot the connection of the coordinate being optimized as a vector field
over the shape-space (black arrows; left column), with the shape-space gait locus
plotted over it (diamond shapes in left column, colored by coordinate optimized).
Results show that both models are most accurate for small ε (the Stokes regime;
Γ closer to 1), with the perturbed Stokes regressors providing improvements across
the entire range. Over the two order of magnitude range of 10−0.5 < ε < 101.5 this
advantage is noticeably more pronounced (the perturbed Stokes regime; bump in ∆
plots). Also note that X extremal gait shows much greater ∆x; Y extremal gait shows
much greater ∆y.
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𝑿:

2 joints 4 joints 6 joints

ഥΔ േ 𝜎ሺΔሻതΓ௣ േ 𝜎 Γ௣
തΓ௦ േ 𝜎 Γ௦

Figure 4.5: Comparison of model prediction quality when using the perturbed Stokes
regressors versus the Stokes regressors on paddles with different dimensions shape
space, shown in terms of the Γ and ∆ quality metrics. Plots consist of the same types
as those in Fig 4.3. We plotted Γ and ∆ of three swimmers with different numbers
of paddle segments: one segment per paddle (light blue), two segments (blue), and
three segments (purple); see Fig 4.2 for schematic. We used a symmetric flapping
gait (see Fig 4.3; small cartoons above). The paddles moved symmetrically with
total angles of all joints summing up to a sinusoid of amplitude π. We plot the X
components of Γ (left column; one plot per model; saturated colors Γp; pale colors Γs)
and ∆ (right column). Results show that over the two orders of magnitude range of
10−0.5 < ε < 101.5, the perturbed Stokes regressors consistently provide improvements.
The relative improvement ∆ increased markedly with shape space dimension, by as
much as 0.5 in ∆.
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turn away from the body and moves them sinusoidally with amplitude 1, but has a

quarter cycle phase offset between them. This gait tends to move the system in a

way that changes all three body coordinates throughout its execution.

We selected these three gaits because they are simple to describe and span a range

of resultant body motions. For single link paddles, the body shape space is 2D, and

these gaits are represented by loci that are diagonal lines with slopes 1, −1, and a

circle (see Fig 4.3). We simulated the gaits and plotted mean and variance of Γs, Γp

and ∆ for each value of ε (Fig 4.3). The plot shows that for all three gaits tested and

for all three body coordinates, over a range spanning an order of magnitude or more

around ε = 1, the perturbed Stokes models are better by ∆ > 0.05 or more.

4.2.4.2 Algorithm comparison using extremal gaits

Arbitrarily selected gaits such as those examined in the previous subsection are

not expected to exhibit any special properties with respect to our modeling approach.

In particular, with respect to a goal function φ(·), they are expected to be regular

points of φ(·). However, φ-optimal gaits have ∇pφ = 0 and thus have an additional

structure that might interact with the modeling approach.

We chose goal functionals
´ ◦
gx(t) dt and

´ ◦
gy(t) dt (where superscripts denote

components) corresponding to displacement in the x and y coordinates as measured in

the body frame of the paddleboat. This is not the same as actual x or y displacement

in the world, since boat orientation changes over time. Using the methods of [HC13],

we determined the extremal gaits for these goal functionals in the Stokes regime with

high accuracy. Plotted in the shape-space (and superimposed on the “connection

vector fields” [HC11a; HC13] of the appropriate goal functional) they are diamond

shaped (Fig 4.4). We also plotted Γ and ∆, revealing that again, perturbed Stokes

regressors improve performance (∆ > 0.15) over a range of two orders of magnitude

in ε. Unlike the arbitrary gaits of the previous subsection, the extremal gaits have
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Γ > 0.1 for all ε > 1 for both model types. This suggests that even outside the

perturbed Stokes regime, the addition of regressors improves upon the zeroth-order

phase model. It is also notable that in the extremal x gait, ∆x is significantly better

than ∆y, whereas in the extremal y gait, the converse is true.

4.2.4.3 Performance gains grow with shape space dimension

Thus far, we have only presented results for systems having 2D shape spaces.

Because data-driven methods are often handicapped by their inability to scale with

model dimensionality, we also chose to test our approach on systems of higher di-

mension by extending each paddle into a multi-segmented model. We selected a gait

similar to that of the symmetric flapping gait, but with the additional feature that

the bending angle of a paddle was uniformly distributed through the joints it con-

tains. In particular, the relative angles between adjacent segments were equal and of

amplitude π/N , where N is the number of joints.

We plotted Γxp , Γxs and ∆x for paddles with 1, 2 and 3 segments (Fig 4.5). The

∆x shows a marked improvement in the 4D and 6D models, suggesting that as shape-

space complexity increased, the advantage of perturbed Stokes regressors became

comparatively more significant.

4.2.5 Discussion and Conclusions

The results of [KBR19] showed that for variations of the platform morphology

and gaits selected, there appears to be a sizable range of the inertia to damping ratio

where the perturbed Stokes model is better at forecasting system behavior than the

Stokes model. At ε = 0, the system behavior collapses to that of the Stokesian regime.

The metric ∆ was introduced in [KBR19] to show the improvement in the predictive

quality of the perturbed Stokes regressors with respect to the Stokes regressors. In

particular, the improvement is consistently present in the region log10 ε ∈ [0, 1], sug-
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gesting that this range of ε might be the range for which the predicted slow manifold

is both present and sufficiently simple to be captured by the new regressors for this

system.

The perturbed Stokes regressors seem to improve prediction performance more in

the direction in which the gait was extremal. We hypothesize that this is because

extremal gaits have already exhausted any first-order improvements available, i.e.

gradients are zero. With the first-order terms close to zero, the presence of more

high-order terms among the perturbed Stokes regressors may have a greater effect on

the relative prediction error.

It is interesting to note the large magnitude of improvement in ∆ as the shape

space dimension increased in the paddle boat. Whether this is an artifact of the

particular model and/or gait, or a more general feature, remains to be determined.

At the lower end ε magnitudes studied here, the systems are near the Stokesian

limit, and therefore we expect relatively little improvement from adding regressors

designed for the perturbed Stokes regime. This is consistent with our experimental

results in all figures, which show for ε small both small values of ∆ and large values

of Γ for both sets of regressors.

There are at least two factors that prohibit the models from producing accurate

models in the higher ranges of ε.

1. Terms of O(ε2) or higher have a greater impact on the dynamics at higher ε.

One approach to having more accurate models at higher ε could be determining

these higher-order terms and including them in the regression.

2. As ε increases, at some value the slow manifold will disappear. The inclusion

of momentum states will become a necessity for capturing the dynamics of the

system.

The novelty of the contribution in this work is the use of an approximation of
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behavior in the perturbed Stokes to inform an algorithm to generally model sys-

tems of this class from observational data. We show that this estimation is useful

by demonstrating that it is more predictive than the Stokes-informed models at a

sizable range of small inertia to damping ratios ε. We tested the perturbed Stokes

models on the example system over a variety of gaits, obtaining improvements of

∆ = 5–65% compared to the Stokes models. Furthermore, the results of one of our

experiments showed further improvements as the shape-space dimension of the loco-

moting system increased. This suggests that higher-dimensional systems might be

modeled effectively using our approach.

4.2.6 Uses of Chapter Material in New Research

Future research will involve the implementation of this framework to optimize

the behaviors of robots with sizable momentum. We can also begin to ask questions

about the optimality of animal behaviors, even when these animals are not restricted

to Stokesian behavior. This will allow us to look beyond the optimality of behaviors

in systems such as C. elegans. We can now look at a broader range of systems that

have sizable momentum or ε.

Some new research at the intersection of biology and robotics involves the classi-

fication of animal and robot behaviors as Stokesian, perturbed Stokesian, and mixed

kinematic-dynamic. Metrics like ∆ can aid in the distinction of these transitions since

they can fairly compare which dynamical features are being expressed in the motion.
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