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Abstract Many forms of locomotion, both natural
and artificial, are dominated by viscous friction in
the sense that without power expenditure they quickly
come to a standstill. From geometric mechanics, it is
known that for swimming at the “Stokesian” (viscous;
zeroReynolds number) limit, themotion is governed by
a reduced-order “connection”model that describes how
body shape change producesmotion for the body frame
with respect to the world. In the “perturbed Stokes
regime” where inertial forces are still dominated by
viscosity, but are not negligible (low Reynolds num-
ber), we show that motion is still governed by a func-
tional relationship between shape velocity and body
velocity, but this function is no longer linear in shape
change rate. We derive this model using results from
singular perturbation theory and the theory of noncom-
pact normally hyperbolic invariant manifolds. Using
the theoretical properties of this reduced-order model,
we develop an algorithm that estimates an approxima-
tion to the dynamics near a cyclic body shape change
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(a “gait”) directly from observational data of shape and
body motion. This extends our previous work which
assumed kinematic “connection” models. To compare
the old and new algorithms, we analyze simulated
swimmers over a range of inertia-to-damping ratios.
Our newclass ofmodels performswell on theStokesian
regime and over several orders of magnitude outside it
into the perturbed Stokes regime, where it gives signif-
icantly improved prediction accuracy compared to pre-
vious work. In addition to algorithmic improvements,
we thereby present a new class of models that is of
independent interest. Their application to data-driven
modeling improves our ability to study the optimality
of animal gaits and our ability to use hardware-in-the-
loop optimization to produce gaits for robots.
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1 Introduction

In this paper, we study how animals and robots move
through space by deforming the “shape” of their
body—typically in a cyclic fashion—to propel that
body. We call such motion-producing cyclic shape
deformations gaits. We study a class of locomotion
which includes swimming and crawling in viscous
media, in which the viscous damping forces are large
compared to the inertia of the body.A classic exposition
of such locomotors “living life at low Reynolds num-
ber” is given in Purcell [33]. An important aspect of our
work is that we consider the perturbed Stokes regime
[7] in which the inertia–damping ratio (or Reynolds
number) is small but nonzero, as opposed to the pre-
vious geometric mechanics literature addressing only
the viscous or Stokesian limit which formally assumes
the inertia–damping ratio is zero [1,16,17,24,25]. We
note that our methods are related to the realization of
nonholonomic constraints as a limit of friction forces
[4,10,23].

For both scientific and engineering purposes, it is
often of interest to ask whether a particular gait is opti-
mal with respect to a goal function. For animal locomo-
tion, explicit equations of motion are nigh impossible
to come by, and therefore, directly testing animal gait
optimality via analytical tools like the calculus of vari-
ations is not an option. However, if a model can be
obtained from experimental data for the local dynam-
ics on a tubular neighborhood of the gait cycle—i.e., a
model valid for small variations in the gait cycle—then
local optimality tests can be formulated and evaluated
on these models. Such an approach was taken in Bit-
tner et al. [1], which introduced an algorithm informed
by both geometric gait optimization [34,35] and data-
driven techniques for studying oscillators [36–38].

One limitation of Bittner et al. [1] was the assump-
tion that motion was entirely kinematic, effectively
assuming that the inertia–damping ratio is zero by
assuming a viscous connection-based model as intro-
duced by Kelly and Murray [24] and to be discussed
more below. The real-world systems we are interested
in have small—but always nonzero—inertia–damping
ratio, and therefore, we are interested in the extent
to which the algorithm of Bittner et al. [1] can be
improved.

By applying normally hyperbolic invariantmanifold
(NHIM) theory [9,11–14,19] in a singular perturbation
context, we show that an exponentially stable invariant
slow manifold exists for small inertia–damping ratio
(this was also shown in Eldering and Jacobs [7]). Fur-
thermore, this slowmanifold is close to the viscous con-
nection (viewed geometrically as a subbundle—hence
as a submanifold—of state space), and therefore, the
dynamics restricted to the slow manifold are close to
those assumed in the purely viscous case [1,16,24,25]
and reduce to those in the zero inertia–damping ratio
limit. Aside from its theoretical appeal, this result also
has practical implications: It is possible to explicitly
compute “correction terms” which, when added to the
purely viscous connection model, yield the dynam-
ics restricted to the slow manifold. The slow manifold
dynamics are provably more accurate than those of the
idealized viscous connection model. Additionally, they
still enjoy the same useful properties of reduced dimen-
sion and symmetry under the group. The computation
of such correction terms is a fundamental technique
in geometric singular perturbation theory [14,20] and
has been used, for example, to compute reduced-order
models of robots with flexible joints [39].

Given an algorithm that produces a data-driven local
model of dynamics near a gait, we could conduct varia-
tional tests for local optimality of that gait with respect
to any cost functional that the model allows us to eval-
uate. Thus, we have in mind two classes of applica-
tion for the approach we present below: a biologi-
cal application—verification of whether a postulated
goal function is optimized for an observed animal gait,
and an engineering application—optimization of robot
gaits with “hardware in the loop” by iteratively model-
ing and improving the gait with respect to a goal func-
tional without the need for precise models of the robot
or its interactions with the environment.

It is clear why our approach would be a boon to biol-
ogy. In most cases, we cannot cajole animals to vary

123



Gait modeling and optimization for the perturbed Stokes regime

their gaits and observe whether that improves them.
Additionally, we rarely have detailed enough models
of animal–environment interaction to allow gait opti-
mality to be assessed from a model.

The value to gait optimization of robots comes from
the fact that a gait, being a periodic continuous function
of shape, is an infinite-dimensional object. Thus, gait
parameterizations are unavoidably of high dimension.
Any gradient calculation for optimization of a gait thus
requires many tests to identify the influence of these
many parameters. Combined with the high practical
cost of hardware experiments in terms of time and robot
wear and tear, this renders hardware-in-the-loop opti-
mization nigh infeasible. We propose that by produc-
ing a tractably computable local model, we can resolve
this problem. The high-dimensional gradients can be
computed by simulating the (local) model instead of
directly using the hardware, decoupling the dimension
of the gait parameterization from the number of exper-
iments conducted on hardware.

It is our hope that, through a combination of geo-
metric mechanics and NHIM theory, we can develop
an algorithmwhich can serve the purposes of both biol-
ogists and engineers.

2 Background

In studying locomotion, we will consider dissipative
Lagrangian mechanical systems on a product configu-
ration space Q = S × G with coordinates (r, g) and
with a Lagrangian of the form kinetic minus potential
energy. Here S is the shape space of the locomoting
body, and G is a Lie group (typically a subgroup of the
Euclidean group SE(3) of rigid motions) representing
the body’s position and orientation in the world.1 We
assume throughout this paper that S is compact. We
will also assume that this system is subjected to exter-
nal viscous drag forces which are linear in velocity.2

1 In a formal sense, one may start with generalized coordinates
Q and the action of G, and define S as a quotient manifold Q/G.
The details of this construction are not germane to our argument.
Instead, for simplicity we postulate the separation of configura-
tion into “shape” and “body frame” here, with the more general
case treated in appendices.
2 We make this assumption for simplicity. In principle, it should
be possible to relax this assumption to derivemodified but similar
results for a force depending nonlinearly on velocities, as long as
the linear approximation (with respect to velocities) of this force

If the physics of locomotion is independent of the
body’s position and orientation, then the Lagrangian
L(r, g, ṙ , ġ) is independent of g, ġ and the viscous drag
force FR(r, g, ṙ , ġ) is equivariant in g (on the g, ġ com-
ponents). Under this symmetry assumption, Kelly and
Murray [25] derived general equations of motion sat-
isfied by g and by the body momentum3 p ∈ g∗; these
equations are essentially special cases of those derived
in Bloch et al. [2]. For a detailed statement and deriva-
tions of these equations, see “Appendix A.”

Let us suppose that the kinetic energy metric of the
body is scaled by a dimensionless inertial parameter
m > 0 and that the viscous drag force FR is scaled by
a dimensionless damping parameter c > 0, and define
ε := m

c the dimensionless ratio of the two which is
(up to scale) the Reynolds number in the case of fluid
dynamics. Kelly and Murray [25] showed that in the
limit ε → 0, the equation of motion for g becomes
independent of p. Defining the body velocity4 g̊ :=
DLg−1 ġ, they obtained

g̊ = −Avisc(r) · ṙ , (1)

where Avisc is called the local viscous connection.
Away from the Stokes limit, Eldering and Jacobs

[7] studied the perturbed Stokes regime in which ε is
assumed to be small but nonzero. For ε sufficiently
small, they showed there is an exponentially stable
invariant slow manifold Mε , to which the dynamics
converge. We derive similar results tailored for our
applications in “Appendix B.” Using an asymptotic
series expansion for the slow manifold, in “Appendix
B” we also prove that the equations of motion for tra-
jectories within Mε take the form given by Theorem 1.
Hence, trajectories of the full dynamics converge to
solutions of Eq. (2), after a transient duration that goes
to zero with ε.

Theorem 1 Assume that the shape space S is compact.
For sufficiently small ε > 0, there exist smooth fields

Footnote 2 continued
satisfies the same assumptions that we impose on our assumed
linear force.
3 Here g∗ is the vector space dual of the Lie algebra g of G.
4 The body velocity is oftenwritten g−1 ġ by an abuse of notation
which is only defined on matrix Lie groups where the product of
a tangent vector and a group element is naturally defined. For a
general definition, note that ġ ∈ TgG and the derivative of the
left action DLg−1 restricts to a map TgG → TeG ∼= g. Hence,
the definition above.
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of linear maps B(r) and bilinear maps G(r) such that
the dynamics restricted to the slow manifold Mε satisfy

g̊ = −Avisc(r) · ṙ + εB(r) · r̈
+ εG(r) · (ṙ , ṙ) + O(ε2). (2)

Remark 1 The bilinear maps or (1, 2) tensors G(r) are
not, in general, symmetric, e.g., they are unlike Hes-
sians.

Bittner et al. [1] developed a data-driven algorithm
for approximating the equations of motion of a loco-
motion system assuming the model of Eq. (1). Here
we define and study an extension of their approach to
models of the form of Eq. (2). We examine the efficacy
of this extension in modeling motion in the perturbed
Stokes regime, in which ε is allowed to be small but
nonzero.

3 Estimating data-driven models in the perturbed
Stokes regime

In this section, we develop a data-driven algorithm for
estimating dynamics Eq. (2) in a neighborhood of an
exponentially stable periodic orbit. We assume that the
image of this periodic orbit is contained in the slow
manifold Mε of Theorem 1, and for simplicity we
assume that—on the slow manifold—r̈ = f (r, ṙ) can
be written autonomously as a function of r and ṙ . Let-
ting γ (t) denote the shape (or r ) component of this
periodic orbit, we refer to γ as a gait.

3.1 Determination of regressors for estimation of the
dynamics

In this section, we closely follow the approach of Bit-
tner et al. [1] to produce a data-driven model of the
dynamics from an ensemble of noisy trajectories near
� := Im γ .We extensively use the Einstein summation
convention in the regression equations below.

Let T be the period of γ . Since we assume that
that the exponentially stable periodic orbit is con-
tained in the slow manifold on which r̈ is of the form
r̈ = f (r, ṙ), it follows that there is an asymptotic
phase map φ : TS → [0, T ) whose derivative along
trajectories is equal to one [15]. Given trajectory data
(r(t), ṙ(t)), t ∈ [t0, t1], we assign asymptotic phase
values φt := φ(r(t), ṙ(t)) to each data point using an

algorithm such as that of Revzen and Guckenheimer
[37].5 After grouping data points according to their
phase values, we construct Fourier series models of
γ, γ̇ , γ̈ as functions of phase.6

Next, we select M evenly spaced values of phase,
φ1, . . . , φM , to obtain values γm := γ (φm), γ̇m :=
γ̇ (φm), γ̈m := γ̈ (φm)—the shapes, shape velocities,
and shape accelerations of a system that is follow-
ing the gait cycle precisely. For each m, we col-
lect from our trajectory data all triples (rn, ṙn, r̈n) :=
(r(tn), ṙ(tn), r̈(tn)) that are sufficiently close to
(γm, γ̇m, γ̈m), i.e., such that ‖rn−γm‖, ‖ṙn−γ̇m‖, ‖r̈n−
γ̈m‖ < κ for all7 n, and we also collect the correspond-
ing g̊n values. We define the offsets δn := rn − γm ,
δ̇n := ṙn − γ̇m , δ̈n := r̈n − γ̈m . Note that the range of n
depends on m, but for notational simplicity we do not
display this.

Introducing coordinates and Taylor expanding, Bit-
tner et al. [1] obtained from Eq. (1) the following
expression (no sum over m or n):

g̊kn ≈ − Ak
m,i γ̇

i
m

︸ ︷︷ ︸

Ck
0,m

− Ak
m,i

︸︷︷︸

Ck
1,m

δ̇in

− ∂Ak
m,i

∂r j
γ̇ i
m

︸ ︷︷ ︸

Ck
2,m

δ
j
n − ∂Ak

m,i

∂r j
︸ ︷︷ ︸

Ck
3,m

δ
j
n δ̇

i
n . (3)

Omitted here are higher-order terms, the subscript of
Avisc, and the nonlinear γ dependence of the local
expression Ak

i . They then operationalized Eq. (3) as
a least squares problem, written in matrix form as fol-
lows (for each k and m, indices k and m elided below
for clarity):

5 In principle, any circle-valued “phase” function of state whose
derivative along trajectories is positive could be used instead of
asymptotic phase. We chose to use asymptotic phase because it
is dynamically meaningful and there exist algorithms to compute
it.
6 In practice, the Fourier series models of γ, γ̇ , γ̈ might be com-
puted from their own noisy data sets, and in this case the resulting
Fourier models need not be derivatives of one another. We find
that the use of matched filters is helpful in mitigating this issue;
see Bittner et al. [1], and Revzen [36] for more details.
7 The astute experimentalist realizes that since the derivative
terms contain dt and dt2 in their units, a certain degree of numer-
ical conditioning can be obtained by judicious choice of units for
time.
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⎡

⎢

⎣

g̊1
...

g̊N

⎤

⎥

⎦ =
⎡

⎢

⎣

1, δ1, δ̇1, δ1 ⊗ δ̇1
...

...
...

...

1, δN , δ̇N , δN ⊗ δ̇N

⎤

⎥

⎦ ·

⎡

⎢

⎢

⎣

̂C0
̂C1
̂C2
̂C3

⎤

⎥

⎥

⎦

(4)

wherêindicates “estimated” and ⊗ is the outer prod-
uct. For a d-dimensional shape space, the row of
unknowns on the right consists of 1+ d + d + d2 ele-
ments. Once they have computed a least squares model
for everym, they construct Fourier series so that the ̂Ci

may be smoothly interpolated at any phase value. The
result is a local model of Eq. (1).

In the perturbed Stokes regime which we seek to
model, we follow a similar approach by expanding
Eq. (2) instead of Eq. (1). We obtain (no sum over m
or n):

g̊kn ≈ − Ak
m,i γ̇

i
m − Ak

m,i δ̇
i
n − ∂Ak

m,i

∂r j
δ
j
n γ̇

i
m

− ∂Ak
m,i

∂r j
δ
j
n δ̇

i
n + ε

(

Bk
m,i γ̈

i
m + Bk

m,i δ̈
i
n + ∂Bk

m,i

∂r j
δ
j
n γ̈

i
m

· · · + ∂Bk
m,i

∂r j
δ
j
n δ̈

i
n + Gk

m,i, j γ̇
i
m γ̇

j
m

+ Gk
m,i, j γ̇

i
m δ̇

j
n + Gk

m,i, j δ̇
i
n γ̇

j
m + Gk

m,i, j δ̇
i
n δ̇

j
n

· · · + ∂Gk
m,i, j

∂r	
δ	
n γ̇

i
m γ̇

j
m + ∂Gk

m,i, j

∂r	
δ	
n γ̇

i
m δ̇

j
n

+∂Gk
m,i, j

∂r	
δ	
n δ̇

i
n γ̇

j
m + ∂Gk

m,i, j

∂r	
δ	
n δ̇

i
n δ̇

j
n

)

.

(5)

Partitioning these terms according to their dependence
on the observations δ, δ̇, and δ̈, we obtained

g̊kn ≈
(

−Ak
m,i γ̇

i
m + εBk

m,i γ̈
i
m + εGk

m,i, j γ̇
i
m γ̇

j
m

)

+
(

−∂Ak
m, j

∂r i
γ̇

j
m + ε

∂Bk
m, j

∂r i
γ̈

j
m + ε

∂Gk
m, j,	

∂r i
γ̇

j
m γ̇ 	

m

)

δin

· · · +
(

−Ak
m,i + εGk

m, j,i γ̇
j
m + εGk

m,i, j γ̇
j
m

)

δ̇in

+
(

−∂Ak
m, j

∂r i
+ ε

∂Gk
m,	, j

∂r i
γ̇ 	
m + ε

∂Gk
m, j,	

∂r i
γ̇ 	
m

)

δin δ̇
j
n

· · · + ε

(

Bk
m,i δ̈

i
n + ∂Bk

m, j

∂r i
δin δ̈

j
n + Gk

m,i, j δ̇
i
n δ̇

j
n

+∂Gk
m, j,	

∂r i
δin δ̇

j
n δ̇

	
n

)

, (6)

giving a similar least squares problemwritten in matrix
form as follows (for each k and m, indices k and m
elided below for clarity):

⎡

⎢

⎢

⎣

g̊1
.
.
.

g̊N

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

1, δ1, δ̇1, δ̈1 δ1 ⊗ δ̇1 δ1 ⊗ δ̈1 δ̇1 ⊗ δ̇1 δ1 ⊗ δ̇1 ⊗ δ̇1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

1, δN , δ̇N , δ̈N δN ⊗ δ̇N δN ⊗ δ̈N δ̇N ⊗ δ̇N δN ⊗ δ̇N ⊗ δ̇N

⎤

⎥

⎥

⎦

·

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

̂C0
̂C1
̂C2
̂C3
̂C4
̂C5
̂C6
̂C7

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(7)

For a d-dimensional shape space, the row of unknowns
on the right consists of 1+d +d +d +d2 +d2 +d2 +
d3 elements. Once we have computed a least squares
model for everym,we similarly construct Fourier series
so that the ̂Ci may be smoothly interpolated at any
phase value. The result is a local model of Eq. (2).

Because it is the only term of order κ3, we find that
in practice the 3-index regressor δ ⊗ δ̇ ⊗ δ̇ can often be
omitted if κ > 0 is sufficiently small. In the remainder
of this paper, we refer to the regressors of Eq. (7) (with
the 3-index term excluded) as the “perturbed Stokes
regressors” and refer to those used in the Bittner, Hat-
ton, and Revzen [1] algorithm as the “Stokes regres-
sors.”

Remark 2 All tensors appearing in Eqs. (3) and (5) are
not necessarily symmetric, and therefore, the order of
terms matters.

Remark 3 Examining Eq. (3), we see that there are
some constraints that the regression does not enforce.
Namely, C0 = [C1]i γ̇

i and C2 = [C3]i γ̇
i . When

we performed regressions ignoring these implicit con-
straints, we found that the constraints are not respected
in the results. However, an important consequence
of Eq. (5) is that, for systems operating in the per-
turbed Stokes regime, such a mismatch is actually to be
expected—this is because some independent new terms
appear in C1, . . . ,C3 which break the constraints.

3.2 Local models enable optimality testing and
optimization

The data-driven models computed by the process
described above have predictive power locally, in a
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neighborhood of a gait cycle. For any shape trajectory
inside this neighborhood, we can used the local model
to predict the trajectory of the body in the world. We
assume that we are interested in some R-valued goal
functional φ̃(γ, gγ ) defined on an appropriate space of
trajectories. Here the group trajectory gγ (t) is deter-
mined by the gait γ (t) via Eq. (2), and therefore, we
may consider the goal functional φ(γ ) := φ̃(γ, gγ ) to
be a function of γ alone.

Testing for optimality We can test the gait of an organ-
ism for optimality by checking that 0 = ∂

∂sφ(γs)|s=0

for all smooth variations γs of a gait γ (where γ0 = γ ).
This condition is necessary for local optimality, but
depending on the choice of φ it is often possible to
argue on physical grounds that its satisfaction is also
sufficient for optimality. While this variational con-
dition can be used to derive a PDE via the Euler–
Lagrange approach, a more computationally straight-
forward approach is to consider a finite- (but often high-
) dimensional family γp with p ∈ R

N and numerically
computing the gradient ∇pφ(γp). When this gradient
is sufficiently small at some parameter p∗, it might be
possible to argue that the gait is nearly extremal (or pos-
sibly optimal) with respect to φ.8 Since we can com-
pute φ using a data-driven model around γp, we can
compute ∇pφ(γp). We can do so directly from obser-
vation andwithout need for any generalmodel of body–
environment interactions, so long as use of Theorem 1
can be justified.

Optimizing gaits We can use the gradient ∇pφ(γp) to
iteratively improve the gait of a robot whose dynamics
satisfy Theorem 1 without requiring any further details
of the physics. Taking parameter set p, we compute
the next iterate p′ := p + α∇pφ(γp), with the step
size scaling α > 0 chosen to ensure that p′ is within
the domain for which our local model of φ is valid,
using the approach of Bittner, Hatton, and Revzen [1,
Sec. 7.2]. For each gait γp, we only require enough
experimental data for building a good local model of φ

near γp—a dataset whose size does not depend on the
dimension of the representation p. We plan to use this
decoupling to perform hardware-in-the-loop optimiza-
tion to produce rapid adaptation of robot motions in the

8 In some cases, this procedure is provably correct. Furthermore,
suitable finite-dimensional families that provide these guarantees
always exist [30, Sec. 16]. We do not discuss these technicalities
any further here.

face of foreign environments, mechanical failures, and
more.

4 Performance comparison of the two data-driven
models

One of the primary contributions of this paper is the
introduction of new regressors based on Theorem 1,
which we use to augment the regressors used in the
algorithm of Bittner et al. [1] for estimating the dynam-
ics near a gait. These allow us to extend the domain of
validity of their algorithm from the Stokesian limit to
include the perturbed Stokes regime. To demonstrate
this, we constructed a swimming model which we sim-
ulated at variousReynolds numbers, and tested the abil-
ity of the two types of localmodels to predict the results
of the fully nonlinear simulation.9

4.1 Modeling a swimmer

We tested the prediction quality of both models on a
swimming model. The system shown in Fig. 1 had uni-
formly distributed mass along a central body, with two
paddles comprising chains of massless links extending
from the center of the body. Each paddle could be bro-
ken up into an arbitrary number n

2 (n even) of equally
spaced links, which sum to a constant total length inde-
pendent of n. This allowed us to vary the behavior of
the system fromone reminiscent of a boatwith oars (for
n = 2) to one more like a bacterial cell with flagella
(for n large).

The system moves in a homogeneous and isotropic
plane. Its configuration space is S×G = T

n ×SE(2):
the n-torus and the special Euclidean group of pla-
nar rigid motions SE(2). We assume the dynamics
are equivariant under SE(2). The group element g ∈
SE(2) provides the position and orientation of the cen-
tral body in world coordinates with respect to a fixed
inertial reference frame. Hereon, we represent g as a
column vector g = [x, y, θ ]T and similarly represent
ġ as a column vector. We define the body velocity

g̊ =
⎡

⎣

cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

⎤

⎦ ġ. (8)

9 All of these simulations did not account for fluid–fluid interac-
tions; as such we make no claim that they are physically mean-
ingful at the higher Reynolds number in the ranges shown.
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Fig. 1 Schematic representation of our swimmingmodel. A sin-
gle body (ellipses with center of mass marked) of mass m and
moment of inertia mĪ is attached to two identical paddles each

comprising 1 (left), 2 (middle), or n
2 (right) segments. The length

of the body is L , and the total length of each of the two paddles
is d. The length of each segment is d

n

We treat the link at the main body (length L) and
the links comprising the paddles (length d) as slen-
der members, and model their drag forces according to
Cox theory [5] using the drag matrices

C d
n

= c

⎡

⎣

Cx
d
n 0 0

0 Cy
d
n 0

0 0 1
12 (

d
n )3Cy

⎤

⎦ ,

CL = c

⎡

⎣

Cx L 0 0
0 CyL 0
0 0 1

12 L
3Cy

⎤

⎦ , (9)

where the factor c > 0 is explicitly written for later
scaling purposes. The drag coefficient ratio Cy/Cx

has a maximum value of 2 corresponding to the limit
of infinitesimally thin segments, and we will assume
this limiting ratio here (c.f. Hatton and Choset [17,
Sec. 2.B]). Given these drag matrices, the wrench on
the central link can be written as

Fbody = cF̄body = −CL g̊. (10)

The wrench that the segments (denoted i) apply on
the body can be written as

Fi = cF̄i = −WiC d
n
Vi

[

g̊
α̇

]

, (11)

where the linearmapWi (g, α) : se(2)∗ → se(2)∗ maps
a wrench on link i to a wrench on the body and the
linear map Vi (g, α) : se(2) → se(2) maps a velocity
in the body frame to a velocity in the link frame. Let
Rβ denote the counterclockwise rotation of the plane by
angle β, define e2 := [0, 1]T, and write g̊ = [g̊Tx,y, θ̇ ]T.
Then, for the n-segment model (recall that n must be
even), for i ∈ {1, . . . , n} the linear maps Vi andWi are
given by

Vi ·
[

g̊
α̇

]

=
[

R−1
α∗+···+αi

g̊x,y +
(

d
2n

(

θ̇ + ∑i
k=∗ α̇k

)

+ d
n

∑i−1
k=∗

(

θ̇ + ∑k
j=∗ α̇ j

)

R−1
αk+1+···+αi

)

e2

θ̇ + ∑i
k=∗ α̇k

]

Wi ·
[

f
τ

]

=
[

Rα∗+···+αi f

τ + eT2

(

d
2n I2×2 + d

n

∑i
k=∗+1 Rαk+αk+1+···+αi

)

· f

]

,

(12)

where ∗ := 1+�i/ n
2� · n2 ∈ {1, n

2 +1}, f = [ f1, f2]T,
and where a summation is understood to be zero if the
lower bound of its index set exceeds its upper bound.

These wrenches act on the body (which has uni-
formly distributed mass m and moment of inertia I =
mĪ about itsmidpoint) yielding the following equations
of motion in world coordinates:

g̈ =
⎡

⎣

ẍ
ÿ
θ̈

⎤

⎦
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= 1

ε

⎡

⎣

1 0 0
0 1 0
0 0 1

Ī

⎤

⎦

⎡

⎣

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

⎤

⎦

(

F̄body +
n

∑

i=1

F̄i

)

,

(13)

where ε := m
c is the dimensionless inertia–damping

ratio. In keeping with our earlier conventions thatm, c,
and ε are all dimensionless we think of the “1” terms
on the diagonal in Eq. (13) as having units of inverse
time.

Upon inspection of Eq. (13), we see that by modi-
fying ε we can directly adjust the ratio of inertial to
viscous forces in the swimming model. The Stoke-
sian limit corresponds to ε → 0; on the other hand,
the ε → ∞ limit corresponds to a fully “momentum-
dominated” regime, wherein viscous effects are neg-
ligible and motion is governed by conservation of
momentum via Noether’s theorem (see Corollary 1 in
“Appendix A.1”). In Sect. 4.2, we simulate the swim-
ming model at a variety of ε values and compare the
performance of the two algorithms for estimating the
dynamics near a gait cycle.

4.2 Comparison of the estimated models

In all simulations in this section, we used the parameter
values L = 1, d = 0.5, Cx = 1, Cy = 2, and Ī = 1.
The only remaining free variable is ε, which governs
both the ratio of inertial to viscous forces and the rate
of attraction to the slow manifold. The procedure we
used for generating simulations for experiments in this
section is identical to that described in Bittner, Hatton,
and Revzen [1]. Briefly, an experiment consists of 30
cycles of a numerically integrated stochastic differen-
tial equation (SDE) representing shape space dynam-
ics consisting of a deterministic oscillator perturbed
by system noise (see Bittner, Hatton, and Revzen [1,
Sec. 6.2] for precise details on the SDE, parameter val-
ues used, etc.).

We used these noisy shape dynamics to drive the
bodymomentumandgroupdynamics via full equations
ofmotion Eq. (26) derived in “AppendixA.3.” For each
simulation, we recorded a “ground truth” body velocity
trajectory g̊G . We used this record to evaluate the accu-
racy of the data-driven approximations. We denoted
the body velocity computed with the perturbed Stokes
regressors by g̊p and those computed with the Stokes
regressors by g̊s .

As a “zeroth-order” phase model of the dynam-
ics, we constructed a Fourier series model of g̊G with
respect to the estimated phase (see Sect. 3.1), which
we denote by g̊a . For any data point, the zeroth-order
model prediction is g̊a(ϕ) for the phase ϕ of that data
point.

We computed theRMSerrors ek∗ for each component
k of the body velocity and each model ∗ = p, s, a by
ek∗ := 〈|g̊k∗ − g̊kG |2〉1/2. Since the numerical value of
these errors means little, we defined the metric �k∗ :=
1 − ek∗/eka for ∗ = p, s to indicate how much better
the regression models were performing compared to
the zeroth-order phase model g̊a . A �k∗ of 0 indicates
doing no better than the zeroth-order model, whereas
a 1 indicates a perfect model. To further highlight the
difference in prediction quality, we also plot �k :=
�k
p − �k

s .

4.2.1 Algorithm comparison using manually selected
gaits

We chose to first test the modeling approaches on
a collection of simple manually selected behaviors.
These include behaviors we term “twist in place” and
“symmetric flapping” gaits, both of which initialize
with paddles aligned at a quarter turn away from the
body (as depicted in the two-segment model in Fig. 1)
and, respectively, involve antisymmetric and symmet-
ric sinusoidal movement of the paddles with amplitude
1. The “symmetric flapping gait” primarily moves in
the direction of the x body axis, while the “twist in
place gait” primarily changes the θ body coordinate.
Finally, we considered a “circle” gait which also ini-
tializes the paddles at a quarter turn away from the
body and moves them sinusoidally with amplitude 1,
but has a quarter-cycle phase offset between them. This
gait tends to move the system in a way that changes all
three body coordinates throughout its execution.

We selected these three gaits because they are simple
to describe and span a range of resultant body motions.
For single link paddles, the body shape space is 2D,
and these gaits are represented by loci that are diagonal
lines with slopes 1, −1, and a circle (see Fig. 2). We
simulated the gaits and plotted mean and variance of
�s , �p, and � for each value of ε (Fig. 2). The plot
shows that for all three gaits tested and for all three
body coordinates, over a range spanning an order of
magnitude or more around ε = 1, the perturbed Stokes
models are better by � > 0.05 or more.

123



Gait modeling and optimization for the perturbed Stokes regime

Γp ± σ(Γp)

Γs ± σ(Γs)

Δ ± σ(Δ)
Selected Gaits

Circle Amp. 1

Twist in Place
Symmetric Flap

(A)

(B)

Fig. 2 Comparison of model prediction quality when using the
perturbed Stokes regressors versus the Stokes regressors on three
gaits, in terms of the � and � quality metrics. We have plot-
ted the components of �, representing the relative advantage of
perturbed Stokes regressors (top row; (A)), and �, representing
model prediction quality (bottom row; (B)), against 6 orders of
magnitude variation in the inertial to viscosity ratio ε (logarith-
mic scale; sampled at 25 values (vertical gray lines). We present
three gaits, whose shape space loci are in-phase paddle angle
(which leads to anti-phase paddle motions; “twist in place”; left
column; blue line in shape space plot), anti-phase paddle angle
(bilaterally symmetric paddle motions; “symmetric flap”; mid-
dle column; green line in shape space plot), and quarter-cycle out

of phase paddle angles (“circle Amp. 1”; right column; red line
in shape space plot). All three gaits have paddle angles ranging
between −1 and 1 radians. For each value of ε, we performed
8 simulation trials each consisting of 30 (noisy) gait cycles and
plotted mean and standard deviation of� and � for each compo-
nent of the se(2) bodymotion (X blue; Y orange; θ red; saturated
for � and �p , pale for �s ). Consistently for all components and
gaits, the perturbed Stokes regressors provide a better model for
an order of magnitude or wider range of ε around ε = 1. For
twist in place and symmetric flap gaits, both models are accurate
for large and small ε (� close to 1); for the circle Amplitude 1
gait, the prediction is only accurate for the Stokes regime (small
ε)

4.2.2 Algorithm comparison using extremal gaits

Arbitrarily selected gaits such as those examined in the
previous section are not expected to exhibit any special
properties with respect to our modeling approach. In
particular, with respect to a goal function φ(·), they
are expected to be regular points of φ(·). However,
φ-optimal gaits have ∇pφ = 0 and thus have addi-
tional structure that might interact with the modeling
approach.

We chose goal functionals
∫

g̊x (t) dt and
∫

g̊ y(t) dt
(where superscripts denote components) correspond-
ing to displacement in the x and y coordinates as mea-
sured in the body frame of the paddleboat. This is not

the same as actual x or y displacement in the world,
since boat orientation changes over time. Using the
methods of Hatton and Choset [17], we determined the
extremal gaits for these goal functionals in the Stokes
regime with high accuracy. Plotted in the shape space
(and superimposed on the “connection vector fields”
[16,17] of the appropriate goal functional), they are dia-
mond shaped (Fig. 3). We also plotted � and�, reveal-
ing that again, perturbedStokes regressors improveper-
formance (� > 0.15) over a range of two orders of
magnitude in ε. Unlike the arbitrary gaits of the pre-
vious section, the extremal gaits have � > 0.1 for all
ε > 1 for bothmodel types. This suggests that even out-
side the perturbed Stokes regime the addition of regres-
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Fig. 3 Comparison of model prediction quality when using the
perturbed Stokes regressors versus the Stokes regressors on two
extremal gaits, in terms of the � and � quality metrics. Plots
consist of the same types as those in Fig. 2. We only plot the X
(blue) and Y (orange) components of � (middle column; satu-
rated color�p; pale colors�s ) and� (right column).We selected
the gait to maximize either the X component of total body frame
motion (top row) or the Y component (bottom row). The gaits
are extremal in the Stokes regime (ε = 0) and selected by taking
the zero level set of the connection curvature (method from Hat-
ton and Choset [16,17]). Following their approach, we plot the

connection of the coordinate being optimized as a vector field
over the shape space (black arrows; left column), with the shape
space gait locus plotted over it (diamond shapes in left column,
colored by coordinate optimized). Results show that both mod-
els are most accurate for small ε (the Stokes regime; � closer to
1), with the perturbed Stokes regressors providing improvements
across the entire range. Over the two order of magnitude range
of 10−0.5 < ε < 101.5, this advantage is noticeably more pro-
nounced (the perturbed Stokes regime; bump in � plots). Also
note that the X extremal gait shows much greater �x ; the Y
extremal gait shows much greater �y

sors improves upon the zeroth-order phase model. It is
also notable that in the extremal x gait, �x is signifi-
cantly better than �y , whereas in the extremal y gait
the converse is true.

4.2.3 Performance gains grow with shape space
dimension

Thus far, we have only presented results for systems
having 2D shape spaces. Because data-driven meth-
ods are often handicapped by their inability to scale
with model dimensionality, we chose also to test our
approach on systems of higher dimension by extending
each paddle into amulti-segmentedmodel.We selected

a gait similar to that of the symmetric flapping gait, but
with the additional feature that the bending angle of
a paddle was uniformly distributed through the joints
it contains. In particular, the relative angles between
adjacent segments were equal and of amplitude π/N ,
where N is the number of joints.

We plotted �x
p, �

x
s and�x for paddles with 1, 2, and

3 segments (Fig. 4). The �x shows a marked improve-
ment in the 4D and 6Dmodels, suggesting that as shape
space complexity increased, the advantage of perturbed
Stokes regressors became comparatively more signifi-
cant.
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Fig. 4 Comparison of model prediction quality when using the
perturbed Stokes regressors versus the Stokes regressors on pad-
dles with different dimensions of the shape space, shown in terms
of the � and � quality metrics. Plots consist of the same types
as those in Fig. 2. We plotted � and � of three swimmers with
different numbers of paddle segments: one segment per paddle
(light blue), two segments (blue), and three segments (purple);
see Fig. 1 for schematic. We used a symmetric flapping gait (see
Fig. 2; small cartoons). The paddles moved symmetrically with

total angles of all joints summing up to a sinusoid of ampli-
tude π . We plot the X components of � (left column; one plot
per model; saturated colors �p; pale colors �s ) and � (right
column). Results show that over the two orders of magnitude
range of 10−0.5 < ε < 101.5, the perturbed Stokes regressors
consistently provide improvements. The relative improvement
� increased markedly with shape space dimension, by as much
as 0.5 in �

4.3 Discussion

The results of Sect. 4.2 show that for all versions of the
swimmingmodel and all gaits thatwe tested there exists
a sizable window of ε values wherein the perturbed
Stokes regressors provide models of superior quality
when compared to the Stokes regressors. In particular,
the improvement is consistently present in the region
log10 ε ∈ [0, 1], suggesting that this range of ε might
be the range for which the predicted slow manifold is
both present and sufficiently simple to be captured by
the new regressors.

As noted in Sect. 4.2.2, the perturbed Stokes regres-
sors seem to improve prediction performance more
in the direction in which the gait was extremal. We
hypothesize that this is because extremal gaits have
already exhausted any first-order improvements avail-
able, i.e., gradients are zero. With the first-order terms
close to zero, the presence of more high-order terms
among the perturbed Stokes regressors may have a
greater effect on the relative prediction error.

It is interesting to note the large magnitude of
improvement in � as the shape space dimension
increased in Fig. 4. Whether this is an artifact of the
particular model and/or gait, or a more general feature,
remains to be determined.

At the lower end ε magnitudes studied here, the
systems are near the Stokesian limit, and therefore,
we expect relatively little improvement from adding
regressors designed for the perturbed Stokes regime.
This is consistent with our experimental results in all
figures which show for ε small both small values of �

and large values of � for both sets of regressors.
For very large values of ε, the predictive quality of

both algorithms is hindered by at least three factors,
although only the first two can be observed here.

1. The O(ε2) term in Theorem 1 becomes more sig-
nificant as ε increases. This issue is insurmountable
if we restrict ourselves to Stokes regressors. If we
do not, it is possible to compute correction terms
which are higher order in ε and which can inform
the selection of additional regressors for addition to
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our algorithm. It is one possible direction for future
work.

2. For ε sufficiently large, we expect a bifurcation in
which the slow manifold (whose existence is guar-
anteed by Theorem 2 in “Appendix B”) ceases to
exist. For such values of ε, the hypotheses of Theo-
rem 1 are not satisfied, and a reduced-order model
may not exist. This is a mathematical expression
of the physical reality of inertial effects playing a
dominant role as ε increases and eventually requir-
ing momentum states to be added to the models.

3. For sufficiently large values of ε, the full com-
plications of fluid-fluid interactions to come into
play, and the linear viscous friction model we used
becomes less and less accurate. We conjecture that
for many systems this effect will not have signif-
icant influence until after ε is already sufficiently
large for the slow manifold to have disappeared. It
would be interesting to explore this issue further.

5 Conclusion

Wehave shown that the accuracy of data-drivenmodels
motivated from geometric mechanics can be improved
by using a collection of regressors derived from an
asymptotic series approximation of an attracting invari-
ant manifold in the small parameter ε representing the
ratio of inertial to viscous forces (a Reynolds number-
like parameter). The existenceof such an invariantman-
ifold was previously known in similar situations,10 as
were the approximation techniques we employed, but
the combination of these together for producing data-
driven models of locomotion is a novel contribution.
In simulations where we tested geometrically similar
motions over 6 orders of magnitude of ε, we obtained
improvements of 5–65% (depending on the specific
system and gait) compared to previous work, suggest-
ing that these better-informed models can indeed cap-
ture the perturbed Stokes regime more accurately. Fur-
thermore, the results of one of our experiments showed
further improvements as the shape space dimension
of the locomoting system increased; this suggests that
higher-dimensional systems might be modeled effec-
tively using our approach.

10 But see the discussion preceding Theorem 2 in “Appendix
B,” which details how our result differs from that of Eldering
and Jacobs [7].

Future work will include application of our algo-
rithm to questions of locomotion optimality in ani-
mals and to hardware-in-the-loop optimization of robot
motions. An additional direction for future work is the
selection of regressors and regression techniques for
hybrid dynamical systems and for non-viscous dissi-
pation models.
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A Appendix A: Derivation of the equations of
motion

In this and the following section, we consider systems
more general than those considered earlier and in so
doing assume that the reader is familiar with some
basic concepts in geometric mechanics and differen-
tial geometry: Lie groups, group actions, and principal
bundles. We refer the reader to Kobayashi and Nomizu
[26], Marsden and Ratiu [31], Lee [27], and Bloch
[3] for the relevant standard definitions related to Lie
groups and group actions, and we refer the reader to
Kobayashi andNomizu [26],Marsden et al. [28],Mars-
den [29], and Bloch [3] for material on bundles.

We consider amechanical system on a configuration
space Q whose Lagrangian is of the form kinetic minus
potential energy. We will also consider this system to
be subjected to external viscous forcing arising from a
Rayleigh dissipation function and also subjected to an
external force exerted by the locomoting body. We are
interested in the situation that we have a smooth action
θ : G × Q → Q of a Lie group G on Q, such that the
Lagrangian, viscous forces, and external force are all
symmetric under the action. In this case, we say that G
is a symmetry group.

In “Appendix A.1,” we will define some geometric
quantities on Q which encode information about the
symmetry and the dynamics. Working in coordinates
induced by a local trivialization, in “Appendix A.2” we
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derive the equations of motion in terms of these quan-
tities. In “Appendix A.3,” we recall how the equations
become governed by the so-called viscous connection
in the Stokesian limit [7,25],whichwill set the stage for
our derivation in “Appendix B” of a corrected reduced-
order model for the perturbed Stokes regime.

A.1 The mechanical and viscous connections

In this section, we define the mechanical and viscous
(or Stokes) connections, roughly following Kelly and
Murray [25]. We consider a Lagrangian L : TQ → R

which is invariant under the lifted action Dθg of G on
TQ (hereD denotes the derivative or pushforward).We
assume the Lagrangian to be of the form kinetic minus
potential energy, where kinetic energy is given by m

2 k,
where m > 0 is a dimensionless mass parameter, k is a
smooth symmetric bilinear form, and mk is the kinetic
energy metric. In what follows, we assume that k is
positive definite when restricted to tangent spaces to
G orbits, but not necessarily that k is positive definite
on all tangent vectors.11 Denoting by g the Lie alge-
bra of G and g∗ its dual, we define the (Lagrangian)
momentum map J : TQ → g∗ via

〈J (vq), ξ 〉 = 〈FL(vq), ξQ(q)〉 = mkq(vq , ξQ(q)),

(14)

where v ∈ Tq Q and ξ ∈ g. Here FL : TQ → T∗Q
is the fiber derivative of L given by FL(vq)(wq) :=
∂
∂s |s=0L(vq+swq), and the smooth vector field ξQ on
Q is the infinitesimal generator defined by ξQ(q) :=
∂
∂s |s=0θexp(sξ)(q). We define the mechanical connec-
tion �mech : TQ → g via �mech(vq) := I

−1(q)J (vq),
where I(q) : g → g∗ is the locked inertia tensor defined
via

〈I(q)ξ, η〉 := 〈FL(ξQ(q)), ηQ(q)〉
= mkq(ξQ(q), ηQ(q)), (15)

where ξ, η ∈ g.
We now follow an analogous procedure to define

the viscous connection �visc : TQ → R. We con-
sider a Rayleigh dissipation function R : TQ → R

11 This does not affect any of the following derivations and
results. However, this generality is merely a convenience ensur-
ing that our results apply to certain idealized examples, e.g., link-
ages with some links having zero mass (c.f. Sect. 4). Of course,
such examples are not physical and, for example, must be supple-
mented with assumptions to ensure that the massless links have
well-defined dynamics.

defined in terms of a G-invariant smooth symmetric
bilinear form ν on Q: R(vq) := c

2νq(vq , vq), where
c > 0 is a dimensionless parameter representing the
amount of damping or dissipation in the system due
to viscous forces. As with k, we assume that ν is pos-
itive definite when restricted to tangent spaces to G
orbits, but not necessarily that ν is positive definite
on all tangent vectors.12 The corresponding force field
FR : TQ → T∗Q is given by minus the fiber derivative
of R, FR := F(−R). We define a map K : TQ → g∗,
analogous to the momentum map J , via

〈K (vq), ξ 〉 = 〈FR(vq), ξQ(q)〉 = −cνq(vq , ξQ(q)),

(16)

where v ∈ Tq Q and ξ ∈ g. We define the viscous
connection or Stokes connection �visc : TQ → g via
�visc(vq) := V

−1(q)K (vq), where V(q) : g → g∗ is
defined via

〈V(q)ξ, η〉 := 〈FR(ξQ(q)), ηQ(q)〉
= −cνq(ξQ(q), ηQ(q)), (17)

where ξ, η ∈ g.
Using the G-invariance of L and ν, a calculation

shows that �mech and �visc are equivariant with respect
to the adjoint action of G on g:

∀g ∈ G : �mech ◦ Dθg = Adg ◦ �mech, �visc ◦ Dθg

= Adg ◦ �visc (18)

Hence, if the natural projection πQ : Q → Q/G from
Q to the space of orbits Q/G of points in Q is a princi-
palG-bundle, then themechanical and viscous connec-
tions �mech and �visc are indeed principal connections;
this justifies their titles.

Now in order for our system to move itself through
space, we also allow there to be a G-equivariant exter-
nal force FE : R × TQ → T∗Q exerted by the loco-
moting body, subject to the requirement that FE takes
values in the annihilator of kerDπQ , the distribution
tangent to group orbits. This requirement reflects the
physically reasonable assumption that the locomoting
body can exert only “internal forces” which directly
affect only its shape r ∈ Q/G (c.f. Eldering and Jacobs
[7, Sec. 3.3] and Bloch et al. [2, Sec. 4.2]). For future
use, we now prove the following

12 This generality simply allows, for example, the situation of a
linkage in which not all links are subject to viscous forces.
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Proposition 1 The derivative of J along trajectories
of the G-symmetric mechanical system is given by

J̇ = K , (19)

making the canonical identifications TJg ∼= g.

Proof We compute in a local trivialization on TQ
induced by a chart for Q, so that we may write a tra-
jectory as (q, q̇). Note that in such local coordinates,
FL(q, q̇)(vq) = ∂L(q,q̇)

∂q̇ vq . Hence

〈 J̇ (q, q̇), ξ 〉 = d

dt

(

∂L(q(t), q̇(t))

∂q̇
ξQ(q(t))

)

=
(

d

dt

∂L

∂q̇

)

ξQ(q) + ∂L

∂q̇
DξQ(q)q̇

=
(

∂L

∂q
+ FR + FE

)

ξQ(q)

+ ∂L

∂q̇
DξQ(q)q̇,

(20)

where we obtained the last line using d
dt

∂L
∂q̇ − ∂L

∂q =
FR+FE ,which follows from theLagrange–d’Alembert
principle [3, p. 8]. Since FE annihilates tangent vectors
to group orbits, 〈FE , ξQ(q)〉 = 0. Hence, rearranging
and letting �s

ξ denote the flow of ξQ , we find

〈 J̇ (q, q̇), ξ 〉 = ∂

∂s
L

(

�s
ξ (q(t)),D�s

ξ (q(t))q̇(t)
)

+ 〈FR(q, q̇), ξQ(q)〉
= ∂

∂s
L

(

�s
ξ (q(t)),D�s

ξ (q(t))q̇(t)
)

+ 〈K (q, q̇), ξ 〉.
The derivative term is zero due to the invariance of L
under the action ofG, so from the arbitrariness of ξ ∈ g

we obtain the desired result. ��
As a corollary, we obtain a slight generalization of the
classical Noether’s theorem.

Corollary 1 (Noether’s theorem) Consider a mechan-
ical system given by a G-invariant Lagrangian of the
form kinetic minus potential energy. Assume that the
only external forces take values in the annihilator of the
distribution tangent to the G orbits. Then the derivative
of the momentum map J along trajectories satisfies

J̇ = 0.

Proof Set K = 0 in Proposition 1. ��

A.2 Local form of the equations of motion

Assuming that the action of G on Q is free and proper
[27, Ch. 21] so that πQ : Q → Q/G is a principal
G-bundle, we now derive the equations in a local trivi-
alization, following [25]. In a local trivializationU×G,
πQ simply becomes projection onto the first factor and
the G action is given by left multiplication on the sec-
ond factor. We define S := Q/G to be the shape
space representing all possible shapes of a locomot-
ing body, and we write a point in the local trivialization
as (r, g) ∈ U × G where U ⊂ S. We assume that U
is the domain of a chart for S, so that we have induced
coordinates (r, ṙ) for TU .

Defining the body velocity13 g̊ := DLg−1 ġ, the
equivariance property (18) of the connection forms
�mech, �visc implies that they may be written in the
trivialization as
�mech(r, g) · (ṙ , ġ) = Adg

(

g̊ + Amech(r) · ṙ)

�visc(r, g) · (ṙ , ġ) = Adg
(

g̊ + Avisc(r) · ṙ) ,
(21)

where Amech : TU → g and Avisc : TU → g are,
respectively, the local mechanical connection and
local viscous connection. We define a diffeomorphism
(r, ṙ , g, ġ) �→ (r, ṙ , g, p), with p the body momentum
defined by

p := Ad∗
g J ∈ g∗. (22)

Here Ad∗
g is the dual of the adjoint action Adg of G on

g. We additionally define

Iloc := Ad∗
gIAdg : g → g∗

Vloc := Ad∗
gVAdg : g → g∗ (23)

to be the local forms of I and V. We note that the
invariance of the Lagrangian L and Rayleigh dissi-
pation function R under G, together with the gen-
eral identity DθgξQ(q) = (Adgξ)Q(θg(q)), imply that
Iloc(r),Vloc(r) depend on the shape variable r only.

Rearranging (21), using the expressions (22), (23),
and using Proposition 1, we obtain the equations of
motion

g̊ = −Amech · ṙ + I
−1
loc p

ṗ = Vloc(Avisc − Amech) · ṙ + VlocI
−1
loc p

+ ad∗
I
−1
loc p

p − ad∗
Amech·ṙ p,

(24)

13 Asmentioned in themain text, the body velocity is oftenwrit-
ten g−1 ġ by an abuse of notation which is only defined on matrix
Lie groups where the product of a tangent vector and a group ele-
ment is naturally defined. We use the alternative notation g̊ as a
matter of personal preference.
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where we have suppressed the r -dependence of
Amech, Avisc, Iloc,Vloc for readability. Notice that the
ṗ equation is completely decoupled from g.

In this paper, we are interested in the effect of shape
changes on body motion, and not on the generation of
shape changes themselves. Hence, we have suppressed
the equations for ṙ , r̈ from (24), simply viewing r, ṙ as
inputs in those equations, but see Bloch et al. [2] for
more details on the specific form of the equations.

We merely note that, if the kinetic energy metric is
positive definite, then the Lagrangian is hyperregular
and our assumption of G-equivariance of the exerted
force FE implies that

r̈ = f (t, r, ṙ , I−1
loc p) (25)

for some function f which depends on the local triv-
ialization. If the kinetic energy metric is not positive
definite (for use in toy examples like those in Sect. 4;
see the precise assumptions in “Appendix A.1,” and the
footnote there), then we assume that r̈ is given by (25).

A.3 Reduction in the Stokesian limit

From the definitions (15), (17) of Iloc,Vloc, we see that
we may define Īloc, V̄loc by

Iloc(r) =: m Īloc(r) Vloc(r) =: cV̄loc(r).

Defining the dimensionless parameter ε := m
c andmul-

tiplying both sides of (24) by IlocV
−1
loc , we obtain the

rewritten equations of motion

g̊ = −Amech · ṙ + 1

m
Ī
−1
loc p

εĪlocV̄
−1
loc ṗ = m Īloc(Avisc − Amech) · ṙ + p (26)

+εĪlocV̄
−1
locad

∗
I
−1
loc p

p

−εĪlocV̄
−1
locad

∗
Amech·ṙ p.

In considering the limit in which viscous forces dom-
inate the inertia of the locomoting body, Kelly and
Murray [25] formally set ε = 0 in (26) to obtain
p = m Īloc(Amech − Avisc) · ṙ from the second equa-
tion. Substituting this into thefirst equation of (26), they
derive the following form of the equations of motion:

g̊ = −Avisc · ṙ . (27)

In the language of differential geometry, (27) states that
in the Stokesian limit trajectories are horizontal with
respect to the viscous connection. We will see in the
next section that this reduction can be extended away
from the ε → 0 limit.

B Appendix B: Reduction in the perturbed Stokes
regime

In Eldering and Jacobs [7], the argument of Kelly
and Murray [25] was explained in more detail using
the theory of normally hyperbolic invariant manifolds
(NHIMs) in the context of geometric singular pertur-
bation theory [14,20,22]. The idea is to show that for
ε > 0 sufficiently small, the dynamics (26) possess an
exponentially attractive invariant slow manifold Mε ,
such that the dynamics restricted to Mε approach (27)
as ε → 0.Wegive an alternative argumentwhich yields
a result differing from that of Eldering and Jacobs [7]
in two ways.

1. Eldering and Jacobs [7] give an argument for gen-
eral mechanical systems without symmetry under
the assumption that the configuration space Q is
compact, although they do indicate that compact-
ness can be replaced with uniformity conditions
using noncompact NHIM theory [9]. Our argument
assumes symmetry but allowsG to be noncompact,
though we do require that S := Q/G be compact.
This enables application of our result to locomo-
tion systems with noncompact symmetry groups,
such as the Euclidean group of planar rigid motions
SE(2) as in the systems of Sect. 4.

2. Eldering and Jacobs [7] consider the limit m → 0
while holding c and the force exerted by the loco-
moting body fixed. Thismakes sense, because if the
exerted force were held fixed while taking c → ∞,
then trivial dynamics would result in the singular
limit: The systemwould notmove at all. Rather than
holding the exerted force fixed, wewill consider the
differential equation prescribing the dynamics of
the shape variable to be fixed.14 Under this assump-
tion, we show that the dynamics depend only on
the ratio ε = m

c , and in particular, the dynamics
obtained in the two singular limits m → 0 and
c → ∞ are the same.

Before stating Theorem 2, we need the following defi-
nition.

Definition 1 (Ck
b time-dependent vector fields) Let M

be a compact manifold with boundary, and let f : R×
M → TM a Ck≥0 time-dependent vector field. Let
(Ui )

n
i=1 be a finite open cover of M and (Vi , ψi )

n
i=1 be

14 This implicitly assumes that the locomoting body is capable
of exerting O(c) forces.
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a finite atlas for M such that Ūi ⊂ Vi for all i , and for
each i define fi := (Dψi ◦ f ◦(idR×ψ−1

i )). We define
an associated Ck norm ‖ f ‖k of f via

‖ f ‖k := max
1≤i≤n

max
0≤ j≤k
x∈ψi (Ūi )

‖D j fi (x)‖, (28)

where ‖D j fi (x)‖ denotes the norm of a j-linear map;
here D j f includes partial derivatives with respect to
time as well as the spatial variables. If ‖ f ‖k < ∞,
we say that f is Ck-bounded and write f ∈ Ck

b . The
norm ‖·‖k makes the Ck

b time-dependent vector fields
into a Banach space. The norms induced by any two
such finite covers of M are equivalent and thereby
induce a canonical Ck

b topology on the space of Ck
b

time-dependent vector fields.

Remark 4 Definition 1 defines the Ck
b topology on the

space of Ck
b time-dependent vector fields on a compact

manifold. As discussed in Eldering [9, Sec. 1.7], this
Ck
b topology is finer than the Ck weak Whitney topol-

ogy and coarser than the Ck strong Whitney topology
[18, Ch. 2], but all of these topologies induce the same
topology on the subspace of time-independent vector
fields due to compactness. Definition 1 is a special case
of the definition in Eldering [9, Ch. 2] for theCk

b topol-
ogy on Ck

b vector fields on Riemannian manifolds of
bounded geometry and onCk

b maps between suchman-
ifolds.

The following theorem concerns a G-symmetric
dynamical system on TQ whose equations of motion
are consistent with our assumptions so far, i.e., they are
given in local trivializations by (26) and an equation of
the form (25).

Theorem 2 Assume that S = Q/G is compact. Let
2 ≤ k < ∞, and let X ε be a Ck family of G-symmetric
time-dependent vector fields on TQ with the following
properties:

1. For every compact neighborhood with Ck bound-
ary K0 ⊂ TQ and ε > 0, X ε |R×K0 ∈ Ck

b (Defini-
tion 1).

2. There exists a compact connected neighborhood
K ⊂ TS of the zero section of TS with Ck bound-
ary, such that N := Dπ−1

Q (K ) ⊂ TQ is positively
invariant for X ε , for all sufficiently small ε > 0.

3. X ε is given in each local trivialization T(U × G),
where U is a chart for S, by (25) and (26):

r̈ = f

(

t, r, ṙ ,
1

m
Ī
−1
loc p

)

εĪlocV̄
−1
loc ṗ =m Īloc(Avisc − Amech) · ṙ + p

+ εĪlocV̄
−1
locad

∗
I
−1
loc p

p

− εĪlocV̄
−1
locad

∗
Amech·ṙ p

g̊ = −Amech · ṙ + 1

m
Ī
−1
loc p

(29)

for some function f which depends on the local
trivialization but is independent of ε.

Then for all sufficiently small ε > 0, there exists a
Ck noncompact normally hyperbolic invariant mani-
fold with boundary Mε ⊂ R × N ⊂ R × TQ for
the extended dynamics given by the extended vector
field (1, Xε) onR×TQ. Additionally, Mε is uniformly
(in time and space) globally asymptotically stable and
uniformly locally exponentially stable (with respect to
the distance induced by any complete G-invariant Rie-
mannian metric on TQ) for the extended dynamics
restricted to R × N. Finally, there exists ε0 > 0 such
that, for each local trivialization U ×G, there exists a
Ck map hε : R × (TU ∩ K ) × (0, ε0) → g∗ such that
Mε ∩ Dπ−1

Q (TU ∩ K ) corresponds to

{(t, r, ṙ , p, g) : p = hε(t, r, ṙ , ε)}, (30)

hε(t, r, ṙ , ε) = Iloc [(Amech(r) − Avisc(r)) · ṙ + O(ε)]

(with p defined by (22)), and hε together with its partial
derivatives of order k or less is bounded uniformly in
time. If f (t, r, ṙ , I−1

loc p) is independent of t , then hε and
Mε are independent of t , and Mε can be interpreted
as a compact NHIM for the (non-extended) dynamics
restricted to N.

Remark 5 Note that even if we assume f ∈ C∞, we
can generally only obtain Ck NHIMs Mε for k finite.
This is because we obtain Mε as a perturbation of a
NHIMM0, and perturbations ofC∞ NHIMs are gener-
ally only finitely smooth because the maximum pertur-
bation size ε required to obtain degree of smoothness
k for Mε generally depends on k in such a way that
ε → 0 as k → ∞. See Eldering [9, Rem. 1.12] and
Strien [40] for more discussion.

Remark 6 By replacing compactness ofQ/Gwith uni-
formity conditions, it should be possible to generalize
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Theorem 2 to the situation of Q noncompact where
either Q/G is noncompact, or where there is no sym-
metry at all. This was pointed out in Eldering and
Jacobs [7, App. 1]. This observation seems important
for the consideration of dissipativemechanical systems
which are only approximately symmetric under a group
G, which seems to be a more realistic assumption.

Remark 7 By taking ε → 0 in Theorem 2, we find that
p = Iloc(Amech − Avisc) · ṙ in the limit. Substituting
this into the first equation of (32), we obtain Eq. (24)
as in Kelly and Murray [25].

Proof Preparationof the equations ofmotion. Through-
out the proof, we consider the dynamics in local triv-
ializations of the form U × G for Q, where U is the
domain of a chart for S, so that we have induced coor-
dinates (r, ṙ) for TU . In such a local trivialization, we
would like to use (29) to analyze the dynamics, but
there are two (related) problems with this. First, the
definition of p depends on m, and this will cause dif-
ficulties in verifying Definition 1 to check that certain
vector fields are close in the Ck

b topology. Second, we
would like to analyze (29) in a singular perturbation
framework, but this is difficult to do directly because
m explicitly appears, and the size of m may or may
not be commensurate with the size of ε. To remedy
this situation, we change variables via the diffeomor-
phism (r, ṙ , p, g) �→ (r, ṙ ,�, g) of TU × g∗ × G →
TU × g × G where � ∈ g is defined by

� := I
−1
loc p = Adg−1�mech(ġ, ṙ) = g̊ + Amech · ṙ .

(31)

Sometimes� is referred to as the (body) locked angular
velocity [2, p. 61]. Differentiating Iloc� = p, using
(29), and rearranging yield

ṫ = 1

ṙ = v

v̇ = f (t, r, v,�)

ε�̇ = − εĪ−1
loc

(

d

dt
Īloc

)

�

+ Ī
−1
locV̄loc(Avisc − Amech) · v + Ī

−1
locV̄loc�

+ εĪ−1
locad

∗
g̊ Īloc�,

(32)

where we have introduced the variable v := ṙ . We
have written ad∗

g̊ for space reasons, but note that the �̇

equation is independent of g since

g̊ = −Amech · ṙ + �, (33)

and this implies that ad∗
g̊ = ad∗

�−ad∗
Amech·ṙ .We see that

(32) is split into slow (t, r, v) and fast (�) variables,
which is the appropriate setup for a singular perturba-
tion analysis. The remainder of the proof consists of
two parts: (i) proving that the NHIM Mε exists and (ii)
establishing the stability properties of Mε .

Proof that Mε exists. Introducing the “fast time”
τ := 1

ε
t and denoting a derivative with respect to τ

by a prime, after the time rescaling we obtain the reg-
ularized equations

t ′ = ε

r ′ = εv

v′ = ε f (t, r, v,�)

�′ = −εĪ−1
loc

(

d

dt
Īloc

)

�

+ Ī
−1
locV̄loc(Avisc − Amech) · v

+ Ī
−1
locV̄loc� + εĪ−1

locad
∗
g̊ Īloc�. (34)

This rescaling of time is equivalent to replacing the
vector field (1, Xε) on R × TQ by (ε, εXε). We see
from (33) and (34) that there is a well-definedCk time-
dependent vector field X̃0 given by the pointwise limit
X̃0 := limε→0 εXε . Given any G-symmetric time-
dependent vector field Y onTQ, we let Y/G denote the
corresponding reducedvector field on (TQ)/G.Hence,
(34) shows that the extended vector field (1, X̃0/G) has
a smooth embedded submanifold (M0/G) of critical
points whose intersection with a locally trivializable
neighborhood is given by

{(r, v,�) ∈ TU × g : � = (Amech − Avisc) · v}, (35)

and it is readily seen that M0/G is described globally
as the quotient of the Ehresmann connection M0 :=
ker �visc by the lifted action of G on TQ.

Furthermore, M0/G is a globally exponentially sta-
ble NHIM for the ε = 0 system. To see this, first note
that in any local trivialization t, r, v are constants when
ε = 0, and hence,�′ is of the form�′ = Ī

−1
locV̄loc�+b

for a constant b and therefore has a globally exponen-
tially stable equilibrium provided that all eigenvalues
of Ī−1

locV̄loc have negative real part. To see that this is the
case, fix a basis of g and corresponding dual basis for
g∗, and first consider the product I−1

V. With respect
to our chosen basis, I,V and their inverses I−1,V−1

are, respectively, represented by r -dependent matri-
ces Ii j , Vi j and their inverses I i j , V i j . It is immedi-
ate from the definitions (15) and (17) that Ii j and Vi j

123



M. D. Kvalheim et al.

are, respectively, positive definite and negative definite
symmetric matrices (this is why we required the bilin-
ear forms k, ν to be positive definite when restricted
to vectors tangent to G orbits). Since Ii j is symmet-
ric positive definite, we may let (

√
I )i j be a matrix

square root of Ii j and let (
√
I )i j be its inverse. But then

the product I ikVk j is similar to the symmetric negative
definite matrix (

√
I )ikVk	(

√
I )	j (Einstein summation

implied). Hence, I−1
V has only eigenvalues with neg-

ative real part, and the same is true of I−1
locVloc because

of the similarity I−1
locVloc = Ad−1

g I
−1

VAdg .
Let π̃ : (TQ)/G → TS denote the projection

induced by DπQ . Equation (35) implies that M0/G
is the image of a section σ0 : TS → (TQ)/G of π̃ .
Hence, (M0/G) ∩ π̃−1(K ) = σ0(K ) is compact, and
M0/G intersects π̃−1(∂K ) transversely. Furthermore,
the assumption that X ε |R×K0 ∈ Ck

b for any compact
neighborhoodwithCk boundary K0 ⊂ TQ implies that
all partial derivatives of f are bounded on compact sets
uniformly in time. This makes it clear that for any com-
pact K1 ⊂ (TQ)/G, (εXε/G)|R×K1 can bemade arbi-
trarily close to (X̃0/G)|R×K1 in the C

k
b topology (Def-

inition 1) by taking ε > 0 sufficiently small. Hence,
by the noncompact NHIM results of Eldering [9, Sec.
4.1-4.2], it follows that (M0/G) ∩ π̃−1(K ) persists in
extended state spaceR×N to a nearby attractingNHIM
Mε/G with boundary for (ε, εXε/G).15 Furthermore,
Mε/G is the image of a section σε : R×K → (TQ)/G
of π̃ and is given in each local trivialization of (TQ)/G
by the graph of a function � = h̃ε(t, r, ṙ , ε) which
is Ck bounded uniformly in time. By symmetry, the
preimageMε = π−1

TQ(Mε/G)ofMε/G via the quotient
πTQ : TQ → (TQ)/G yields a NHIMMε for (ε, εXε)

(and hence also for (1, Xε)) on the subset R × N of
R×TQ, and Mε is given in each local trivialization by
the graph of the same function � = h̃ε as Mε/G but
augmented with trivial dependence on g. The function
hε from the theorem statement is given by hε = Iloch̃ε .

Proof of the stability properties of Mε . Fix any
complete G-invariant Riemannian metric on16 TQ,
so that it descends to a metric on (TQ)/G making

15 Mε/G is unique up to the choice of a cutoff function used to
modify the dynamics near the boundary of a slightly enlarged
neighborhood of π̃−1(K ), used in order to render a slightly
enlarged version of (M0/G) ∩ π̃−1(K ) overflowing invariant
[9, Sec. 4.3]. See Eldering et al. [8, Sec. 5] and Josić [21, Sec. 2]
for more details on such boundary modifications.
16 For example, take the Sasaki metric on TQ induced by any
complete G-invariant metric on Q.

πTQ : TQ → (TQ)/G into a Riemannian submersion
[6, p. 185]. We have distance functions d̃ and d on
TQ and (TQ)/G induced by these metrics. For t ∈ R,
we let Mε(t) := Mε ∩ ({t} × N ) and Mε(t)/G :=
πTQ(Mε(t)). Given w ∈ TQ and its orbit πTQ(w) ∈
(TQ)/G, it follows that for all t ∈ R, d̃(w, Mε(t)) =
d(πTQ(w), Mε(t)/G).17 Hence, it suffices to prove
that Mε/G is uniformly globally asymptotically sta-
ble and locally exponentially stable for the vector field
(1, Xε/G) on R× π̃−1(K ) = R× πTQ(N ), and to do
this it suffices to prove the same for (ε, εXε/G).

Fixing an inner product 〈 · , · 〉 and associated norm
‖ · ‖ on g, we accomplish this in two steps. First,
we show that there exists a compact neighborhood
K0 ⊂ πTQ(N ) of Mε/G such that K0 is positively
invariant for the time-dependent flow of Xε and such
that any other compact neighborhood K1 ⊂ πTQ(N )

of Mε/G flows into K0 after some finite time depend-
ing on K1 but independent of the initial time. Second,
we show that all trajectories in K0 converge to Mε/G
at a uniform exponential rate. To achieve this second
step, we show that in the intersection of each local triv-
ialization with K0, ‖� − h̃ε(t, r, v)‖ decreases at an
exponential rate. Since (TQ)/G is covered by finitely
many local trivializations (by compactness of S) and
since all Riemannian metrics are uniformly equivalent
on compact sets,18 this will establish uniform expo-
nential convergence of points in K0 with respect to the
distance induced by anyRiemannianmetric, and in par-
ticular the distance d.

Consider a local trivialization U × G of Q and
the associated form (34) of the dynamics restricted
to π̃−1(K ∩ TU ). Differentiating ‖�‖2 using the last

17 To prove this, first note that d(πTQ(w), Mε(t)/G) ≤
d̃(w, Mε(t)) because the length 	(γ̃ ) of any curve γ̃ : [0, 1] →
TQ satisfies 	(πTQ ◦ γ̃ ) ≤ 	(γ̃ ). But if γ : [0, 1] → (TQ)/G
is any curve joining πTQ(w) to Mε/G, then its horizontal lift
γ̃ is a curve joining w to Mε such that 	(γ̃ ) = 	(γ ). Tak-
ing the infimum over all such γ shows that d̃(w, Mε(t)) =
d(πTQ(w), Mε(t)/G).
18 Let ‖ · ‖, ‖ · ‖′ denote the Finslers (norms) induced by two
Riemannian metrics and K0 our compact set. Since all norms
are equivalent on finite-dimensional vector spaces, we have
that the restrictions of these norms to the tangent space of a
single point x satisfy 1

c(x)‖ · ‖ ≤ ‖ · ‖′ ≤ c(x)‖ · ‖. Defin-
ing c̄ := supx∈K0

c(x), we obtain the uniform equivalence
1
c̄ ‖ · ‖ ≤ ‖ · ‖′ ≤ c̄‖ · ‖ on all of K0. If K0 is a connected sub-
manifold and we give it the restricted metrics, then by consider-
ing the lengths of curves in K0 this implies the uniform bound
1
c̄ d ≤ d ′ ≤ c̄d on the Riemannian distances between points in
K0 with respect to the restricted metrics.
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equation of (34), it is easy to check that d
dτ

‖�‖2 →
−∞ as ‖�‖2 → ∞, uniformly in (t, r, v, ε) for ε suf-
ficiently small. (This follows from the negative defi-
niteness of I−1

locVloc and the compactness of K .) Hence,
we see that there exists k0 > 0 such that for all ε

sufficiently small, d
dτ

‖�‖2 ≤ −1 when ‖�‖2 ≥ k20.
Now k0 might depend on the local trivialization, but we
can replace k0 with the largest such constant selected
from finitely many fixed local trivializations covering
Q. Hence, there exists a compact subset K0 ⊂ πTQ(N )

given by {‖�‖ ≤ k0} in each of these fixed local triv-
ializations, such that K0 is positively invariant for the
time-dependent flowof Xε and such that anyother com-
pact neighborhood K1 ⊂ πTQ(N ) of Mε/G flows into
K0 after somefinite time independent of the initial time.

It remains only to establish the uniform exponen-
tial rate of convergence of trajectories in K0 to Mε .
For each local trivialization U × G of Q, we define
the translated variable �̃ := � − h̃ε(t, r, v, ε). Since
Mε/G is invariant, we must have �̃′ = 0 whenever
�̃ = 0. Differentiating �̃ using (34), we therefore find
that

�̃′ =
[

−εĪ−1
loc

(

d

dt
Īloc

)

+ εĪ−1
locad

∗
g̊ Īloc + εζ(t, r, v, �̃) + Ī

−1
locV̄loc

]

�̃

=:
[

εA(t, r, v, �̃) + Ī
−1
locV̄loc(r)

]

�̃, (36)

since all of the terms which do not vanish when �̃ = 0
must cancel. Here ζ is defined via Hadamard’s lemma
[32, Lemma 2.8]:

ζ(t, r, v, �̃)

:= ∂

∂v
h̃ε(t, r, v)

∫ 1

0

∂

∂�
f (t, r, v, h̃ε(t, r, v)

+ s�̃) ds, (37)

so that ζ(t, r, v, �̃)�̃ = h̃ε(t, r, v) f (t, r, v, h̃ε +
�̃). As previously mentioned, the Ck boundedness
of Xε on compact subsets of TQ implies that h̃ε ,
f , and their first k partial derivatives are uniformly
bounded on sets of the form R × K2 with K2 com-
pact. Hence, whenever ‖�‖ ≤ k0 and (r, v) ∈
U ∩ K , ‖A(t, r, v, �̃)‖ ≤ L for some constant L
depending on the local trivialization; we replace L
with the largest such constant chosen from finitely
many local trivializations covering Q. Integrating
both sides of (36), taking norms using the triangle

inequality, and applying Grönwall’s Lemma therefore
yield

‖�̃(τ )‖ ≤ e−λ(τ−τ0)e
∫ τ
τ0

ε‖A(t (s),r(s),v(s),�̃(s)‖ ds

‖�̃(τ0)‖
≤ e[−λ+εL](τ−τ0)‖�̃(τ0)‖.

(38)

where −λ < 0 is defined via −λ := supr∈S max
spec(Ī−1

locV̄loc(r)) and is strictly negative since S is com-
pact. By the previous discussion, requiring ε > 0 to be
sufficiently small so that −λ + εL < 0 completes the
proof. ��

Theorem 2 and Remark 7 show that, to zeroth order
in ε, the dynamics restricted to the slow manifold Mε

are given by the viscous connection model (27). The
following theorem shows that the dynamics restricted
to Mε can be explicitly computed to higher order in
ε. We compute the restricted dynamics to first order
in ε. Higher-order terms in ε can also be computed
recursively, but we choose not to pursue this here.

Theorem 3 Assume the same hypotheses as in Theo-
rem 2. Then the dynamics restricted to the slow mani-
fold Mε are given in a local trivialization by

g̊ = −Avisc · ṙ + εV̄−1
loc

((

∂

∂r
h̄0

)

ṙ

+
(

∂

∂ ṙ
h̄0

)

r̈ − ad∗
g̊(h̄0)

)

+ O(ε2), (39)

where

h̄0(r, ṙ) := 1

m
h0(r, ṙ) = Īloc(Amech(r) − Avisc(r)) · ṙ ,

where we are using the definition Īloc := 1
m Iloc. Alter-

natively, we may write

g̊ = −Avisc · ṙ + εV̄−1
loc

((

∂

∂r
h̄0

)

ṙ

+
(

∂

∂ ṙ
h̄0

)

f (t, r, ṙ , Ī−1
loc h̄0) − ad∗

g̊(h̄0)

)

+O(ε2), (40)

for a different O(ε2) term.

Remark 8 Notice the presence, in the second term of
(39), of h̄0 rather than h0 of (30). This is important
because the expression for h0 contains an Iloc = m Īloc

factor. Because of the possibility that the size of m is
commensuratewith ε, thismeans that h0 could beO(ε).
However, h̄0 is O(1), ensuring that the second term is
O(ε) but not O(ε2).
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Remark 9 Equations (39) and (40) can be viewed as
addingO(ε) correction terms to the viscous connection
model (27), valid in the limit ε → 0, to account for the
more realistic situation that the inertia–damping ratio
m
c = ε is small but nonzero.

Proof of Theorem 3 Consider the function

h̃ε(t, r, ṙ , ε) := I
−1
lochε=(Amech(r)−Avisc(r)) · ṙ+O(ε)

from the proof of Theorem2, and define h̄ε := Īloch̃ε =
1
m hε . Since h̄ε, h̃ε ∈ Ck , we may expand them as
asymptotic series

h̄ε = h̄0 + εh̄1 + · · · + εk h̄k + O(εk+1)

h̃ε = h̃0 + εh̃1 + · · · + εk h̃k + O(εk+1),
(41)

where for all i , h̄i = Īloch̃i . We also already know from
Theorem 2 that h̃0 = (Amech− Avisc) · ṙ , and therefore,
h̃0(t, r, ṙ) ≡ h̃0(r, ṙ) has no explicit t-dependence. We
now compute h̃1 via a standard technique [20]. Differ-
entiating both sides of the equation � = h̃ε(t, r, ṙ , ε)
with respect to time (using (32) to differentiate the left
hand side), substituting the second equation of (41) for
� in the resulting expression, and retaining terms only
up to O(ε), we obtain

− εĪ−1
loc

(

d

dt
Īloc

)

h̃0 + Ī
−1
locV̄loc(Avisc − Amech) · ṙ

+ Ī
−1
locV̄loc

(

h̃0 + εh̃1
)

+ εĪ−1
locad

∗
g̊ Īloch̃0 = ε

˙̃h0 + O(ε2).

Equating the coefficients of ε yields

h̃1 = V̄
−1
loc

(

d

dt
Īloc

)

h̃0 + V̄
−1
loc Īloc

˙̃h0 − V̄
−1
locad

∗
g̊ Īloch̃0

= V̄
−1
loc

d

dt

(

Īloch̃0
)

− V̄
−1
locad

∗
g̊ Īloch̃0.

Since h1 = Iloch̃1 and h̄0 = Īloch̃0, we find

h1 = IlocV̄
−1
loc

d

dt

(

h̄0
) − IlocV̄

−1
locad

∗
g̊

(

h̄0
)

, (42)

and therefore (substituting r̈ = f (t, r, ṙ , I−1
loc p) =

f (t, r, ṙ , h̃0) + O(ε) and differentiating h̄0(r, ṙ) via
the chain rule),

hε(t, r, ṙ , ε) = Iloc(Amech − Avisc) · ṙ

+ εIlocV̄
−1
loc

((

∂

∂r
h̄0

)

ṙ

+
(

∂

∂ ṙ
h̄0

)

f (t, r, ṙ , h̃0) − ad∗
g̊(h̄0)

)

+ IlocO(ε2). (43)

Notice that, since h̃0 is a function of r, ṙ only, theO(ε)

portion of the right-hand side of (43) is a function of
t, r, ṙ alone and not p. This is required since hε is
required to be a function of t, r, ṙ , ε alone, and is the
reason that we needed to replace r̈ by f (t, r, ṙ , h̃0) in
the O(ε) term. Substituting (43) into the first equation
of (26) yields Eq. (40). Finally, making the substitution
f (t, r, ṙ , h̃0) = r̈ +O(ε) in Eq. (40) yields Eq. (39). ��
The following theorem makes clearer the functional

form of the dynamics (39), and it removes the g̊ depen-
dence of the right-hand side of (39).
Theorem 1′ Assume the hypotheses of Theorem 2. For
sufficiently small ε > 0, then for each local trivializa-
tion there exist smooth fields of linear maps B(r) and
(1, 2) tensors G(r) such that the dynamics restricted to
the slow manifold Mε in the local trivialization satisfy

g̊= − Avisc(r) · ṙ+εB(r) · r̈ + εG(r) · (ṙ , ṙ) + O(ε2).

(44)

Remark 10 The (1, 2) tensors G(r) are not generally
symmetric, which is clear from Eq. (46).

Proof Using the properties of ad∗, we may write
ad∗

g̊(h̄0) = (C · h̄0) · (g̊) for an appropriate (r -
independent) linear map C : g∗ → End(g), and hence,
we may rewrite (39) as

(idg + εV̄−1
loc(C · h̄0)) · (g̊)

= −Avisc · ṙ + εV̄−1
loc

((

∂

∂r
h̄0

)

ṙ +
(

∂

∂ ṙ
h̄0

)

r̈

)

+O(ε2).

For sufficiently small ε, we may use the identity

(idg + εV̄−1
loc(C · h̄0))−1

= idg − εV̄−1
loc(C · h̄0) + O(ε2)

to obtain

g̊ = −Avisc · ṙ + εV̄−1
loc(C · h̄0) · Avisc · ṙ

+ εV̄−1
loc

(

∂

∂r
h̄0

)

ṙ
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+ εV̄−1
loc

(

∂

∂ ṙ
h̄0

)

r̈ + O(ε2). (45)

Since h̄0(r, ṙ) = Īloc(r)(Amech(r) − Avisc(r)) · ṙ is
linear in ṙ , it follows that the second and third terms
are bilinear in ṙ , and the fourth term is linear in r̈ .
Hence, we may take B(r) := V̄

−1
loc

(

∂
∂ṙ h̄0

)

and

G(r) · (ṙ , ṙ) := V̄
−1
loc(C · Iloc(Amech − Avisc) · ṙ)

· Avisc · ṙ + εV̄−1
loc

∂

∂r
(Iloc(Amech − Avisc) · ṙ) · ṙ . (46)

��
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