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Conventional wisdom would have it that moving mechanical
systems that dissipate energy by Coulomb friction have no rela-
tionship between force and average speed. One could argue that
the work done by friction is constant per unit of distance travelled,
and if propulsion forces exceed friction, the net work is positive,
and the system accumulates kinetic energy without bound. We
present a minimalistic model for legged propulsion with slipping
under Coulomb friction, scaled to parameters representative of
single kilogram robots and animals. Our model, amenable to
exact solutions, exhibits nearly linear (R2 > 0.96) relationships
between actuator force and average speed over its entire range
of parameters, and in both motion regimes, it supports. This sug-
gests that the interactions inherent in multilegged locomotion may
lead to governing equations more reminiscent of viscous friction
than would be immediately obvious. [DOI: 10.1115/1.4042696]
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1 Introduction
The ability to move through space is both the quintessential

property of animals and one of the most desirable features of
modern robots. However, our machines move very differently
from our animal cousins. Most terrestrially mobile machines use
wheels or treads, which maintain a continuous path of contact
with the ground, whereas most animals rely on legs coming into
intermittent contact with the environment to produce motion. Inas-
much as legged robots are used at all, much research has been
focused on bipedal robots close to the size of humans, yet arguably
the most successful group of legged animals on land are arthropods,
all of whom utilize six or more legs and contact the ground at three
or more points at (almost) all times.
Such multilegged locomotion is fundamentally different from both

bipedal and wheeled locomotion. By using legs with intermittent

ground contact, multilegged animals can move over discontinuous
substrates. In addition, thanks to having many simultaneous points
of contact rather than the single point of contact that bipeds often
have, multilegged animals can tolerate significant slipping on the
ground. For example, our group has recently shown that the feet
(tarsi) of Blaberus discoidalis cockroaches running on a paper
surface2 spend about 20% of their entire motion in the lab frame slip-
ping backward while in contact with the ground. In fact, it quickly
became clear to us that as more and more legs are in contact with
the ground it becomes harder to ensure that they all move in compat-
ible ways to ensure nonslip contact, and slipping becomes inevitable
in our robots. Thus, we were brought to the question of how to best
model multilegged locomotion with slipping.
In this paper, we aim to provide a partial answer to this question. In

particular, we show an emergent relationship among friction, actua-
tion, collisions, and finite body size, which suggests that even when
frictional contacts arewellmodeled by the classical Coulomb friction
model [1,2], the average relationship between actuation force and
body velocity looks remarkably similar to viscous friction [3]. We
demonstrate this resultwith an overly simplisticmodel of locomotion
with slipping, which is simple enough to allow us to analyze its solu-
tions exhaustively. We also compare this model with a slightly more
elaborate and physically plausible model, the results of which we
only study numerically.
We begin by describing and motivating our sliding locomotion

model in Sec. 2. In Sec. 3, we present the results of simulating
the model over a range of parameters surrounding those applicable
to small robots and animals. In Sec. 4, we solve for average force
and velocity in a closed form. The instantaneous mass swapping
explained in Sec. 2 is somewhat physically implausible, and so
in Sec. 5, we present the results from a more physical model of
mass swapping, which we analyze numerically. We follow by dis-
cussing these results in Sec. 6, where we hazard some guesses as
to the cause and broader implications of having a force–velocity
rather than a force–acceleration relationship.

2 Sliding Locomotion Model
Rather than confounding the effects of slipping with those of

intermittent contact, we chose to model a uniaxial motion in a con-
tinuous sliding contact. Our model was inspired by the sort of shuf-
fling that gait people sometimes employ on ice or other slippery
surfaces, whereby they shift their weight over one leg, slide the
other leg to a new position, and repeat, alternating the weight-
bearing leg. Alternatively, this can be thought of as an inchworm
gait on a slippery surface.

2.1 Mechanical Model. Consider two point masses with an
actuator of finite length between them (see Fig. 1) operating at
a constant force pushing them apart. Each of these masses repre-
sents a single leg, with the magnitude of the mass representing the
loading on that leg. When the distance between two masses reaches
a predetermined maximum, a perfectly plastic collision occurs. The
positions of the two masses are swapped, representing a reversal of
the leg loading, and the force flips sign to pull the masses together.
Once they reach a minimal distance, they collide to create a plastic
collision again, swap positions, the direction of force switches, and
the cycle repeats. (A discussion of a more physical model of mass
swapping can be found in Sec. 5.)
The equation of motion of the system is as follows:

mẍ = Ft sgn(x − y) − fm (1)

Mÿ = −Ft sgn(x − y) − fM (2)
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We assume the Coulomb friction model for the contact forces [4].
In the Coulomb friction model, friction force is proportional to
the normal load when velocity is not 0. When velocity is 0, the fric-
tion force can take any value between 0 and a static friction force
proportional to the normal load.
This can be modeled using the following equations:

f =
μNsgn(v) slipping (dynamic friction)
Fe nonslip (static friction); |Fe| < μsN

{
(3)

where μ is the dynamic friction coefficient, μs is the static friction
coefficient, Fe is the external force, and N is the normal force.
Both masses are taken as point mass with state vector [x, ẋ]T and
[y, ẏ]T , respectively. The distance between the masses is bounded
above and below by Lmax and Lmin, respectively. When either dis-
tance limit is reached, it is enforced by a perfectly plastic collision,
which renders equal the velocity of both masses:

ẋ+ = ẏ+ =
mẋ− +Mẏ−

m +M
(4)

Immediately after the masses collide, they instantaneously swap
positions, i.e. the precollision state [x, ẋ−, y, ẏ−]T gives rise to the
postcollision state [y, ẏ+, x, ẋ+]T.
This last model assumption factors out the details of exactly how

the moving system redistributes load over its legs and merely cap-
tures the notion that the leg load alternates between the two possible
configurations.

2.2 Dynamic Analysis. Holding actuation force at constant
magnitude, alternately extending and contracting the actuator
through its full stroke length, the system seems to approach a peri-
odic motion and asymptote to a limiting average speed (see Fig. 2)
in the entire parameter range we explored. Although the system is
easy to define in terms of the states of the point masses, it is
easier to analyze in terms of the center of mass (CoM) position
c := (mx+My)/(m+M ) and the position difference d := y− x. In
these coordinates, it is evident that the actuator does no work on
c—it is an “internal force”—and all work on the CoM is done by
the friction forces. Since we are using the Coulomb friction
model, once the actuator force is sufficient to get the smaller
mass m out of static friction, the actuator will successfully expand
and contract to its full extent at any CoM speed. If the motion
approaches a limit cycle in [d, ḋ]T, the average speed of the CoM
over a long simulation will converge to the speed at the limit
cycle vss of (5).

vss =
Distance traveled in one steady cycle

Duration of one steady cycle
(5)

For our numerical simulations, we ran the simulations until rela-
tive difference of averaged vss between two consecutive cycles
decreased to within 10−4.

3 Numerical Simulation Results
We chose simulation parameters appropriate for a small robot

or mid-size vertebrate such as a rabbit. We took the masses to
be m= 1 kg, M= 1.5 kg. The mass ratio M/m specifies the instanta-
neous center of mass displacement when masses are swapped,
which becomes 0.2d for these values. The minimum and maximum
distance between two masses were taken to be Lmin= 0.02 m
and Lmax= 0.5 m, respectively. The range of dynamic friction coef-
ficient μwe explored was 0.05–1. The range of input force Fwas set
from μmg—the minimal force needed to escape static friction—up
to 5 Mg—enough to produce a greater than 2g acceleration on the
CoM.
In our simulation, we fix the actuator force to be a constant

force with periodically changing directions, i.e., Ft = F sgn(x − y),
where F is a constant input force and x and y are positions of
m and M, respectively.3 Without the loss of generality, we start at
d= Lmin > 0, and thus, m is to the right of M, and the masses are
pushed apart. Because the masses swap their positions, the actuator
is always either pushing or pulling the smaller mass m to the right
(positive direction) and pushing or pulling the larger mass M to
the left (negative direction). Mass M has better traction than m by
having larger friction forces, due to its larger normal force on the
substrate. Thus, the net friction force generated in this way can
move the system in the positive direction.

3.1 Two Motion Regimes Arise. We fixed all the para-
meters and only change the absolute value of actuator force F
by examining the changes induced in vss. Two fundamentally differ-
ent motion regimes arose: regime I—when actuator force is only
large enough to take small mass m out of its static friction cone,

Fig. 2 Position of m, M, and the center of mass versus time in
an example simulation. Parameter choices followed Sec. 3.
Force Ft=45sgn(x− y) N; dynamic friction coefficient was μ=1.
The positions of m (dashed line), M (solid line), and center of
mass (mx+My)/(m+M ) (dotted line) over time are shown. The
graph at the left upper corner shows an enlarged cycle starting
at y− x=Lmin. The accelerations of m and M are always opposite
to each other. They accelerate until the length constraint at Lmin
and Lmax stops them, and they instantly swap their positions.
The position swap causes a jump of the center of mass. Note
that for thefirst twocyclesofmotion, theCoMisnoticeablychang-
ing average speed,which quickly asymptotes to its limiting value.

Fig. 1 Schematic representation of the mechanical model. M
and m are the larger and smaller point masses, respectively,
with y and x their positions. The friction forces acting on the
point masses are fm and fM. Ft is the actuator force, which is pos-
itive when pushing the masses apart and negative when pulling
them together. g is the gravitational acceleration.

3Attempting to allow the force to depend on d always lead to the highest vss with the
force identically maximal, and so this was added as an assumption.
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i.e., fm<F≤ fM, leading to the small mass moving against a static
support offered by the large mass; and regime II—when actuator
force is large enough to move both small and large masses F >
fM, leading to the large mass sliding in the opposite direction of
the small mass.
For each input actuator force F, we observed a corresponding

final steady-state velocity vss of the system. Figure 3 shows the
relationship for μ= 1 and μ= 0.2, although a similar qualitative
relationship exists for the entire range, we explored 0.05≤ μ≤ 1.
For regime I, we explored the entire force range: (μmg, μMg). For

regime II, we explored forces in the range [μMg, 5Mg], which rep-
resent a reasonable range of mass specific actuator force density for
animals [5–7], electrically powered autonomous robots, and inter-
nal combustion engines [8,9].
Writing vss= kF+ b, we also explored the relationship of k and b

with μ following parameter choices in Sec. 3. The quadratic regres-
sion equation for k versus μ is k=−1.9 × 10−3μ2+ 11 × 10−3,
with R2= 0.99. The linear regression equation for b versus μ is
b= 0.24μ+ 0.46, with R2= 0.99.

3.1.1 Governing Relationship. Combining our numerical
results, we found that the averaged steady-state velocity versus
actuator force model for the system regime II can be empirically
described by a single governing equation correct for actuator
forces less than 5Mg, and 0.05≤ μ≤ 1.
Since the model we used has physical units, to obtain a more prin-

cipled governing relationship, we first switched to a nondimensional

form. Let F := f̃μMg and vss := ṽ
���
Lg

√
, where f̃ is the nondimen-

sional force, in units of friction for the large mass, and ṽ is the non-
dimensional velocity, in units of the velocity reached in free fall over
the maximal length of the actuator.
The nondimensional model is shown in (6), to two digits preci-

sion, and was constructed for f̃ between 1 and 5/μ.

ṽ = 0.073μ 1 − 0.178μ2
( )

f̃ + 0.11μ + 0.20 (6)

4 Exact Solution
Assuming the system will achieve a steady-state averaged veloc-

ity vss, we solved a closed-form solution for vss versus μ and F. We
start from the dynamic motion Eqs. (1), (2), and recall d := x− y.
We obtain the following equations:

mẍ = F sgn(d) − μmg sgn(ẋ)

Mÿ = −F sgn(d) − μMg sgn(ẏ)

Suppose, as we empirically observed, that each cycle starts from
d= Lmin and account for the fact that this state appears immediately
after a plastic collision, making the velocities of m andM equal. We
obtain ẋ0 = ẏ0 = ċ0, where ċ0 is the velocity of CoM. We define,
w.l.o.g., that this velocity’s direction is positive. Due to the negative
force on the large mass M, it first decelerates until its velocity goes
to zero and then accelerates toward negative direction or remains

Fig. 3 Constant force versus steady-state velocity under Coulomb friction model, μ=1 and μ=0.2. We
plotted simulation results for regime I where F<μMg, with μ=1 (black dots) and with μ=0.2 (gray dots).
These are close to their regression lines μ=1 (dashed black line) R2=0.99 and μ=0.2 (dashed gray
line) R2=0.99. For regime II where F>μMg, we plotted simulations for μ=1 (black dots) and μ=0.2 (gray
dots). Each of these follows a nearly linear relationship different from that of the other force regime (μ=1
dashed black regression R2= 1.0 and μ=0.2 dashed gray regression R2=0.99). We also plotted the exact
solution as calculated in Sec. 4 when μ=1 (black solid line) and, μ=0.2 (gray solid line) for the entire
motion regime. Our notable result is that in each regime, the F to vvvvvss relationship can be described fairly accu-
rately as linear, as demonstrated by the high values of regression R2. Note that intermediate values of μ inter-
polate those plotted and were omitted for clarity.
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zero if F is not large enough to push it out of static friction. The
motion is shown schematically in Fig. 4.

mẍ = F − μmg (7)

Mÿ =
−F − μMg ẏ > 0
min (−F + μMg, 0) ẏ ≤ 0

{
(8)

The equation of motion for the CoM of the system in the first
stage of Fig. 4 is c̈1 = −μg. The time spent at first stage can be
calculated from the time needed for M to achieve zero velo-
city, t1 = T 1(ċ0) = ċ0/(F/M + μg). When ẏ = 0, the center of mass
velocity becomes ċ1 = ċ0F/(F + μMg).
Time t2 is the time needed for the distance between m and M to

reach the maximum length bound. It can be determined by a
second-order equation (9), and the result of t2 = T 2(ċ0) is a function
of the initial CoM velocity.

Lmax − Lmin −
1
2
(ẍ − ÿ1)t

2
1 = ẋt1 t2 + (ẍ − ÿ2)t

2
2 (9)

Here, ÿ1 is the acceleration of M when ẏ > 0, and ÿ2 is the acceler-
ation of M when ẏ < 0 as shown in Fig. 4 (the slope of solid line).
They are calculated from (8).
Thus, the update rule for CoM velocity after each velocity cycle

is as follows:

ċ2 =
F

F + μMg
ċ0 +

M − m

M + m
μg + T 2(ċ0) (10)

By solving for the fixed point of this equation, we can get ċ0 as
a function of F and μ, Ċ0(F, μ). The averaged steady-state CoM
velocity vss can be calculated by (11). The second term is the
CoM position shift due to instantaneous swaps of two masses at
Lmin and Lmax.

Vss(F, μ) =
2F + μMg

2(F + μMg)
Ċ0 +

M − m

m +M

Lmax − Lmin
2(T 1 + T 2)

(11)

The symbolic calculations were done in Mathematica.

4.1 Comparison With Governing Relationship. We com-
pared our empirically derived governing relationship discussed in
Sec. 3.1.1 with the analytical solution given in Sec. 4. The relative

error of the model is below 5% except for small forces and low fric-
tion, where it grows to 11%.
Our results are best summarized by the examples in Fig. 3,

showing vss versus F regressions, numerical model simulation
results, and exact algebraic results for both motion regimes.
One puzzling observation regarding this figure is the separation
between exact and numerical curves. Decreasing integrator time-
steps and requiring more stringent convergence from the numerical
simulations bring these curves closer together—an observation that
suggests that convergence to the limit cycle may be quite slow.
However, these differences still remain somewhat puzzling.

5 Realistic Swapping Yields Similar Results
To make the model more realistic in mimicking an inchworm or

a legged robot/animal shuffling, we modeled a mechanistic means
for transferring the mass difference Δm :=M−m between the two
point masses of the previous model. To do so, we postulated an
internal force pushing Δm from one side to the other side, while
the distance between the two end point masses is held constant.
This is illustrated in Fig. 5. When the Δm mass reaches its destina-
tion, it collides in a plastic collision, and all three masses have zero
relative velocity after collision.

Fig. 5 Schematic representation of the mechanical model with a
swapping mechanism. x, y, and z represent the position of each
point mass.

Fig. 4 Schematic of velocities within a cycle of regime II motion.
We plotted the velocity of m (dashed line), M (solid line), and
CoM (dotted line) in one velocity cycle. The initial value of
these velocities are ẋ0 = ẏ0 = ċ0. t1 is the time it takes for the
velocity of M starting from ẏ0 to decrease to 0. The velocity of
the CoM at t1 is ċ1. t2 is the remaining time needed for distance
between m and M to achieve maximum length bound. ẍ is the
constant acceleration of m, and ÿ1, c̈1, ÿ2, and c̈2 are accelera-
tions of M and CoM during time period t1 and t2. At the end of
the cycle, velocities are reset by a second plastic collision
(represented by two arrows).

Fig. 6 Position of m, M, and Δm versus time within a cycle. We
plotted these for the one mass moving regime (top, F=12N) and
two masses moving regime (bottom, F=20N). The dynamic fric-
tion coefficient was μ=1. The positions of m (dashed line, x), M
(solid line, y), andΔm (dotted line, z) plottedwith time andposition
starting at the Lmin collision are shown. We plotted four cycles,
illustrating the rapid convergence to a limit cycle. To facilitate
comparison, we plotted all conditions in each subplot with one
condition highlighted (darker, with markers) and the others ren-
dered de-emphasized (gray). We compared the instantaneous
swap model (left column) and values of α=1, 5, 10 (second to
fourth columns). Note that m−m keeps its position during Δm
swappingwhenα=1, whereas it moves backwardwhenα=5, 10.
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The equation of motion remains the same as (1) and (2) when the
system is slipping andΔm is fixed on one ofm. As our notation con-
vention, we take the mass m with Δm as M and write its position as
y. We denote the other mmass by x, and when Δm is in motion, it is
always moving from x to y. Here afterward, we will refer to the
two end point masses, while they are held at a constant distance,
as the m−m system. The relative movement between Δm and
m−m system can be described as follows. Taking m−m as one
object, its center is c := (x+ y)/2. Suppose a force of FΔm is used
to push Δm (whose position is denoted by z) against m−m, the
equations of motion for the exchange of Δm are as follows:

2mc̈ =
0 if ċ = 0 and |FΔm| < μg(2m + Δm)
−FΔm − sgn(ċ)μg(2m + Δm) else

{

Δmz̈ = FΔm

5.1 Numerical Simulation. Following the same choice of
parameters in Sec. 3, we use a nondimensional parameter α to

give FΔm := αF sgn(z− x) as the force pushing Δm from M to m,
where F is the actuation force between m and M. In Fig. 6, we
compare the cycle behavior between instant swap model and cons-
tant swapping force models with α= 1, 5, 10 in both one mass
moving and two mass moving regimes. The models are still asymp-
totic to a limiting periodic cycle, which vary slightly with α.

5.2 Four Motion Regimes Arise. With the parameters selec-
ted in Sec. 3, we found four motion regimes arising from two inde-
pendent conditions. The first condition is discussed in Sec. 3.1,
namely comparing actuation force F with μmg and μMg. It leads
to either one or two masses in dynamic friction during the times
x− y changes. The second condition was comparing the total fric-
tion force of the system μ(2m+Δm)g with swapping force FΔm.
When moving sufficiently slowly, if |FΔm|≤ μg (2m+Δm), the
m−m system first slowed down to a standstill position and
stayed in that position until the end of Δm motion. If |FΔm| >
μg (2m+Δm), the reaction force for moving Δm was large
enough to pull the m−m system out of friction cone during

Fig. 7 Actuation force versus steady-state velocity under Coulomb friction model with constant swapping forces. We plotted the
simulation results for friction coefficient μ=1 (black), μ=0.6 (thicker gray), and μ=1.0 (gray). For each μ, we plotted swapping
forces α=1 (· marker), α= 5 (+ marker), α=10 (⋆ marker), and instant swap (dashed lines). We also plotted the new “stop
during swap” motion regimes (larger round markers with dotted lines). All models are linear to an R2 > 0.99 (single mass
moving regime) and R2 > 0.96 (two masses moving regime).
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swapping and pushed it backward. For example, in Fig. 6, when α
= 1,m−m slowed down and stopped duringΔm swapping. When α
= 5, 10, m−m slowed down and was eventually accelerating
toward the negative direction during Δm swapping.
In Fig. 7, we plotted the relationships for μ= 0.1, 0.6, 1.0, and

swapping force coefficients α= 1, 5, 10. The figure shows that a
new “swap with stop” motion regime appears. Outside this new
motion regime, the F to v relationship follows the same qualitatively
nearly linear relationship similar to that for the instantaneous swap
model.

6 Discussion
Our simulations and our analytic studies of the models we des-

cribed brought us to a surprising conclusion: we conclude that the
averaged velocity versus input force in Coulomb friction dominated
motion is a linear relationship, at least for the parameter range gov-
erning small robots and animals. We observed this qualitative rela-
tionship to hold in both a simplified “instant-swap” model (Sec. 2)
and a more physical weight redistribution model (Sec. 5).
The very existence of a linear relationship between force

and velocity in a Coulomb friction governed system should come
as a surprise, because once static friction is compensated for, the
Coulomb friction model predicts a speed-independent dynamic fric-
tion. Thus, for example, in an idealized wheeled system without air
resistance or a lubricant viscosity model, no upper limit on speed
exists. Once the drive motor is strong enough to overcome internal
friction, the wheeled system has a constant acceleration rather than a
limiting velocity.
The appearance of a viscosity-like relationship out of simple dry

friction interactions is somewhat reminiscent of the appearance of
viscosity in statistical mechanics, where thermodynamic equilibrium
and the associated viscous dissipation appear after only a small
number of particle collisions.
It may also be that our observation can be understood in the

light of a fundamental limit of friction-based locomotion: the
CoM can never move faster relative to the ground than the body
can change shape. If it did, all points of contact would be slipping

in the direction of motion and therefore producing braking forces.
Broadly speaking, the speed of shape change is associated with a
kinetic energy, which must be developed by an actuation force
acting over the length of the body. The relationship mv2 ∝ F · l sug-
gests that v should scale as F0.5, which is not wholly incompatible
with the lower limit of friction μ= 0.1 that we explored. However, if
instead we assumed that the duration of force action is bounded,
then Δ(mv)∝FΔt, and the shape change speed is linear with F.
As both these limitations play a role in practice, a close to linear
relationship may be inevitable regardless of the specifics of the
friction model.
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