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ABSTRACT

For robots to ever achieve significant autonomy, they need to be able to mitigate per-

formance loss due to uncertainty, typically from a novel environment or morphological

variation of their bodies. Legged robots, with their complex dynamics, are particu-

larly challenging to control with principled theory. Hybrid events, uncertainty, and

high dimension are all confounding factors for direct analysis of models. On the other

hand, direct data-driven methods have proven to be equally difficult to employ. The

high dimension and mechanical complexity of legged robots have proven challeng-

ing for hardware-in-the-loop strategies to exploit without significant effort by human

operators. We advocate that we can exploit both perspectives by capitalizing on

qualitative features of mathematical models applicable to legged robots, and use that

knowledge to strongly inform data-driven methods. We show that the existence of

these simple structures can greatly facilitate robust design of legged robots from a

data-driven perspective. We begin by demonstrating that the factorial complexity of

hybrid models can be elegantly resolved with computationally tractable algorithms,

and establish that a novel form of distributed control is predicted. We then continue

by demonstrating that a relaxed version of the famous templates and anchors hypoth-

esis can be used to encode performance objectives in a highly redundant way, allowing

robots that have suffered damage to autonomously compensate. We conclude with

a deadbeat stabilization result that is quite general, and can be determined without
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equations of motion.
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CHAPTER I

Some Philosophy

Legged robots have received considerable attention from the robotics community

for the past several decades. While advancements have been made in their design

and control, a significant open challenge is incorporating robustness into their per-

formance, especially with regards to environmental interaction. Despite the progress

made, many legged robots are still prone to acute locomotive failure when exposed

to a realistic environment. Moreover, almost no attention at all has been given to re-

covery strategies for robots that suffer damage - the dynamic models often employed

in the design and control of robots are invariably assumed to be fixed during the

operating lifetime of the device. When we review the copious examples of animals

that employ legs as their primary means of motion and interaction, we see incredible

dynamic resiliency and insensitivity to the environment and morphological variation

due to injury or age, routinely outperforming conventional robotic platforms.

Roboticists typically employ dynamical systems and feedback control to generate

and stabilize behaviors of interest out of robotic platforms. We observe that often the

behaviors of interest, such a periodic gait, are intuitively constrained by the putative

underlying dynamic model, rather than defined in such terms. That is, we often think

of tasks as high level specifications such as “lift an object”, or “open a door”, rather

than a trajectory of a differential equation as the design specification. Performance
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goals for robots are often initially given as an relationship between inputs and outputs.

In the case of using global, “exact”, dynamic models, wherein a robot is modeled as

a single set of differential equations, the designers encode the behavioral specification

by fiat into the equations of motion, often in the form of goal trajectories or attractive

submanifolds.

Significant effort has been expended on the analysis of these encoded behaviors,

but obstacles still present themselves. The mathematical theory of Lagrangian me-

chanics, which often model robots, (Murray et al., 1994), (Westervelt et al., 2003),

(Bloch et al., 2003) and control is mature. While powerful theoretical tools concern-

ing stability, convergence, and tracking have been established, often actual hardware

implementations resort to more simplistic such as reference tracking and PID control

due to the difficulty implementing the more general results. The abstract theory’s

utility as a tool to elicit a specific response from a legged robot is additionally con-

founded by the complexity of the dynamical equations used, or even the total absence

of reliable models (e.g. - the difficulties in modeling contact dynamics of a limb strik-

ing the ground). Contacts present a particular challenge. If multiple contacts are to

be expected (generically the case, if there are multiple limbs), the factorial number of

sequences have not in-so-far had a compact description. Thus, mathematical robotics

is forced to account for combinatorial complexity to analyze the stability and con-

vergence of simultaneous contacts, and their dependency (or lack-there-of) on order.

Generating control inputs that solve a high-order non-linear, non-smooth dynamical

system through a factorial number of transitions becomes immensely challenging an-

alytically, and designers often must employ numerical optimization, make intuitive

leaps to synthesize controllers, and/or pre-define a restricted region of state space to

occupy. (Gupta and Pobil , 1998), (Sharir , 1989), (Ratliff et al., 2009), (Koditschek

and Rimon, 1990), (Westervelt et al., 2003) (Da et al., 2016), (Hereid et al., 2016),

(Ramezani et al., 2014)
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Other researchers (Tedrake et al., 2004) , (Spröwitz et al., 2013), (Reinkensmeyer

et al., 2014),(Pratihar et al., 2002) have successfully demonstrated high performance

through the obviation of any approach based on model structure, instead relying on

optimization methods treating the robot (either the equation of motions in simulation,

or hardware-in-the-loop optimization) as a black-box that generates input-output se-

quences. Machine learning and optimization have yielded impressive demonstrations,

but much remains to be done with regards to formal guarantees such as stability.

Solving optimization problems in a realistic time frame is also still a key concern -

while machine learning has been very fruitful on problems such as image recognition

and classification, the complexity and constraints of a robot’s underlying dynamics

(e.g., integration of the dynamics, either in simulation or via trial executions of a real

platform) require non-trivial computational or experimental resources on problems

of realistic complexity (Mordatch et al., 2012b; Bellman, 1961). The high-dimension

of full-state models leave methods that require a large number of iterations or cost

function evaluations infeasible (Kober et al., 2013; Levine et al., 2018). Hardware-

based optimization faces its own unique limitations in objective function evaluation

- in the absence of a model, evaluating the cost function requires moving a physical

device through space. The operating time and mechanical wear limit the number of

evaluations that can be performed compared to a pure software routine (Deisenroth

et al., 2013; Yosinski et al., 2011). Finally, while model-free optimization tools are

powerful, their solutions provide little insight or understanding of any putative fun-

damental principles (Tedrake et al., 2004). Akin to having an answer to a question

rather than a solution technique, specific instances of trajectories on a given robot

are difficult to abstract as principals that translate to another device.

Of substantial import, while we do not claim that the above approaches are wrong,

we do assert that these approaches are often hard, and often rely as much on human

cleverness as formal construction. Our main argument will be that by exploiting
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simple structures associated with mechanical systems, stable dynamic locomotion

can be achieved without the need to explicitly address high-dimension Lagrangian

systems or perform extensive optimization.

We present three examples of exploiting or designing structural properties of me-

chanical systems to achieve improved robustness against uncertain environmental con-

tacts or morphological variation. Each proposed method is validated computationally,

illustrating that they are effectively computable strategies that are reasonably generic,

yet still have formal guarantees. We eliminate the need to have detailed knowledge of

the “true” underlying dynamical model of the robot, and merely assume its existence

and form; We make use of qualitative properties, or observing functions that only

provide input-output data.

The first section is focused on developing a method to preserve robot behaviors

when the governing dynamics change through damage. We are interested in minimiz-

ing the recovery time required for a robot that undergoes irrevocable morphological

damage, such as a limb breaking, or a motor seizing. By recording the observa-

tion variables of the undamaged system, and reconstituting them through control

as a dynamical invariant on the damaged robot, we specify desired behaviors as

high-codimension objects that admit an entire manifold of acceptable inputs. The

functions define differential constraints on a virtual manifold that completely defines

a target robot motion. By lifting these constraints into the robot, a full description of

acceptable inputs that achieve the goal is defined using less variables than originally

required, reducing the complexity of the recovery task.

As such, rather than attempting to preserve a specific trajectory (as such a thing

may be undefined or impossible due to the altered dynamics), we are using control

to induce a nonholonomic affine constraint on configuration space, requiring that the

controlled vector field decompose into a mandated component, and a free compo-

nent. The unconstrained dimensions admit a continuum of solutions compared to a
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full trajectory constraint. The lifted constraints are additionally virtual constraints

– the degree of fit is tunable by the user. While meeting this constraints precisely

regenerates a desired behavior, relaxing this requirement allows approximate recon-

struction. Much akin to how limping is achieved almost instantaneously in legged

organisms that suffer mild injury, we can achieve “good enough” recovery by relaxing

the constraint tolerance to gracefully specify the quality of recovery.

By conducting the above recovery procedure on a multi-limbed dynamic robot,

we hope to demonstrate that a human-centric definition of “acceptable performance”

is looser than a full trajectory constraint, and by exploiting this freedom, the diffi-

culty of the recovery strategy is much reduced. We test this notion in a simulation

of a two-legged clock-torqued spring-loaded inverted pendulum to regenerate a peri-

odic gait, and on a multi-legged dynamic robot. We have constructed a six legged

modular robot that has legs constructed out of spring steel, allowing a measurable

energy exchange between the limbs and center of mass when the robot is executing a

periodic gait. By synthesizing a reduction map on the robot into a four dimensional

space with virtual constraints, we demonstrate that a desired gait can be found via

optimization extremely rapidly - only 36 iterations. Intuitively, it might seem unrea-

sonable that more constraints simplify a problem – after all, rubbing ones head and

patting ones stomach seem much more challenging either tasks alone, but we instead

develop constraints that encode helpful, rather than adversarial, information of how

inputs and outputs are related. E.g., unlike the above demonstration of agility, our

constraints are more akin to being told that to ride a bike forward, one should restrict

body motions that keep the bike upright. While it’s certainly possible to engage in

theatrical maneuvers with the bicycle, we show that we can encode behaviors that

have useful low-dimensional components.

The second, based on a recently defined class of hybrid dynamical systems called

“event-selected systems” explicitly incorporates contacts into the equations of motion.
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We will exploit that a piecewise-constant vector field analogous to the differential

linearization of a smooth system can be derived using an extended notion of calculus,

with associated numerical routines to estimate a piecewise affine operator. We will

also highlight results that demonstrate this piecewise linear operator has analogous

features to smooth linearization for characterization of local dynamic properties. We

will construct a numerical algorithm that eliminates the apparent factorial complexity

with contact sequencing, illustrating that the category of event-selected models have

substantial practical mileage over other approaches to hybrid dynamics.

We demonstrate that we can employ contacts to synthesize gaits using a low-

complexity distributed controller that is distinct from traditional reference trajectory

tracking, greatly simplifying the communication complexity associated to tracking a

desired trajectory. Despite the usage of only piecewise-constant vector fields and dis-

tributed control with little communication, event selected vector field theory provides

stability and robustness guarantees.

The final section demonstrates that certain classes of periodic hybrid dynami-

cal systems undergoing uncertain transitions generically admit feedforward deadbeat

controllers (Council et al., 2014). The feedforward controllers stabilize a system un-

dergoing irrevocable, but poorly predicted, contact. That is the contact is assumed

to occur from physical constraints (gravity, etc), but the exact time of the contact is

allowed to vary between executions. By computing a feedfoward policy that is initial-

ized at the start of a given execution, the terminal state (e.g., a transverse section in

the final domain) is made invariant to the variable contact. While other groups (Hut-

ter et al., 2010),(Yu et al., 2012) have discovered this phenomena for specific devices,

namely hopping robots and juggling robots (Reist and D’Andrea, 2012), as far as we

are aware, each used model-specific knowledge in their analysis. We show that the

existence of deadbeat controllers in this sense is reasonably general for a large class

of hybrid systems. We also articulate that the construction of them is easily derived
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from the implicit function theorem. An immediate consequence of this approach is

that, rather than use any model knowledge whatsoever to infer a deadbeat controller,

we can instead experimentally derive the controller without ever explicitly attempting

to express the system’s dynamics as a set of differential equations.

Together, we aim to convince the reader that space between very principled hy-

brid Lagrangian dynamics, and very blind black-box optimization, contains useful

control and design principles motivated by the qualitative structure of the otherwise

unknown or uncertain dynamics for legged robots. Furthermore, these principles can

be realized into tools that are easier to implement than contemporary paradigms in

robotic control. I.e., we can develop approaches to produce resilient legged robots

using more structure than black-box optimization, but do not require full dynamic

models.
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CHAPTER II

Recovery of Robot Behaviors with Data

2.1 Introduction

The preservation of motion against structural changes is an ability many legged

animals display with great aptitude - through injury, age, or the otherwise muta-

ble nature of organic tissue, animals are able to recover unless the perturbation is,

tautologically, “too severe”.

Robots would ostensibly be advantaged if they had similar ability to preserve

task execution through damage or changes. Specifically, if an autonomous, or nearly-

autonomous algorithm can be designed so that a robot is able to procedurally miti-

gate system failures inflicted by damage . Even though a morphological or structural

change to a robot may alter the dynamics of the device, if the robot has enough re-

dudant degrees of freedom, we would expect task preservation to be possible. Robots

recovering from structural uncertainty has been explored before, at least in the world

of locomotion. Cully et. al used an intelligent trial-and-error method on a walking

robot to explore a pre-computed set of acceptable behaviors to produce a recovery

behavior (Cully et al., 2014). Bognard, Zykov, and Libson developed a walking robot

that recovered from damage through continuous self-modeling to compensate and

generate a new gait. (Bongard et al., 2006).

We distinguish our approach by taking advantage of two dimension-reducing con-
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structions. The first is the templates and anchors hypothesis (see Full and Koditschek

(1999) for a detailed introduction). Briefly, it asserts that animals with complex mod-

els (the anchor) have coupled or dependent state variables that behave “as if” the

robot had a lower-dimensional model (the template). In other words, if f : M → TM

is the anchor vector field, there exists an attracting invariant immersed submanifold

N ⊂ M (the template), dim(N) < dim(M) such that f |N : N → TN . Considering

the anchor as an invariant submanifold has many desirable properties, but it is also a

strong requirement. A simpler approach, but one with weaker mathematical guaran-

tees, is to consider the template as a manifold N with vector field g : N → TN , with

submersion ϕ : M → N such that g = ϕ∗f . In this regard, we think of the template

as a virtual system whose trajectories are the “shadows” of those of f .

In this language, the behavior of interest is represented by a solution φt(r0) ∈

N . For example, if a cockroach has a Spring-Loaded Inverted Pendulum (SLIP)

(Blickhan, 1989a) as a template, the behavior of the SLIP is what we wish to preserve.

In face of damage to the anchor, the robot may retain sufficient control authority to

implement a SLIP.

The second perspective we take advantage of is offered by geometric mechanics,

and nearly equivalently, affine control systems. For Lagrangian systems with non-

holonomic constraints that are symmetric under a group action, locomotion can be

represented by a connection on a principal fiber bundle. (Ostrowski and Burdick , 1998;

Bloch et al., 2003, 1996). The resulting reconstruction equation neatly expresses the

motion in the group as a function of internal shape variables. The total displacement

of a planar robot moving its limbs can be thought of as an element g ∈ SE(2) result-

ing from cyclic limb motions l(t), t ∈ [0, T ]. The “shape” of the robot is modulated

to effect displacement of the center-of-mass.

In the sequel we will review the details of these constructions more carefully. The

essence of them is that for certain robots, while high-fidelity models may be complex,
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we can project away much of the apparent complexity by restricting our interest to

trajectories that satisfy a known collection of constraints.

Before proceeding further, we might ask if a recovery strategy for a robot to au-

tonomously (or even non-autonomously) compensate for a damaged limb is necessary

if a technician is standing-by to take the robot offline and repair the damage. It

would be immediately clear to any critical observer that such a strategy is unrealis-

tic for a device that is intended to have any degree of substantial autonomy (e.g., a

Martian rover). If a robot is faced with the possibility of remote failure in a complex

environment with unknown obstacles, robust recovery methods need to be generic,

agnostic to a particular failure mode or environment. Additionally, an autonomous

device may need to produce a strategy quickly – the range of solutions to a stalled

car on the train tracks depends critically on whether there is impending doom or not.

Furthermore, organisms exhibit sensitivity to quality of recovery – if a leg muscle

is damaged, a human will almost immediately produce a compensatory gait, such as

limping, to minimize pain while granting some mobility. Imperfect recovery, but with

some functionality, is preferred over waiting for the muscle to heal entirely before

walking again. With the above perspective, it is natural to consider recovery as an

optimization problem. An in-situ workable solution “closer” to a true optima may

be an adequate behavior in the short term, and can serve as initial data for a more

complex or lengthy optimization offline.

The chapter is laid out as follows. We will start in §2.2 by reviewing the templates

and anchors hypothesis, as well defining asymptotic phase. Armed with phase, we

will continue in §2.3 with a motivating simulation that introduces virtual constraints

on a CT-SLIP model. We will show how to recover from parametric damage, but see

that the approach takes advantage of model-specific features.

Sec. §2.4 will transplant the lessons of the CT-SLIP to principal fiber bundles,

and develop the associated theoretical results. We will then expand our theory by
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extending our method to define a “behavioral specification” that is much more general.

We will show that it both naturally includes our previous cases, and is compatible

with other perspectives from control and mechanics. In Sec §2.5, we will apply our

theoretical results to a kinematic crawling robot in simulation, demonstrating perfect

recovery by applying our technique directly. We will additionally see that a key feature

of this construction is that can be achieved without model information. Then, in §2.6,

we use this observation to demonstrate our approach on an multi-legged robot in

hardware using limited model information. The constraints can be constructed using

measurements of the functional system, and we use reinforcement learning to design

controllers to meet these constraints through hardware-in-the-loop optimization. By

using our method, we will show that a cost function defined via the constraints can

move effectively toward a goal behavior using only a few iterations of a Nelder-Mead

optimizer.

2.2 Templates and Anchors

If we abide by the model that a template is a normally attractive invariant mani-

fold (NAIM), we can conclude the existence of asymptotic phase. Asymptotic phase

is a concept that has received considerable attention in the dynamics community

(Fenichel , 1974; Alexander et al., 1994; Hirsch et al., 2006; Fenichel , 1977), and we

briefly summarize its definition and some essential properties here.

Let M be a smooth manifold with vector field f : M → TM with flow φt(·).

Suppose that the manifold N ⊂ M is asymptotically stable under φt(·). If there

exists smooth submersion P : M → M,P (M) = N such that ∀x ∈ M , and for any

q ∈ N , q 6= P (x),

lim
t→∞

‖φ(x, t)− φ(P (x), t)‖
‖φ(x, t)− φ(q, t)‖

= 0 (2.1)

We call P the phase map, and the value P (x) the phase of x. The point P (x) is
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unique in the sense that x converges with P (x) more rapidly than with any other

putative point q. P is a nonlinear projection, as P ◦P = P . Points that are in-phase

have the same asymptotic behavior. Stable normally hyperbolic manifolds always

have asymptotic phase. Points that are in phase asymptotically approach each other

as t→∞. Geometrically, the projected point is the “shadow” of infinity many points

that share the same phase.

It is this last property that we wish to carry by analogy our simpler case of having

the anchor M and the template N be separate manifolds. Asymptotic phase identifies

anchor states with template states. If N is a NAIM, it also conveys dynamic informa-

tion. However, if ϕ : M → N is merely any submersion, it is a non-linear projection

that allows us to explicitly relate the state of the template with a family of equivalent

states in the anchor, regardless of how the dynamics of the two systems are related.

In the sequel we will employ such phase maps to define encoding templates. Distinct

from the regular template above, an encoding template does not have dynamics con-

jugate to the anchor. It will function as a collection of observation variables that will

be shown to fully characterize a desired motion more parsimoniously than the state

of the anchor.

In the sequel, we will reserve then notation ϕ for submersions in this context, and

will use the terminology “phase map” for it, whether or not it is properly asymptotic

phase. We will use the terminology “phase of a point” as the image value, e.g., if

ϕ(y) = x, then x is the “phase” of y. We will be explicit about the domain and

codomain of such functions to avoid confusion.
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2.3 A Motivating Simulation

2.3.1 Problem Statement

We begin our study with a motivating simulation example for a well-studied simple

hybrid dynamical system - the Clock-Torqued Spring Loaded Inverted Pendulum (CT-

SLIP) (Siepel and Holmes , 2007) model. As is apparent from the name, the CT-SLIP

is an extension of the well-known SLIP model (Blickhan, 1989b; Seyfarth et al., 2002;

Ghigliazza et al., 2004; Full and Koditschek , 1999). We customized the spring force

law to be a non-conservative Hill-like muscle model shown in (2.2), where the original

SLIP had a Hookean spring. The Hill muscle model (Hill , 1938) has been postulated

to be of sufficient accuracy to be useful for simulating human musculoskeletal behavior

(Winters , 1990; Bogert et al., 1998)

F (ζ) = K(L− ζ)(1− ηζ̇)− µζ̇ (2.2)

The length L represents the length of the leg at touchdown. The parametersK and

η provide averaged approximations to the length dependent and velocity dependent

terms (respectively) of the Hill muscle model; µ adds some dissipation, capturing

the overall energy consuming nature of the task. We elected to employ it over a

conservative spring as we want the freedom to inject or remove energy from the

system to broaden the set of achievable motions.

Table 2.1: Parameters

Parameter Definition Nominal Value
η FV average slope 0.03
µ dissipative loss 0.3
L FL average slope 80
ts torsional spring at hip 0.1

The CT-SLIP has two legs which rotate around the center-of-mass (CoM). The
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Figure 2.1: The CT-SLIP with indicating variables. For clarity, only one leg is shown.
A periodic gait is an concatenation of a sequence trajectory segments from holonomic
subsystems. Reproduced from Fig 2.2 of Siepel and Holmes (2007)

angle of each leg is determined by a piece-wise smooth feedfoward (hence, “clocked”)

reference curve that depends only on time - the Buehler clock (Ghigliazza et al., 2004;

Saranli et al., 2001). There is a torsional spring and actuator at the hip that tracks

the reference signal with standard PID control upon angle.

The cycling legs, tuned for appropriate parameters, produce a stable forward mo-

tion of the CoM. We operationally assume without proof that a phase-like quantity

exists for the CT-SLIP, and we use the numerical tool Phaser (Revzen and Gucken-

heimer , 2008) (which estimates phase from trajectory data) to produce a workable

phase-map from hybrid data. See Appendix B for details on how phase should be

defined for a hybrid model.

In this regime, we aim to recover a stable limit-cycle Γ post-damage. “Damage”

is modeled as a destructive and irreversible parametric shift that causes the majority

of trajectories from uniformly sampled initial conditions to crash (hip-mass striking

ground). We will restrict our attention to the stance dynamics, as the aerial dynamics

are ballistic – if we recover a desired motion in the stance phases, the aerial phases

will be preserved as well.

For z = (x, y, ẋ, ẏ) ∈ TQ, let ż = f(z, λ, u) be the resulting Euler-Lagrange equa-
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tions of the CT-SLIP hybrid model (see Siepel and Holmes (2007) for full equations

of motion). Assume for parameters, described in table 2.1, λ0 := (t0s, L
0, µ0, η0) ∈

P ⊂ R4, a stable periodic Γ exists, with stability basin B. We conflate the geometric

object Γ with an arbitrary solution on it parameterized by xγ(t).

Define the damaged system by setting λ1 = (t1s, L
0, µ0, η0), where t1s = t0s + δ. We

assume that perturbation δ is neither small in magnitude, nor reversible. That is,

the damaged system has its torsional spring gain stuck at the value t1s, and that this

value has destabilized Γ.

In Cartesian coordinates (x, y, ẋ, ẏ) are the coordinates for the state of the CoM),

we denote the cycle Γ as

γ0(t) := (x0(t), y0(t), ẋ0(t), ẏ0(t)) ⊂ TQ, t ∈ [0, T ]

I.e., Im(γ0) = Γ. For λ0, this is a stable limit cycle with phase map ϕ : B → Im(γ0) =

Γ. ϕ defines a differ; for details, see Appendix B.

We propose the following design problem. Let E ∈ C∞ (TQ× P ,R). We use the

notation zλ for a trajectory with parameter set λ. Assuming that z(0) = z0, find a

λ1 such that the following two equations hold ∀t ∈ [0, T ].

d

dt
ϕ(zλ1) = 1 (2.3a)

d

dt
E(ϕ(zλ1)) =

d

dt
E(zλ0) ⇐⇒ Lf(z,λ0) (E ◦ ϕ) = Lf(z,λ0)E (2.3b)

Eqn. (2.3) yeilds two equations on the four dimensional state space TQ. We could

in theory solve this system pointwise for pairs (z, v) ∈ TQ. However, we want (z, v)

to be an integrable submanifold, i.e., we want d
dt
z = v. Including the two additional

constraints that d
dt
x = ẋ, and d

dt
y = ẏ, we have a fully determined set of equations on

TQ, so that a unique curve z(t) obeys them. (We will omit repeating these last two

constraints for the remainder of the section for brevity, as they are straightforward.
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They are merely insisting that we have a curve z(t) that obeys the constraints) That

is, at a point x ∈ Q, there is a unique v ∈ TxQ that satisfies Eqn. (2.3). Thus, if

z(0) = γ0(0), z(t) = γ0(t), satisfying our objective.

It is important to note that d
dt
E(zλ0) is taking the derivative of E along the periodic

orbit, while d
dt
E(ϕ(zλ1)) is projecting a state xλ1 that is off the orbit to its in-phase

companion on the orbit, then differentiating. Equivalently, our goal is to modify

d
dt
E(ϕ(zλ1)) so as to match the fixed reference signal d

dt
E(zλ0).

The relationship is concisely expressed geometrically. Fix z(t) = z0. Let r(t) =

d
dt
E(zλ0) = dEϕ(z) (Dϕz · f(z, λ0)). Let ω, dE ∈ T ∗Γ. Design λ1 ∈ P , subject to

ts = t0s + δ, such that, for t ∈ [0, T ],

ωz(f(z, λ1)) = 1 (2.4a)

dEϕ(z) (Dϕzf(z, λ1)) = r(t) (2.4b)

The observant reader will notice this condition as lifting the constraints from γ0

to the neighborhood where ϕ (and thus ω) is defined. We are able to equate this

condition on differential forms to signals of time by evaluating them along a specific

trajectory. We will expand on this in the sequel.

2.3.2 Optimization

The objective is to fit the Lie derivatives shown in Eqn. (2.3) using measured/sim-

ulated trajectory data, assuming the that underlying vector field(s) is unknown. Since

we are seeking a parameter λ1 with the irrevocable condition that ts = t0s + δ that

satisfies our tracking requirements, we could rephrase the design into a regression to

best fit the constraints. I.e., for t ∈ [0, T ], zλ(0) = x0, ∀λ ∈ P |ts=t1s ,
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λ∗1 = arg min
P |

ts=t
1
s

(
‖ϕ(zλ(t))− ϕ(xλ0(t))‖

2 +

∥∥∥∥ ddt (E ◦ ϕ(zλ(t)))− r(t)
∥∥∥∥2
)

The norm ‖·‖ in the above is the L2 norm of functions

‖f‖ =

(∫
D

|f |2
) 1

2

(2.5)

Numerically, Eqn. (2.5) is approximated with the Euclidean 2-norm of {f(xi)}ni=1 ⊂

Rn, where f(zi) are sample values of f at the states zi that are produced by the nu-

merical integrator. Thus λ∗1 is the parameter that minimizes the largest absolute

difference over the entire domain of t. Other function space norms can be selected,

but as they are not generally equivalent, the value of λ∗1 depends on the choice. The

requirement that d
dt
z = v will be automatically enforced by the numerical integrator,

so it does not need to explicitly be included in the cost function.

We elect to further modify our constraints. If we solve Eqn. (2.3) perfectly, we

would have zλ1(t) = zλ0(t). We instead relax (2.17) to instead be, for some constant

c ∈ R>0,

ω(f(z, λ1)) = c > 0 (2.6)

By doing this, the phase rate of zλ∗1 is not required to match that of γ0, but merely

be positive and constant. Geometrically, this means it must permute the isochrons

in the same order, but not necessarily at the same rate.

Physically, this allows the damaged system to potentially have a different fre-

quency than the undamaged system, yet the limb touchdown sequence is preserved.

This choice was arbitrary on our part, but is motivated by the expectation that dif-

ferent spring parameters will have different resonant frequencies, so exactly matching

the timing characteristics of the original cycle may not be possible.
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2.3.3 Simulation Results

The CT-SLIP, and optimization problem of Eqn. (2.5), was numerically simulated

in Python 2.7.5 using the NumPy and SciPy open-source numerical libraries.

We take the function E to be the elastic energy stored in the legs. Our optimiza-

tion algorithm of choice is the Nelder-Mead implementation provided by the Scipy

optimize library. We chose this method as it relies exclusively on zero-order terms

of the cost function, limiting the computational burden required by each iterate.

Our perspective is that we are attempting to recover from damage under conditions

where model information is poor and expensive to determine; Nelder-Mead requires

no knowledge except function evaluations. As we will see, despite the relatively simple

optimization scheme, we obtain good performance.

Control of the CT-SLIP dynamics is accomplished parametrically - control inputs

are restricted to manipulating parameters L, µ and η, as ts is fixed at its perturbed

value. Each execution of the system has a fixed collection of parameters. Feedback

is not being used to modify the system dynamics as a function of state. Rather,

the optimization problem solving for fixed values of the parameters whose resultant

dynamics satisfy the phase and energy conditions.

We additionally define the “total” energy ET to be the sum of kinetic and potential

energy of the CoM. The functions E and ET were defined on the entire time domain

by taking a Fourier series (n=15) approximation of discrete values at sample points

produced by numerical integration on the dynamics.

Since recovering the specific z0(t) is not equivalent to having a stable controller, we

elected to simultaneously fit an ensemble of trajectories emanating from a collection

of randomly chosen initial conditions with radius r of z0(0). A ensemble of goal

trajectories simulated at random initial conditions is generated as a ground truth to

match, from which phase and derivatives can be determined without knowledge of

the vector field. The randomly generated initial conditions are fixed at initialization;
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they do not vary between function calls of the optimizer. The implementation of

(2.3) subject to the relaxed phase constraint given in Eqn. (2.6) was encoded with

the following cost function.

f(λ) :=

∥∥∥∥ ddt
(
E(ϕ(zλ1))

〈ET (zλ)〉
− E(zλ0)

〈ET (zλ0)

)∥∥∥∥2

+ α

∥∥∥∥∆ϕ

∆t
− 〈∆ϕ

∆t
〉
∥∥∥∥2

+ β

∥∥∥∥〈∆ϕ∆t
〉
∥∥∥∥−1

(2.7)

〈·〉 denotes the mean along a sample path. The mean is used to normalize the terms

as a proportion of the total average energy so that the same modulation is preserved,

rather than attempting to enforce a particular absolute energy level.

The second term is the variance of the time derivative of phase along sample paths.

Driving it to zero requires ϕ be constant along solutions. The last term is the inverse

of the mean time derivative of phase which penalizes the frequency approaching zero.

The last two terms are attempting for force ∆ϕ
∆t

to be a constant bounded away from

0, i.e. exactly Eqn. (2.6). α, β ∈ R are weighting coefficients that we do not argue

how to select in a principled manner. For the purposes of our simulation, we chose

α = β = 1.

Shown in Fig. 2.2a and Fig. 2.2b are integration results for two initial conditions

(out of 10) that were used to generate the fitting ensemble. For the goal system,

all ten initial conditions stabilized to a periodic solution. For the perturbed system,

seven out of ten initial conditions lead to a crash (wherein the CoM impacts the

ground, and the simulation ceased). For the recovered solutions, nine out of ten

initial conditions recovered to a periodic solution.

We see that the recovered system on average has superior performance over the

perturbed system, but that the recovered system still does not match the unperturbed

system’s performance. The reason for the failure to fully recover is unknown, but we

see that using differential constraints as output variables improves the performance of

the system. Additionally, the output signal (r(t) in the above, for example) is defined
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(a) Trajectory 1 of 10 (b) Trajectory 3 of 10

Figure 2.2: Traces of the CoM and legs. The CoM is black, one leg is red, and the
other is blue. Ten initial conditions in the stability basin of the original periodic orbit
were sampled. For the goal system, all were stable (top). When perturbed, 8/10
crashed (middle). The recovery method attempted to find a single λ∗1 such that all
were stable. It succeeded only for 8/10 initial conditions.

by the constraints, rather than selected ahead of time, as one would in the case of

output tracking.

We now build our observations from the CT-SLIP into a more general strategy.

2.4 Theory

We have seen in §2.3 that the constraint equations in Eqn. (2.3) provide a complete

description of a desired limit cycle. By enforcing them, a specified trajectory was

produced from the CT-SLIP. However, there are certainly unanswered questions.

Does asymptotic phase help in some special way? What properties do the constraints

need to satisfy? What if the control is not parametric?

We now present a class of mechanical systems relevant to locomotion that provably

have a similar property, and furthermore, the constraints will always be on TQ, rather

than on TTQ. In order words, we will show that there exist Pfaffian-like constraints

that we can impose between position and velocity to restore a behavior. A significant

feature of doing so is that the trajectories of mechanical systems have TQ as their
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state space. By expressing our objective on TQ, it is independent of any underlying

vector field. In other words, our approach generates a control objective that is agnostic

to the specific dynamics that govern a robot.

2.4.1 Geometric Mechanics

We now present a brief overview of geometric mechanics and its relevance to

locomotion. A considerable body of literature exists on this topic – the interested

reader should consult Bloch et al. (1996); Ostrowski (1996); Bloch et al. (2003) and

the references therein for precise details.

Assume that we have configuration space Q = S×G, where G is a Lie group that

left acts on Q freely and properly via Φg, along with independent Pfaffian constraints

ω(q) · q̇ = 0 ∈ Rk1, and Lagrangian L : TQ → R. We critically assume that both L

and the constraints ω are symmetric under G, i.e.

L(q, q̇) = L(φg(q), Dqφg q̇) (2.8)

ω(q) · q̇ = Dqφ
T
g · ωφg(q) · q̇ (2.9)

If k, the number of constraints, is equal to dim(S), in can be shown (Ostrowski

and Burdick , 1998; Bloch et al., 2003, 1996; Koon and Marsden, 1997; Hatton and

Choset , 2011). that there exists a map A : TS → g such that

g−1ġ = −A(s) · ṡ (2.10)

Thus, the body velocity g−1ġ 2 is explicitly a function of shape s and shape velocity

ṡ. Physically, for k = dim(S), then the system is kinematic - the motion of the robot

1The affine case ω(q) · q̇ = γ(q) is also covered in the listed references
2by which we mean g−1ġ := ξ = TgLg−1 ġ, which is the velocity of the body frame in body

coordinates.
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is completely determined via shape, with no drift due to momentum.

If k < dimS, there is a generalized momentum term p that appears affinely in the

reconstruction equation (Bloch et al., 1996).

g−1ġ = −A(s) · ṡ+B(s)p (2.11)

There is an associated equation ṗ = C(r, ṙ, p) that determines how the momentum

terms evolve, and accounts for all the “second order” features of the mechanical

system.

Consider curves s(t) ⊂ S that are periodic with period T . Eqn. (2.11) is a

differential equation on the group G that defines the holonomy or horizontal lift

(Kobayashi and Nomizu, 1963) of a path s(t), t ∈ [0, T ] ∈ S. While the dynamics of

s are unimportant to validity of this representation, we will always assume that the

dynamics of s are controlled, i.e. there exists some equation

ṡ = f(s) +G(s)u

That is, the shape variables evolve as a first-order control-affine system, but there

are sufficient constraints that there is an explicit relationship between the body ve-

locity and shape state at a given time. 3 A solution curve c(t) := (s(t), g(t)) is called

horizontal by virtue of satisfying ω(c(t))· ċ(t) = 0. The curve c(t) is a path connecting

g(0) to g(T ) that satisfies the constraints, with holonomy g(T )g(0)−1. The path c is

not necessarily unique – the set of all curves that achieve a desired group motion is

a Lie group in its own right (Kobayashi and Nomizu, 1963).

Hol(m) = {gs | s : [0, T ]→ S, s(0) = s(1)} (2.12)

3Some authors take it a step further, and simply have s̈ = u.
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Solutions are generally difficult to determine, and can be expressed by various

expansions, such as a path-ordered exponential (Marsden et al., 1990) or Magnus

expansion (Radford and Burdick , 1998). In the case that the group G is abelian,

conventional integration suffices (Marsden et al., 1990)

g(t) = exp

(∫ t

0

ξ(s)ds

)

Classic kinematic examples would include the kinematic car (Pepy et al., 2006) or

Purcell swimmer (Hatton and Choset , 2013); a classic non-kinematic example is the

snakeboard (Bloch et al., 1996).

The group motion g is the displacement in the world, while the s (shape) variables

describe relative motion of the robot limbs with respect to the center of mass. For

a closed loop s(t), t ∈ [0, T ], a single revolution produces a holonomy element h :=

g(T )g(0)−1 ∈ G. In mechanics, this is refereed to as the geometric phase (Marsden

et al., 1990) of the loop s(t). 4 Repeated iterations in S simply concatenate the group

elements h owing to its group structure. In this sense, locomotion is well represented.

Repeated cycling of limb motions produces displacement in the world, agnostic to

starting position. In general, the same group motion can be effected by many gaits.

The point we wish to take away from the preceding discussion is that the con-

straints ω introduce a structure that allows the “output” variables g to be written

as a function of “input” variables s, ṡ, and that this structure depends only on the

constraints when k = dimG, rather than on L as well.

2.4.2 Something Obvious

To motivate the construction we present in the sequel, consider the following

problem. Let N be a manifold of dimension n, and assume there exists flow φt :

4When the affine influence of p is non-zero, there is a drift-like term called the dynamic phase
(Marsden et al., 1990) - the product of the geometric and dynamic phases is the total group element
that results from a closed path s(t) being executed in the shape variables.
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N → N , along with C1 function F : N → Rk. Suppose that we have initial condition

y(0) ∈ N such that F (φt(0)) = 0 ∈ Rk,∀t ∈ [a, b]. In a local coordinates, we have

φt(y(0)) =: (y1(t), . . . , yn(t)) , F (y1(t), . . . , yn(t)) = 0. Assume that F is full rank at

each point y(t), so that by the implicit function theorem (Lee, 2013), there exists C1

function h such that

F (h(yk+1, . . . , yn), yk+1, . . . yn) = 0

Assume now that there exists a submersion ϕ : M → N . We may then consider

the pullback ϕ∗h(m) := h(ϕ(m)k+1, . . . , ϕ(m)n). Suppose we found a curve m(t) ⊂M

such that

ϕ∗h(m(t)) = (y(t)k+1, · · · , y(t)n) (2.13)

and

(ϕ(m(t))k+1, . . . , ϕ(m(t))n) = (y(t)k+1, · · · , y(t)n) (2.14)

Then,

F (ϕ(m(t))) = 0 (2.15)

While the above is a direct application of the Implicit Function Theorem (Lee,

2013, Thm. C.40), it expresses the design problem of finding m(t) as two testable

objectives. First, insist that ϕ(m(t)), the “phase” of m(t), is a specified reference,

and second, that m(t) satisfies the constraint defined Eqn. (2.13). As neither the

kernel of ϕ or ϕ∗h is non-trivial, there are many possible equivalent candidates for

m(t). If an initial solution curve m1(t) ⊂ M is no longer achievable due to damage,

we can find for another curve m2(t) that exactly solves F = 0. We now apply this

idea to our problem in geometric mechanics.
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2.4.3 The Kinematic Connection Case

Following our approach in 2.4.1, let Q = S ×G for Lie group G, with G-invariant

Lagrangian L : TQ → R. All functions will be assumed to be C∞ unless otherwise

stated. Assume that we are equipped with Pfaffian constraint form ω ∈ (Ω1)
k
, i.e, a

collection of k linearly independent 1-forms ωi, i = 1, . . . , k such that ωi(q)q̇ = 0 for

all solutions (q, q̇) determined by L. We have that ω is G-equivariant. In coordinates,

this implies we may write it as, for q̇ = (ṙ, ξ = g−1ġ) :

ωξ(r)ξ + ωṙ(r)ṙ = 0 ∈ Rk

We assume that k = dim(G), so that we are in the principal kinematic case. Assume

dim(S) = n > k, so for ωξ ∈ GL(k, k),, and ωṙ ∈ L(n, k), where L(n, k) is the space

of linear maps from Rn → Rk. Then we can define map A by:

−ω−1
ξ ωṙ · ṙ =: −A(r) · ṙ = ξ

2.4.3.1 Encoding Templates and Recovery

Let Q̂ = Ŝ × G, and assume that we have submersion ϕ : Q̂ → Q such that

ϕ(ŝ, g) = (ϕs(ŝ), g), i.e. it is the identity map on G. We then have a map ϕs : Ŝ → S,

which is also full rank. Given the constraint form ω : TS × g → Rk, we may pull

back to ϕ∗ω(ŝ) · ( ˙̂s, ξ) = ω(ϕs(ŝ)) · Dϕs · ( ˙̂s, ξ). We assume that we are given curve

q(t) = (s(t), g(t)) ⊂ Q such that ω(q) · q̇ = 0.

Suppose that we had curve q̂(t) = (ŝ(t), g̃(t)) ⊂ Q̂ such that,f or v(t) := ϕŝ,

v(t) = s(t) (2.16)
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and that

ϕ∗ω(ŝ) · ( ˙̂s, ξ̃) = 0. (2.17)

Eqn. (2.17), at each point ŝ, can be though of as dimG linear equations in

dimQ× dimG unknowns. By assuming Eqn. (2.16) holds, we also have

d

dt
v(t) =

d

dt
s(t)

Ergo, along v(t) and s(t), ω(v(t), ·) = ω(s(t), ·). Thus, we have dimG-equations

in dimG unknowns. We initially assumed the problem had rank dimG, so that there

is a unique solution, so, for ξ̃ = g̃−1 ˙̃g,

ω(s, ξ) = 0 = ω(v, ξ̃) =⇒ ξ = ξ̃. (2.18)

We call the codomain Q for phase map ϕ the encoding template. It represents

a simpler constrained system (as we assume dimQ < dim Q̂) that is still capable of

executing the desired ξ(t).

Thus, our recovery strategy consists of two phases. An initial training phase on

the undamaged system, where the template Q, map ϕ, and constraints ω are defined.

Assume that the working robot was executing curve x(t) that yields the holonomy

of g(t); by definition, part of our desired behavior is g(t), so that any curve with the

same holonomy is functionally equivalent. Then, we project this down to s(t) via

ϕ, obtaining the R.H.S of (2.16). By assumption, we have set ω such that (2.17) is

satisfied. While this assumption is strong, we will relax it considerably in the sequel.

Then, for a damaged robot, we design a new x̂(t) such that Eqn. (2.16) and Eqn.

(2.17) are both satisfied. As we see from Eqn. (2.18), this implies the holonomy g(t)

is achieved, despite that x(t) 6= x̂(t) necessarily.

An important feature of the system on Q is that we only require the above re-
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lationships for our preferred g(t). The template system may be able to engage in

behaviors that the anchor system is not able to do - not all trajectories can or need

to be lifted to trajectories of the anchor system.

Our assumptions in this section correspond to identifying a encoding template Q

that has the same CoM as the robot, for example, if we had a six-legged robot that

moved in the plane with configuration Q̂×SE(2), we could have an encoding template

Q × SE(2) with constraints of a kinematic car whose center-of-mass coincided with

the robot’s center-of-mass for all time. Then, by recovering the chosen trajectory

of the kinematic car, the group motion of the anchor robot is also preserved, even

though the robot’s limb motions may be very different from their original behavior.

2.4.3.2 Missing Constraints

Assume that we have a known embedded curve (r0(t), g0(t)) ⊂ S ×G, t ∈ (ta, tb)

such that ξ0(t) := g−1
0 (t)ġ0(t) = A(r0(t))·ṙ0(t). Since we have a “wide” matrix A, there

are infinitely many curves r(t) that map to ξ0(t), as by fiat we assume there exists

at least one r0. For Γ := Im(r0(t), g0(t)), assume that rank(A |π1◦Γ) = s is constant.

Since rank is an open condition, there exists a tubular neighborhood U ⊂ S of r0(t)

s.t. rank(A |U) = s is constant.

Let f(r, g) : S ×G→ R be a real-valued function, then define

η(t) := f(r0(t), g0(t))

have retraction ϕ : U → Γ, and define the pullback

f̃(r, g) = f ◦ ϕ (2.19)

so that by definition,

f̃ |Γ = f (2.20)

36



Implicit in the definition of ϕ is the time-parameterization of (r0, ξ0). Explicitly,

θ(t) = (r0(t), g0(t)) is the embedding of (ta, tb)

f̃(r, g) = f(π1 ◦ ϕ(r, g), π2 ◦ ϕ(r, g)) = η
(
θ−1 ◦ ϕ(r, g)

)
(2.21)

π1 : S ×G→ S, and π2 : S ×G→ G. We write via chain rule, on Γ

df̃ · (ṙ0(t), ġ0(t)) = df · (ṙ0(t), ġ0(t)) (2.22)

= df ·
(
ṙ0(θ−1 ((r0, g0)) , ġ0(θ−1 ((r0, g0))

)
(2.23)

=: γ (r0, g0) (2.24)

Since f̃ is defined everywhere on U , so is its derivative df̃ . This allows us to

formulate the constraint

df̃ · (ṙ, ġ) = df ◦ dϕ · (ṙ, ġ) = γ(ϕ(r, g)) (2.25)

Assume now that the function ϕ(r, g) is group-invariant, and that f generates a

foliation of Q that is permuted by φh, so that

f̃(r, g) = f̃(r, φh(g)) + c(h)

Where c : G → R is some function as smooth as f . Differentially, this implies

∀r ∈ S, g, h ∈ G, where df̃ = ∂rf̃(r, g)dr + ∂gf̃dg

∂rf̃(r, g)dr = ∂r(r, φhg)dr (2.26)

∂gf̃(r, g)dg = ∂gf̃(r, φhg)dg · dφh (2.27)

unique
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The first equation implies ∂rf̃ does not depend on g. The second equation implies,

for h = g−1,

∂gf̃(r, g) = ∂gf̃(r, e)dφg−1 = ∂gf̃(r, e) · g−1

where in the last statement we have conflated the action and lifted action of G.

These together let us write

∂rf̃(r)dr + ∂gf̃(r, e)dg · g−1 = γ(r) (2.28)

We have γ(r) as by assumption ϕ(r, hg) = ϕ(r, g), implying it is only a function

of r. We simplify notation and write (2.28) as, for ξ = g−1ġ, and implicitly assuming

that it is along curve (r(t), g(t))

ω̃r(r)ṙ + ω̃ξ(r)ξ = γ(r) (2.29)

We now assume that our robot has been damaged in a way that alters the set of

active constraints in a low-rank way. Our fundamental assumption is that the damage

can be modeled as that there ∃i ∈ {1, . . . , k} such that the known constraint ωi is no

longer in effect - i.e. solutions curves are not required to satisfy it.

Since the 1-form determined by (2.28) is group-equivariant, we can consider the

quantity, i = 1, . . . , k − 1

ω1ξξ + ω1ṙṙ = 0 (2.30)

...

ω(k−1)ξξ + ω(k−1)ṙṙ = 0 (2.31)

ω̃r(r) + ω̃ξξ = γ(r) (2.32)

where we have replace ωi with df̃ = γ(r). Call this form ω̂. We have generated a
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form by pulling back f into M . Observe ω̂ is still kinematic, i.e. by obeying it, the

group element ξ is enforced. However, for the implication in Eqn. (2.18) to hold, the

rank of (2.29) needs to be dimG.

2.4.3.3 Do we require kinematic systems?

An key aspect of §2.4.3.2 is that we no longer require ω(q) · q̇ = 0, but rather

we allow affine constraints. In fact, we never needed to assume the constraints were

Pfaffian as in 2.4.3, and could have started with affine constraints. However, we

elected to begin with kinematic systems due to their relative familiarity.

In this sense, the reconstruction equation approach only requires that the dynam-

ics are fully constrained in the group directions, rather than kinematic in the sense

that they have no history – the “shape” variables could have arbitrary dynamics, but

if there are enough constraints, there is still an functional relationship to the group

motion.

Ergo, this approach works for any constrained mechanical system that is invariant

under the action of a group, rather than only those that are properly kinematic. As

we will see in the sequel, even this can be relaxed.

2.4.3.4 Transversality of Group Invariant Functions

We now show that completing the constraints with differentials such that the rank

is expanded is a generic property. We use Lr(n, k) to denote the n× k matrices that

have corank r, and L(n, k) =
⋃
r L

r(n, k) Consider an k × n matrix-valued function

A : S → Hom(V,W )

A =



a1(s)

a2(s)

...

ak(s)


(2.33)
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Each ai, i ∈ 1, . . . , k denotes a row. Assume that A(s) is of rank k for all s ∈ S. Let

f ∈ C∞
(
S,Hom

(
Rn,RN

))
be a smooth function, for N ∈ N, N ≥ 1, and define

B(s) :=

A(s)

f(s)

 (2.34)

I.e. we augment the rows of A with a N new rows determined by the function f . We

would like to determine when our choice of f will have the rank of B ≥ k + 1.

We make use of the following theorem.

Theorem II.1 (Prop 5.3, (Golubitsky and Guillemin, 2012)). Lr(V,W ) is a closed

submanifold of Hom(V,W ) with codmin(Lr(V,W )) = (m − q + r)(n − q + r) where

q = min(m,n).

The dimension of B is (k + N) × n. We have m = k + N, n = n, q = m, r =

k+N−k = N . Since adding a row cannot lower the rank of a matrix, we equivalently

want to ensure that B /∈ LN . So, codim(LN) = N(n− k).

Let X, Y be smooth manifolds, and f : X → Y . Recall, for W an immersed

submanifold of Y , and x ∈ X, the map f is transverse to W at x if either (a)

f(x) /∈ W , or (b) Tf(x)Y = Tf(x)W + (df)x(TxX).

We now state a relatively apparent fact about transverse maps.

Theorem II.2 (Prop 4.2, (Golubitsky and Guillemin, 2012)). Let X and Y be smooth

manifolds, W ⊂ Y a submanifold. Suppose dimX + dimW ≤ dimY. (i.e. - dimX ≤

codim(W )) Let f : X → Y be smooth and suppose that f is transverse to W . Then

f(X) ∩W = ∅.

So by Prop. II.2, a sufficient condition for B(s) /∈ LN for all s ∈ S is: Assume

that B is transverse to LN , and N(n−k) > n If so, the only way for B to successfully

transverse to LN to have B(s) /∈ LN by definition, as dim (Im(B)) = n, dimLN =
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N + k −N(n− k). Ergo, if B is transverse

N >
n

n− k
(2.35)

Then B(s) will have rank greater than k.

Now, we are “likely” to have B be transverse by the following.

Theorem II.3 (Cor. 4.12, (Golubitsky and Guillemin, 2012)). Let X and Y be

smooth manifolds, and let W be a submanifold of Y . Then, the set of smooth mappings

of X to Y which intersect W transversely is dense in C∞(X, Y ), and if W is closed,

then this set is also open.

LN is closed, so by the above there is an open and dense set of maps f such that

B will be rank greater than k.

We now modify the problem to ask a slightly different question. Suppose instead

picking functions that directly provide rows of B, we wanted to pick N functions

f ∈ C∞(S,R) such that the matrix-function extension,

B(s) :=

A(s)

df(s)

 (2.36)

had rank(B(s)) ≥ k + 1?

Let X and Y be two smooth manifolds, and let p ∈ X. Let f, g : X → Y

be smooth maps with f(p) = g(p) = q. f has first-order contact with g at p if

(df)p = (dg)p as mappings of TpX → TqY , denoted via f ∼ g at p. J1(X, Y )(p,q) is

the set of equivalence classes under ∼. Let J1(X, Y ) :=
⋃

(p,q)∈X×Y J
1(X, Y ); it is a

smooth manifold in its own right (Golubitsky and Guillemin, 2012, Thm. 2.7).

Let σ ∈ J1(X, Y ); let f represent σ. dfp is a linear mapping. Define rank(σ) =
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rank(dfp). Define the set 5

Sr := {σ ∈ J1(X, Y ) | corank(σ) = r}

Then we have the following theorem.

Theorem II.4 (Prop 5.4, (Golubitsky and Guillemin, 2012)). Sr is a submanifold

of J1(X, Y ) with codim(Sr) = (n − q + r)(m − q + r). In fact, Sr is a subbundle of

J1(X, Y ), with fiber Lr(Rn,Rm)

If we take W = SN , we want σ transverse to W . Since J1(X, Y ) is a manifold,

and SN is closed, we immediately see by the previous that the space of jets that are

transverse to W is open and dense. Motivated by this observation, we select N > n
n−k

differentiable functions to have rank greater than or equal to k + 1.

We have shown that we can add rank to a set of constraints by using the derivative

of some f ∈ C∞(S,RN). However, for our problem, we want the f we use to have

group-invariant constraints, like above, so that we still have a connection.

It is clear that if the level sets of f are permuted by φh,

f(r, φh · g)− f(r, g) = c(h) (2.37)

Let g = e, so that

f(r, h) = c(h) + f(r, e) (2.38)

c ∈ C∞(G,R), and since e is fixed, we think of fe(r) ∈ f(R,Rn) as a pure function of

shape. Ergo, let ĉ ∈ C∞(G,R, f̂ ∈ f(S,Rn). We can define a function by

f(r, g) := ĉ(g) + f̂(r) (2.39)

5corank(df)p = min (dimX,dimY )− rank(df)p
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To see that f(r, φh · g)− f(r, g) = c(h), we compute

f(r, φh · g) = ĉ(φh · g) + f̂(r) (2.40)

f(r, φh · g)− f(r, g) = ĉ(φh · g)− ĉ(g) = d̂(h) (2.41)

Where d̂ is a function only of h. Thus, let cf ∈ C(G× S,R), cf (g, s) = c(g) + f(s).

Since there is an open and dense set of functions f that provide the necessary rank

condition, and we see that we can “complete” f to cf by picking c, we see that there

is an open and dense set of group invariant functions that meet our rank requirement.

2.4.4 Generalization Away From Mechanics

Section §2.4.3 makes use of geometric mechanics, but upon closer inspection, is not

strongly incumbent on the existence of a principal fiber bundle, Lagrangians, or even

symmetry. The basic argument was that a sufficiently rich collection of constraints

ω is adequate to fully determine a desired curve (s(t), ξ(t)) in the template. In this

sense, even the presence of any dynamical structure at all is superfluous. We only care

about the relationship between tangent vectors and base points, rather than solving

for curves that obey them. Armed with this idea, we can remove the symmetry and

mechanical structure as follows.

We now assume that a robot’s motion is determined by curves x(t) taking values

in a manifold QR on which we can write differential constraints. Typical choices for

QR could be the configuration space of the robot body (such as in the geometric

mechanics case), its phase space, or a more general state space. While it may seem

initially strange to allow the domain to vary so generally, we observe that a “tangent

vector”, which is our fundamental object of interest, is naturally defined in an equally

general setting.

As general systems have no natural equivalent to the group variables we preserved
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in the geometric mechanics case, we instead define a behavior specification to be a

list of constraints of the form Ωi(x) · ẋ = γi(t, x), i = 1, ..., k. were again each Ωi is

a differential 1-form. The vector γ(t, x) := (γ1, . . . , γk) is a vector of length k that

defines the value the constraint functions Ωi must satisfy, and therefore takes values

in the same codomain as that of the 1-forms, i.e. generally γ ∈ Rk. The list of Ωi

contains any inviolate physical constraints that determine the physics of the robot,

as well as constraints we as designers wish to engineer into the system. Together, we

obtain constraints

Ω(x) · ẋ = γ(t, x) (2.42)

where the rows of Ω are the Ωi(x) in the standard convention. We assume the matrix

Ω to be of constant, though necessarily not full, rank when evaluated along admissible

curves of QR. Formally speaking, the behavioral specification is the pair (Ω, γ).

A curve x(t) taking values in QR which satisfies Eqn. (2.42) is an instance of the

behavior. A major feature of our behavior representation is that it is agnostic of the

mechanism that generates curves x(t). In particular, instances of the behavior may

intersect and even overlap, only to diverge later – unlike trajectories of conventional

closed loop control models. With respect to a behavior specification there are only

curves that satisfy the constraints, and those that do not.

We chose this definition for a behavior as it contains a number of special cases. For

example, if Ω is invertible everywhere, we may write ẋ = Ω−1(x)γ(t, x) – a conven-

tional non-autonomous ordinary differential equation (ODE). Here instances of the

behavior are solutions of the ODE. The popularly used class of affine control systems

ẋ = f(x)+G(x)u can be represented using a pseudoinverse G† of G, and constructing

Ω(x) := I − G(x)G†(x) and γ(t, x) := Ω(x)f(x). This is a standard application of

control redesign. If the space QR is taken as the configuration space of a mechanical

system, Pfaffian and affine differential constraints are behavior specifications as well.

In kinematic reduction, the constraints would be the metric inner products of Eqn.
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11 in Bullo et al. (2002). The preceding list of model types that can be realized

as behavior specifications is not exhaustive, but is intended to indicate that a num-

ber of useful constructions of control and robotics are naturally encapsulated in our

proposed definition.

While the constraints required by physics are intrinsic to the system, it is not

immediately clear from the definition given of how to encode a design goal as a

collection of constraints. In exactly the same manner as the CT-SLIP simulation, and

the group-invariant case, we propose the following strategy: we first find a manifold

QE and a full-rank function ϕ : QR → QE such that we are certain that whatever

outcome we desire is realized by a behavior specification on QE. The space QE is

the generalized encoding template, e.g., in §2.4.3, Q was the encoding template for

anchor Q̂; e.g., QE = Γ for the CT-SLIP. As before, we take the dimension of QE

to be less than that of QR. The map ϕ reduces the coordinates of QR to values we

as designers care about encoding; for example, ϕ could return the CoM coordinates,

an end effector location, joints angles, etc. The map ϕ can equally be considered a

collection of outputs yi := ϕi(x) , i = 1, . . . , dimQE when evaluated along a curve

x(t).

To encode a behavior, we write a behavior specification ωi(y) · ẏ = ηi(t, y) on the

output variables / encoding template. Such a construction precisely includes all the

special cases a behavioral specification can capture, but only on the output variables.

We can then pull the ωi back to QR to augment any extant Ω by Ωj. In matrix form,

pulling them back is merely adding rows Ωj(x) ·v := ωi(φ(x)) ·Dφ(x) ·v to the matrix

Ω. We augment our notation to include ϕ in the “behavioral specification” as the

tuple (ϕ,Ω, γ), indicating that it is the image of ϕ which is the target of our design

efforts. This emphasizes that there are virtual constraints on the output variables in

concert with pre-existing constraints that are defined only on QR.

As before, we assume that we started with a functional robot to evaluate our
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constraints upon in a “training” stage. We assume that there was a distinguished

curve x0(t) ⊂ QR that satisfied a given behavior specification (φ,Ω, γ). We will

consider the case where the number of constraints exceeds the dimension of QR, but

that the output constraints ω are satisfied without additional control effort. For

emphasis, the template constraints ω define (conversely, are defined by) η, so they

are satisfied by the working system by definition. E.g., compare Eqn. (2.4a) and

Eqn. (2.16) - the constraint form evaluated on a desired motion defined the value

of the constraint; control effort was not needed to enforce it. When the number of

constraints exceeds the dimension of QR, the rows defined by ω are necessarily linearly

dependent with the rows of Ω – the rank of ω augmenting Ω is identical to that of Ω

alone along desired trajectories in QR. As such, the constraints ω are redundant for

the working robot.

We assume then that the robot is disrupted in a manner to introduces a new

Ωr, or eliminates one of the native Ωi, representing effects such as motors seizing,

limbs breaking off, etc. The recovery strategy is to re-enforce, via control, the out-

put constraints ωi, which are presumably violated by whatever motion the broken

robot is performing without compensation. In this the ω output constraints which

were originally redundant now play the essential role of a more complete behavior

specification in the output variables. By requiring the outputs to satisfy these virtual

constraints, we re-instantiate the desired behavior. Intuitively, the output constraints

can be added or removed so that the co-dimension of points of TQE that satisfy the

active constraints is always dimQE.

We have assumed dimQE < dimQR, and that the behavior specification (φ, ω, η)

is satisfied by an example trajectory x0, which was presumably obtained from a

computationally intensive offline optimization, i.e. by the definition of the pullback
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of a differential form:

∀j, t : ωj(ϕ(x0(t))) ·Dϕ(x0(t)) · x0(t) = ηj(t, ϕ(x0(t))) (2.43)

From the constant rank assumption about ϕ(·) we obtain that for each x0(t) there is

an entire manifold of possible values for a new instantiation x(t) such that ϕ(x(t)) =

ϕ(x0(t)). The original trajectory x0 clearly lies within this set, but should that

trajectory become unrealizable due to damage, we can implement any of the other

possible curves.

A different but equivalent perspective is the following. Assume the constraints Ωi

are placed in order of priority; we indicate this priority by �:

Ω1 � Ω2 � . . .� Ωi � . . . (2.44)

We are assuming that there are underlying physical constraints ΩP , design constraints

ΩD derived from (φ, ω, η), and learned constraints ΩL. The learned constraints are

those that result from evaluating output constraints ω on y0(t), thereby defining

the appropriate γL. In this sense, the constraints are “learned”, rather than a priori

known. These we combined into Ω with ΩP � ΩD � ΩL, and are associated with γP ,

γD, and γL respectively. We used the first dimQR linearly independent constraints

of these determine the velocity ẋ(t). However, by virtue of the addition of ΩL, the

number of constraints in (Ω, γ) is larger than dimQR (i.e. Ω is “tall”), and these

constraints are redundant on the instantiation of the behavior x0(·) - as we assumed

maximum rank initially, adding rows cannot add rank. As long as the robot was

functioning without damage, the ΩD(x0) · ẋ0 = γD(t, x0) constraints were satisfied by

assumption, and no change in control was needed.

We modeled damage to to the robot as a low rank change to ΩP , replacing it with

Ω̃P instead, of possibly lower or higher rank, but such that only a few constraints are
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affected. In other words, only a few rows of ΩP and γP are changed due to damage.

Consider the case where the rank change, i.e. change in number of constraints,

associated with this damage to ΩP is such that

dimQR − rank(Ω)L ≤ rank(Ω̃P ) + rank(Ω)D ≤ dimQR (2.45)

When (2.45) holds, the change in rank induced by the damage can be taken up by

removal or addition of learned constraints ΩL, and we could solve for new feasible

velocities without harming compliance with any of the design constraints ΩD(x) · ẋ =

γD(t, x).

Here the use of the dual representation in our behavior specification came into its

own. It allowed us to gracefully recover from structural changes in the constraints

governing the robot. If the explicit forms are known, finding a recovery trajectory

required no optimization to be done – it follows directly from integrating the new

behavior specification equation with the modified constraints; we demonstrated this

in §2.5 below.

2.4.5 Canonical Cost Functions

In the case of a physical robot, the modified constraints might not be known; we

explored this possibility by attempting to re-learn a walking behavior for a hexapedal

robot. For this, optimization is an natural tool, as is the use of observation functions.

We take an observation function to be a smooth map f : Q→ R, where the domain

Q will be made explicit. We consider them as “sensors” or “outputs” when evaluated

along curves x(t) ⊂ Q. By our results from §2.4.3.2, we expect relatively arbitrary

constraints to meet our requirements. For t ∈ [0, T ], control input u(t), and trajectory

x(t), integral cost functions are extremely commonplace, i.e., A behavior specification
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suggests the following cost function, for J [u] some choice of control cost :

J̃ [x, u] := J [u] + λ

∫ T

0

‖Ω(x) · ẋ− γ(t, x)‖2 dt (2.46)

The cost is measuring the violation of the constraints, with weight λ ∈ R. The

constraints explicitly identify which directions of ẋ are relevant for tracking a desired

output, versus which have no effects.

We used this approach in our hardware-in-the-loop optimization in section 2.6. In

this task we were only concerned with the end-point of the robot motion and therefore

we took the control cost J(u) to be 0. We have a manually-tuned gait which achieved

our desired goal of moving forward in a straight line; since our technique provide an

efficient representation of motion in the group, we expect to be able to reconstitute

similar planar displacement via some gait. We then learned a behavior specification

(ΩL, γL) using a choice of encoding template motivated by the Lateral Leg Spring

(Schmitt and Holmes , 2000) and Spring Loaded Inverted Pendulum (Blickhan, 1989b)

dynamic templates. We then ran the optimization it with the violation of constraints

norm. This new optimization allowed our robot to re-learn the x0 trajectory within

36 attempts.

2.5 Crawler

We now present an example on a two-armed robot in simulation. The robot is

depicted in Fig. 2.3. Each arm is a four-bar linkage that consists of four rigid bars

connected end-to-end by powered swivel joints. Our objective will be to preserve the

motion of the body when one of the joint actuators is jammed.

We take the configuration space QR of the robot to be (x, y, θ, θ1, . . . , θ6) ∈

SE(2) × T6 = G × S. The joint angles are θ := {θk}6
k=1 ∈ T 6, while the coordi-

nates g = (x, y, θ) ∈ SE(2) define the location and orientation of the body in the
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plane. The initial condition of the robot’s body is always (x(0), y(0), θ(0)) = (0, 0, 0),

so that the (x, y, θ) are simultaneously the coordinates for the body with respect to

the standard world frame positioned at the origin.

Figure 2.3: The grey members indicate components that belong to the robot. The
points l1 and l2 are fixed foot locations. Each joint θj is a powered rotational joint.
The points h1 and h2 are the attachment points at which the limbs attach to the
body. The center point of the foot locations q defines the value r and angle α (in
red), which are our choice of encoding template.

Our robot moved by attaching to the plane at the two locations l1 and l2 with

freely rotating pivots, dragging itself with its limbs. Let us consider the problem

of preserving this body motion when the two leg attachment points l1 and l2 are

fixed, but a joint motor jams. While this example is artificially simple, it conveys our

method. Mutatis mutandis, the extension to longer and more complex behaviors is

analogous.

The robot is a kinematic system, so that using complex numbers to represent the

plane, the following equations relate the points l1, and l2 to the configuration variables

θi.

50



f1(x, y, θ, θ1, . . . , θ6) := l1 = x+ iy + eiθ

(
3∑
i=1

ei
∑k
j=1 θj

)
(2.47)

f2(x, t, θ, θ1, . . . , θ6) := l2 = x+ iy + eiθ

(
6∑

k=4

ei
∑k
j=1 θj

)
(2.48)

I.e., the robot is subject to the constraints f1−l1 = 0, and f2−l2 = 0, where functions

fi : QR → C are the R.H.S of Eqns. (2.47), (2.48). The equations (2.47), and (2.48)

are equivalently holonomic constraints on the configuration space QR – they induce

four real-valued constraint equations on the tangent bundle by differentiation. I.e.,



∇(g,θ)(real(f1))

∇(g,θ)(imag(f1))

∇(g,θ)(real(f2))

∇(g,θ)(imag(f2))


ġ
θ̇

 =



0

0

0

0


(2.49)

We write (2.49) compactly as

ωA(g, θ) · (ġ, θ̇) = 0 ∈ R4. (2.50)

ωA ∈ (T ∗(T 6 × SE(2)))
4 ∼= R4×9 is the Jacobian matrix which multiplies (ġ, θ̇) ∈

T (T 6 × SE(2)) ∼= R9. In the (g, θ) coordinates, the Jacobian appears in block form

as: [
ωgA ωθA

]ġ
θ̇

 = 0 ∈ R4, ωgA ∈ R4×3, ωθA ∈ R4×6 (2.51)

In the notation of §2.4, Eqn. (2.49) is ΩP , as they are mandatory constraints that

enforce the physics of the crawler, i.e.,

Ωg
P · ġ +

6∑
i=1

Ωθi
P · θ̇i = γP (t, x, y, θ, θ1, . . . , θ6) = 0 (2.52)
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The choices of parameters l1, l2, h1, and h2 are shown in Table. 2.2.

Table 2.2: Parameters

Parameter Value
l1 +2.5 + i2
l2 −2.5 + i2
h1 +1
h2 −1

We now define a choice of encoding template QE. Define the point q ∈ C to be

the midpoint of the two feet:

q =
l1 + l2

2

We take (r, α) ∈ R × S1, and define our template system with the point q via Eqn.

(2.53).

r exp(i(θ0 + α)) + x+ iy = q (2.53)

Eqn. (2.53) defines an implicit relation between the template shape variables

(r, α) and the anchor shape variables θ.

Thus we have the encoding template QE = SE(2) × R × S1 as the body frame,

with additional (r, α) ∈ R × S1, as shown in red in Fig. 2.3. The template shape

coordinates are the distance r of the CoM to the point q, while α is the angle of the

CoM with respect to the line between q and the CoM.

Explicitly, we can compute r and α as follows. Define the two auxiliary functions

p1 : T 6 → C, and p2 : T 6 → C as:

p1(θ) := h1 + exp(iθ1)(1 + exp(iθ2)(1 + exp(iθ3)))

p2(θ) := h2 + exp(iθ4)(1 + exp(iθ5)(1 + exp(iθ6)))

By solving (2.53) for (r, α) in terms of θ, it can be shown that the phase map ϕs :
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T 6 → (r, α) ∈ R× S1 is given Eqn. (2.54).

ϕs(θ) =

(∥∥∥∥(p1 + p2)

2

∥∥∥∥ , (p1+p2)
2

)
(2.54)

Thus, our total map phase map is ϕ = (ϕs(θ), idG). Equivalently, the variables

(x, y, θ, r, α) define the five outputs (y1, . . . , y5). Our desired template reference

trajectory is shown in Fig. 2.4. The resulting group velocity is shown in Fig.

2.6 under the “desired” label. We denote this reference template signal as y(t) =

(gd(t), rd(t), αd(t)), t ∈ [0, 1]. An anchor trajectory that produces the desired phase

reference is shown in Fig. 2.5. The anchor angles used to generate this curve are

denoted by θorg(t) ∈ T 6, t ∈ [0, 1]. In the notation of §2.4.4, x0(t) = (gd(t), θorg(t)).

Let us now construct the complete behavior specification (ϕ, ωD, γD). The tem-

plate coordinates obey two Pfaffian constraints determined via Eqn. (2.53), which we

write as.

ωT (g, r, α) · (ġ, ṙ, α̇) = 0 ∈ R2 (2.55)

We denote the associated block structure via ωgT ∈ R2×3, ωsT ∈ R2×2, analogous to

Eqn. (2.51). These template constraints are constraints on QE (equivalently, the

output variables); so, ϕ∗ωT are members of ΩD.

If the block ωgT were invertible, we could write a world-coordinate version of the

reconstruction equation shown in Eqn. (2.11) as ġ = − (ωgT )−1 ωθT . We note that we

have ġ ∈ TgSE(2), as opposed to ξ ∈ se(2) as literally shown in Eqn. (2.11). While

we could transform ġ to the Lie algebra via TgLg−1 , our expression is sufficient for

our example as-is. We are only considering one “stance-phase” where world coordi-

nates are adequate. 6 Analogously, we could write a reconstruction equation on the

template if ωgA was invertible.

6Furthermore, it illustrates that our approach of virtual constraints on template models is more
general that the kinematic lifting shown in §2.4.3.2. The construction presented there is sufficient
and explicit, but not the only case where virtual constraints would work., e.g., without group invari-
ance.
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We emphasize that a psuedoinverse of ωGT is not a satisfactory substitute for a true

inverse. Our key requirement, as shown earlier in Eqn. (2.18), is ωTg to be full rank

on QE, so a third independent constraint is necessary. Equivalently, for a given shape

value (r, α) = ϕs(θ), there must be a unique ġ such that Eqn. (2.51) holds. Ergo, we

need to synthesize another constraint from an observation function f : Q→ R, as in

§2.4.3.2. Recall, our argument that we are able to do this is based upon recovering

a high codimension object – namely, a trajectory on the template. As we saw in

§2.4.3.2, there is an open and dense set of functions that are suitable. Since we are

designing a behavior specification, we choose the constraint (which is satisfied by our

desired group motion)

ẋ = θ̇ (2.56)

This gives ω3 := dx− dθ ∈ T ∗QE, and γ3(t, r, α, x, y, θ) := 0.

We augment Eqn. (2.55) with the row defined by Eqn. (2.56) exactly as shown

in Eqn. (2.32) of §2.4.3.2 to get augmented form ω̃T so that the sub-block ω̃gT ∈

GL(3,R)7. The two rows of ωT are the constraints on QE that implicitly relate the g

coordinates to the (r, α) coordinates - along with our design constraint ω3 := dx−dθ,

γ3 := 0, we have three constraints represented by ω̃T . Since QE is five dimensional,

we must produce two additional constraints. The next two constraints are simply the

condition Eqn. (2.16) in the (r, α) coordinates. In (r, α) coordinates, the constraint

and value pairs are ω1 := dr, γ1 := d
dt
rd(t), ω2 := dα, γ2 := d

dt
αd(t),

We thus have a complete specification (ϕ, ω, γD), for g = (x, y, θ)

ϕ∗ω̃gT · ġ + ϕ∗ω̃
(r,α)
T · (ṙ, α̇) = 0 (2.57)

dr ◦ (ṙ, α̇) =
d

dt
rd(t) (2.58)

dα ◦ (ṙ, α̇) =
d

dt
αd(t) (2.59)

7We numerically verified that rank is three in a neighborhood of the goal trajectory
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The L.H.S is ω, the R.H.S is γD, and ϕ is obvious. We emphasize that the behavior

specification exists independently of the physical constraints ΩP , and are satisfied by

definition when the robot executes x0(t); the behavior specification was not used to

define x0, but is a consequence of it.

Figure 2.4: r and α coordinates of the
template along the θorg curve, i.e. -
the desired reference trajectory on the
template.

Figure 2.5: The six joint angles of θorg

It might seem strange to the reader that we have elected to split the configuration

variables into group and non-group components, even though our reference trajectory

y(t) is in both coordinates; i.e. we could potentially fit ω directory, without separating

the components. Our motivation for doing this is two-fold. First, the weaker reason,

is to tie it to the perspective of §2.4.3, and two, more strongly, we wish to solve

the constraints for an input (θ1, . . . , θ6). The group variables g are not a directly

controlled. We will see in the sequel that this “connection-like” separation allows

us to isolate the joint angles so that we can solve for the θi in terms of g and the

constraints. We will see this allows a particularly nice representation.

We now assume that the θ1 actuator is jammed, so that ∀t, θ1(t) = θ1(0). This

is constant for all gaits, as we have also assumed the initial condition is fixed. If we

did nothing, and simply played back the same θorg with the θ1 actuator stuck, we

obtain considerable error. In Fig. 2.6 the curve labeled “old” illustrates the resulting
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Figure 2.6: The CoM group velocity ġ = (vx, vy, vθ) over time. The “desired” curve
is the undamaged motion that we are aiming to recover. The blue “old” curve is
the group velocity achieved if no recover strategy is attempted post damaged. The
“recovered“ trace is the performance after recovery.

group velocity of the CoM should “playback” be attempted without recovery. Ergo,

attempting to improve this via exploiting the redundancy of the limbs is warranted.

We pull-back ω1, ω2, and ω4, to QR to define ΩD, and with the jamming con-

straint, we obtain a six-dimensional non-autonomous differential equation that can

be integrated in forward time. The solution of this equation have components θi that

generate the same desired COM motion despite the seized limb, if such a solution ex-

ists. However, the solutions to this equation need to also satisfy the ΩP constraints.

As we have the model equations (2.57) and (2.52), we can write the explicit system

of differential equations to encode our recovery strategy subject to this requirement.

We first substitute y in Eqn. (2.57),

ġr(t) = (ω̃gT )−1 ω̃
(r,α)
T · (ṙd(t), α̇d(t)) (2.60)
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This is an autonomous differential equation that we know our curve y satisfies. Let

θV = (θ1, . . . , θ6). Since we are seeking a θV (t) 6= θorg, t ∈ (0, 1] that satisfies Eqn.

(2.17), we substitute Eqn. (2.60) into Eqn. (2.52) to get

−
(
ωgA · (ω̃

g
T )−1 ω̃

(r,α)
T · (ṙd(t), α̇d(t))

)
= ωθVA · ˙θV (2.61)

Observe that Eqn. (2.61) is also an non-autonomous differential equation, as the

coefficients ωgA and ωθA depend on θV . We additionally require that Eqn. (2.16) is

satisfied, so we write

ϕs(θV (t)) = (rd(t), αd(t)) =⇒ DθV (t)ϕ
s · θ̇V (t) = (ṙd(t), α̇d(t))

We employ the Moore-Penrose psuedoinverse to write this as the non-autonomous

differential equation,

θ̇V (t) = D†θV (t)ϕ · (ṙd(t), α̇d(t)) (2.62)

Using the approach in Eqn. (2.62) and (2.61), and the constraint that e1 · θV = 0,

we write a combined system as the following

θ̇V =


ωθVA

DθV (t)ϕ

e1


† 
−
(
ωgA · (ω̃

g
T )−1 ω̃

(r,α)
T · (ṙd(t), α̇d(t))

)
(ṙd(t), α̇d(t))

0

 (2.63)

The inclusion of the jamming constraint is the modification of ΩP to Ω̃P we described

in §2.4.4. In the Ω notation, if Ωs has a inverse Ω†s, we can obtain for any given s(t):

ṡ = Ω†s(g, s) (γ(t, g, s)− Ωg(g, s) · ġ) , (2.64)

This equation is the “dual” of the reconstruction equation, in that we are solving for
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shape in terms of group. Since we are assuming that s has sufficient redundancy to

re-implement the behavior, the matrix Ωs is “wide”, so is not invertible in our typical

use case.

Eqn. (2.63) is an non-autonomous, differential equation. We implemented it nu-

merically in Python 2.7.5 with the numpy and scipy numerical processing libraries.

We cannot not naively numerically integrate Eqn. (2.63). We require that the con-

straints are enforced. Eqns. (2.57) and (2.52) must hold exactly. Conventional

integrators are approximating the true solution, so the error compounds as the inte-

gration time grows. If the constraints are violated too badly, it is not reasonable to

consider the resulting trajectory segment a meaningful solution.

We used the finite-step-size method lsoda from the scipy.integrate.ode pack-

age. Provided with xi, ti and vector field f , it returns xi+1, and is thus called in a loop

to produce a sequence {ti, xi}tni=0. At each xi, ti, we projected xi onto the constraint

manifold using Newton iteration to point pi, then passed pi, xi. into f , i.e.

t i = 0

x i = x0

whi le t i < t1 :

t i , x i = i n t e g r a t e ( t i , xi , t+dt )

t i , x i = p r o j e c t C o n s t r a i n t s ( t i , x i )

Employing this crude form of geometric integration on Eqn. (2.63), we obtained

a new θrec(t), r(t), and α(t), shown in Figs. 2.4 and 2.7. Note that we cite Fig. 2.4

for the new phase curve as well. This is intentional, as the new and old phase curves

are numerically identical.

The performance of our recovered joint inputs is shown in Fig. 2.6 as the “recov-

ered” trace. As we can see, it appears to recover the desired group velocity (and thus,

group position) quite well, especially in relative performance to no recovery at all.
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Figure 2.7: Recovered joint angle inputs. The θ1 (blue) trace is visibly seen to be
constant, reflecting the jammed state.

2.6 Enepod

We built a six-legged robot to determine if our strategy is achievable on a actual

device.

To test this approach on a physical device, we looked for a justifiable choice of en-

coding template. For biomechanists, the difference between “running” and “walking”

is defined in terms of the energy reservoirs participating in the exchange generating

the motion. In walking, potential energy exchanges with kinetic energy by vaulting

over a rigid leg; thus ground speed is lowest when the center-of-mass is highest. In

running, elastic energy of stretched tendons and muscles exchanges with kinetic en-

ergy; thus ground speed is highest when the center-of-mass is highest. So, we designed

a six-legged robot to facilitate the measurement of elastic energy storage in its legs.
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This, we hoped, would allow us to define an encoding template in terms of these

energy exchanges, and determine if our strategy is achievable on a physical device.

The robot (which we refer to as the “enepod”) is depicted in Fig. 2.8. It consists

of a 7DoF sequence of Robotis modules (Robotis Dynamixel EX and MX) as an

actuated backbone, while the six leg are constructed of 1
16

-inch 1075 spring steel,

which is flexible enough that it generates deflections of greater than 1 cm at the foot

during motion. We made the legs compliant enough so that their deflections would

be easy to sense using a motion tracking system, providing an instantaneous window

into the elastic energy stored in the body at any given time.

We generated the robot gait by feedforward time-sequenced position commands

which are carried out by individual PID control loops in the motor modules. The gait

we chose is an “alternating tripod” gait analogous to that used in the RHex hexapod

(Saranli et al., 2001). The feet are grouped into two collections of three that are

in phase (a “tripod”), while the other three are π out-of-phase. If the system were

perfectly rigid, each tripod would be undergoing an identical motion. With springy

legs, while the legs receive the same commands, the dynamics of the legs springs alter

the response.

The aim of experiment is to perform a hardware-in-the-loop optimization to con-

struct an input that achieves effective forward motion where the cost function is

determined via our constraints. Our hypothesis is that the robot will learn to move

forward quite rapidly using the behavior specification.

As opposed to physically damaging the robot, we have a parametric space of gaits

µ ∈ [−1, 1]4. We are going to demonstrate that the output constraints are sufficient

to generate a gait closer to the desired motion. Since we have zero model information

for the enepod, we argue this analogous to recovering from damage, where the model

is also unknown 8. The values of µ determine the signal that drives the center module

8Future work will compare pre- and post-damage performance on a single platform
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Figure 2.8: The enepod robot. The wooden sticks mount retroreflective markers that
are used by a motion capture system to capture configuration data in real time. The
motion capture system is part of the hardware-in-the-loop optimization setup used
to generate motion.

MC (see Fig. 2.9). The other six modules’ input signal remains unchanged. Since

the number of constraint functions exceeds the dimension of the group, which is taken

to be SE(2) (symmetry in the plane), we expect that the group motion is completely

defined (and indeed will be, if the rank conditions are satisfied).

To expand on this, the encoding template we will define is motivated by the

Lateral Leg Spring (Schmitt and Holmes , 2000) and SLIP dynamic templates. We

will sum the spring deflection of each leg per tripod as a approximate of the elastic

energy stored in each member, as energy stored scales monotonically with deflection

for conventional spring models.

We take that our projection ϕ aggregates tripod variables but otherwise leaves
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Figure 2.9: Leg groupings on the Enepod- the (BL,MR,FL) legs maintain phase, while
the (BR,ML,FL) are collectively out of phase with the first tripod.

the group member fixed, as above, i.e.,

ϕ(s, g) = (ϕs, g) (2.65)

Then, motivated by (Schmitt and Holmes , 2000), we assume that grouping the

legs into tripods obeys, for elastic energy function E (for notational simplicity, we

assume there is one function E, but strictly speaking each spring has its own function

El)

E(
∑
i∈I

ϕi) =
∑
i∈I

E(ϕi) (2.66)

where I in an index set for a given leg. I.e. that the energy of the springs is

additive; while energy is an additive quantity generally, we are emphasizing that our

map ϕ aggregates the energy per-tripod.

2.6.1 Methods

Our experimental setup consists of three major components – the robot itself, the

motion tracking system, and the optimization software.
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The robot, as described above, is a collection of Robotis modules - the fore, aft,

and center modules, which connect to the legs, are EX modules, while the remaining

are MX modules. It is not autonomous in any way – each module tracks a reference

signal provided from an external source. The motion tracking system is the commer-

cially available Qualisys tracking system using 10 Opus-310 cameras collecting dta

at 250 FPS, managed through the Qualisys Track Manager software, version 2.17.

In the capture arena, the system provides time-series position measurements of the

retroreflective markers. The Qualisys telemetry is collected by the optimization soft-

ware package, which is responsible for both filtering the telemetry, updating the gait

parameters, and driving the robot.

Our optimization problem occurs in two stages. In the first stage, we manually

designed a known gait that was further optimized with a “conventional” goal function

that evaluates effective displacement per cycle. In other words, we intelligently seeded

the optimizer with a working gait that was further refined via optimization. The

resulting gait is the “x0(t)”, from above. We then evaluated our chosen observation

functions along this cycle, and constructed a representation of the functions with a

Fourier series fit; these are function defined on QE as functions of phase. Using this

model, we differentiated to obtain the necessary ωi := dyi, and γi. These resulting

functions of phase are the “learned constraints” ΩL that we introduced in §2.4.4.

These ΩL will define the cost function J , exactly as in Eqn. (2.46).

In the second stage, we then re-initialized the robot with gait parameters µ1 ∈

[−1, 1]4 that were not a viable gait. In this case, they caused the robot to have an

average displacement of zero. The goal of the optimization is to generate a new set

of feasible gait parameters. Unlike the preceding cases, the parameter space is not

restricted in any way. In this setting, we would expect that a successful optimization

can recover the a forward motion. While the theory predicts exact recovery, the

limitations of practical hardware suggests improvement of a gait, rather than the
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complete regeneration of one.

2.6.1.1 Coordinates and Instrumentation

Our motion tracking data consists of labeled time sequences of position data that

gives (x, y, z) coordinates of each marker at a time sequence {ti}. The Qualisys track-

ing data was processed by a custom Python 2.7.5 script that filtered and scored the

data. Each marker has a unique name for which we will consistently reference. The

marker names are depicted in Fig. 2.9. A marker A has (Ax, Ay, Az) ∈ R3 spatial

coordinates with respect to an arbitrary world frame that arises by calibrating the

motion tracking system.

Since we by definition are interested in the displacement of the CoM, we treat

the robot as a rigid body with the legs attached. However, the spine is articulated,

so we define a virtual rigid body C as a proxy using the markers S1, S4, VR, and

VL. We denote the CoM of C as (Cx, Cy, Cz) ∈ R3. As we are using C merely as a

location, we assume each marker is unit mass, so that the CoM is just the mean of

the S1,S4,VR, and VL locations.

The robot has coordinates for each leg, as shown in Fig. 2.9. We will also numer-

ically refer to an entire leg by an index, as shown in the figure. E.g, Leg 2 refers to

the entire assembly of the leg ML and associated markers attached to it.

2.6.1.2 Gait Space

While the module we control has five gait parameters µ1, the remaining motors

need inputs as well. There are seven Robotis modules, so we need to define seven

input signals to fully realize a gait. We represent this space with 28 parameters,

four for each channel. Each of the four parameters defines a knot point of a linearly

interpolated signal. The x-coordinate of each knot point is fixed at (0, 0.25, 0.5,

0.75,1), respectively. The last knot point at x = 1 is set in software to equal the first,
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so that the resulting signal is periodic with T = 19. The parameters then define the

y-coordinates, allowing the representation of various “triangle” waves, as depicted in

Fig. 2.10. We chose this parameterization as our initial reference gait was composed

of sinusoids. The mechanical bandwidth of the robot is such that the motion between

re-sampling a sine wave with our parameter scheme, versus using a sine function is

software, was indistinguishable.

Figure 2.10: Our parametric scheme for representing input signals. The “sig” trace
is a desired nonlinear function, while “interp” is our linear interpolation of it. Our
parameterization adjusts the amplitude of the knots, but not their horizontal location.
The sawtooth approximation of a sine wave is operationally equivalent on the robot.

9The software rescales it to the desired frequency when driving the robot
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2.6.1.3 Phase

A priori, the dynamic phase of a limit cycle depends on dynamic information.

However, we operationally assumed that there was a “kinematic phase” (Revzen et al.,

2009) that was defined only in terms of the kinematic variables. Near a periodic

orbit, the behavior is one-dimensional, so that the kinematic state and dynamic state

are bijectively related (otherwise, it would not be periodic); motivated by this, we

estimate kinematic phase and use it as a local proxy for the true phase. Ergo, our

phase estimate was produced using only position and time measurements.

The phase map ϕ is estimated using the numerical tool Phaser (Revzen and Guck-

enheimer , 2008) to estimate a phase map. We operationally assumed that the tool

will produce a workable phase map, ignoring any theoretical assumptions required

(i.e. - we applied the tool to the measured data, and found the resulting function

satisfactory). Recall, we only require any retraction, rather than proper asymptotic

phase.

The utility Phaser expects that the limit cycle of interest is contained within a

two dimensional plane. To satisfy this requirement, and to ensure that our phase map

is a map from configuration space, we project onto the first two principal components

of the nominal gait position data, then ran Phaser on the resulting trajectories. The

resulting phase map was cached for use in all evaluations of the cost function.

As this principal component projection occurs at every evaluation of the cost

function, we chose an initial basis for this space when the nominal gait as executed.

We then cached this choice of basis for subsequent projections, insisting that the

subspace was well-defined and consistently oriented for all trials.

2.6.1.4 Observation Functions

There are four observation functions used. The vertical deflection of each tripod,

and the horizontal deflection of each tripod. We assume the legs have no meaningful
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mass in comparison to the spine, so that they contribute no momentum as masses in

their own right. The legs only generate forces on the body through their deflection.

We furthermore assume that the springs are perfectly one-dimensional – they are only

able to deflect in their principal (softest) direction. Since stiffness of beams scales

quadratically with thickness, and inverse cubically with length, the legs are signif-

icantly softer in the longest direction. We separated horizontal and vertical spring

deflections, as by design, these deflections were dominated by different collections of

springs.

An intuition behind this choice of output is that each of the tripod’s constituent

legs move together on the nominal gait; ergo, we expected aggregating the six legs

into two tripods to be an informative reduction. As we saw in §2.4.3.2, such intuition

is not strictly necessary – a large number of arbitrary choices would theoretically

be acceptable. However, we expect that not all choices are equally well-conditioned.

While the resulting Ω may have the desired rank in the ideal case, the condition

number could be very poor in practice. Our argument from stiffness scaling, combined

with empirical verification, suggests that the tripod deflections that we have selected

for outputs are quite independent of each other, hopefully alleviating this concern.

We record a nominal value for the observation function by measuring its value

while the robot is executing the goal behavior. By computing and caching Fourier-

series approximations of the observation functions along the desired trajectory, we

develop the constraints as we did in §2.4.3.2. As we will see, the deflections are

strongly periodic, so a low order fit of n = 4 for the Fourier series was taken as

satisfactory. The quality-of-fit of the constraints for the disturbed robot will be appear

as the cost-function in §2.6.1.7. We will refer to the signals defined by the vertical

and horizontal spring deflections along the nominal gait a Vref (φ) ∈ R2, φ ∈ [0, 2π],

and Href (φ) ∈ R2, φ ∈ [0, 2π]), respectively. When we evaluate these functions along

the i-th iterate, we will use the notation Vi and Hi, respectively.
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2.6.1.5 Vertical Spring Deflection

The vertical spring deflection Vi is calculated from telemetry by taking the arc

cosine of the angle determined by the inner product 〈SN − TN, nO − nI〉, where n

denotes the leg index, as shown in Fig 2.9. I.e,

V1 := arccos (〈S1− T1, FLO − FLI〉) (2.67)

+ arccos (〈S2− T2,MRO −MRI〉)

+ arccos (〈S4− T4, BLO − FLI〉)

V2 := arccos (〈S1− T1, FRO − FRI〉) (2.68)

+ arccos (〈S2− T2,MLO −MLI〉)

+ arccos (〈S4− T4, BRO − FRI〉)

We have assumed that the angle is sided (e.g., there are six distinct angles, as we are

ignoring any geometric constraints across the body), despite the left and right angles

resulting from the deflection of the same piece of spring steel, as the crossbeam is

clamped to the body in the middle. Fig 2.15 depicts an example time series collected

from the enepod striding forward with its limbs cycling at 2.5 Hz. While the x-axis is

given in the number of sampled points rather than time, it was communicated with

TCP and resampled, so that there are no missing packets and a constant ∆t. The

three deflection signals were added together for each tripod, reducing the six signals

to two. We expect this to be a reasonable aggregate, as the gait alternates which

tripod is contacting the ground. It also suggests the redundancy we assumed the

robot has initially exists; we are not interested in individual forces, but rather we

would like the total wrench induced by the legs on the spine to remain invariant.

Regardless of the number of legs employed, if the system remains controllable in the

68



necessary directions, it would be possible to do so.

Our computation procedure is as follows. We first use the rigid body (as defined

in §2.6.1.1) to transform the marker data into the body frame. E.g, see Fig. 2.12. In

these coordinates, the body motion is periodic. Our procedure is to slice an execution

of the robot into strides, via the phase map computed in §2.6.1.3. Computing the

functions in Eqn. (2.67), and Eqn. (2.68) on the nominal gait, we obtain the signals

depicted in Fig. 2.16.

Figure 2.11: The filtered marker traces
in world coordinates for an execution.
The robot starts stationary, walks for
a time, and then stops.

Figure 2.12: The same traces trans-
formed into body coordinates using
the virtual rigid mass.In these coordi-
nates, the bais due to translation in
the world frame is removed.

There apparently seems to be two distinct periodic signals approximately π out-

of-phase with respect to each other, irrespective of their relative magnitudes. The

reason for the bias is magnitude from one tripod to another is unknown.

While the structure of the summed effect is apparent, when re-visualized as a

function of phase, an even more predictable signal emerges, shown in Fig. 2.13. The

tripod’s vertical deflection seems to be functionally related to the phase estimate, i.e.

quite periodic.
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Figure 2.13: The summed vertical deflection signals for tripod one and two. The
dashes lines are over a single stride, while the solid lines are Fourier-series (n=5) fits
of the measured data.

2.6.1.6 Horizontal Spring Deflection

The fore-aft deflection of the spring vertically-mounted springs (e.g., the deflection

in the “horizontal” direction) was measured differently from the vertical deflection.

The marker sets indicated in Fig. 2.8 were used to define the two centroids, Ci
top, and

Ci
foot, respectively, where i indexes the leg. We define the signal, where πxy : R3 → R2

is projection onto the xy-plane, by

fai(t) := πxy
(
Ci
top − Ci

foot

)
(2.69)

If we merely repeated the aggregating we did in Eqn. (2.67) and Eqn. (2.68), we

did not see a meaningful signal. In Fig. 2.17, we plot heatmaps of the fai(t). The
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Figure 2.14: A schematic of how the vertical deflection angle is determined from
marker data. The distal markers are used as an angular gain to compensate for the
resolution of the motion capture system.

x and y axes correspond to those coordinates. Cooler colors are earlier phase values

(closer to 0), while warmer colors are later phase values (closer to 2π)). We do not

observe a meaningful correlation between the limbs. As such, we instead aggregate

data by projecting onto the first two principal axes. We argue that such a reduction

is justified based on the singular value spectrum depicted in Fig. 2.18 – the first

two singular values summarize the data substantially. We plot the first two principal

components of the nominal gait in Fig. 2.19.
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Figure 2.15: Time series data - the (BR,FR,ML) tripod signal is colored orange,
while the (BL,MR,FL) tripod signal is shown in blue. The jump near data point 600
is where the robot changed directions.

2.6.1.7 Nominal Goal Function

Our goal is to fit the constraints, as mentioned.

J̃ [µ] := λ

∫ T

0

‖Ω(x) · ẋ− γ(t, x)‖2 dt (2.70)

Our constraints Ω are the derivatives of the vertical and horizontal spring deflec-

tion signals, so the cost function takes the explicit form:

J(µ) :=
(
‖V̇i − V̇ref‖2 + ‖Ḣi − Ḣref‖2

)
(2.71)

We are evaluating this cost function on the noisy data arising from the physical
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Figure 2.16: Phase plots of the vertical spring deflection. The blue is the original data
plotted as a function of phase. Yellow is after running a 2-order 2-sample discrete
low pass filter twice, yellow is a 2nd order polynomial fit, while green is a 10th order
Fourier series. We see considerable symmetry between tripods. Note that the (BL,
MR, FL) tripod has been phase-shifted by π for clarity.

motion of the robot. We mitigate this by collecting enough data so that the distance

between means of two parameter sets is greater than the variance of either singular

parameter set. Ergo, we always take a window of n = 35 strides (a stride is a single

gait period, where phase elapses from 0 to 2π), and average over them to get a mean

value-per-stride (where “value” is the value of a function given via context) As such,

t0 and tf are fixed at t0 = 0, tf = 35× 1
2.5

= 14 seconds. Thus, we have operationally

evaluate, for xi, yi, θi the relevant values on the i-th stride,

J0(µ) :=
1

35

35∑
x=1

J(µ, xi, yi, θi) (2.72)
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2.6.2 Results

The optimization was conducted using Nelder-Mead on the four-parameter space

µ that defines the signal driving the central module. The evolution of the cost is

displayed in Fig. 2.22. We terminated the optimization after we had approximately

reduced the cost by 40%. Our choice for this was empirically motivated, as we had

achieved acceptable performance, as depicted in Fig. 2.21. We admit this termination

condition is fairly arbitrary, and future work will include a more principled approach

to classifying a “success”.

Modulo the above conditions, we see that even after N = 36 iterations (where a

single iteration corresponds to at least 35 strides executed at a set of hyper-parameters

µ), the mean displacement per stride is significantly enhanced.

The distribution of points is wider, but we do not necessarily expect that the

variance be small. Inspecting the evolution of the cost function, iteration 26 and

33 look like “bad” parameter sets that introduced significant growth in the cost

function. Presumably, if this optimization continued until the variability in cost was

substantially reduced, the distribution of effective distance per stride would be more

narrow.

The point we wish to communicate with our results is that a relatively small

number of iterations, N = 36, along with zero predictive model information, was

able to generate a useful forward motion is relatively quickly by enforcing empirically

determined constraints exclusively with experimental data.

2.7 Relationship with Other Learning Perspectives

2.7.1 Kinematic Synergies

The method of kinematic synergies is a dimension-reduction approach prominently

seen in analysis of human manipulation tasks as a means of reducing the dimension-
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ality of DoFs of the hand (Jarque-Bou et al., 2019, 2016). A behavioral specification

(φ,Ω, γ) yields an analogous mechanism to provide a convenient reduction of the

number of independent coordinates in QR.

Each constraint Ωi is a row of Ω; by the fundamental theorem of linear algebra,

the span of rows of Ω, equivalently im(ΩT ), span the orthogonal complement to the

nullspace of Ω. Assuming we have a metric, we can consider the covector Ωi to be a

tangent vector of QR via the musical isomorphism (Lee, 2013), e.g., ΩT
i is a tangent

vector in the standard metric. Assuming the rank of Ω is n, we obtain n linearly

independent vectors that indicate how to “slave” the components of ẋ to efficiently

generate trajectories in QR that obey Ω · ẋ = γ; two immediate consequences follow.

The first is that for tangent vectors v, w, if Ωi(x) · v = Ωi(x) · w, then γi is the same

by definition. Thus, if damage occurs such that v is no longer possible, the vector Ωi

provides explicit knowledge of of how to covary the velocity components to produce

a w that preserves γi.

The second is to consider a family of behavior specifications that are a result of

the same constraint forms, i.e, (φ,Ω, γI), where γI is a indexed collection of constraint

values γ. Then, we see that the ΩT
i , interpreted as tangent vectors, provide a suitable

basis for TQR to naturally implement various choice of γI . Thus, the system, for

control inputs ui

ẋ =
n∑
i

ΩT
i (x)ui (2.73)

is able to implement the family γI with n ≤ dimQR inputs.

2.7.2 Scaffold

Humans exhibit a series of development milestones while learning to walk (Adolph

and Robinson, 2013). It has been found that incorporating such milestones into a

scaffold of nested behaviors can dramatically improve the rate at which robots can

iteratively learn complex behaviors (see Bongard (2011), and the references therein).
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Since the pullback of a differential form is defined for any full-rank map between

manifolds, our approach suggests a natural extension to a scaffold, i.e., we can just

as easily have a sequence of encoding templates QE1 , . . . QEn and corresponding be-

havioral specifications (φn−1:n,ΩEn , γEn), where φn−1:n maps template En−1 into En,

with the convention E0 := QR.

A scaffold like this, were constraints are iteratively pulled back, allows a learning

strategy to construct complex behaviors for highly actuated robots out of lower-DoF

“sub-behaviors”. Designers, be they engineers or autonomous optimization tools,

could initially design a curve x(t) ⊂ En−1 that obeys a behavior specification for En.

Then, they can use x(t) to augment an existing behavior specification on En−2. In

designing a new curve in En−2, we gain the ability to both preserve the first behavior,

while enforcing a new one. We could imagine that the dimension of each template

continues to grow through each pullback, allowing us to constructively lift component

behaviors into increasingly complex anchors.

2.7.3 Planning

A key feature of our encoding templates that removes many difficulties associated

with the conventional hypothesis of templates and anchors is that we do not suppose

that all curves in the encoding template can be realized as trajectories of the anchor,

but only the distinguished y(t). Equivalently, we only insist that the constraints are

satisfied along the specified y(t), rather than everywhere on the encoding template.

A corollary is that the constraints ωi are not suitable for planning. If the template

constraints corresponded to a kinematic car, the trajectories of the car other than

the one output we chose are not required to be achievable by the anchor system. If

the ωi are defined over the entirety of QE, they could be used to classify multiple

output curves, but we emphasize that this is not the same as requiring every output

curve to be achievable. Additionally, our constraints ωi, even if derived from a known
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model (e.g., a kinematic car) need not agree with the constraint values that produce

the dynamics that motivated their choice. E.g., by our definition of a behavior spec-

ification, we are free to have ω(y) · ẏ = γ for γ 6= 0, even if as designers we know

that γ = 0 agrees with a known system with Pfaffian constraints. The point being

that our construction requires only a specific trajectory of the template system to be

followed. If one attempted to generate additional trajectories of the template system

to lift, additional care would need to be taken to ensure it is possible to realize them.

2.7.4 Relationship with Output Tracking

A point we wish to emphasize is we are not only choosing an arbitrary output y(t),

and suggesting that it be stabilized. Doing such a thing is well within the wide litera-

ture that exists for output tracking. While our constraint-based optimization function

offers an empirically rapid solution technique for such a problem, our contribution is

that the constraints ωi define the output y(t).

We elected constraints first, and evaluated them as output functions along a known

behavior x0(t), which is how we originally obtained the definition of y(t). We then

argued re-implementation was the correct strategy. In this, we are arguing that a

desired behavior specification can be obtained from a known x0(t) in a very cavalier

way. Any set of ω, and φ, that meet our requirements are in principle equally good for

defining y(t), which is a component of our motivation for omitting y from the notation

(φ,Ω, γ). It also motivates the adjective “encoding” – we have found a description of

a desired behavior, but there is not a unique encoding.

2.8 Summary

We have developed a recovery strategy that represents a desired behavior as a

unique solution to a collection of constraint equations on output variables. By doing

so, we hope to gain several benefits. The first of which is dimension reduction. The
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desired behavior has a non-trivial kernel as a result of projecting using the phase-map

ϕ. An entire continuum of solutions for the robot exist in this space, allowing any

one of these choices to suffice. Secondly, we demonstrated that while model-based

constraints are sufficient to characterize desired template behavior, there exists an

open and dense subset of observation variables that allow the desired behavior to

be completely expressed using measurements. We note that we are not necessarily

defining first integrals, as the constraints are not required to be invariant.

We also show that while the above works in simulation, it also seems to produce an

effective recovery strategy on an experimental system using optimization. Our cost

function defined by the constraints discovers effective motion in only 36 iterations

– comparatively few. A rapid convergence rate of a recovery strategy is an obvious

benefit versus one slower, but we would further argue that other attempts to use

model-free reinforcement learning strategies on robots have not been as fruitful as one

would hope. Our technique eliminates the need to explore a parameter space blindly

– directions that are “good” or “bad” are entirely encompassed by the necessary

conditions resulting from the constraints. By projecting onto a sub-bundle of the

tangent bundle is a sufficient condition for planning compensating inputs, we argue

that contrary to “black-box” methods that are obstructed by high-dimension, we can

exploit high-dimension redundancy.

2.9 Future Work

The behavioral specification strategy we have outlined presents several immedi-

ate directions for future work. The most proximal would be a comparative analysis

to more conventional approaches for hardware-in-the-loop optimization, e.g., termi-

nal cost functions. We would expect our approach to out-perform other model-free

strategies as our constraints allow explicit classification of “good” directions and

“bad” directions, improving the conditioning of a cost function gradient. In partic-
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ular, for very high DoF systems, we would expect significant savings. E.g., while

an 18 DoF robot would generally be considered problematically high-dimensional for

model-free optimization, we would expect our technique to converge quickly, as with

18 DoFs over six limbs connected to a single torso, the system is highly redundant.

Additionally, while model-free optimization immediately suggests shooting methods,

since the constraints are locally (infinitesimally) defined, direct methods (e.g., collo-

cation) that “stitch” segments of curve together may be particularly appropriate for

our strategy. Better understanding algorithmic approaches to solving our proposed

constraint problem would be fruitful.

Another possible avenue to pursue is how to account for multiple, competing,

behavioral specifications. If the lifted constraints have orthogonal spans, then it

is immediate that both could be implemented by the same device. However, a more

interesting case is when behavior specifications compete – it may be fruitful to explore

how to perform design trade-offs in a formal sense to “best-fit” competing design

objectives.

Finally, while we considered the constraints as fixed functions, and the state as

mutable, it may instructive to allow the constraints themselves to be directly con-

trolled. More-so than parametric manipulation of constraint coefficients, though that

may be of interest, is allowing different learned constraints to be in effect for different

regions of statespace. This would allow “hybrid” constraints that can be activated

discretely; such a case is known to have interesting geometric properties (Kelly and

Murray , 1995).
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Figure 2.17: fai(t) for each limb, organized by phase. Darker colors are earlier values
of phase, while warm colors are later phase values. We observe that there is not an
apparent consistency between various limbs.

.
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Figure 2.18: The singular values of the fai data. It appears the data is predominately
two-dimensional, but in such a way that does not correspond direct deflection of each
tripod.

.
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Figure 2.19: The first two principal components of the fore-aft deflection data. The
dashed lines indicate measurement data, while the solid line is the Fourier-series
approximation of the data.
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Figure 2.20: Sagittal and aerial view of one leg. The red and yellow groupings of
markers are used to determine a relative deflection

83



Figure 2.21: A comparison of pre and post optimization. The We the represented

ξ = (ξx, ξy, ξθ) by the 2D position with x =
(
ξ2
x + ξ3

y

)1/2
and y = ξθ ∈ [0, 2π]. We

plotted the results of individual strides (the red pluses are the first ten percent of
strides; the blue “x”’s are the last ten percent of strides; as well as the contours of
a kernel smoothed density produced from those data (blue to cyan last points, black
to orange the first ten percent of points
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Figure 2.22: The cost function along for the enepod after N = 36 iterations.
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CHAPTER III

Event Selected Control and Analysis

3.1 Introduction

Running or walking legged robots make rhythmic and frequent contact with the

ground when executing a periodic gait (Alexander , 1984), a cyclic collection of time-

ordered postures. In order to better understand the dynamic properties of gaits,

and to facilitate the design of legged robots, we would like descriptive mathematical

models amenable to analysis and computation. For this purpose, we take a gait

to be encoded as a stable periodic solution of a dynamical system. The body-limb

mechanics that arise from cyclic limb motion are often taken to be piece-wise smooth,

where the smoothness of the description is lost due to the representation of contacts

(Holmes et al., 2006b). For each given leg arrangement, where some number of legs

are fixed to be in contact, and the others aerial, the governing equations are smooth.

As the feet or limbs make or lose contact with the ground, the dynamics induced

by contacts discretely change, possibly with simultaneous contacts of limbs with the

ground (Alexander , 1984), causing the governing equations to discontinuously jump

from one set to another.

Piecewise-smooth dynamical systems, which switch between smooth vector fields

when an execution arrives at discrete submanifolds (so called “guards”), can be con-

sidered a type of hybrid system (Goebel et al., 2009), which feature mixed interactions
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between continuous and discrete modes. Dynamical systems with discontinuous vec-

tor fields feature considerably increased complexity compared to the classical smooth

case, rich with phenomena that do not occur in smooth systems. Features such as

sliding modes (Utkin, 1977), non-determinism (Lygeros et al., 2003) and Zeno ex-

ecutions (Simić et al., 2000). Despite this, existence and uniqueness of solutions,

continuity with respect to initial conditions, Lyapunov-like arguments, etc. have re-

ceived much attention from the scientific and engineering community, as they arise in

many problems outside of locomotion (Goebel et al., 2009), including power systems

(Guckenheimer and Johnson, 1995), neurological modeling (Bizzarri et al., 2013),

and manufacturing (Pepyne and Cassandras , 2000).

For the case of non-intersecting switching surfaces, the existence of a continuous

flow (Filippov , 2013; Bernardo et al., 2008), first-order approximations (Dieci and

Lopez , 2011; Bizzarri et al., 2013), and stability (Aizerman and Gantmacher , 1958;

Lygeros et al., 2003) are well-studied. Given the ubiquity of simultaneous or near-

simultaneous touchdown and lift-off events in legged locomotion (Alexander , 1984),

an important case that has received less attention is where the transition surfaces that

govern the active smooth vector field intersect. For the special case where there are

exactly two transversely intersecting transition surfaces, it has been shown that the

flow is continuous, that variational equations producing first-order approximations

exist, and that stability criterion exist for periodic solutions. (Dieci and Lopez , 2011;

Ivanov , 1998)

In many of the proofs of the cited work, the class of hybrid system is restricted

implicitly. In this regard, it can be difficult to evaluate if a given system satisfies

the necessary assumptions for a theorem to hold. More recently, a new class of

piecewise-smooth differential equations, “event-selected vector fields”, was defined

and developed in Burden et al. (2016). Within, a positively-defined class of piecewise-

differentiable systems, which includes the general case of an arbitrary number of
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switching surfaces, was shown to have a piecewise differentiable flow, admit higher

order approximations, and to possess a collection of stability criteria.

In this chapter, we will employ these “event-selected systems” in the context of

robotics. A useful feature of said systems is that they possess a first-order approxi-

mation akin to a classic derivative. We will introduce a numerical method to compute

this approximation. Importantly, compared to a naive approach, we will show our

method eliminates the factorial complexity that has traditionally been a computa-

tional obstacle associated with multi-contact problems. Our method both reduces

the number of integrations needed, and simplifies the complexity of each integration.

Even for low-dimensional problems, we see run-times improve by a factor of several

hundred.

We will also demonstrate that event selected vector fields predict the existence of

a novel type of autonomous control that can stabilize a desired trajectory in a highly

distributed manner. We then present an algorithm that allows efficient implementa-

tion of this strategy is a distributed way, with robust timing characteristics that do

not require the high-bandwidth feedback of conventional closed-loop control.

Since our algorithm is custom and not easily adapted to off-the-shelf hardware, we

will conclude with a RHex-type robot (Saranli et al., 2001) with completely custom

hardware that implements our strategy.

3.2 Event Selected Systems

Since the results of the sequel depend critically on familiarity with event-selected

systems theory, and it is not broadly known, a few key components will be reproduced

here. The mathematical constructions of Burden et al. (2016) extensively employ

piecewise differentiable calculus, as presented in Scholtes (2012), which generalizes

many of the familiar properties of classical calculus.
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3.2.0.1 Piecewise Differentiable Calculus

The following is a restatement of key definitions and results in Scholtes (2012),

which contains comprehensive definitions and proofs for the interested reader. Let

U be an open subset of Rn (we will always assume the standard metric topology),

and let fi : Ui → Rn ∈ Cr(Ui,Rn) be a finite collection of functions. A function

f : D → Rn is called PCr if f is continuous, and for every x0 ∈ D, there exists an

open neighborhood U ⊂ D, x0 ∈ U , such that ∀x ∈ U , f(x) ∈ {f1(x), . . . , fn(x)}. In

which case, f is said to be a continuous selection of the selection functions f1, . . . , fk.

It is assumed that the individual domains of the selection functions have a mutual

domain where f is defined, i.e. D ⊂
⋂
i Ui. A selection function fi is said to be

active if f(x) = fi(x). In Rockafellar (2003), it is shown that this notion of piecewise

smoothness is in fact equivalent to any point x ∈ U having a neighborhood covered

by a finite number of closed sets {Pj}j∈J , Pj = Cl(Int(Pj)) such that x ∈ Pj, f is

smooth on Int(Pj), and ∇f can be extended continuously to ∂Pj, which coincides

with the intuitive notion of f consisting of a finite number of smooth pieces. PCr

functions are closed under composition, as well as the operations of pointwise max

and min; additionally, PCr functions are locally Lipschitz on a compact convex set V

with constant L = max{L1, . . . , Ln} for Li = supV ∇Fi.

PCr functions posses a first-order approximation called the Bouligand derivative,

analogous to the push-forward of a smooth function Tf : TD → TRn, Tf(x, v) =

(f(x), f ′(x; v)).

Definition III.1. A function f is called Bouligand differentiable at x0 if it is direc-

tionally differentiable, i.e, the limit

f ′(x0; y) = lim
a→0
a>0

f(x0 + ay)− f(x0)

a
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exists, and the map f ′ is a first order approximation of f ,i.e.

lim
x→x0

‖f(x)− f(x0)− f ′(x0;x− x0)‖
‖x− x0‖

= 0

A function f is called Bouligand differentiable if it is Bouligand differentiable at

all x in its domain. The alert reader will observe that the Bouligand derivative (B-

derivative) is positively homogeneous to the first order, but need not be linear. The

classical Fréchet derivative is recovered by definition if the map f ′ is required to a

linear. The B-derivative extends properties of calculus on smooth functions, namely

the chain rule Scholtes (2012, Theorem 3.1.1) and the fundamental theorem of calculus

(Scholtes , 2012, Proposition 3.1.1). Moreover, PCr functions enjoy a special structure

to their B-derivative (Scholtes , 2012, Prop. 4.1.3), namely that it itself is a PC(r−1)

function given by f ′(x0; y) = {∇fi(x0)·y | i ∈ Ief (x0)}. Ief (x0) := {i ∈ {1, . . . , k} |x0 ∈

Cl(Int({x ∈ U | f(x) = fi(x)}))}. In this case, the B-derivative looks like a collection

of finitely many pieces of the regular F-derivatives of the selection functions, where

in a given direction, the B-derivative is determined by the F-derivative of the active

function in that domain.

Remark. Since the B-derivative of a PCr function is itself PCr−1, for suitable r,

higher order B-derivatives are defined analogously, assuming the appropriate limit

exists.

3.2.1 Event Selected Vector Fields

The formal definition of an event selected vector field is incumbent upon the notion

of an event function.

Definition III.2 (Burden et al. (2016), Def 1). Given a vector field F : D → TD

over an open domain D ⊂ Rd, and a smooth submersion h ∈ Cr(D,R), we say that h

is an event function for F on D if ∃f > 0 s.t ∀x ∈ D, Dh(x)F (x) ≥ f . A codimension
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one embedded submanifold Σ for which h|Σ is constant is referred to as a local section

for F

Note that the requirement of h to be a submersion is inevitable, as necessarily

Dh(x) 6= 0 via the transversality being imposed. Similarly, fixed points of F are

prohibited.

Definition III.3 (Burden et al. (2016), Def 2). Given a vector field F : D → TD

over an open domain D ⊂ Rd, we say that F is event-selected Cr at ρ ∈ D if there is

a point ρ ∈ D and a collection of event functions {hj}nj=1 such that

• (event functions) hj is an event function for F on D for all j ∈ {1, . . . , n}

• (Cr extension) for all bn ∈ {−1, 1}n := Bn, with

Db = {x ∈ D : (hj(x)− hj(ρ))bj ≥ 0}

F |IntDb
admits a Cr extension Fb : D → TD such that DFb(x)hj(x) ≥ v, for a

constant v ∈ R>0

We use the notation ECr to denote a vector field that is event-selected at some

point ρ. The second condition is assuming (without a loss of generality) that the

zero level sets of the event functions hj is where all non-smoothness of F is confined.

Equivalently, the zero level sets of the event functions are the guards of the hybrid

system. Note that while the vector field F must be simultaneously transverse to the

collection of event functions, the level sets of hj do not need to be transverse to each

other, which is more general than the prior work reference above (Dieci and Lopez ,

2011), (Ivanov , 1998).

A essential notion captured by the definition of event-selected systems is the re-

quirement that a minimal amount of progress is made on the value of the event

functions hj, mandating that arrival at an event surface must occur, and that each
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transition manifold is crossed exactly once by a given execution. At an intuitive level,

the vector field must “climb” the landscape determined by the event functions, e.g.,

the solutions are always traveling uphill.

We summarize the existence and uniqueness properties in the two following theo-

rems.

Theorem III.4 (Local Flow: Burden et al. (2016), Theorem 4.). Suppose the vector

field F : D → TD is event-selected Cr at ρ ∈ D. Then there exists a flow φ : F → D

for F over a flow domain F ⊂ R×D containing (0, ρ) such that φ ∈ PCr(F , D) and

∀(t, x) ∈ F : φ(t, x) = x+

∫ t

0

F (φ(s, x)) ds (3.1)

While the full proof of the theorem need not be reproduced here, we will provide

a sketch that motivates how ECr vector fields are natural extensions of smooth ones.

By the definition of an event function, hj(ρ) = 0, in which case the event surfaces

partition a neighborhood U of ρ into 2n components Db, b ∈ {−1, 1}n, where each

region is identified by the sign of the event functions {hj}nj=1, e.g., b = (−1, 1, 1)

identifies the region where h1 < 0, while h2, h3 > 0. Since the vector F has its

discontinuities restricted to the event surfaces, Fb|Int(Db)
= F |Int(Db)

. Each Fb is a

smooth vector field defined over all of D, so via classical results, each has a maximal

smooth flow ϕb : F b → U, F b ⊂ R × U , for U ⊂ D. As the smooth extensions Fb

also have the surfaces determined by {hj}nj=1 as transverse local sections, the implicit

function theorem produces locally defined time-to-impact maps τ
hj
b : U

hj
b → h−1

j (0).

U
hj
b is an open set containing ρ, such that,

∀x ∈ Uhj
b :

(
τ
hj
b (x), x)

)
∈ Fb, and ϕb(τ

hj
b (x), x) ∈ h−1

j (0)

Repeated for each extension, this produces a collection of smooth flows ϕb and impact

time maps τb jointly defined on some open set V containing ρ. The contents of
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the proof of Thm III.4 is demonstrating that the flow of the vector field F can be

constructed via composing these smooth objects together, so that the resultant PCr

function has smooth pieces determined by φb, with non-smooth points at the event

surfaces.

By Eqn. 18 of Burden et al. (2016), there exist functions τ+
b : R × D → R and

τ−b : R ×D → R that are the “budged time-to-impact” functions. Each returns the

positive or negative time, respectively, required to flow out of a region Db without

exceeding a given time budget. With these budgeted times, loosely speaking, the PCr

functions ϕ+
b (t, x) = (t−τ+

b (t, x), φb(τ
+
b (t, x), x) and ϕ−b = (t−τ−b (t, x), φb(τ

−
b (t, x), x)

are defined. Each flows a region Db forward or backward in time until the trajectory

φb crosses the closest event surface, yet for times larger (respectively smaller) than

the arrival time, it is the identity map. The local flow can then be defined as (Burden

et al., 2016, eq.30)

φ = π2 ◦

(
+1∏
b=−1

ϕ+
b

)
◦

(
−1∏
b=+1

ϕ−b

)
(3.2)

Every ϕb is jointly defined on some open neighborhood of ρ, so that by composing

every ϕb in lexigraphic sequence (though, any causal order will suffice) determined by

Bn, a flow is defined that coincides with the flow in Fb when Fb is active. For details,

see Burden et al. (2016).

With this strategy, it is clear that the smooth extension chosen in Def III.3 does

not effect the outcome, as the associated ϕb is stationary in the extended domain.

Corollary III.5 (Global Flow: Burden et al. (2016), Corrollary 5)). If F is ECr at

ρ ∈ D, then there exists a unique maximal flow φ ∈ PCr(F , D) for F . This flow has

the following properties:

1. For each x ∈ D, the curve φx : Fx → D is the unique maximal integral curve

of F starting at x.

2. If s ∈ Fx, then Fφ(s,x) = Fx − s = t− s : t ∈ Fx
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3. For each t ∈ R, the set Dt = {x ∈ D : (t, x) ∈ F} is open in D and φt : Dt →

D−t is a piecewise-Cr homeomorphism with inverse φ−t.

Earlier, we observed that others previously established the existence and continu-

ity of the flow for more general classes of discontinuous vector fields. Here, the flow of

an ECr systems is shown to be PCr, a more structured set of functions compared to

the set of merely continuous functions, especially in light of piecewise-differentiable

calculus. We remark that the flow φ is Lipschitz continuous due to being PCr.

Given that a key tool used in the construction of the global flow is the local

section property of the event functions, which is an open condition, it is reasonable

to expect persistence and continuity of the flow under structural perturbations to

either the vector field F or its associated event functions. Indeed, that is the case,

as summarized in the following two results, prefaced with some notation. The space

Cr (qb∈BnD,qb∈BnTD)) is regarded as a vector space under pointwise addition of

tangent vectors, and given the norm

‖F‖Cr :=
∑
b∈Bn

∥∥∥F |{b}×U∥∥∥
Cr

That is, it takes the Cr-norm of each selection function when it is active, and sums

them up. The norm is taken to be uniform, in that ‖F −G‖Cr < ε =⇒ ∀x ∈

U,∀k ≤ r,
∥∥(DkF −DkG)

∥∥
op
< ε.

Theorem III.6 (Vector Field Perturbation, Burden et al. (2016), Theorem 12).

Let F ∈ Cr (qb∈BnD,qb∈BnTD)) , h ∈ Cr(D,Rn) determine an ECr vector field at

ρ ∈ D, r ≥ 1. Then for all ε > 0 there exists δ > 0 such that for all F̃ ∈ BCr

δ (F ).

1. Pairing h with F̃ determines an ECr vector field at ρ

2. The perturbed flow φ̃ : F̃ → D obtained by III.4 to F̃ satisfies φ̃ ∈ BC0

δ (φ) on

F ∩ F̃ and (0, ρ) ∈ F ∩ F̃
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3. There exists a piecewise-differentiable homeomorphism η ∈ PCr(U, Ũ) defined

between neighborhoods U, Ũ ⊂ D of ρ such that η|Bδ(ρ) ∈ B
C0

ε

(
idBδ(ρ)

)
and

η ◦ φ(t, x) = φ̃(t, η(x)) (3.3)

For all (t, x) ∈ R× Rd such that x ∈ U, t ∈ Fx ∩ F̃η(x), and φ(t, x) ∈ U .

We note that the stipulation that r ≥ 1 is essential, as otherwise, the collection

{hj}nj=1 may not be event functions for the perturbed vector field F̃ .

Theorem III.7 (Event Function Perturbation, Burden et al. (2016), Theorem 13).

et F ∈ Cr (qb∈BnD,qb∈BnTD)) , h ∈ Cr(D,Rn) determine an ECr vector field at

ρ ∈ D, r ≥ 1, and suppose that Dh(ρ) is invertible. Then, ∀ε > 0 sufficiently small

there exists a δ > 0 such that for all F̃ ∈ BCr

δ (F ), h̃ ∈ BCr

δ (h):

1. There exists a unique ρ̃ ∈ Bδ(ρ) such that h̃(ρ̃) and h̃(x) 6= 0 for all x ∈

Bδ(ρ) \ {ρ̃};

2. Pairing h̃ with F̃ determines an event-selected Cr vector field at ρ;

3. The perturbed flow yielded by theorem III.4, φ̃ : F̃ → D satisfies φ̃ ∈ BC0

ε (φ) on

F̃ ∩ F .

4. There exists a piecewise-differentiable homeomorphism η ∈ PCr(U, Ũ) defined

between neighborhooods U, Ũ ⊂ D containing {ρ, ρ̃} such that η|Bδ(ρ) ∈ B
C0

ε

(
idBδ(ρ)

)
and

η ◦ φ(t, x) = φ̃(t, η(x)) (3.4)

For all (t, x) ∈ R× Rd such that x ∈ U, t ∈ Fx ∩ F̃η(x), and φ(t, x) ∈ U

The above perturbation results show that the solutions of an ECr system are con-

tinuous with respect to perturbation of their determining parameters. It is important

that such a property hold, since we hope to apply event-selected theory to physical
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systems – if they did not, the theory would be too fragile to use on real objects with

noise and finite precision.

The perturbation of event functions preserving the topological structure of the

flow suggests appealing relevance for legged locomotion. If crossing of event surfaces

coincides with limb contact or removal from the ground, the results in III.6 and

III.7 indicate that transitions that happen early or late (within some neighborhood

of nominal) will not cause a catastrophic change in response of the robot. In the

sequel we will employ this quality to argue that multi-legged robots described via

event-selected vector fields incorporate automatic resiliency against uneven ground

and realistic implementation constraints (finite bandwidth, processing time, etc).

3.3 First Order Properties of Event Selected Systems

The above theorems establish that event selected systems admit solutions and are

topologically tolerant of perturbation. However, it still represents a class of objects

difficult to analyze. Even conventional nonlinear systems are rife with challenges in

their analysis, but we eventually hope to establish not just foundational properties of

ECr behavior, and also articulate their utility for the modeling and control of legged

robots. One of the most prolific tools for the stability analysis of smooth nonlinear

dynamical systems is differential linearization, wherein a first order variational equa-

tion that is more tractable to analyze is used over the original dynamics to estimate

local behavior along a trajectory.

The first order behavior of a smooth flow around a particular solution curve is

determined with using the variational equation. It is a classic result (Hirsch et al.,

2012, pg. 151) that for F ∈ Cr(Rn,Rn), r ≥ 1, the variational equation is given by

d

dt
X(u) = DxF |φ(u,x) ·X(u), X(0) = X0 (3.5)
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The key feature deduced the variational equation is that Dxφ(t, x) = X(t) (or con-

versely, defines it), which allows us to approximate the true nonlinear solutions for

initial conditions near x(0) to first order as φ(t, x(0))+X(t) by integrating Eqn. (3.5).

We also remark that X(t) · F (x0) = F (φ(t, x0)) as Dxφ(t, x) · F (x) = F (φ(t, x)).

For an PCr flow, a similar first-order approximation holds, but the associated vari-

ational equations must account for the event surfaces. In the case of a single surface

with either transversal crossing or sliding modes, previous authors (Müller , 1995;

Dieci and Lopez , 2011) established that the variational equation must be updated

discontinuously with the so-called saltation matrix which accounts for the differing

arrival times of solutions starting nearby the trajectory of linearization. Extensions

to multiple intersecting surfaces of discontinuity were considered in Ivanov (1998),

Bernardo et al. (2008), Dieci and Lopez (2011), and Bizzarri et al. (2013), where each

surface crossing induces multiplication by a saltation matrix. As such, the compu-

tation of the first-order approximation of the flow of an event selected vector field

using this approach has combinatorial complexity. Due to this, the cited authors

(e.g., Ivanov (1998)) establish that the computation of the saltation matrix for a

number of surfaces larger than two is possible, but not provide explicit expressions.

In an algorithmic improvement, the results continue from Burden et al. (2016) to

synthesize the full variational equation with jump discontinuities using PCr calculus,

were the combinatorial complexity of the transition order is encoded in the Bouligand

derivative of the flow, whose definition, when evaluated, will capture all cases. Since

the full statement Burden et al. (2016) contains inordinate notational preliminaries,

we will omit a full reproduction and summarize an important insight through a illu-

minating special case. The above definition of an ECr vector field implies that for

any x ∈ D−1, given a large enough time tf , will satisfy φ(tf , x) ∈ D+1. To illustrate

the worst case (in that the largest possible update of saltation matrices need to be

determined), further more assume that φ(s, x) = ρ for some time s, i.e. the number
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of saltation matrices differing from the identity is maximized. By taking the Bouli-

gand derivative of Eqn. 3.2, which satisfies the chain rule, we may immediately write

(avoiding the details of the indexing of j, as much of the aforementioned notation is

making it precise, but it accounts for each flow domain other than the last),

Dφ(t, x : v, w) = Dφ(t− s, ρ) ◦

[
m∏
j=1

Dϕ+
j (0, ρ)

] 0

Dφ(s, x)


v
w

 (3.6)

Where the first and last terms expressions in Dφ are restricted to b = −1 and

b = +1. In those regions, φ is classically differentiable, so that Dφ arises from the

classic variational equation, Eqn. (3.5). It is immediate that the saltation matrices are

exactly the term
[∏m

j=1 ϕ
+
j (0, ρ)

]
, which relates the smooth fundamental matrix pre-

transition to the fundamental matrix post-transition. In other words, the saltation

matrices provide a discrete update to the variational equation as it encounters a hybrid

event. Rather than proceed as authors did in Ivanov (1998), where each surface was

considered independently, the usage of PCr calculus allows the construction of the

saltation matrices in direct terms of the flow and its component vectors fields.

The conclusion of this discussion of the first-order properties of ECr systems it

that they admit much of the same kind of first-order approximation that the smooth

case does. Additionally, first order properties are derived using PCr calculus, which

generalizes classic calculus in familiar ways. As a result, local behavior, stability, and

other questions determined via linearization for smooth systems can be analogously

extend to ECr systems with adjustment. A result of significant relevance is the

following corollary.

Corollary III.8 (Burden et al. (2016), Prop. 14). Let γ : R→ D is a periodic orbit

of F ∈ ECr(D). Let P ∈ PCr(S,Σ) be the Poincaré map (exists via (Burden et al.,

2016, Theorem 10)) over local section Σ, where S ⊂ Σ has a fixed point P (ρ) = ρ,

and DP is a contraction over tangent vectors near ρ; i.e. - there exists c ∈ (0, 1),
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δ > 0, and ‖·‖ : Rd−1 × Rd−1 → R such that

∀x ∈ Bδ(ρ) ⊂ S ∩ Σ, v ∈ TxΣ : ‖DP (x; v)‖ ≤ c ‖v‖

Then γ is an exponentially stable periodic orbit.

Cor. III.8 is of supreme relevance for much of the sequel, as we are ultimately in-

terested in employing piecewise-constant event selected vector fields as controllers to

synthesize high-performance gaits for a legged robot. As we are implicitly assuming

that a gait is a stable periodic orbit, understanding its stability in terms of the Bouli-

gand derivative of the Poincaré map is useful for predicting the the gait’s asymptotic

properties.

3.4 Summary of ECr Systems

ECr systems are piecewise-differentiable systems with a finite number of transition

manifolds, represented as zero level-sets for the event functions {hj}mj=1. The event

functions locally partition the state space in a neighborhood of a point ρ into up to

2m pieces. On each piece, smooth functions fb, b ∈ Bm := {−1, 1}m define dynamics

under which individual transitions are irrevocable. Solutions evolving under such

dynamics can experience up to m! different transition sequences when passing through

that region of state-space. Burden et al. (2016) show that ECr vector fields have a

piecewise differentiable and continuous flow (Burden et al., 2016, Cor. 5 ) that is

conjugate to a flowbox via a piecewise-differentiable map (Burden et al., 2016, Thm.

11 ). The calculus-like properties of PCr functions allow immediate consideration of

first-order properties of solutions, which is informative for stability analysis of periodic

solutions.
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3.5 Numerical Estimation of the Bouligand Derivative

While the Bouligand derivative of the flow of an ECr vector field may in general

be exactly determined by the variational equation, explicit numerical methods are

required if we hope to apply the theory of event-selected systems to physical systems.

As we saw above, a substantial advantage of ECr theory is that the resultant flow is

PCr, and that PCr extends traditional calculus in familiar ways. However, given the

relative obscurity of PCr calculus, there is a lack of numerical tools that have allowed

classical calculus to have such rich application to physical processes, e.g. numerical

integration and differentiation.

Much akin to the numerical differentiation tools that use finite step sizes to approx-

imate the Jacobian of a classically differentiable function, a finite step size numerical

method can be used to estimate the Bouligand differential Dφ of the flow φ arising

from an ECr system.

We now present an algorithm to compute the B-derivative at the point of mutual

intersection of the event surfaces (we always denote by ρ). We recall that Dφ is a

piecewise linear map. Equivalently, we are interested in determining the saltation

matrices from Eqn. (3.6); since we can always pre- and post multiply by smooth

monodromy matrices for flows of arbitrary length that start in D−1, and terminate

in D+1, the saltation matrices at (0, ρ) are the dominant object to compute.

A major difficulty that we must account for is the transition order of an solution,

as can be seen in Eqn. (3.6). The transition order of points v + δ and v − δ in some

neighborhood of v may be different for all δ > 0, resulting in m! linear maps that

determine Dφ around ρ, which compose into the piecewise-linear B-derivative.

3.5.1 Factorial Complexity of ECr flows

We now assume that we have a dynamical system with dimension d, with 0 ≤

m ≤ d (potentially intersecting) transition manifolds that we wish to numerically
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investigate. Unlike the more general case above, we assume that the event manifolds

are transverse to each other. Since the flow is smooth in each region that undergoes

a fixed transition sequence, we could use conventional numerical differentiation tech-

niques which evaluate at least d + 1 points for each of the m! transition sequences.

Typically, integrating from an initial condition is the obvious way to determine its

consequent transition sequence. Therefore, even assuming the results are cached, for

n data points one would need m!(d + 1) + n integrations. We present an algorithm

that instead requires 2m −m+ d+ n integrations, producing a combinatorial m!/2m

improvement in execution time. If m � 1 or d � 1, this is particularly promi-

nent. Even in a simple case, such as the d = 12 dimensional phase space of a single

rigid body, with m = 3 contacts, the naive approach requires 78 + n integrations vs.

our 17 + n integrations – a better than ×4 improvement. Moreover, we will do so

without ever integrating the non-linear dynamics, a computationally expensive task,

which in practice will yield a speed-up far more considerable than that suggested by

improvement in the number of integrations needed.

Our algorithm provides this improvement by estimating a first order approxima-

tion of the flow via triangulation of state space into m! regions using 2m − m + d

triangulation points. This triangulation is selected so that all trajectories starting in

a given region undergo an identical transition sequence and therefore share the same

linearized approximation to the flow. The images of the 2m triangulation points allow

all such linearizations to be recovered efficiently, providing the speedup.

To validate the algorithm, we tested it on cases where the first order approximation

is known exactly, as well as on a motivating multi-contact example of a legged chair

impacting a springy ground. The multi-legged chair was chosen as it is reminiscent

of multi-legged robot and animal models with dynamic limbs, as well as having an

obvious attracting equilibrium state — stationary with all legs on the ground —

despite the contact sequencing possibilities.

110



3.5.2 Notational Preliminaries

Let F : U → Rd be a an ECr vector field on an open set U ⊆ Rd, ρ ∈ U, and

{hj : U → R}mj=1 be a finite number of smooth functions. We will define a vec-

tor valued transition function h(x) := (h1(x), . . . , hm(x)). We will use the notation

Hj := h−1
j (h(ρ)) for the event surfaces, each of which by definition is a codimension

1 embedded submanifold of U . Since we will refer to several ECr systems simul-

taneously in the sequel, we will use the tuple (A, f) to refer to vector field A and

transition functions f that define an ECr system.

A key result we concluded in Thm III.4 is that event selected systems have flows

that are PCr, imbuing them with many useful properties (Scholtes , 2012). We de-

note by φ(t, x) the result of flowing initial state x for t units of time. We addition-

ally employ Thm. III.4 which gives us the property that ECr systems admit PCr

time-to-impact functions for the transition manifolds Hj. Recall, the time-to-impact

function τFj satisfies φ(τFj (x), x) ∈ Hj and is also PCr. We refer to the image of

τF :=
(
τF1 , . . . , τ

F
n

)
as impact-time coordinates, and note that if m < d then h can

easily be extended to make m = d and render τ invertible (see Eqn. 3.11).

To avoid repetition, we will use x ∈ U for a typical point, y = h(x)− h(ρ) for its

image under h which is in the neighborhood of 0, and t = τF (x) for its vector of impact

times which is also in the neighborhood of 0. For later use, we note that the transform

of the vector field into impact-time coordinates is the vector field of all negative ones,

i.e. −1 := (−1, . . . ,−1) ∈ Rd, because by definition τ ◦φ(t, x) = −1t+τF (x) (Burden

et al., 2016). The function sign : Rd → Bd is the vectorized signum function given by

∀x ∈ Rd : j ∈ {1, . . . , d} : eTj sign(x) =


−1, xj < 0

+1, xj ≥ 0

(3.7)

We wish to compute the first-order effect of a perturbation δx on an initial con-
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dition x(0) that starts prior to any contact, and evolves to state x(t) that is post

all contacts, i.e., when x(0) ∈ D−1 and φ(t, x(0)) ∈ D+1. Thus, the B-derivative

Dφ(t, x;u, v), for t a sufficiently large value, is the first-order map we are looking for,

as φ(t+ δt, x+ δx) ≈ φ(t, x) +Dφ(t, x; δt, δx).

Unlike the classical (Fréchet) derivative, or Jacobian, the B-derivative of the flow

is in general not linear, but for PCr functions it is always continuous and piece-wise

linear (Scholtes , 2012). We now will use a critical feature of PCr flows, which is that

the linear pieces depend solely on the order in which transition manifolds are crossed

(as can be seen from Eqn. (3.2)).

3.5.3 Impact time order induces a cone decomposition

Define the map s : Rm → Sm to identify a permutation s(t) := σ ∈ Sm which sorts

the coordinate components of t, i.e. tσ1 ≤ tσ2 ≤ · · · ≤ tσm . Here Sm is the symmetric

group of order m – the collection of invertible maps from {1, . . . ,m} to itself.

Note that this does not define s uniquely for any t ∈ Rm, because if the times ti are

not distinct, s needs only pick some arbitrary permutation among the permutations

that sort the t. For example, if t1 = t2 < t3 < . . . then both (1, 2, 3, . . .) and

(2, 1, 3, . . .) are valid values for s, and either one could be selected arbitrarily. Thus,

s is uniquely defined on a dense open set consisting of points with distinct impact

times. For t with ti all distinct, we can define subsets

K σ := {t ∈ Rm|s(t) = σ, tσi < tσi+1
}

The K σ sets are open If ti are distinct then adding a δ ∈ Rd such that 2‖δ‖∞ <

mink(tσk+1
− tσk) leaves the order unchanged.

Each K σ is a cone, and is unbounded along the direction 1 For α > 0,

s(t) = s(αt) = s(α1 + t).
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Each K σ is finitely generated We will use the notation χ
A

to designate the

indicator vector of a set A ⊆ {1 . . . n} (n known from context). This is the vector

in {0, 1}n whose components are 1 for elements of A and 0 otherwise. Using this

notation, we define the prefix vectors of σ to be

p
(σ)
k := χ

σ({1...k}) (3.8)

i.e. [p
(σ)
k ]i = 1 if, and only if, there is a j ≤ k such that σj = i.

We will often omit the ·(σ) superscript when σ is clear from context. Clearly,

p0 = 0, pm = 1, and if e.g., σ1 = 3, σ2 = 1, then p1 = (0, 0, 1, 0 . . .), and p2 =

(1, 0, 1, 0 . . .). Note now that K σ is the interior of the cone span of p0, . . . , pk, i.e.

K σ = int ({
∑m

k=0 αkpk|αk ≥ 0}) .

The cl(K σ) partition Rm Every point x ∈ Rn is the limit of a sequence of points

with distinct coordinates, therefore every point in Rd belongs to one or more cl(K σ).

Thus we have shown that K σ is a convex finitely generated open cone, and that

the collection of all such closed cones covers Rm. Note that if we had used the convex

hull operation of the prefix vectors instead of a cone span operation, we would have

obtained the venerable and closely related Kuhn decomposition of the hypercube into

simplices (Kuhn, 1960). The interested reader should consult Scholtes (2012, Prop.

2.2.6) for further details and proofs concerning the decomposition of a piecewise-linear

map over conical domains.

3.5.4 Definition of the sorting map

For an event selected system (F, h), we define the sorting map of (F, h) to be the

composition rF := s ◦ τF , rF : U → Sm. rF is a map which identifies a permutation

that orders the impact times. We suppress explicit inclusion of the dependence of τF

on h for notational clarity. We will always use unique notation for transition surfaces
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in the sequel to remove any ambiguity. It follows from Burden et al. (2016, Eqn.

65) that if t is large enough so that all transitions have occurred, Dφ(t, x; 0, v) =

M(rF (x)) · v, where M : Sm → L(Rd,Rd) is a linear operator for each sequence of

contacts, i.e. the m! pieces of the B-derivative of the flow are a collection of matrices

indexed via Sm through the map rF . The matrices M are the conventional Jacobians

that arise when the flow is restricted to a domain
(
τF
)−1

(cl(K σ)) that undergoes

a fixed transition sequence, since on each such domain the flow φ(t, x) for t large is

smooth.

Take m+ 1 affinely independent1 points {ti}m+1
i=1 in the cone K σ, and define β :=

maxi ‖ti‖∞. Because the flow in impact time coordinates is the constant vector −1,

after β units of time all the ti points will have all coordinates non-positive with values

ti − β1, indicating that their transitions happened in the past. Remapping back to

the original coordinates, ti = τF (xi) for some choices of xi, and ti − β1 = τF (x′i)

for the specific x′i = φ(β, βxi). At the limit β → 0+, φ(β, βxi) → M(σ) · xi + o(β2),

where M(σ) is the unique linear map mapping xi to x′i for all i. This map is M(σ)

is the “piece” of the B-derivative Dφ(β, ρ; 0, ·) corresponding to the fixed transition

sequence rF (xi) = σ, which is by construction, the same σ for all the xi in question.

This computation would not be advantageous for a general non-linear vector field

F , as finding the map τF at a point is equivalent to integration of the vector field F

from that point, which is generally numerically burdensome. However, in the case of

ECr systems we need not integrate F . The flows of ECr system have a local approxima-

tion called the sampled vector field (Burden et al., 2016, §7.1.3), a piecewise constant

ECr vector field F̃ , whose pieces are defined by an arrangement of hyperplanes, and

whose flow φ̃ matches φ to first order at (0, ρ), i.e. Dφ̃(0, ρ;u, v) = Dφ(0, ρ;u, v). We

1points v0, . . . , vk are affinely independent if v1 − v0, . . . , vk − v0 are linearly independent; equiv-
alent, if any strict subset of the vectors span a strict subset of the affine span. Observe this is
not the same as being linearly independent - we only want the “difference vectors” to be linearly
independent.
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define the following. For all b ∈ Bn, let

Db := {x ∈ U | bj ·Dhj(ρ)(x− ρ) > 0} (3.9)

and let D̄B be the closure of Db. By definition, F |D̄Db = fb |D̄b is a smooth vector field.

By taking the limiting value of fb at ρ, we subsequently define the piecewise-constant

vector field F̃ : U→ TU by

Definition III.9 (Sampled Vector field).

∀b ∈ Bn,∀x ∈ Db : F̃ (x) := fb(ρ) (3.10)

For all points x ∈ ∂D̄b, F̃ (x) = F (ρ).

F̃ (x) is called the sampled vector field associated to F , and its flow is denoted φ̃,

which is called the corner flow.

3.5.5 The corner flow

To simplify the problem, we can always define a change of coordinates so the

submanifolds Hj are re-mapped to the standard coordinate planes. Indeed, if m = d,

the function h is already the required coordinate change. If m < d, a diffeomorphism

can be completed from h, through the following procedure. Choose a matrix Q ∈

R(d−m)×d such that Im(QT ) = ker(Dhρ), i.e. ker(Q) = ker(Dρ)
⊥. Define

ĥ(x) := (h(x)− h(ρ), Q · (x− ρ)) (3.11)

By construction Dĥ = Dhρ⊕Q is invertible and thus ĥ is a local diffeomorphism from

a neighborhood of V of ρ to a neighborhood of 0 = ĥ(ρ). Let W := ĥ(U ∩ V ) be the

image of the entire domain V ∩U under this map, and φW : R×W→W be the flow

φ conjugated into these new coordinates φW(t, y) := ĥ(φ(t, ĥ−1(y))).
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It is tempting to try and reduce the m < d case to the m = d case by extending

the submersion h to a diffeomorphism into Rd. It is always possible to extend the

function h to a local diffeomorphism ĥ such that the sampled vector field is event-

selected with respect to every component of ĥ (note that above, the Lie derivatives

of the components defined by Q is not required to be positive). Whether or not it

is possible for the non-linear case is not immediately apparent. See appendix A for

details. More importantly we will demonstrate that such a rectification is unnecessary

and undesirable, as it would only act to increase computational complexity.

We now change coordinates through ĥ to simplify the computation. Since we’re

interested in the sampled vector field, we denote with G̃ the transform of F̃ under ĥ.

As we did in the definition of F̃ , G̃ has components Gb. By construction,

∀j, Nj := ĥ(Hj) = {y ∈ h(U) | 〈ej, y〉 = 0} (3.12)

where ei denotes the i-th standard basis vector. Then the new vector field components

Gb in the ĥ coordinates,for a given b ∈ {−1, 1}, are

Gb(y) = Dĥ · F̃ (ĥ−1(y)) (3.13)

The map ĥ also defines the generalized orthants

D̃b :=
{
y ∈ Dom G̃

∣∣∣b ∈ Bd, b · y > 0
}

(3.14)

Now, for gj(y) := 〈ej, y〉, j = 1, . . . ,m, we see clearly, at y = ĥ(x),

Dgj(y) · G̃(y) = [Dh(x) · F (x)]j = Dhj(x) · F (x) ≥ f. (3.15)
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Therefore, the general value of G̃, which is still piecewise-constant, is given by,

G̃(y) = G̃sign(y)(y) = G̃sign(y) (3.16)

Thus, (G, g) is event-selected (so has associated maps rG, τ
G, etc.) at 0 ∈ W w.r.t

the first m coordinates. It consists of 2m components of dimension d. Its sampled

companion,
(
G̃,D0g

)
, has a flow by φ̃W : R × T0W → T0W, and we denote its

sorting order map as rG : T0W → Sm (As a matter of notation, we will just use the

“∼” to denote objects in a tangent space). The transition manifolds of G̃ are the

first m coordinate axes, and the uniform lower bound on the rate of crossing those

necessarily holds: 〈ei, Gb〉 ≥ f > 0 for i ∈ {1, . . . ,m}. For the other coordinates, we

only conclude 〈ei, Gb〉 ∈ R for i ∈ {m+ 1, . . . , d} – there is no obvious bound.

If m < d, the impact time maps do not define a homeomorphism. However,

instead let πm : Rd → Rd be the standard projection, i.e. πm(a, b) = (a, 0), a ∈ Rm.

Then, it is immediately clear that rG̃ ◦πm = rG̃, as the map rG̃ has no dependence on

the remaining d −m coordinates in which no transitions occur. In other words, the

flow of G only experiences vector field discontinuities when its first m components

cross 0, and is otherwise continuous in the remaining coordinates.

Rd and TxRd are isomorphic as vector spaces in an obvious way (Lee, 2013, Prop.

3.2). If e1, . . . , ed is a basis for W , the basis ∂
∂e1
, . . . , ∂

∂en
is a natural basis for T0W . In

these coordinates, the isomorphism is given by y = (y1, . . . , yd) 7→ δy = (y1, . . . , yd),

which we name I. Through IU , we can similarly identify the sets (or any set) D̃b and

Nj as subsets of T0W . Thus, we deliberately employ the notation “y ∈ T0W” to

implicitly mean δy ∈ T0W such that I = δy, conflating W and T0W . Analogously,

we define IU : U → TρU to be the coordinate isomorphism on U . Equivalently,

elements from an open neighborhood and tangent vectors can be conflated without

ambiguity.
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For the sampled vector field, it follows from Burden et al. (2016, Eqn. 64) that

the τ G̃ is piecewise linear. In fact, for G̃, y ∈ T0W , the components are:

τ G̃i (y) :=
yi
Gi
b

, y ∈ D̃b (3.17)

What we can conclude from the proceeding is that an ECr system locally looks

like a flow box via iterated “coordinate changes”, diagrammatically as:

(F, h)
ρ,x∈U

(G, g)
0,y∈W

(1, id)
0,t∈T

(
F̃ , Dh |ρ

)
0,δx∈TpU

(
G̃,Dg |0

)
0,δy∈T0W

(1, id)
0,t∈T0T

ĥ

lim
x→ρ

IU lim
y→0

IW

τG

lim
t→0

Dĥ DτG

(3.18)

F is sampled at ρ to produce the piecewise constant vector field F̃ taking on

the values Fb. F̃ is transformed by h to G̃, which is conjugate to a flowbox by the

piecewise linear impact time map τG. The quotes “·” above are in reference to the

fact that the map τG is not a coordinate change for the m < d case, but rather a

projection into Rm.

Also implied by the diagram is that the sorting time maps {rA}A∈{F,G are locally

preserved – the transition sequence is unchanged (for an potentially increasingly small

open domain) between these transformations. This is obvious for coordinate changes

h. However, it must be shown that the limiting process that yields the sampled

vector field also has this property. If the transition order between the non-linear and

sampled vector fields are different, we would not expect their B-derivatives to agree.

We will see in the sequel that only the first m-coordinates are essential to deter-

mining the map Dφ, as they alone determine the transition sequences.
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Figure 3.1: The PCr impact time map τ rectifies a general set of points that share
the same transition sequence into a cone in τ coordinates. It additionally maps the
vector field to a flowbox. The light yellow indicates a subset of points that all have
transition sequence M1,M2, while the green domain are points with M2,M1 as its
transition sequence. The light-grey lines are solution curves, while the dark black
lines are transition manifolds.

3.5.6 Differential Equality

Recall, we are attempting compute Eqn. (3.6). The principal difficulty in do-

ing so is the appearance of the saltation matrix terms. We conclude that if we can

compute Dϕ+
i (0, ρ) efficiently, the factorial difficulty of estimating the B-derivative is

resolved, as the remaining smooth components are solved classically for large times

without requiring a factorial number of integrations. For small times, these mon-

odromy matrices limit to the identity, so can be ignored, and the saltation matrix

dominates.

For simplicity, we assume the system has been transformed under ĥ toW -coordinates.

Since PCr calculus obeys chain rule, there are no difficulties transforming back to the

original U coordinates. Additionally, we assume employ I implicitly, and assume that

(G, g), and (G̃,D0g) are defined on the same set W . We do that as we are interested in

the B-derivative as a first-order approximation. A coordinate-free perspective would

require either jet bundles or Riemannian geometry, the complexities of both we can

avoid since being ECr is a local property. Concordantly, we abuse notation, and drop
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the “W” from ϕ and ϕ̃. Any reference to the “non-linear” or “sampled” system in

this section refer to (G, g) or (G̃,D0g) respectively.

We now state a key fact, which follows from Eqn. 17 of Burden et al. (2016).

Dτ(0) · δy = Dτ̃(0) · δy (3.19)

Eqn. (3.19) follows as the Dτ(0) depends only on the value of G at 0, and Dg

at 0. By definition of the sampled vector field, these quantities are the same, so the

result follows. It should be intuitively reasonable that the the impact times agree to

first order at ρ, as the nonlinear and sampled vector field flows agree to first order at

0.

We saw above that, for ω : {1, . . . ,m} → {1, . . . ,m} the permutation that indi-

cates the transition order,

Ξω :=
m∏
j=1

Dϕ+
ω(j)(0, 0) (3.20)

Let y ∈ D̃b be a curve such that at s̃ ∈ R>0, φ̃(s̃, y) = 0; then, since the sampled

vector field is also event selected, we obtain an analogous equation,

Ξ̃ω̃ :=
m∏
j=1

Dϕ̃+
ω̃(j)(0, 0) (3.21)

Wherein again we denote the sampled vector field structures with ∼, we see im-

mediately from Eqn. (3.19) that,

Dϕ+
i (0, 0) = Dϕ̃+

i (0, 0), ∀i = 1, . . . ,m (3.22)

While this tells us that the individual “pieces” of the sampled vector field and

nonlinear B-differential agree, as Ξσ = Ξ̃σ, it does not directly establish that for a

given δx, they agree; putatively, the sequences ω and ω̃ could disagree. Equivalently,

we want that if: τσ1 ≤ τσ2 ≤ · · · ≤ τσm , then τ̃σ1 ≤ τ̃σ2 ≤ · · · ≤ τ̃σm
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Equivalently, we wish to know ∀i, j, if

|τi(x)− τ̃i(x)| ≤ |τj(x)− τi(x)| (3.23)

Let Br(0) be an open ball around the origin, for r to be determined. By Eqn.

(3.19), we know that for r suitably small, x ∈ Br(0), τi and τ̃i agree to O(||x||), i.e.,

their difference is higher order.

I.e., let ∆τi(x) = τi(x)− τ̃i(x), then,

∆(x) = o(h) (3.24)

Where, o(h) → 0, as h → 0 2. Assuming that Dτj(x) 6= Dτi(x), the R.H.S of Eqn.

(3.23) has first-order error. Ergo, if r is taken suitably small, the difference between

the sampled and nonlinear impact times is smaller than the difference between any

two components of τ , so that the impact order is preserved.

The assumption that Dτj(x) 6= Dτi(x) is reasonable, as by Eqn. 17 of Burden

et al. (2016), this could only happen if the guard manifolds were not transverse, which

violates our assumptions on the rank of h in this paper.

Thus, on a suitably small neighborhood of the origin, the impact sequence of the

nonlinear and sampled vector field agree for x in the interior of a cone Kσ.

3.5.7 Leveraging differential equality

Our algorithm will compute φ̃W (1, δx) on a restricted domain of D̃−1; the domain

will be chosen so that the B-derivative of the flow will be given by Eqn. (3.6).

equivalently,the time t = 1 will evolve all states through every transition sequence.

Since ĥ is a diffeomorphism, we can transform from W coordinates to U coordinates

to determine Ξω, and thus, Dxφ(t, x).

2f(h) = o(g(h)) ⇐⇒ limh→0
f(h)
g(h) = 0
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Then, we have an efficient process to compute Dxφ̃(1, δx) directly. More precisely,

let φ̃ : R × Rd → Rd be the PCr (corner) flow of ECr (sampled) vector field F̃ :

Rd → TRd and s, t ∈ R, x, ρ ∈ Rd be such that 0 < s < t and ρ = φ̃(s, x). Given

δx ∈ TxRd, a perturbation away from x in the δx direction, and letting σ(δx) denote

the corresponding transition sequence3 and Ξσ(δx) ∈ R(d+1)×(d+1) the corresponding

saltation matrix (Burden et al., 2016, Eqn. (67)),

Dxφ̃(t, x; δx) =

[
F+1 Id

]
Ξ̃σ(δx)

0>d

Id

 = M(σ(δx)). (3.25)

Finally, the impact time map τG for G is piecewise linear with pieces corresponding

to distinct transition sequences, which implies that the conical partition generated

by impact times persists in y coordinates, i.e. -
(
τ G̃
)−1

(K σ) is still a cone in y,

we which will denote KGσ. This follows from the fact that linear maps take cones to

cones.

Together these observations imply we can find Dxφ̃(0, 0; δx) exactly, by represent-

ing its action on the cones KGσ. On each cone, the sampled flow is affine - thus, the

linear part of the resulting affine map is the derivative (Groff et al., 2003). Represent-

ing the flow gives us the desired map Dφ̃. The ĥ coordinates defined in Eqn. (3.11)

make this computation particularly simple, as we will see.

Finally, to determine the value of Dφ̃(0, ρ)(δx), we only need to determine the

transition sequence for v, and evaluate Eqn. (3.25).

3.5.8 Computing the B-derivative with prefix vectors

We saw above that the prefix vectors determined by the permutation σ of K G
σ

are a sequence of m + 1 binary words with increasing support. If we correspond the

k-th place to hk, we construct a sequence indicating the order in which the transition

3unique ae if surfaces are transverse
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manifolds Hj are crossed, producing these m+1 binary words. Since we restricted our

interest to initial conditions that begin with no transitions having occurred, we may

always initialize the binary sequence with (0, . . . , 0), where a “0” denotes a crossing

that has not occurred, while a “1” indicates one that has. E.g, if a trajectory with

initial condition y(0) crossed H2, then H3, and finally H1, the sequence would be

p0 = (0, 0, 0)

p1 = (0, 1, 0)

p2 = (0, 1, 1)

p3 = (1, 1, 1)

Equivalently, rG̃(y(0)) = ((1, 2, 3) 7→ (3, 2, 1)) ∈ S3. As we saw in §3.5.4, each prefix

vector pσk has an associated point qσk := τ(x′k) = tk − β1; in y-coordinates, these

are points yk :=
(
τG
)−1

(pk)
4 that simultaneously intersect the transition manifolds

identified by pk at t = 1 (see the diagram in (3.18) for a visual aid). We established

that K σ is spanned via the prefix vectors defined via σ. Since there are 2m prefix

vectors used in the m! increasing sequences, only 2m points are are required to span all

the K σ combined. These 2m prefix vectors correspond to the corners of a hypercube

in the impact time coordinates T, in which the diagonal −1 is a trajectory. The

corresponding points in the W domain are no longer a hypercube, but their adjacency

relationships are the same, and the cones the span correspond to those in impact

times.

Each set of m+ 1 points yk (with pk = τ G̃(yk)) and their images y′k under the unit

time corner flow (with qk = τ G̃(y′k)) are enough to determine one entire component

M(σ). Fixing σ ∈ Sm, the map v 7→ φ̃(1, v) for r(v) = σ is affine and thus uniquely

defined by its action on a simplex (Groff et al., 2003), allowing us to construct a

representation of the corner flow. We do so by flowing a simplex of v values such

4The inverse τ−1 is defined for m < d by restricting it to the m-plane.
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that τ(v) = pk, or equivalently ĥ(v) = yk, with yk which lie on the boundary of the

KGσ simplex. The flow computation turns out to be most convenient to do in the W

coordinates, because of a fast computation for integrating the φ̃W corner flow.

We thus obtain the formula (where, recall, the yi and y′k are members of T0W

under IW )

M̃(σ) := ·
[
y′1 . . . y′m+1

]
·

y1 . . . ym+1

1 . . . 1


−1

·

Im×m
0

 (3.26)

The dependence on time is straightforward – −1 in the T domain. Thus pk are in

the τF (Hi) hyperplanes for i where 〈ei, pk〉 = 0, and the qk they reach after flowing

one time unit are in the remaining τF (Hī) hyperplanes for ī where 〈eī, pk〉 = 1. If

we flow for longer than that, the points merely translate by (t − 1)F1. If we start

flowing from negative times, we similarly translate by tF−1. Both these translations

do not change any Dφ̃, so it is enough to examine Dφ̃(u,w) |{0}×cl(Kσ) the restriction

to transition sequence σ with transitions starting at time 0. We take the linear part

of Eqn. 3.26 (Groff et al., 2003, Eqn. 2), which determines a matrix representation

for M(r(y)).

If m < d, then we append d − m points {ej}dj=m+1 to span the remaining di-

mensions. We saw in §3.5.5 that rG̃ ◦ πm = r, so if m < d, for two points a =

(y1, . . . , ym, um+1, . . . , ud), b = (y1, . . . , ym, wm+1, . . . , wd), rG̃(a) = rG̃(b) holds. Thus,

the sampled field Gb is constant in the “Q” directions, in the sense that G̃(a) = G̃(b).

In other words, the polytope that is defined by π−1
m (KGr(y)) is unbounded in the Q

directions (i.e. is a prism), where KGr(y) is the cone in the m-plane5 associated to the

sequence r(y) for some point y. π−1
m (K r(y)) consists of all points which undergo the

same transition sequence r(y).

Since the transition sequence is the same across the prism, the same linear com-

5the m-plane is all (a, 0) ∈ Rd, a ∈ Rm
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ponent M(rG̃) = M(rG̃ ◦ πm) of the B-derivative (recall, equal to the flow for the

sampled vector field) applies to every point in that prism. We could represent all

these linear maps by taking m!(d−m) additional linearly independent points in the

last d−m coordinates in combination with the base simplex (recall that G is rectified

to have the first m coordinate planes as event surfaces). However, we can reduce

this to only (d−m) additional points by noting that the points {ej}dj=m+1 are jointly

shared between all prisms, as they all project to the origin in the m-plane (recall

3.5.3). The {ej}dj=m+1 points are sufficient to span the remaining d−m coordinates,

and are jointly shared between all prisms, so only d −m additional integrations are

required, rather than m!(d−m). Intuitively, the last d−m components are “indepen-

dent” from the combinatorial complexity of the corner vector field; no discontinuities

are ever a result of an offset in those directions.

3.5.9 Computing prefix vectors without impact times

To avoid evaluating the impact time functions explicitly while directly producing

the necessary pairs (yk, y
′
k) in ĥ-space we can use the piecewise-affine form of τ G̃.

In the following we employ an extended index notation: for a vector V ∈ Rn, and

B ⊂ {1, . . . , n}, we will use the notation (V )B ∈ R|B| to refer to the vector consisting

of the coordinates appearing in B, in numerical order. For example, (V ){i} for a

singleton set {i} is just the i-th coordinate of V , also denoted Vi or (V )i.

Let I := {1, . . . ,m}, D := {m+ 1, . . . , d}. For each A ⊆ I, denote by A := I \A,

i.e. the set complement of A in I. We also take any A ⊆ I ∪D to denote a corner of

the hypercube b ∈ Bd (A understood from context) whose k coordinate is 1 if k ∈ A

and −1 otherwise. This allows us to define GA := G̃b(y), y ∈
(
τG
)−1

(Db). GA is the

vector field restricted to the orthant where transitions {Nj : j ∈ A} have been made,

but the transitions {Nj : j ∈ A} have not happened.
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We define points zA by:

(zA)A := 0

(zA)A := −(FA)A (3.27)

(zA)D := 0

The points zA are the points whose A coordinates and D coordinates are zero, and

whose A coordinates match those of the FA vector field. The point zA is in ∩i∈ANi,

and after one unit of time flows into ∩j∈ANj. This implies that τ(zA) = χ
A

, implying

that zA is uniquely defined. The uniqueness of zA can also be obtained by inspection

from the definition above, which is the computational insight that enabled us to

develop our algorithm.

Note that the collection of prefix vectors of permutations, p
(σ)
k for σ ∈ Sm, 0 ≤

k ≤ m are each associated with a subset A ⊆ I, because p
(σ)
k can be seen as indicator

vectors. For k = |A| the cardinality of A, view (i ∈ A)⇔ (ei ·p(σ)
k = 1), or equivalently

take p
(σ)
k = χ

A
, the indicator vector for membership in A. Thus the 2m points zA

provide the prefix vectors for all m! permutations Sm.

We collect the points zA ∈ ĥ
(
D̄−1

)
, which span the I coordinates of W. If m < d,

we expand to include the D coordinates as well, defining a set of triangulation points

R := {ej}j∈D ∪ {zA|A ⊆ I}.

The set R gives rise to the “output set” defined by O := φ̃(1, R) with slight abuse

of notation. From the definition of the piecewise affine flow map φ̃(1, ·) and of zA

it follows that (φ̃(1, zA))A = (FA)A and (φ̃(1, zA))A = 0. From the positivity of all

the Gb, b ∈ B, it follows that (φ̃(1, ej))I > 0 elementwise. This allows us to conclude

that O ⊂ ĥ
(
D̄+1

)
. Our choice of t = 1 is arbitrary; any t > 0 would suffice, we chose

t = 1 for convenience.

For a given initial condition y(0) ∈ (−∞, 0]d subject to the G induced flow of
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the sampled system, m + 1 binary words are always associated to the trajectory:

all zeros, for the segment of the trajectory when no surfaces have been crossed,

and a binary word arising by changing a 0 to a 1 for each crossed surface (all of

which must be crossed by definition for large enough t; double crossings resolved

arbitrarily), resulting in a lexicographically increasing sequence of words. Taking

σ = s(τ G̃(y(0))), this increasing sequence is exactly the prefix vectors p
(σ)
k , k = 0 . . .m.

Ergo, any y ∈ ĥ(D̄−1) gives rise to σ = s(τ G̃(y)) and through that to m + 1 points

yk(y) := (τ G̃)−1(p
(σ)
k ) ∈ R (in notation we will suppress the y when clear from con-

text). Furthermore y is in the cone span of {yk}mk=0, which itself consists of all the

points which have the same transition sequence as y under φ̃W. The piecewise affine

map φ̃W(1, ·) takes these m+1 points into O, defining an “output” simplex, the points

y′k(y) = φ̃W(1, yk).

Whenever m < d, we extend yk(y) := ek for all y and k > m, ensuring that yk

span the space W. Correspondingly, for k > m, y′k(y) := φ̃W(1, ek).

The unique affine map (eqn. 3.26) defined by mapping the initial cone of y0, . . . , yd

to the output cone of y′0, . . . , y
′
d is a triangulation . of the flow φ̃W restricted to the

cone KGσ that has σ as its transition order. This is the key insight that enables our

algorithm to produce a dramatic speedup — finding a small number of points whose

images under the flow triangulate the B-derivative of that flow.

By taking the linear part of this map, we obtain (recall, domain to itself)

Dyφ̃
W(t, ·) 6 of the corner limit flow at ĥ(ρ) = 0, taken for y(0) small enough such

that φ̃W(t, y(0)) > 0 element-wise. Pulling back through the coordinate change ĥ,

we can obtain the desired approximation in the original coordinates of the domain U.

It is also the B-derivative of φ, because φ̃ and φ have the same B-derivative.

Summarizing the above discussion, we have theorem III.10.

Theorem III.10. ∀σ ∈ Sm, let K σ ⊂ T0V be the cone partition of T0V defined in

6Recall, we fixed t = 1
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Figure 3.2: Each cone K σ is spanned by a set of specially chosen prefix vectors.
When mapped forward by the unit time flow, they create a pair of simplices. These
simplices define a unique linear map that is the Dxφ̃(0, 0;u, v) for τ(u), τ(v) ∈ K σ.

§3.5.3, with the points p
(σ)
k from Eqn. (3.8) as the associated prefix vectors for σ.

Let η : I × Sm → A ⊂ I be the map that returns the index set η(k, σ) = A 7 such

that p
(σ)
k = χA, where χA is the indicator of A. Then we have the following,

1. (§3.5.3 cell K σ is the cone span of prefix vectors {p(σ)
k }

m
k=1)

K σ = int

({
m∑
k=0

αkp
(σ)
k

∣∣∣∣∣αk ≥ 0

})
=: cone

({
p

(σ)
k

}m
k=0

)

2. (§3.5.5 corner flow is exact at ρ) Using the matrix representation M(r) for a

component of Dφ(0, 0; 0, ·),

M(r) = Dĥ−1 · M̃(rG) ·Dĥ

3. (§3.5.8 pullback of cones to prisms), As DτG |0 is piecewise linear, the sets

Jσ :=
(
DτG

)−1 |0 (Kσ) ⊂ T0W. , where “−1” denotes the pre-image, defines a

7 k ∈ I is used to denote the first argument to η in the equation p
(σ)
k = χA.
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cone decomposition s.t.

Jσ = cone(
{
zη(k,σ)

}m
k=0

)⊕ span
(
{ej}dj=m+1

)
8

4. (§3.5.9 the impact time of zA is χA) ∀k ∈ I, σ ∈ Sm, τG(zη(k,σ)) = χA = p
(σ)
k

5. (§3.5.9 factorial only in m coordinates) ∀y ∈ Jσ, rG̃(y) = rG̃ ◦ πm(y), so that,

Dφ̃ |Jσ = M̃(rG̃), where M̃(rG̃) is the linear part of the matrix computed with

the formula M̃ = A−1B, where

A :=

[
φ̃(1, zη(1,σ)) · · · φ̃(1, zη(m,σ)) φ̃(1, em+1) · · · φ̃(1, ed)

]

B :=

zη(1,σ) · · · zη(m,σ) em+1 · · · ed

1 · · · 1 1 . . . 1


Thm. III.10 is not ordered as the sections were. Instead, it is ordered in the logical

dependence of the computation process. First, we identify that cones are adequate

to describe the linear components of Dφ̃. Then, we represent those cones’ span with

an explicit, useful, basis in y-coordinates for {Jσ}σ∈Sm . After we compute all linear

pieces of Dφ̃, we pull it back via h to original x-coordinates. We then conclude with

Dφ |ρ = Dφ̃ |0.

8 i.e.,

Jσ = int

{ m∑
k=0

βkzη(k,σ)

∣∣∣∣∣βk ≥ 0

}
+


d∑

j=m+1

βjej

∣∣∣∣∣∣βj ∈ R


 ,
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3.6 Computational Procedures

In essence, our algorithm consisted of lazy evaluation of x 7→ yk(ĥ(x)) and x 7→

y′k(ĥ(x)) for all values of x in D̄−1 and 0 ≤ k ≤ m. Given these, it is simple to

compute the m! linear maps that define DφW(0, 0;u, v) and pull this back to TρU

using Dĥ.

Our input was a full description of the event-selected system: (1) A function

h : U ⊂ Rd → W ⊂ Rm defining the transition manifolds; (2) A vector field F :

Bm × U→ TU. We assumed w.l.o.g that ρ = 0.

From h we computed the matrix Dh : TρU → T0W, and Fb = F (b, ρ) ∈ TρU.

This is the corner vector field, because F (b, ·) is continuous by assumption. Next we

produced the Jacobian Dĥ by extending Dh orthogonally to its row-space. We did

this by using a full SVD of Dh., and replacing the zero singular values with ones to

extend h to ĥ with a linear map on what is the kernel of Dh. Using Dĥ, we computed

Gb ∈ T0W, i.e. the function Gb := Dĥ · Fb.

3.6.1 Fast integration of the corner flow

The relationship Ξ̃ = Ξ allows us to build and exploit one of the key contributions

of this paper: a fast integrator for the corner flow φ̃, based on φ(t, x) ≈ Dĥ−1 ·

φ̃W(t, ĥ(x)). The fast integrator took as an input y ∈ W and T ∈ R, and produced

(ti, bi, yi) ∈ [0, T ] × Bm ×W the sequence of impact times, W orthants, and impact

points that the initial condition (t0, b0, y0), t0 = 0, y0 = y encounters on its way to

its final state (tk, bk, yk), tk = T ,yk = φ̃W(T, y). Each (ti, bi, yi) except for the first

and last are a transition manifold crossing that satisfied bi = bi−1 + ej for j such that

yi ∈ Nj is the index of the manifold being hit at time ti.

To perform this fast integration, we began by initializing t0 = 0, y0 = y and

b0 = χ
y≥0

– the indicator of which coordinates of y are non-negative. To compute

(tk+1, bk+1, yk+1) from (tk, bk, yk) Next examined yk/Gbk element-wise, and let 0 ≤
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j ≤ m be the index of the smallest non-negative element among these ratios (breaking

ties arbitrarily). The ratio (yk/Gbk)j is the time to the next impact under the flow.

If it was less than T − tk, then we took

yk+1 := (yk/Gbk)jGb + yk

tk+1 := (yk/Gbk)j + tk (3.28)

bk+1 := bk + ej.

If it was more than T − tk, then we took

yk+1 := (T − tk)Gb + yk

tk+1 := T (3.29)

bk+1 := bk + ej

and the integration was ended. In essence, the variables bk is maintaining a binary

count that indicates if a transition has occurred or not, resolving the need to detect

event crossings numerically.

3.6.2 Computing the B-derivative of the flow

To compute B-derivatives efficiently, we used dynamic programming to cache

pairs (r, o) ∈ R×O such that φ̃(1, r) = o, in a mapping indexed by the set Bm∪{m+

1, . . . , d}. Given an initial point x ∈ D̄−1, we transformed it into y = h(x) ∈W, and

integrated using the fast corner flow integrator to obtain {(ti, bi, yi)}mi=0. The corners

bi were used as indices for the zA ∈ R and thus for lookup in this cache. If a corner b

was not found in the cache, we calculated the zA for b = χ
A

, then rapidly integrated

h(zA) and used the times ti and the bi to compute x(1) = x(0) +
∑m−1

k=0 (tk+1− tk)Fbk .

This gave us the result needed for caching: b 7→ (r, o) = (x(0), x(1)).
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Given the m + 1 point pairs {(rk, qk)}mk=0, and the d − m point pairs obtained

from integrating the initial conditions ej ∈ W with j > m, and cached with the

mapping keys m + 1, . . . , d the unique affine map taking these rk to qk is the piece

of B-derivative that applies to the initial condition x(0). It can be computed using

ordinary least-squares.

3.6.3 A note on computational complexity

The fast corner flow integration consists of finding a minimal element among m

elements, m times, and then performing other element-wise operations a uniformly

bounded number of times – giving a total running time which is O(m2) on a sequential

machine and O(m) on a parallel one. This is followed by a least-squares calculation

on d+1 vectors of dimension d+1, giving a O(d3) which dominates the running time.

The cache size is O(2m).

However, if speed is of the essence, a cache of size O(m!) can be used together

with the fast integrator, allowing each of the least-squares problems to be computed

at most once. After the cache is complete, each new point then requires only one

pass of the fast corner flow integrator — but at the expense of significantly greater

storage.

By comparison, a conventional central differences numerical Jacobian of the flow

map would require a minimum of d + 1 integrations per each of the m! transition

sequences, followed by an O(d3) least-squares calculation. The number of steps per

integration would be at least equal to m, and each step would be O(d) on a sequential

machine; O(1) and a parallel one. In practice, however, general purpose hybrid system

integrators are likely to take far more than the minimal number of steps. Even

assuming each set of d + 1 integrations is computed in parallel, this would require

O(d3m!) whereas our algorithm requires only O(d3 2m).
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3.6.4 Validation

We implemented the above algorithm in Python-2.7.5 augmented with the Numpy

and Scipy numerical processing toolkits.

3.6.5 Piecewise Constant Systems

The first system we measured the performance of our implementation upon was

a 2-dimensional piecewise constant vector field.

Fsign(x) = ν1− δsign(x)

It is clear that this system is event selected for δ < ν, and that the coordinate axes

are event surfaces. The number of event surfaces coincides with the dimension,that

is, m = d. In §8.1.1 of Burden et al. (2016), it is shown that ∀x ∈ D−1,

Dxφ(0, 02) =
ν − δ
ν + δ

I2

For choices ν = 1, δ = 0.6, this is the diagonal matrix

Dxφ(0, 02) =

0.25 0

0 0.25


Our algorithm produces the same result to numerical precision.

L(x) =

 0.25 0

−3.4 · 10−17 0.25


The largest singular value of Dxφ(0, 02)− L(x) is 4.4 · 10−7.
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Figure 3.3: A quiver plot of the F in the plane for ν = 1, δ = 0.6. In this case the
original and corner flows coincide. The dashed line is the segment of a solution -
it’s transition sequence determines the value of Dφ̃(0, 0;u, v) on the drawn simplices.
The lower simplex is mapped to the upper one. Vertices with markers of shared type
are paired by φ̃(1, ·),and thus, by Dφ̃.

3.6.6 Stable Second Order Oscillator

The second application we considered to verify accuracy was another event-selected

system with a known, closed form B-derivative. Let (x, ẋ) ∈ R2d, with equations of

motion

F (x, ẋ) =

 ẋ

α1− βẋ− δsign(x)


F has event surfaces of the first d standard coordinate planes in Rd. It can be shown

(Burden et al., 2016, Eqn. 104) that the B-derivative of the flow at (t, x, ẋ) = (0, 0, ν1)
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Figure 3.4: Heat maps comparing the results from computing the B-derivative with
our algorith, versus numerically evaluating the known exact result.

is :

Dφ(t, x) =

Id − 2δ
νβ

(
1− e−βt

)
1
β

(
1− e−βt

)
−2δ

ν
e−βtId e−βtId


We numerically evaluated the above statement at t = 0, δ = 0.5, α = 1, β = .4,

visualized as the heat map in Fig. 3.4.

3.6.7 Planar Rigid Body with Contacts

The final example we present is a single almost-planar rigid body with two massless

legs colliding with the ground. We wish to compute the B-derivative around the point

ρ of simultaneous contact of both legs with the ground. We elect the configuration

space se (3) evolving under the Newton-Euler equations (Murray , 2017), shown in
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Eqn. 3.30) with gravity

mI 0

0 I


v̇b
ω̇b

+

ω̇b ×mvb
ω̇b × Iωb

 = F b (3.30)

vb is the translational body velocity in the initial frame, while ωb is the rotational

in the same frame. m is the mass of the rigid body, I is the inertia tensor. I is

the identity matrix, and F b is a wrench applied at the center of mass. We use the

term “almost” above, as despite being numerically simulated as a 3D rigid body, we

confine our rigid body to the z = 0, ż = 0, ωx = 0, ωz = 0 plane using a strong

restoring force to stabilize the plane. (x, y) identify the center of mass location, and

ω = ωy is the current angle, reducing our system to being on se (2), only having the

x, y, ωy degrees-of-freedom.

Each leg li is a fixed vector when written body coordinates. From the current

li(t) in contact with the ground (which is implicitly a function of state), a force is

generated that acts on the rigid body. Each leg is massless, has no inertia, operating

as a pure force generator with no internal states. The arrangement is intended to

represent a chair or stool with rigid legs impacting a slightly elastic ground surface.

The “seat” of the chair is represented by a collection equal-mass points in a rigid

configuration, i.e. the inertia tensor I is diagonal.

For simplicity of implementation, and to insist that the system is event selected,

we impose the constraint that once a leg has made contact with the ground, it is

irrevocably attached with a constant attachment point (no sliding or liftoff.) To

account for this constraint, the force law for each leg is given as follows.

When a leg makes contact with the y = 0 plane, a distinguished point lci is

cached, defining a vector between the current foot position li(t), which is still allowed

to vary. The force generated via this contact (it is identically zero prior to contact)

is F (li(t)) := kp(li(t) − lci ) − kd(l̇i(t)). This intuitively is a spring-damper pulling
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the current foot position back to the initial point of contact. We define functions

hi(x(t)) = −li(t)y as event functions, that is, the current foot height is defined as an

event function.

We recall that being event-selected is a local property, and we are attempting

to compute the B-derivative at the point of simultaneous contact. If the legs are

sufficiently stiff, the chair will rebound on impact, violating the assumption that

∀i, t, Lfhi(t) > 0, but for some choices of the inertia matrix I, and the spring constants

kp, and kd, there are a range of initial conditions which the the system is event selected

– the foot height evolves monotonically for a time and the second foot will impact

the ground prior to the first foot reaching its nadir.

Rather than use closed-form expressions, we elect to persue this example com-

pletely numerically; as a result of lacking closed-form expressions for Dφ(0, ρ; 0, v),

we instead will determine the algorithm’s accuracy by comparing the resulting ma-

trices to the numerical Jacobian of the flow.

Recall from above that the Dφ(0, ρ; 0, v) = M(r(x)) · v. so that for the non-linear

flow φ(t, x : u, v),

lim
(t,x)→(0,ρ)

Dxφ |(t,x) · v = M(r(x)) · v,

and φ(t, x) is smooth for times large enough such that x(t) ∈ D+1. Ergo, the nu-

merical Jacobian at a point x(0) ∈ Kr(x) is arbitrarily close to M(r(x)) as ‖x(0)‖

becomes arbitrarily small. While the components of each matrix are continuous,

and this can be used to more precisely define “close” in the preceding statement,

we elect to use a norm that compares matrices as operators directly; precisely, by

‖M ·Dφ−1 − I‖2 for the operator 2-norm, which equivalently gives the largest singu-

lar value of (M ·Dφ−1 − I). This value will be zero if the two matrices are identical.

Since the limit of the operators converges, the singular values must as well, so we

expect to be make to make this norm small.

We have taken m = i = 2 for this example, and since SE(3) is six-dimensional,
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so we are in the m < d regime where number of transition manifolds is smaller

than the dimension of state space. We numerically solve for a matrix Q such that

ĥ :=
(
−l1y, l2y, Q

)
is a local diffeomorphism around the point ρ. In principle, we argued

above that this choice does not effect the resulting computation. In practice we chose

Q on a similar scale as ∇h to avoid numerical issues. Displayed in Fig. 3.5 is a

comparison of the numerical Jacobian and B-derivative representation for the initial

condition (-0., 2.57, -0.001., -0., -8.2, -0.) This condition corresponds to the center-

of-mass starting at an initial height of 2.57 units, with the rigid body slightly tilted.

The “right leg” touches down, then the “left leg” touches down after. The largest

singular value of the difference operator is 0.093. When we evaluated conventional

Jacobians taken at different points and scored them pairwise via the same metric, we

found 0.093 to within the distribution of values, suggesting the the non-linearity of

the system is dominating the lower bound of the error.

The ratio of the run-times between the conventional finite-difference method and

the new algorithm on our workstation is 214; the algorithm presented here is over

×200 faster than using central differences. It is worth noting that the B-derivative

algorithm computes every prefix point - the 214x factor is only for the Jacobian at

a single point — including all four cones (at least 2 Jacobians) 9 indicates that the

new algorithm is ×400 faster versus central differences when computing the total

derivative.

3.7 Summary of Numerical Methods

Multi-contact simulations in robotics presumably face a factorial growth in their

complexity due to all possible contact sequences appearing in their hybrid dynamics.

For event-selected hybrid systems, which govern many multi-limb and multi-finger

9Since the ’no contact’ initial conditions are uninteresting, and the ’simultaneous touchdown’ is
measure zero, we exclude them for this comparison.
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(a) (b)

Figure 3.5: A comparison of the numerical Jacobian and B-derivative representation
for the initial condition (-0. , 2.57, -0.001. , -0. , -8.2 , -0.).
.

contact problems, the local properties of the flow can be determined by a first order

approximation called the Bouligand derivative (or “B-derivative”).

Here we presented an algorithm that has a combinatorial speed improvement rela-

tive to naive numerical approaches thanks to its ability to employ a minimal collection

of triangulation points which represents all linear pieces of the B-derivative. Further-

more, our algorithm includes and employs a high-speed “corner flow integrator” which

can integrate a piecewise constant vector field extremely quickly using a finite num-

ber of steps. The improvement in run-time allows the numerical integration of the

variational equation of event-selected systems to be conducted much more rapidly,

especially when the m� d.
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Figure 3.6: The chair model we simulated. The spring-damper is a restoring force
that was generated based on the contact point of the chair. In the air, the spring-
damper is undefined. Once a leg touched down, the spring-damper instantaneously
appeared.
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3.8 Piecewise-Constant Feedback

We now shift gears, and consider how to employ ECr vector fields to the stabi-

lization of multi-legged gaits. An example (which we will abridge here) from (Burden

et al., 2016, 8.1) we will exploit considerably in the sequel is the synchronization

of first-order phase oscillators by piece-wise constant feedback. The resulting au-

tonomous system is an ECr vector field whose stability properties can be evaluated

via Cor. III.8.

Consider the following collection of n identical oscillators with control inputs ui,

for i = 1, . . . , n,

q̇i = ω + ui(q) (3.31)

where qi ∈ S1, so that the state space is an n-dimensional torus. We want a piecewise

constant feedback that locally exponentially stabilizes the orbit,

Γ = {q ∈ T n : ∀i, j ∈ {1 . . . , n} : qi = qj}

That is, Let Uδ ⊂ Q = Tn, for δ > 0, be the following set, where π : Rn → Q is the

canonical quotient map, considered as a covering map of Tn, which is the standard

unit cube in Rn under the equivalence relationship identifying opposing faces with

matching orientation.

Uδ :=

{
q ∈ Q : ∃x ∈ π−1(q) : ||x||1 ≤

δ

n

}
δ must be chosen sufficiently small so that Uδ is evenly covered, i.e. - ππ−1Uδ is a

homeomorphism onto its image.

Define sign : Rn → {−1, 1}n by :
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∀x ∈ Rn : πi ◦ sign(x) =


−1 xi < 0

1 xi ≥ 0

where πi is the projection on to the i-th coordinate. The feedback term we use is

given by:

∀q ∈ Q : u(q) :=


−ωSLsign ◦ π−1(q), x ∈ Uδ;

0, x ∈ Q \ Uδ;

where ωSL ∈ (0, ω). Recall that w is the drift velocity of eqn. (3.31).

In can then be shown (Burden et al., 2016, eq. 96) that the Poincaré map has

Bouligand derivative

DP (ρ) =
ω − ωSL
ω + ωSL

In−1

By Cor. III.8, it is a contraction, and thus Γ is exponentially stable.

The above situation is depicted graphically in Fig. 3.7, for the case of n = 2.

Imagine an example execution for q1(0) < 0, q2(0) < 0), nearby the q1 = q2 set. Each

state qi proceeds at a nominal velocity ω until the state component with the lowest

positive impact time crosses its coordinate hyperplane in the standard arrangement,

where it then reduces speed to ωSL < ω. By doing so, the complementary state

progresses in phase against it. The relative velocity between states changes from

0 to ω − ωSL > 0, reducing the difference between q1 and q2. Once both q1 and q2

transition, and both velocities are ωSL, their relative velocity returns to 0, producing a

finite amount of contraction. When the solution exits Uδ through the upper quadrant

in positive time, the vector field is set back to (ω, ω) via the equivalence relation (note

that this means the vector field is also discontinuous there), preserving the difference

between q1 and q2. The contraction process repeats in forward time infinitely often,

leading to ‖q1 − q2‖ → 0 as t→∞.
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Figure 3.7: An illustration of locally stabilizing the diagonal.

For purposes of the sequel, we refer to this configuration (Fig. 3.7) of piecewise

constant vector fields stabilizing the diagonal with event surfaces of the standard

arrangement and an exit section as a “device”.

3.8.1 Consequences for Implementation

We make a second important remark relevant to robotics at this juncture. Changes

in the vector field occur only at event surfaces – in between them, the vector field is

constant. Moreover, evaluating if i-th coordinate axis has been crossed is determined

only via the one coordinate qi > 0. In the context of actuating servomotors, we

take advantage of this kind of structure to simplify the amount of information that is

required to implement a desired ECr vector field. Since a standard system structure

for hardware is to have a centralized agent connected to a network of servo modules,

the above example suggests that the only state information that needs to be reported

from a servo module with a first-order hold (a first-order hold is exactly tracking

a piecewise-constant vector field) to the central agent is when an event surface is

crossed. Additionally, some control decisions do not depend on the total state - servo
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module with state coordinate qi can autonomously take the control action associated

to crossing the hyperplane qi = 0 without needing know the global state q.

For example, it may be again instructive to consider the time-dependence of a

trajectory of the “device” in Fig. 3.7. Assume that the initial condition x0 lay in

the (−1,−1) quadrant, below the diagonal. Since we are assuming the vector field is

ECr, the trajectory will intersect the y-axis, and cross into the lower right quadrant.

By the feedback given in Eqn. (3.8), the vector field only changes its horizontal

component. Ergo, if each servomotor independently reduced its velocity to ωSL based

on knowledge of only its own state, it would still be a correct implementation of Eqn.

(3.8). Only the exit condition given by ∂Uδ depends simultaneously on the value of

q1 and q2.

In other words, the event surfaces partition the state space into regions. In order

to determine what control action should be taken, the controller needs to know what

region of state space the current state occupies. The temporal ordering of a solution

curve mandated by being ECr reduces the need to use the full state to determine what

vector field applied at a given state should be. We see that we could, for example,

use the history of a given execution to implicitly determine the vector field except at

the exit surface. We see no obvious way to extend this kind of distribution of control

to every event surface – eventually global knowledge is needed for contraction. We

may make an improvement on the information requirements of even the exit surfaces,

however. If we further more restrict the class of exit surfaces to be products as well,

where we restrict every event surfaces to be a collection of hyperplanes, the entire

state space can be partitioned into boxes. In this case, only a flag indication crossing

would be reported, rather than a numeric value.

While we admit this may restrict the class of attractors for the time being, (we

will address stabilizing generic polygonal curves using this strategy in the sequel), it

is clear that the contraction will still occur for trajectories sufficiently local to the
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diagonal. Ergo, to detect the exit surface, each motor can report crossing it to a

central agent. The agent can then perform a logic AND on each report – if the AND

returns true, it can update the first-order holds of the servomodules.

We have described that implementing a piecewise constant vector field on the

n-torus in hardware can be accomplished with a distributed controller with a finite

number of events that require global information exchange. Such a system architec-

ture is radically distinct from classical servoing, where a central agent gets frequen-

t/periodic updates from each servo at some known sampling frequency, and produces

control actions that are simultaneously transmitted to the servomodules.

Beyond the hardware implications, the event occurrences are essential to the

genesis of a stable attractor. Any individual vector field trivially has no attractors

as a constant vector fields have affine solutions with no lower dimension ω-limit. In

light of 3.6, the saltation matrices may be the only contractive elements in the B-

derivative of the flow – the smooth fundamental matrices have a unity operator norm.

We tie this more concretely to robotics in the sequel, but contraction arising from

event functions invokes the idea of using the ground impacts themselves of a robot to

produce a gait. Without the “in-situ” impacts, no lower dimensional behavior would

be observed.

3.8.2 General Polygonal Curves

The preceding example of using piecewise constant feedback to stabilize the diago-

nal of the flat torus employs a structure that is generic to any polygonal curve, which

we define to be A sequence of knot points V := {p1, . . . , pn : i = 0, . . . , n} connected

by the line segments {tpi+1 + (1− t)pi : t ∈ (tj, t(j+1)), j = 0, . . . , n− 1}. If we were

interested in rendering the locus of the curve attractive, we could proceed in the fol-

lowing fashion. Given the point pi, if we choose a sufficiently small neighborhood Ui

such that pj 6= Ui for j 6= i, we place a “device” at the point pi. If we did this for all i,
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we would generate a vector field that produces a finite amount of attraction towards

the desired locus each time a trajectory passed nearby a knot point. If the polygonal

curve was a closed polygonal curve, as time went to ∞, any initial condition starting

locally off the target locus would exponentially collapse to it by Cor. III.8.

The above is only the essential idea of generating a stabilizing controller. It

clearly does not determine a vector field, even locally around the target locus, as

either the vector field is undefined outside of the Ui’s, or the vector field is multi-

valued if Uj ∩ Ui 6= ∅. We refine it into the following algorithm, which is restricted

to a local tube around monotonic curves. Let V := {p1, . . . , pn : i = 0, . . . , n},

|V | >= 3, define a monotonic polygonal locus in Rd. ∀i, j, pji+1, > pji , where pji :=

πj ◦ pi (the i-th component). We will produce a local rectifying change of coordinates

Cpi : Dpi → Rd, for Dpi to be given, defined around each pi that transforms the

locus to the diagonal with event surfaces at the standard arrangement. Given a

point x, we deduce the ordering I ⊂ {1, . . . , n} such that for each coordinate xj,

pji−1 < xj < pji . If ∃j : (ij − ij−1) > 1, we reject the point x as being outside

the domain of Cpi . All such x that satisfy this locality condition is the domain Dpi

of Cpi , and will be a union of rectangular solids where ∀x ∈ Dpi , x
j > pji−1, so that

Cpi : Dpi → Rd as, for each coordinate j, πj◦Cpi(x) = (xj−pji )/(p
j
i−p

j
i−1). This piece-

wise smooth homeomorphism rectifies the rectangular partition around the point pi

to the canonical arrangement. We then stipulate the vector field to be the canonical

device in the rectified coordinates, and map it back to Dpi by C−1
pi

. Shown in Fig.

3.8 and Fig. 3.9 are example simulation results for arbitrary monotonic curves.

Each node pi produces only finite contraction towards the polygonal curve. For

a desired locus to be asymptotically stable, an infinite number of transitions are

required. While this is clearly the case for periodic systems (as shown above in III.8),

some other method would have to be employed for non-periodic curves.
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Figure 3.8: Monotonic polygonal curve in the plane stabilized with canonical devices
through a rectifying change of coordinates.

3.9 ESS and RHex

The RHex robot is a well-known dynamically mobile hexapedal robot (Galloway

et al., 2010; Saranli et al., 2001), with six non-jointed compliant limbs attached to a

central body through a single direct-drive rotatory joint, shown in Fig. 3.10

In collaboration with Kod*Lab of University of Pennsylvania, we constructed a

RHex-type robot to illustrate that event-selected piecewise constant feedback is a suf-

ficient mechanism to generate gaits, and have an implementation that is parsimonious

in communication complexity compared to conventional reference-tracking controllers

The theoretical results of ECr systems will be employed in demonstrating resiliency

against uncertain ground contacts and realistic implementation constraints.

A persistent forward motion with the RHex robot is most obviously achieved by
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Figure 3.9: Monotonic polygonal curve in 3-space stabilized with canonical devices
through a rectifying change of coordinates.

requiring a governing control scheme to drive the limbs periodically – a gait such as

a walk or trot. A well-established (Saranli et al. (2001) and references therein) gait

in the RHex community is the alternating tripod gait, were groups of three limbs are

virtually identified together (“a tripod”), and driven synchronously, generating an

alternating sequence of foot-falls to drive the chassis forward.

A celebrated control strategy responsible for achieving an alternating tripod gait,

and enabling dynamic running, is the Buehler clock (see Fig. 3.11) (Galloway et al.,

2010; Saranli et al., 2001), which is a clocked (either by time, or a monotonic trans-

formation of time referred to a “phase” in the literature) reference trajectory that

is tracked by each motor. The Buehler clock gait was originally generated using a

centralized agent commanding six motors with a time or phase domain reference tra-
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Figure 3.10: An image of our Rhex.

jectory driving the tripods either in a fast velocity or slow velocity. The slow region

would intuitively correspond to the putative ground-contact phase, and the fast ve-

locity applied would be during the aerial phase. In the ground contact phase, the legs

are generating thrust, propelling the body forward, while the aerial phase recirculates

the limbs to prepare for a subsequent thrust phase.

Classically, a central computer maintains periodic functions r1(t), . . . , r6(t), which

are passed to servomodules at times tk for δk small compared to the frequency of

ri(t). Each servo module instantaneously attempts to enforce command ri(tk) through

a holding strategy until it is updated with command ri(tk+1). Each tripod of mo-

tors would receive identical reference signals, but T/2 out-of-phase between tripods.

(fig: 3.11).

Upon inspecting the graph in Fig. 3.11, we see that the Buehler clock is a polygo-
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Figure 3.11: An illustration of a Buehler clock

nal curve, and that the knot points occur at putative event surfaces. We are motivated

to define an event-selected vector field that produces a Buehler clock like curve as a

limiting attractor. We expect comparable motive performance, with formal argument

for being resilient against timing uncertainty and ground contact variation.

For an example ECr field that has a Buehler-clock-like attractor, consult Fig.

3.13. A manually constructed event selected vector field is shown that has the periodic

signal depicted in Fig. 3.12 as the limiting attractor. Event surfaces are denoted with

the horizontal and vertical lines. Note that each surface is trivial, represented only

by subspace crosses – detection of an event surface could be accomplished in software

using only a sequence of if-then statements.

We make an important distinction regarding the scope of our approach. We

claim that event selected vector fields are a sufficient mechanism to synthesize a gait
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whose structure is inspired by a Buehler clock; i.e. an ECr vector field is a novel

type of controller to stabilize a desired periodic orbit in lieu of reference tracking via

conventional closed-loop control. We do not claim that we know what the desired

attractor should be – this is only attempting to stabilize a preferred choice.

Figure 3.12: A two-dimensional ESS vector field on the torus. The off-diagonal dots
are a collection of initial conditions that are mapped forward in time. The horizontal
and vertical lines illustrate the event surfaces. Note that the green guard surfaces only
change that coordinates’ velocity component (e.g. horizontal green lines only change
the horizontal component). These events, being only a function of one coordinate of
the state, do not require global information. The other color of guards can change
both components of the vector field. These indicate were a global event needs to be
reported.
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Figure 3.13: The periodic attractor plotted as a function of time. It features the
analogous “fast-slow” behavior as a Buehler-clock. The horizontal lines indicate where
the product guards (P-type) occur.

3.9.1 Piecewise Constant Vector Fields via Chambered First-Order Holds

For our use on RHex, we developed an implementation of ECr control that en-

ables the autonomous synchronization of legs that is parsimonious in both computa-

tion complexity and in communication bandwidth, but necessitates a servo with an

expanded instruction set from those typically available.

Each servomodule is a joint microcontroller and motor as a monolithic collection

that exposes a logical instruction set. They have a well-defined list of commands

that can be accepted (such as command the motor shaft to a desired angle), and

contain an internal PID control and commutation loop that energizes and commands

the motors to achieve a commanded behavior. Using piecewise constant vector fields
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allows RHex’s control action to be taken only at a finite number of event surfaces that

discontinuously alter the governing vector field. Since we are interested in mandating

this response from a collection of digital servomodules, we need to develop a language

to represent a piecewise constant event selected vector field inside a computer.

We propose the network architecture is depicted as in Fig 3.14. Each distal node

Figure 3.14: An illustration of the network topology and clock rates associated to
RHex. M1,M2, and M3 are motor controllers, while “py” denotes the center CPU
that interface with every controller. “10 Hz” is used to indicate low communication
rates; since data is only irregularly sent per revolution, there is not an obvious way
to make sense of the term “bandwidth”.

represents a motor controller – it contains the knowledge of its own state qi, but does

not know qj, ∀j 6= i. Since we are interested in piecewise-constant systems, we assume

that each node has a controller capable of a first-order hold, i.e. qi(t) = q̇ref tref + qref

with reset. A node can be commanded to a specified position, and hold at a specified

velocity.

The central node is responsible for supervisory planning, as well as the joint-state

commands that result from crossing an exit section as described in §3.8. In a tradi-

tional model, the global information would be a sampled state q(k) = (q1, . . . , qn) (tk).
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However, as we argued above, our telemetry is far more parsimonious. Furthermore,

it is not even necessary that the central authority have explicit reports of every event

crossing. A trajectory crossing the standard arrangement is a product condition –

the value of qi does not affect if qj has crossed from one half-space into another. The

sensing of exit surfaces can be reduced to products to eliminate the need for quantita-

tive knowledge of a motor’s state, exactly as described above for stabilizing polygonal

curves.

3.9.2 Software Architecture and Data Protocol

For our RHex, the central commanding node is a Linux kernel running a python

process. It both provides a user interface for the six motor modules, and manages

global state updates. The robustness of ECr control mitigates the poor real-time

performance of python.

Each servomodule accepts three fundamental types of commands: guarded, imme-

diate, and preempts. Each node also contains n linear buffers Bi that can individually

be read from and written to. There is also circular pre-buffer used to direct traffic to

each linear buffer. A command appears as a prefix indicating its type, and a word

carrying arguments. Arguments include a sub-type and its values. A command can

have type “guard”, subtype “time”, “state”, etc, and value “1.2 seconds”, “2.1 ra-

dians”, etc. All incoming commands are typed via the pre-buffer, and processed by

that type. The preempt commands are always immediately executed by the mod-

ule as soon as they appear in the pre-buffer, and are for buffer management. They

minimally set the active read buffer Br, set the active write buffer Bw, manage the

Br buffer cursor, and purge the contents of a given buffer Bi. The guards and words

are queued into the active write buffer Bw in the order they are received. Each node

attempts to pop from the active read buffer Br, and evaluate that command. Guards

inhibit this pop based on their type and argument.
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The guards are Boolean tests that form barriers in reading of the contents of the

active read buffer. The processing of the buffer’s contents is not allowed to proceed

until the condition associated to that guard is true (“clears the guard”). Once a

guard is cleared, the contents of the buffer are read in order up until the next guard.

The buffers Bi contain sequences of library commands separated by guards, allowing

sequences to be chambered, where each block is controlled through guard conditions

and selection of the appropriate buffer. The typical use-case is that the we pre-

load the read buffers with behaviors at start-up. Each buffer contains the command

sequence that defines a desired piecewise constant vector field. Then, the central

authority need only send the set bit to select the right read buffer when global event

surfaces are used, creating a very terse communication framework.

While the strategy requires little information exchange during an execution, we

observe that each message is critically important. Lost packets violate the assump-

tions of the ECr theory (transitions may not occur with lost packets), resulting in

poor tracking. We therefore acknowledge that while we have the need for little data

exchange, each datum is very information rich, necessitating the use of a protocol

that enforces information parity.

For a complete specification, a Unified Modeling Language (UML) (Rumbaugh

et al., 2004) sequence diagram in shown in Fig. 3.15.

To implement an ECr vector field, guards are used to define event surfaces, with

the subsequent post-guard messages ultimately being an affine position command

qi(t) = q̇ref (t− tguard) + qref for the inner loop of the i-th servomodule. Internally,

a servomodule tracks qi(t) with high-gain PID, which is running at a much higher

bandwidth than the communication channel between the central authority and the

servomodule. Functionally, each servomodule is tracking a “primitive” with high-

bandwidth local feedback, while the central authority stipulates the temporal orga-

nization of the primitives with performance guarantees arising from the ESS theory.
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Figure 3.15: UML sequence diagram depicting the message flow sequencing as a
function of time between the host CPU and a single motor. The commBuff classes
are the linear buffers from above. SM is a state-machine that parses incoming data
payloads into executable statements.

We now describe the types of guards implemented, as they both a) make concrete

the above architectural discussion, and b) inform the class of possible behaviors, as

there are non-equivalent guard regimes we expect to be of value.

Type Symbol Argument

Time T t seconds

Position P (θ1, θ2) ⊂ S1

Error E eth ∈ R

Contact G b ∈ {0, 1}

The first type of guard is a time guard. A time guard prevents execution until t

seconds have elapsed since the last clock reset, i.e. time in the current epoch. Time

guards allow us to create reference signals as a specification of time. For example, if

the following sequence was in read buffer Br for a position goal of p(t).
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Address Symbol Argument

0 T 0

1 Pos,vel (0,π)

2 T 1

3 Pos,vel (π,2π)

4 T 2

5 Clock 0

6 Cursor 0

The motor would advance to position zero and hold at π radians per second for

one second. It would then move to π (in this case, the curve is continuous at π)

and hold at 2π radians per second for 1 second. It then resets the clock and cursor

to value zero, creating a periodic waveform with a period of two seconds. Here, the

event surfaces are in time, allowing us to create a reference trajectory as a function

of time. While this regime does is not suggestive of the advantages provided by an

autonomous ECr field, it allows us to program a traditional Buehler clock where the

central authority needs to only synchronize the motor clocks, which is still lower in

communication complexity than closed loop tracking.

The guard types more directly exploitative of ECr properties are the P, E, and

G type guards. The P-type guards are barriers in position. As we are operating on

S1, inequalities are not canonically defined, so implementing a “device” requires the

topology of S1 be respected. Due to this, the position guards evaluate if the current

state θk ∈ (θ1, θ2) For small δθ := min (|θ1 − θ2|, |θ2 − θ1|), the condition appears in

practice as a single Boolean event, as the leg is presumably moving quickly. For δθ

large, we can denote a large section of S1. This has utility for repeating commands

(which can be a useful feature for communication protocols to avoid excessive ac-

knowledgment replies), e.g. if a P command is sent twice, the condition will clear

twice supposing the dwell time of the limb in the region is much longer than the
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retransmission time. A practical method determining θ ∈ (θ1, θ2) is given by Eqn.

(3.32). Let ψ = θ1−θ2
2

, ω = θ2−θ1
2

. A representative example of this choice of guard

function is depicted in Fig. 3.16.

cos(θ − ψ) ≥ cos(ω) (3.32)

Figure 3.16: An example of Eqn. (3.32) as a Boolean decision. θ1 = π − 0.1, θ2 =
π + 0.1, the window of which is indicated by the red vertical angles. The orange
curve is the phase curve θ(t) = t, while the blue curve is the Guard value - when
θ ∈ (θ1, θ2), the function returns true.

As a main example, the “device” of 3.7 could be implemented on two servomod-

ules using velocity commands(“vel” type with “arg” value, which sets θ̇ref = arg)

commands (e.g. with position gain 0) by populating their buffers identically as:
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Address Symbol Argument

0 Clock 0

1 vel 1

2 P (π, 2π)

3 vel 1-δ

5 P (3π
4
, 2π)

6 Report 1

The “Report” commands are used to identify crossing the exit section in the upper

right quadrant of the square torus, i.e. q1 ∈
(

3π
4
, 2π
)
, q2 ∈

(
3π
4
, 2π
)
. The central

authority monitors for both reports - if their logic AND is true, it simultaneously

resets the cursors back to 0.

The “P” type guards are functions of angle, so define an ECr field on T 6. However,

we wish to have the capacity to have hybrid events occur at physical ground contact,

rather than a supposed contact. Thus, we need additional guard types.

The next type is an error guard. Error guards evaluate the tracking error e(t) :=

q(t)−qref (t) used in the servomodules inner loop controller. If ‖e(t)‖ > eth, the guard

clears.

In light of the Buehler-clock specification we are attempting to achieve, where a

“fast” aerial speed precedes a “slow” ground speed, consider the following command

sequence.

Address Symbol Argument

0 Clock 0

1 vel 1

2 E (π, 2π)

3 vel 1-δ

5 P (3π
4
, 2π)

6 Report 1
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If the tracking controller is performing well (we assume that it is), the error guard

will not clear until the limb impacts the ground, where the leg is forced to slow down,

increasing error.

We observe that the behavior of the robot under this scheme is distinct if the robot

were lifted clear of the ground versus being in contact with the ground. We would

simply see the legs spin at constant velocity if the robot is airborne. The interaction

of the limb with the ground is essential to the genesis of a stable periodic gait. We

admit an imperfect understanding of the performance expected by such a strategy –

accurate detection of the ground contact event essentially relies on selecting the right

error threshold value. Finding such a value would be incumbent upon user tuning,

and would likely depend strongly on the regularity of the ground, and the choice of

PID tracking gains.

The final type of guard our modules implement guard condition on external sensor

data, which is indicated with a type of “G”. The argument of this guard type is a

placeholder – the sensor reading is assumed to be a digital pulse that aligns with

ground contact. When a ground contact even occurs, the sensor switches from “0”,

to “1”. A servomodule’s main loop periodically samples this signal (typically at rates

≥ 20kHz). If it is “1”, the guard clears, and the buffer address is advanced. Our

implementation uses a simple contact switch mounted on the bottom of the RHex

legs connected via photocoupler to the CPU. Additional details will be provided in

§3.9.4 section below.

Currently, we only have ad-hoc tools to compose command sequences to stabilize

desired polygonal curves. The proposed polygonal curve algorithm above is only a

partial answer, as it is formulated to specify only a local ECr field. In the sequel we

will present a simulation framework designed to facilitate the development of these

command sequences by providing an environment in which sequences can be tested

via trial-and-error.
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3.9.3 Simulation

Running physical experiments on the robot is time intensive, and prone to damag-

ing the device when a non-viable gait is tested. To immunize our project against this,

we have developed a pure-software python simulation to validate command sequences

for the RHex robot. To emphasize, it is a simulation of the network of modules, not

the dynamics of RHex. It uses the exact interface used to drive the physical mod-

ules mounted on RHex with virtual, emulated versions that implement the protocol

described above. Doing so allows us to determine if an undesirable gait is a result of

the poor usage of the intended logic of the control scheme, or from bugs or other lim-

itations in the hardware. The python simulation implements error-less transmission

– the commands sent by the central authority are simply deposited in the buffers of

the virtual modules without modeling packet loss.

Beyond implementing the control protocol, the virtual modules include several

non-ideal factors to test the resiliency of the gait to plausible or inescapable features

of the physical hardware. We implemented (with configurable parameters):

• Command tracking bandwidth and noise. A reference command response of the

first-order hold includes a first-order low-pass model of the motor to represent

the inability of a physical device to move arbitrarily quickly to a desired location,

simulating the feedback loop of the servo.

• Finite-difference velocity estimation, where sampled data from the above low-

pass model is corrupted with additive or multiplicative noise drawn from either

bounded uniform or normal distribution, indicating that sensing is imperfect,

or that unknown dynamics disrupt the velocity and position signals.

• A sampling outbox with packet loss. A memory structure is populated by a

down-sampled version of the virtual modules own state. It includes irregular

updating, and packet loss. We use this feature to represent that the central
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authority can only query a module’s state at some sampling frequency over an

unreliable channel.

Figure 3.17: A simulation output in the time domain of the virtual RHex. The blue
and green triangular waveforms are the positions of each leg. The controller is group-
ing them well into two tripods. The lower square-like waves are the corresponding
velocities. The jaggedness is a result of injected noise and model irregularities that
are being rejected via the event-selected feedback.

Our simulation framework allows us to determine if a programmed behavior is

going to be persistent to tracking quality and encoder noise. While structural prop-

erties of the flow of an ECr flow guarantee C0 closeness under perturbation, we must

additionally account for difficulties arising from computation time or quantization

error, e.g. if the dwell time for a type “P” guard is lower than the sampling frequency

of the servomodule controller, it fails to properly detect the guard. As the simulation

uses the same software interface as the physical robot, the code we use to test the

virtual modules is directly used to drive the hardware – merely a flag “hw=True“ is

set, and the exact same code is executed. The hardware abstraction layer running be-

neath the interface is responsible for managing the differences between the hardware

and virtual servomodules. By including these features into our software, we hope to

reduce development time.
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Shown below in Fig. 3.17 is an example output of this simulation, where we are

synthesizing a Buehler clock across six modules in an alternating tripod gait. We see

that despite the addition of disruptive factors, our desired signal remains strongly

synchronized and periodic.

3.9.4 Hardware

Due to the non-standard control protocol proposed above, we found it necessary to

develop custom servomodules, as no commercial driver had the ability to implement

our guard-based buffer scheme. We collaborated with Ghost Robotics, and modified a

donated servomodule to implement the protocol described in §3.9.2. We modified both

the firmware and circuitry. Additionally, we required both ground contact sensors and

power management for the robot, and designed in-house custom options for this task.

As mentioned, the motors are a custom evolution of a Ghost Robotics prototype

that incorporates commutation, communication, and servo-control into a single plat-

form. The motors are commercially available 21 pole-pair, U8 KV100-series motors

produced by Tiger Motor in direct-drive configuration with the fiberglass leg. The

motivation for direct-drive was increased transparency of ground contact in error dy-

namics, avoiding damage to gear boxes through impact, and other factors (Kenneally

et al., 2016).

3.9.4.1 Ground Contact Sensing

We mounted contact switches to bottom of the RHex legs to sense ground contacts.

Since the legs undergo complete rotations, we elected to use an optical coupler to

connect the switching signal to the microcontroller. While a slip-ring may be a more

conventional choice for such a task, the mechanical limitations of our design did not

facilitate the easy inclusion of a slip ring. Additionally, slip rings have intermittent

mechanical contacts, leading to both wear and debouncing complications, neither of
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Figure 3.18: A complete RHex leg. The fiber-glass leg is load-bearing, while it at-
taches to the BL-DC motor driver via a 3D printed fiber-reinforced nylon mount.
The motor is bolted to the aluminum plate, which then attaches to the RHex frame.
The visible wiring and electrical components are part of the optically coupled ground
contact sensor. On the reverse, not pictured, is the motor controller and thermal
safety circuitry.

which are problems with optical coupling.

Since we are interested in the ground impact itself, rather than an entire stance

phase, we used the contact switch to drive a pulse-generator that illuminated a strip

of LED’s wound around the plastic leg mount. The circuitry and power supply were

fully externalized and mounted on the leg, eliminating any wiring between the limbs

and servomodules.

Since we wanted to detect a contact at any angle, we elected to use flexible LED

strips wound entirely around the motor. A photodetector and amplifier were mounted

on the RHex housing, which then directly connected to the microcontroller.
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Figure 3.19: An above view of the servo-module and RHex leg. (A) is the flexible
LED strip wound around the motor mount, (B) is the thermal safety daughter board,
while (C) is the ATC blade fuse.

An example circuit that produces such an effect is depicted in Fig. 3.20.

3.9.4.2 Thermal Safety

Given the large currents needed to drive the motors, thermal runway is a possibil-

ity, especially during stall conditions. To mitigate thermal overload, we incorporated

thermal safeties. The high-level function of the safety is to block traffic emitted from

the central node that is directed at the overheating servomodule. Each servomodule

expects a periodic heartbeat signal; if the signal is not received after a sufficient time

gap, the module ceases to energize the motor, driving high currents to zero. The

thermal safety is a collection of three Positive Temperature Coefficient (PTC) ther-

mistors, thermally bonded to the surface of the H-bridge, that undergo exponential
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Figure 3.20: A simple pulse generator – the push-button closure illuminates LED1
with a bandwidth controller via R1,R2, and C1.

growth in resistance at a known temperate. With our component choice, the ther-

mistors resistance jumps from 100 ohms to over 100 kilohms at an exponential rate

around the set point of 90 Celsius. This discrete jump latches the enable pin of a

tri-state buffer that is in series on the serial transmission line. When the buffer is

tripped, it presents as high-impedance, terminating traffic. Three such buffers (one

for each H-bridge) are sequentially connected, so that a thermal overload in any of

the H-bridges generates a fault condition. The schematic for this device is shown in

Fig. 3.23.

3.9.4.3 Power Regulation

The RHex is designed to be driven by a 4S1P Lithium-Polymer (LiPo) battery

operating nominally between 13.5 V and 16.6 V. Since the computational components

of the motor modules are driven from a USB2.0 port, their total draw is limited to

6× 500 mA = 3A.

Ergo, the motors are the dominant current loads. Each H-bridge is populated with
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Figure 3.21: An example trace of the resulting input signal to the microcontroller.
The green trace is the signal produced by switch, while the yellow trace is the resulting
output of the photo-edge detector.

three BTN8980 half-bridge driver chips, which can tolerate up to 44 A per phase line,

with surges up to 110A for 10 ms. Collectively, six motors in parallel can draw in

excess of 600A for short a duration.

However, this is a very high performance regime. For the initial prototyping,

currents per motor (sum of all three phase currents) of 15A are sufficient. Since LiPo

batteries are easily capable of producing currents in the hundreds of amps, we need

to protect against high-current surges. We elected to simply incorporate 15A ATO

LittleFuse 32 V blade fuses (ato, 2019) into the hot line of each motor module. Each

LTC fuse is “slow-blow”, so that motor transients below 200% of 15A can be tolerated

for 5 seconds before the fuse blows.
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Figure 3.22: The contact switch used to indicate if the leg has impacted the ground.
When the beam is depressed by contact, the receiving circuitry converts this event
into a 50 ms pulse.

We additionally require undervoltage lockout. If a LiPo battery is sufficiently

discharged, it can catastrophically fail. Given the high currents tolerated by the

RHex motors, a 50C 4000 mAh battery, our standard power source, can be depleted

in a matter of minutes. The protection circuit is designed to be latching, so that if

the undervoltage condition is ever achieved, the power outputs are disabled until the

circuit is de-energized for maximum safety.

Finally, as the motor drivers posses an significant electrical reactance, in-rush

currents can be substantial, which can cause destruction failures. We must protect

against large in-rush currents until the time-constants of reactive components have

elapsed, and their current draw dissipates.
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Figure 3.23: The thermal safety schematic. There are three channels , one for each
branch of the H-bridge, that are multiplexed together to TX line of the python kernel.
Suppression of traffic on this line violates the heartbeat timer, resulting in a shutdown
of the servomodule.

Shown below in Fig. 3.26 is a schematic that accomplishes our desired goals.

3.9.5 Performance

3.9.5.1 Reference Tracking

Our custom protocol allows the implementation of a standard Buehler clock with

reference tracking through the usage of time guards. As a sanity check, we elected to

verify that our method could produce an alternating tripod gait.

Such a gait produces stable forward translation of the RHex chassis, as we would

expect. The gait is “walking”, wherein it is statically stable, or nearly so, at all points

during its stride. A representative trace of the CoM while using this gait is displayed
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Figure 3.24: Power module schematic. The function is each section is described in
text.

in Fig. 3.27. Two motion capture markers were attached to the upper surface of

RHex to define a course COM, and filmed with the Qualisys motion capture system

at 60 FPS on five Opus 310-series cameras. The robot walked directly ahead, so

the y-coordinate motion was relatively constant. The x-coordinate roughly linearly

increased. Our purpose of this section is to indicate that we successfully implemented

reference tracking in our custom RHex, which is the conventional method of control.

3.9.5.2 Piecewise-Constant Performance

The performance of the ECr distributed code on hardware was so far not yielded

a reliable data set.

While the novel protocol from above is implemented, we have encountered diffi-

culties in reliable communication between the servomodules and the central python
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Figure 3.25: Reference tracking an alternating tripod gait in dry-dock, where the legs
do not make contact with the ground. The upper plot is the average angle of each
tripod, while the lower figure is the velocity.

authority.

In Fig. 3.28 and Fig. 3.29, we display the current state of progress. The physical

telemetry is reported by the servo modules as an instrument to validate performance –

it is not used for control actions. We see that there seems to be reasonable agreement

between the simulated results and the motion of the robot. Data was collected in

dry-dock (the robot is suspended in the air), free of unexpected contacts – ergo, the

guards were of “P” type. It is also salient that the polygonal curve is not a meaningful

gait. It is an arbitrary trial behavior intended to validate the implementation.

We admit there remains work to be done is demonstrating that a fully distributed

control scheme can produce a reliable gait, especially when ground contact sensors

are used.
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Figure 3.26: Reference Buehler tracking. The robot starts suspended in the air, and
is then placed on the ground around data point 7000 to stride forwards. The high
tracking quality degrades, as the legs in contact with the ground appear to experience
a pure acceleration until their eventual liftoff.

3.10 Future Work

Two major directions immediately present themselves to continue the line of rea-

soning opened in this chapter. The first and most apparent is to continue the devel-

opment of the RHex robot and resolve the underlying hardware issues that inhibit the

genesis of a useful gait with event selected control. In particular, using the ground

contact events as guards to synthesize a stable gait would be a novel departure from

conventional autonomous legged controllers. It would provide an demonstration that

periodic gaits do not need to be exclusively generated from tracking periodic reference

trajectories, but can rather arise from predictable interaction with the environment.
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Figure 3.27: Reference Buehler tracking. The blue trace is one marker, while the
orange trace is the other. The upper plot is the x coordinate of the plane, while the
lower plot is the y coordinate of the plane. Since the robot is not airborne, the z
coordinate is omitted.

Secondly, the numerical estimation of the linearization of a PCr has apparent

application in multi-contact locomotion and manipulation problems. The validation

examples we used in §3.3 were quite artificial. The algorithm could potentially be

used to dramatically accelerate multiple contact planning problems (Tassa et al.,

2012; Mordatch et al., 2012a) as we can directly account for the effect of variations

through contact without resorting to a combinatorial number of integrations.
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Figure 3.28: Simulated trajectory data down-sampled via the host controller using P-
type guards. Zero noise was added to the response. Finite-response time was enabled,
smoothing the knot points.
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Figure 3.29: The physical robot executing the same command sequence – while irreg-
ularities emerge, it is clear the same qualitative structure as the simulated response
is present.

Figure 3.30: A mixed regime controller. The in-tripod synchronization is accom-
plished with distributed event-selected control, while the phase difference between
the tripods is done with feedback. Red traces are one tripod, while blue traces are
the other. We can see that a disruption to limbs is effectively rejected completely for
in two strides. This data was collected in dry-dock.
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Mordatch, I., E. Todorov, and Z. Popović (2012b), Discovery of complex behaviors
through contact-invariant optimization, ACM Transactions on Graphics (TOG),
31 (4), 43.

Müller, P. C. (1995), Calculation of lyapunov exponents for dynamic systems with
discontinuities, Chaos, Solitons & Fractals, 5 (9), 1671–1681.

Murray, R., S. Sastry, and Z. Li (1994), A mathematical introduction to robotic ma-
nipulation, 1 ed., CRC Press.

Murray, R. M. (2017), A mathematical introduction to robotic manipulation, CRC
press.

OlECH, C. (1998), On the wazewski equation, ZESZYTY NAUKOWE-
UNIWERSYTETU JAGIELLONSKIEGO-ALL SERIES-, 1223, 55–64.

Orhon, H. E. (2018), Model-based identification and control of a one-legged hopping
robot, arXiv preprint arXiv:1802.09634.

Ostrowski, J., and J. Burdick (1998), The geometric mechanics of undulatory robotic
locomotion, The international journal of robotics research, 17 (7), 683–701.

Ostrowski, J. P. (1996), The mechanics and control of undulatory robotic locomotion,
Ph.D. thesis, California Institute of Technology.

181



Palmer III, L. R., and C. Eaton (2014), Periodic spring-mass running over uneven ter-
rain using feedfoaward control of landing conditions, Bioinspiration and Biomimet-
ics, 9 (3), doi:10.1088/1748-3182/9/036018.

Pepy, R., A. Lambert, and H. Mounier (2006), Path planning using a dynamic vehicle
model, in 2006 2nd International Conference on Information & Communication
Technologies, vol. 1, pp. 781–786, IEEE.

Pepyne, D. L., and C. G. Cassandras (2000), Optimal control of hybrid systems in
manufacturing, Proceedings of the IEEE, 88 (7), 1108–1123.

Pratihar, D. K., K. Deb, and A. Ghosh (2002), Optimal path and gait generations
simultaneously of a six-legged robot using a ga-fuzzy approach, Robotics and Au-
tonomous Systems, 41 (1), 1–20.

Radford, J., and J. Burdick (1998), Local motion planning for nonholonomic control
systems evolving on principal bundles, A, A, 1, 3.

Ramezani, A., J. W. Hurst, K. A. Hamed, and J. W. Grizzle (2014), Performance
analysis and feedback control of atrias, a three-dimensional bipedal robot, Journal
of Dynamic Systems, Measurement, and Control, 136 (2), 021,012.

Ratliff, N., M. Zucker, J. A. Bagnell, and S. Srinivasa (2009), Chomp: Gradient
optimization techniques for efficient motion planning, in Robotics and Automation,
2009. ICRA’09. IEEE International Conference on, pp. 489–494, IEEE.

Reinkensmeyer, D. J., et al. (2014), Tools for understanding and optimizing robotic
gait training.

Reist, P., and R. D’Andrea (2012), Design and analysis of a blind juggling robot,
IEEE Transactions on Robotics, 28 (6), 1228–1243.

Revzen, S., and J. Guckenheimer (2008), Esimtaing phase of synchronized oscillators,
Phys. Rev. E, 78 (5), 051,907, doi:10.1103/PhysRevE.78.051907.

Revzen, S., and M. Kvalheim (2015), Data driven models of legged locomotion, in
SPIE Defense+ Security, pp. 94,671V–94,671V, International Society for Optics
and Photonics.

Revzen, S., D. E. Koditschek, and R. J. Full (2009), Towards testable neuromechanical
control architectures for running, in Progress in Motor Control, pp. 25–55, Springer.

Revzen, S., M. Kvalheim, S. Wilshon, and J. Guckenheimer (2018), Estimating phase
from observed trajectories, In preparation, pp. 1–20.

Rockafellar, R. T. (2003), A property of piecewise smooth functions, Computational
Optimization and Applications, 25 (1-3), 247–250.

Ruff, C. (2002), Variation in human body size and shape, Annual Review of Anthro-
pology, 31, 211–232, doi:10.1146/annurev.anthro.31.040402.085407.

182



Rumbaugh, J., I. Jacobson, and G. Booch (2004), Unified modeling language reference
manual, the, Pearson Higher Education.

Saranli, U., M. Buehler, and D. E. Koditschek (2001), Rhex: A simple and highly
mobile hexapod robot, The International Journal of Robotics Research, 20 (7), 616–
631.

Sastry, S. (1999), Nonlinear systems : analysis, stability, and control, Springer.

Schmitt, J., and P. Holmes (2000), Mechanical models for insect locomotion: dy-
namics and stability in the horizontal plane i. theory, Biological cybernetics, 83 (6),
501–515.

Scholtes, S. (2012), Introduction to piecewise differentiable equations, Springer Science
& Business Media.

Seyfarth, A., H. Geyer, M. Gunther, and R. Blickhan (2002), A movement criterion
for running, J. Biomechanics, 35, 649–655, doi:10.1016/S0021-9290(01)00245-7.

Seyfarth, A., H. Geyer, and H. Herr (2006), Swing-leg retraction : a simple control
model for stable running, J. of Exp. Bio., 206, 2547–2555, doi:10.1242/jeb.00463.

Sharir, M. (1989), Algorithmic motion planning in robotics, Computer, 22 (3), 9–19.

Siepel, J., and P. Holmes (2007), A simple model for clock-actuated legged locomotion,
Regular and Chaotic Dynamics, 12 (5), 502–520, doi:10.1134/S1560354707050048.
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CHAPTER IV

Deadbeat Stabilization

4.1 Deadbeat Hopping

In limbed biological and robotic systems, intermittent contacts that arise fre-

quently are defining feature. Feet make and break contact with the ground while

walking or running, while grasping motions are practically defined by such events.

However, mechanical contacts with the ambient environment are subject to uncer-

tainty in the contact timing. Perfect knowledge the environment is not a luxury

practical systems have. The environment is uneven, terrain is rugged, objects are not

uniformly shaped, and so on. Similarly, no model is ideal – body configuration and

morphology are not known exactly. A robot is not manufactured to infinite precision,

and organisms exhibit variation in body parameters across members of a species and

even through its lifetime (Ruff , 2002). As such, contacts with the environment during

manipulation or locomotion occurs at an unexpected time, which appear as exogenous

disturbances from the perspective of the actor (Fig. 4.1). To enable robust activity,

such as reliable locomotion over rough ground or sure gripping of variably-shaped

objects, limbs and manipulators need a method to compensate for these uncertain

contacts.

We would like to design a principled method to mitigate the effects of unexpected

contacts. We immediate specialize to rejecting uncertain contacts that occur in hybrid
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Figure 4.1: A depiction of a SLIP model in gravity subject to uncertain contact.
While a window of possible contacts is known, the precise point of contact is not.
The control method proposed here presents a solution to preserve the gait of the
SLIP.
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dynamical systems, which is a commonly used class of models for systems that expe-

rience discontinuities as a result of contact (Full and Koditschek , 1999; Goebel et al.,

2009). The applicability of hybrid models to contacting systems is well-established

(Holmes et al., 2006b; Goebel et al., 2009). The governing dynamics prior to contact

and post-contact are assumed to be different smooth models, where the contact is a

simplifying abstraction that accommodates fast time-scale dynamics at the transition

surface.

Our high-level concern is how to achieve a post-contact state reliably despite

uncertainty in when a transition manifold is crossed. While the control method is

made precise in §4.1.4, the essential perspective is trajectory selection, rather than

sensing.

We wish to achieve our goal without control effort post-contact. Typically, limbs

and manipulators have a payload capacity. As a consequence, they are often easy

to control before contact, but become load-limited when in contact. This change

expresses itself in a dramatic reduction in control authority; even if the system remains

fully controllable in a formal sense, the amount of actuator effort rises significantly.

Since the objective is to mitigate contacts with the environment, which is external

to the actor, it is only natural to conjecture that a substantial amount of sensing and

control is needed if disturbances from exogenous contact changes are to be rejected.

The essence of our contribution is showing this conjecture to be false both in an exam-

ple, and almost always under mild assumptions. We demonstrate a means whereby a

desired control law for the outcome in the poorly controllable and load-limited region

can be encoded in a manifold in the region where the uncertain transitions may occur.

If the pre-transition control authority can be used to render the manifold invariant,

the actor can remove most or all the uncertainty generated by an exogenously driven

hybrid transition. Roughly, we do this by computing a solution at each possible

transition event whose outcome achieves the desired end-state, defining a collection
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of state/transition pairs that map to a desired outcome. If the set of pairs can be

parameterized as a function of the pre-contact state, control action in the pre-contact

region can implement the discovered function, rendering the outcome of the system

deadbeat invariant with respect to the transition (Fig. 4.2).

The notion that feedforward controllers might improve the behavior of SLIP mod-

els was partially motivated by Seyfarth et al. (2006), where Seyarth et. al. demon-

strated that a blind retraction of a bipedal leg during descent improved the stability

properties of a periodic gait, but did not present a prescriptive technique for general

systems. While the numerical examples we consider are both SLIP-variants, the geo-

metric method introduced here is a generic result for hybrid systems. We acknowledge

that a significant number of other groups (Ernst et al., 2011; Palmer III and Eaton,

2014; Hutter et al., 2010; Vejdani et al., 2013; Orhon, 2018) have presented feed-

foward controllers for SLIP models to stabilize a desired periodic motion with respect

to uncertain ground contacts in either simulation or with hardware implementations.

Similar strategies have been used for manipulation tasks, such as juggling (Reist and

D’Andrea, 2012).

Our proposed contribution two-fold. First, we present a precise mathematical

statement that is a generalized representation of the deadbeat control problem, and

argue that, generically, many such hybrid systems could admit such structure, whereas

the cited work ostensibly made use of SLIP-specific model structure. Secondly, as we

are fundamentally interested in an finite-duration trajectories (periodic orbits for a

single period fit into this category), we argue, and then demonstrate via simulation,

that deadbeat feedforward controllers can be derived from trajectory data without the

need for equations of motion. The aforementioned authors invariably used a dynamic

model either derived from first principles, or fit to experimental data.

Our results imply that, beyond generating a controller that regulates a plant in

an actor-plant model, the independence of the feedforward controller allows direct
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incorporation into the plant. Such a “co-design” of plant and controller is a step

towards embodied intelligence, where favorable, task-specific, dynamics can be di-

rectly incorporated into the mechanical structure of a limb. The observation suggests

a methodology to design robots, as well as provide a new perspective on the anal-

ysis of animal morphology, where neural processing and mechanical structure are

not independently designed. Biologists and biomechanists who seek to identify the

mechanisms of control in animals should be wary of the possibility that critically im-

portant control mechanisms may be encoded in the geometry of limbs and the choice

of feed-forward limb trajectory, partially or completely bypassing the nervous system.

4.1.1 Periodic Hopping

We are attempting to determine whether we can control the outcomes of such a

model with little to no sensing, by choosing appropriate feed-forward actions while a

leg is still in the air. Representing these motions in a body-centric frame of reference,

foot touchdown can typically occur anywhere within the legs’ workspace. We therefor

consider hybrid systems with an open “guard” – a region in which an exogenous

transition may occur – rather than the more commonly used formulation of guards

as submanifolds with boundary in the boundary of a domain (Goebel et al., 2009).

Choosing, as many legged locomotion papers do (Seyfarth et al., 2002, 2006; Arslan

and Saranli , 2012; Carver et al., 2009; Ankarali and Saranli , 2010), to analyze the

periodic motion of our hopping model using Poincaré return maps to the apex of the

hop, we will show a means to select foot motion in the neighborhood of an expected

touchdown location so that the model performs deadbeat perturbation rejection for

ground height changes. This means that our model will perfectly track changes in

ground height by adjusting the subsequent apex height by the same amount, but

it will do so without sensing the ground. Inside, the method relies entirely on the

interaction of the touchdown event with our choice of foot trajectory to produce the
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“control”. The only sensing our model uses is knowledge of how far it has fallen since

starting apex. In this sense, we only need to know the initial state, and measure the

elapsed time, which we consider to be proprioceptive sensing.

4.1.2 Encoding control as a pre-transition constraint manifold

Numerous definitions of hybrid dynamical systems appear in the literature (Sastry ,

1999; Guckenheimer and Johnson, 1995; Goebel et al., 2009). Since we seek to show a

local result, we will focus on the flow across a single “hybrid transition”. By stating

our result with respect to a single, possibly discontinuous, change in the equations

of motion governing the dynamics we avoid the need for mathematical machinery

defining a specific, possibly overly restrictive, class of hybrid systems.

4.1.3 Hybrid control system definition

Consider a system of the form:

ẋ =


fA(x, u), x ∈ A, fA : A× Rk → TA

fB(x), x ∈ B, fB : B → TB
(4.1)

with vector fields fA, fB Lipschitz in x on the closures of their respective precompact

domains A, B, which map into the respective tangent bundle, and a control input

u entering into fA from Rk. Assume it is furthermore known that all executions1

starting in an open set U0 ⊆ A will flow into an open set O ⊆ A∩ B and somewhere

therein switch to the B domain, to continue with the B dynamics into an open set

U1 ⊆ B. We will presume that the switching between A and B dynamics may be

exogenous: it might not be a function of state, nor of time, nor be in any other way

amenable to prediction; we are only given that exactly one such switching event will

occur for every execution starting at U0, and that this transition will occur while the

1a “solution” of a hybrid system is termed an “execution”
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state is in O.

4.1.4 Controller design

Assume that for the system of Eqn. (4.1.3) we are furnished with transverse

Poincaré section S ⊆ U1 given as the 0 level set of a smooth function σ : U1 → R, i.e.

S := σ−1(0), and Dxσ · fB > 0 in the entire domain it is defined. The section S will be

used to define the output we wish to control, via a smooth function g : O × S → Rd

whose Jacobians DSg and DOg with respect to both S and O are maximal rank

everywhere on S and O respectively. We will use g to define an implicit relationship

between transition states O and the desired eventual states in S, such that for each

execution y with transition at yτ and arrival at y1 ∈ S, we drive the value of g(yτ , y1)

to zero, like a cost function from optimization.

As one final assumption, we must develop our local control scheme in the neigh-

borhood of a known “desirable” execution of the system x : [0, 1] → (A ∪ B) for

which the control u is identically 0. x starts at x(0) = x0 ∈ A, moves into the open

set O ⊆ A ∩ B in which it transitions over at time τ∗ and state x∗ := x(τ∗) to B,

then continues in B, finishing at x(1) = x1 ∈ S. It is “desirable” in the sense that

g(x∗, x1) = 0.

Although we have no control over the dynamics in B, nor over the instant at which

fB takes over the dynamics, we will show that we can locally deadbeat stabilize the

output g = 0 by restricting the trajectories in O to a smooth submanifold passing

through x∗, using the control u. This follows from the observation that the flow

ΦB : R+ × B → B in domain B is smooth in B, as is the “impact time map”

TB : O → R+ (Hirsch et al., 1974; Arnold , 1973) which maps initial conditions to

their arrival times on S, i.e. ∀o ∈ O : ΦB(TB(o), o) ∈ S, which is easily defined with
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the Implicit Function Theorem. We pull S and thus also g back to O by defining:

g∗(x) := g(x,ΦB(TB(x), x)) g∗ : O → Rd. (4.2)

By virtue of being the pullback, g∗ maps every state in O to its “eventual” output

value, presuming that it will be carried by ΦB for the remaining duration.

Consider a path z(t) taking values in O, and which is at least C1 . The derivative

of g∗ along the path z is, via the Chain Rule:

d

dt
g∗(z(t)) = [DOg + DSg · (DxΦB + fB · DxTB)] · ż. (4.3)

If Eqn. (4.3) equals zero for all time, then the path z(t) is g∗-invariant. We will

assume g∗ is of rank d in a neighborhood X∗ of x∗ and conclude that the set

G := {x ∈ X∗| g∗(x) = 0} (4.4)

is an embedded submanifold of co-dimension d in O, which passes through x∗, since

g∗(x∗) = 0.

If a controller can bring trajectories z in A close to G, i.e. to ‖g∗(z)‖ ≤ ε, and

thereafter sustain the d
dt
g∗(z(t)) = 0, then any transition that occurs in X∗ will lead

to a state with ‖g‖ ≤ ε. In particular, this is true even for ε = 0, in which finite time

convergence to G will ensure that g = 0 after transition.

A range of possible methods of nonlinear control (Khalil , 2002b; Sastry , 1999)

may be employed to achieve this goal in A. The choice of controller is not germane to

the core observation we present. Namely, that G is known in advance, independently

of any need for sensing in real time. In its geometry it encodes a relationship between

the transition state in O and the outcome on the next crossing of S in a feed-forward

fashion.

192



As a corollary, note that if g is of maximal dimension, i.e. if d = dim B − 1 =

dim S, then G is a single smooth trajectory passing through x∗. When moving along

this trajectory, the system is guaranteed to reach x1 in S regardless of where in

O the transition occurs. If, furthermore, the flow carries B back into A such that

the example execution is periodic (stable or not), this process renders the controlled

execution z stable with respect to the Poincaré section defined by S. Any deviations

from the nominal z will be removed by the controller acting in A\O. We now proceed

to construct such a deadbeat control example in simulation.

4.1.4.1 Vertical hopping can be Deadbeat controlled without sensing

As a motivating example, we present a model of a vertically hopping organism. In

the classical paper Blickhan (1989a), Blickhan defined a vertical spring-mass hopper

and proceeded to derive relationships for the performance envelopes of human hop-

pers and runners. In line with Blickhan, Farley (Farley et al., 1985) has argued that

the vertical hopping limit of the Spring Loaded Inverted Pendulum (SLIP) model of

running (Holmes et al., 2006a; Blickhan, 1989a; Ghigliazza et al., 2004) – running

with zero forward speed – is informative in understanding bouncing gaits in ani-

mals. We suggest some simple elaborations of this model can provide a platform for

demonstrating our key result, while at the same time providing a more general model

capturing some of the essential nature of control of legged systems with muscles.

A fundamental property of both the classic SLIP and Blickhan’s hopper is that

they are energy conserving systems. As such, even if a periodic execution exists,

it cannot be asymptotically stable – any perturbation changing total energy must

perforce shift the system to a new level-set of the total energy function, never to

return. Changes in average ground height, which are of paramount relevance to any

legged locomotion in the real world, will require changes in average potential energy.

We thus require a dynamical model which allows for energy to be both added and
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Figure 4.2: A visual depiction of arrangement of hybrid domains. The submanifold
L (the zero level set of the goal surface, pulled back via the flow in B) is defined by
the flow of the vector field defined in domain B. If the dynamics of the A system
naturally have dynamics invariant to this surface, it will reject any uncertainty in
switching manifold.

removed from the system.

Since our goal is to provide an example with no sensing of the ground, the approach

of energy injection by triggering some actuation whilst on the ground cannot serve

us. Instead, we hark back to biology to note that biological actuation uses muscles,

whose intrinsic dynamics already allow for them to add energy and not only remove it.

Numerical experimentation with our model has shown this to require some “toe-off”

– the liftoff height in hopping must be greater than the landing height. This result

of our model may deserve further biomechanical investigation; it seems plausible for

human hopping that ground reaction forces only become substantial at heel strike,

but persist to toe-off.

The overall scheme of our model is illustrated in Fig. 4.3, showing a hopper

hopping over changing ground. We envision the hopper to have an actuator allowing

the length of the leg to be freely controlled in flight, but presume this leg length to
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“lock in” at touchdown, and have dynamics of stance governed entirely by a muscle

model, until the length of the leg exceeds the toe-off length, or until the relative height

is 0 (the leg ”crashed”).

Figure 4.3: Vertical Hopper bouncing over a moving plate (height plotted against
time), with an actuator (active only in flight) changing the rest length of the leg (pale
red) and a muscle-like element (green) supporting the payload mass (dark grey).
While the foot (light grey) is in contact with the ground, ground height remains
constant; it changes instantaneously when the hopper is at its apex height.

4.1.4.2 Equations of motion

The state of our hopper is defined by the (absolute) vertical position x and velocity

ẋ. Its leg length, in flight, is governed directly by the control input u. Ground height

h is piecewise constant, changing only when the hopper is at “apex” – in the flight

domain, at the instant when ẋ = 0. We use the apex as our section S, with −ẋ

playing the role of σ from the definition of S.

In flight, dynamics are ballistic:

ẍ = −g (4.5)

In stance, dynamics are governed by a combination of gravity and “muscle dy-
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namics”.

ẍ = −g +K(L− x)(1− ηẋ)− µẋ (4.6)

The length L is the length of the leg at touchdown. The parameters K and η provide

averaged approximations to the length dependent and velocity dependent terms (re-

spectively) of the Hill muscle model(Hill , 1938); µ adds some dissipation, capturing

the overall energy consuming nature of the task. The Hill muscle model has been pos-

tulated to be of sufficient accuracy to be useful for simulating human musculoskeletal

behavior Winters (1990); Bogert et al. (1998). We base our treatment of this model

on the presentation in §2 of Ghigliazza and Holmes (2005). With respect to their

notation, K is an average slope for FL near the operating point of the hopper, and η

is an average slope for FV around 0, and within the typical range of velocities.

The length of the leg is assumed to be directly controlled in the air,, and is

indicated by u ∈ R. Then, touchdown transitions triggering a change from flight to

stance are induced when:

x
TD
− u = h (4.7)

At that moment, the value of L is set to equal xTD − h for the following stance.

Liftoff transitions are triggered when toeoff occurs, i.e.,

xLO = L+ lto (4.8)

A “toeoff” length lto := 0.1 was used for all our simulations.
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4.1.4.3 Simulation environment

The system was simulated in Python 2.7.5 using the NumPy and SciPy open-

source numerical libraries. ODE-s were integrated using a pure-python port of the

dopri5 integrator from Hairer et al. (1993). A custom integrator was used because

this integrator provides a “dense output”, i.e. polynomial patches between time-

points. These were used to implement a bisection based event detector, allowing for

accurate and speedy simulation of hybrid systems.

4.1.4.4 Constructing the goal function g∗

As a first step towards constructing and example of our control scheme, we pro-

duced a periodic solution of the hopping simulation by numerically solving for a fixed

point of the apex return map.

Parameters of this solution are found in Table 4.2.

Table 4.1: Parameters

Parameter Definition Value
η FV average slope 0.03
µ dissipative loss 0.3
K FL average slope 80
y1 desired relative apex 2
y∗(y, ẏ) known touchdown (1.57, -2.87)
lto toe-off height 0.1

It is convenient to visualize the hopper in terms of its motions relative to the

ground, rather than its dynamics with respect to absolute ground height. For this we

define auxiliary coordinates y := x − h, whose dynamics are identical to those of x

except for being discontinuously remapped by the change in ground height at apex.

Our goal for control is to ensure that hopping dynamics remain the same with

respect to ground height, which for this very simple system implies that we require y
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at the following apex to be unchanged even if the landing height L was unexpected.

This is expressed by the goal function:

g(y
TD
, ẏ

TD
, ynext) = (y

TD
− y∗)− (ynext − y1) (4.9)

where y
TD
, ẏ

TD
, ynext are the touchdown state and the next apex height, and y∗ and

y1 are the touchdown and apex heights on the desired periodic execution. The choice

of Eqn. (4.9) as g implies that touchdown height changes exactly with the subsequent

apex height.

Using Eqn. (4.9) and the flow map, we sampled g∗, to obtain its values in a

neighborhood of the expected touchdown state (ẏ∗, y∗) (see Fig. 4.4).

Figure 4.4: The pullback of g into g∗ into the region X∗ around y∗ = 1.571. The zero
contour is the control objective in this region. Values were sampled on a grid with
step size 0.012
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4.1.4.5 Constructing the feed-forward control law

To numerically identify G, the zero level set of g∗, we selected only points whose

g∗ value was less than 0.01 in magnitude, and least-squares fit a quadratic to obtain

y as a function of ẏ and thereby indirectly as a function of time since last apex, or

distance below last apex. To extend this function outside the sampled region, we held

the extremal values using an analytical approximation to a step function. The final

control law, written in terms of time since last apex t, the polynomial model uModel,

the minimal and maximal sampled y values y min and y max and the minimal and

maximal ẏ as v min, v max was:

def aStep( x ):

return (tanh(x)+1)/2

def u(t):

v = -g*t

x0 = y1 - g*t*t/2

w0 = aStep((v_min-v)/0.01)

w1 = aStep((v-v_max)/0.01)

w = (1-w0-w1)

return (polyval(uModel,v)*w+y_min*w0+y_max*w1)+x0

Figs. 4.5 and 4.6 show typical simulation results.

The non-conservative nature of the control is evident in the simulation results

depicted in Figs. 4.5 and 4.6. The hopper is gaining and losing energy from hop

to hop in the precise amount needed to maintain a fixed relative displacement with

respect to the ground at apex.
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Figure 4.5: Hopper simulation with our controller and randomly changing ground
height. Each hop begins with a descent (red) associated with a changing “virtual” foot
position (purple), ending when the foot intercepts the ground, triggering a transition
into stance (blue), which persists until toe-off. After toe-off the hopper ascends
(green) to a new apex; upon reaching it the ground height (black) may change. To
demonstrate the deadbeat nature of this controller, the desired apex height for the
next hop is indicated (light blue), and each ground height persists for two hops to
show that hopping height reaches a new steady state after a single hop.

4.1.4.6 Physical realization of the model

Fig. 4.7 illustrates both the control objective graphically, and a potential difficulty

with physical realization. The state is below the g∗ contour, which therefore requires

the leg to be shortened. Viewed naively, such a controller requires the toe to start

“inside” the ground, and have the leg continually shortening until touchdown. Since

the leg length we use is the length of the leg at the onset of generation of ground

reaction forces, x∗, one may equally consider this shortening leg as a change of internal
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Figure 4.6: Phase-space plot of the same simulation as Fig. 4.5

configuration in a mechanism longer than L, which causes it to start producing force

at the desired location.

4.1.4.7 Implications

The above demonstration of the local deadbeat stabilization of a hopping model

illustrates that accurate sensing of the ground is not a prerequisite for producing

strong stability guarantees with respect to ground height changes. Given the existence

of a periodic solution, a controller that only has limited sensing information – resets

of a time-course at apex events – is able to provide a deadbeat stabilizing region of

attraction and reject variations in ground height.

Importantly, given the “open-loop” nature of our control scheme one might con-

sider that mechanical implementation of trajectories tangent to G would provide
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Figure 4.7: The relative position of the internal state and the pre-image of 0 under
g∗. The difference between the two illustrates the necessary leg length to shift the
descent trajectory pointwise to the contour.

strong self-stabilization without need for any overt sensing. Because the stabiliza-

tion mechanism is encoded indirectly in the dynamics of the system, it would not

be obvious even to a relatively sophisticated observer of the animal or robot system.

While in our example the control objective was achieved entirely via trajectory design,

a low value of d would merely act to produce some strongly stable (e.g., deadbeat)

directions – allowing partial encoding of the control objective.

While maintaining ġ = 0 in a neighborhood of x∗ renders g∗ level sets invariant, it

does not make G attractive. Other control mechanisms that need not be feedforward

might be used to move trajectories toward the manifold G. To an investigator hoping

to identify the control mechanisms of such a system, only the control rendering G
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attractive would be apparent. The mechanisms generating the fast rejection of some

perturbations encoded into the shape of G itself might remain unexplained at best,

or be mistakenly attributed to other mechanisms at worst.

The essence of our observation is not a surprising mathematical insight. Rather

it is that elementary mathematical tools offer the possibility that one may encode a

control law directly in the geometry of a hybrid transition. Doing so bypasses the

need for conventional sensing and feedback calculations. This key observation we

believe to be of potential use in the design of mechatronic systems and in the analysis

of animal locomotion.

4.2 SLIP with Horizontal Velocity

As we noted above, the SLIP model is one of interest for examining dynamic

running in both organisms and robots (Full and Koditschek , 1999; Blickhan, 1989b;

Seyfarth et al., 2006). Using the results presented in §4.1.4, we consider the extension

to the case with non-zero horizontal velocity.

The dynamics of the center of mass are extended to include an additional me-

chanical degree of freedom, increasing the number of physical states from two to four,

with a horizontal absolute states of x and ẋ, and a vertical absolute states of y and

ẏ. Again, the ground height is a piece-wise constant value per stride, with each stride

being distinguished by an apex event of ẏ = 0.

In the aerial phases, the dynamics are given by ballistic motion:

ẍ = 0

ÿ = −g

In stance, the spring dynamics are the same Hill-like muscle model, where the

the force vector is co-linear with the leg. The massless leg has a rest length l0 which
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Figure 4.8: A depiction of an execution of a Spring Load Inverted Pendulum (SLIP)
with horizontal velocity. The relative displacement above the ground, and horizontal
velocity at apex are being preserved. The spring dynamics are non-conservative, so
energy can be added or removed.
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corresponds to zero compression, and a state-dependent length of l =
√
x2 + y2 in

general. The stance dynamics are :

ẍ = Fh

(x
l

)
ÿ = Fh

(y
l

)
− g

where Fh := K(L − l)(1 − ηl̇) − µl̇ for K, η, µ playing the same role as previously.

Thus, the leg dynamics are analogous (with an identical force law) to the vertical

hopper, but the leg is non-vertical. The same qualitative behavior is investigated

– only solutions which exhibit a distinct descent, stance, and ascent phase are of

interest. We want to fix the relative apex height - given an unknown L, determine a

strategy such that the relative height above the ground is preserved, i.e.

yiapex + Li = yi+1
apex

. We also add the requirement that the horizontal velocity ẋ is preserved at apex,

ẋiapex = ẋi+1
apex

as we’d like to maintain the same horizontal speed.

4.2.0.1 Simulation Environment

The system was simulated in Python 2.7.5 using the open-source numerical li-

braries NumPy and SciPy in concert with a python-port of the dopri5 numerical

integrator which supports event detection, identical to the environment used to sim-

ulate the vertical hopper above.
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4.2.0.2 Goal Function

In a departure from the vertical hopper, no explicit algebraic statement of a goal

function g∗ for the desired behavior is needed. The value of g∗ was numerically eval-

uated. We did so by numerically integrating the stance dynamics until the impacted

the terminal surface S, then evaluated g. We do this as (a) the SLIP dynamics are

not integrable in closed-form (Full and Koditschek , 1999), and (b) illustrate that our

method enables a “data-driven” approach; in Eqn. (4.2), we see that the flow Φ only

appears implicitly – on a trajectory, we can directly evaluate g on S without needing

to compute the pullback.

A periodic solution for the system corresponds to a fixed point of the return

map in body coordinates. As such, the exemplar x∗ trajectory was determined by

numerically solving for a fixed point of the return map for a ground height L = 0,

whose nominal parameters are found in Table 4.2.

Table 4.2: Parameters

Parameter Definition Value
η0 FV average slope 0.0826981
µ0 dissipative loss 1.93
K FL average slope 100.0
α0 leg angle −40.86◦

ydes desired relative apex 1.2
ẋdes desired horizontal speed 5.0
p∗(x, ẋ, y, ẏ) known touchdown (1.56,5,0.72,-3.08)
l0 rest leg length .937
lto toe-off height 0.0

Note that leg angle a0 is measured from a vertical normal to the ground. Positive

angle would correspond to the COM in front of the foot, so the leg “extended”

corresponds to a negative value.
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4.2.0.3 Feedforward Control Law

In Seyfarth et al. (2006), it was shown that a feed-forward angular acceleration

of a leg’s angle in similarly-configured SLIP model improved the stability properties

of a periodic solution with respect to ground-height variation. Considering this, we

alter our control scheme from full-state control to parametric control of the model

parameters. Since the airborne robot has no means of effecting force on it’s CoM,

full-state control is not physically possible, so our motivation for parametric control is

sound. During the descent phase, we restrict available control to parametric alteration

of the spring parameters and the leg angle. Direct manipulation of the horizontal

velocity or vertical velocity is not possible. We presume that the impact angle is

perfectly controlled with no dynamics, so that α̇ = 0, α(0) = α0 = u.

Instead of selecting a collection of initial states for the B dynamics, and stip-

ulating ΦA coincide them in in the transition region, we will rather solve: ∀x ∈

Im (ΦA) ∩ O, select a trajectory by varying λ from the family ΦB (x, λ) such that

g (x,ΦB (x, T (x, λ))) = 0. We note this is possible as the vector fields are assumed

Lipschitz in state, so that solutions vary smoothly with respect to parameters (Khalil ,

2002a). Then, we define ĝ (x, λ) = g (x,ΦB (x, T (x, λ))). If Dλĝ has maximal rank,

then via the Implicit Function Theorem, locally ∃p(x) ∈ Cr s.t. ĝ (x, λ = p(x)) = 0

(Spivak , 1965). In other words, there exists a function of compatible smoothness for

each state to the parameter that permits the solution starting at that state to satisfy

g. As a consequence, along the flow of fA, there is a function implicitly parameter-

ized by time. The point being, there is no geometric distinction between controlling

parameters versus states, since we are only interested in the map g itself. We can

merely augment the state with our parameters, and compute the same quantities.

Implementation of our controller is, in abstract, determined by the time of a clock

started at apex. As the mass descends, the parameters of the leg are reconfigured

at each instant to provide the appropriate trajectory such that if the transition to
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stance where to happen at that exact instant, the stance flow would satisfy g = 0.

The outcome is entirely determined by the action taken in A.

For our example, we considered the following case. Given a ground-height window

of interest, ±δL ∈ (−ε + L0, L0 + ε), we discretized the region, and polynomially

interpolated the resulting parameter sets as a function of δl. For each δL value, the

python function minimizer method fmin was used to search over a parameter space

– we arbitrarily selected the parameter space to be leg angle at impact α, and the

viscous damping coefficient µ. The discrete point sets where then least-squared fit

to a fourth order polynomial as a function of vertical velocity for each parameter ,

producing two control functions which are simultaneously applied.

Figure 4.9: The feedforward control law during descent for varying the leg angle and
damping as a function of the vertical velocity state, it is implicitly a function of time.
The leg angle is consistent with Seyfarth et al. (2006), in that a retraction improves
the stability properties.
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Fig. 4.9 show the control laws generated for nominal gate parameters shown in

Table 4.2. δL was varied between ± 0.05, for a total variation of ∼10% the nominal

leg length.

To verify performance, we selected a uniform random ground height sequence using

the numpy.random.rand, over the specified range (±δL). We expect the controller

for fail for large δ, as the implicit function theorem only provides local solutions.

Figures 4.10 and 4.11 depict representative outcomes. The horizontal velocity and

relative vertical position are preserved at 5 m/s and 1.2 m (Table 4.2) respectively at

numerical precision, demonstrating deadbeat performance.

While Figures 4.10 and 4.11 are demonstrations of typical performance, for some

randomly chosen sample paths, the controller would fail, and the SLIP would collapse

(Fig. 4.12). The failure is likely due to the quality of the polynomial fit to the

controller data. When we varied the order of the fit, it unpredictably improved

or degraded performance, demonstrating that polynomials may not be a suitable

set of basis functions for the generated curve, or the controller should be generated

with a higher number of sample points. For example, increasing the number of δl

samples by an order of magnitude was able to partially mitigate this effect, but not

remove it completely. We acknowledge we posses an imperfect knowledge of how to

discretize an embedded submanifold numerically. We argue the failures are a result

of this knowledge gap, rather than a failure in our method’s theory of existence.

We admit intelligently solving for control inputs that can be reliably interpolated by

basis functions may be challenging for systems that are strongly non-linear in their

response to the transition state.

4.2.1 Limitations

An issue observed with the leg-length controller seen for the vertical SLIP was

that, for part of the transition region, the controller became non-physical in a naive
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Figure 4.10: A seven-stride sample gait using the feedforward controller. Note that
the axes are not equal, due to the large horizontal distance covered per-step compared
to the vertical compression. Here, the pink line illustrates the current position of the
leg during descent, while the cyan is the leg during stance. During descent, the leg
angle and damping are governed by figure 4.9. δL = [ 0. , -0.0179, -0.0302,

-0.0071,0.0093,-0.0190]

sense, and would require potentially complicating factors in its design to be realizable.

The controllers presented for the horizontal SLIP did not have such a difficulty, but

would require a controllable mechanical impedance.

Our idea of tracking an invariant manifold is far from a silver bullet – it does not

completely eliminate the need for control in some problems, and limitations on the

class of rejectable disturbances were discovered attempting to extend it.

An issue observed with the leg-length controller seen for the vertical SLIP was

that, for part of the transition region, the controller became non-physical in a naive

sense, and would require potentially complicating factors in its design to be realizable.
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Figure 4.11: A seven stride gait under identical control as figure 4.10. δL = [ 0.,

0.0060, 0.0473, -0.0018, 0.0332, 0.0417]. The leg is displayed less frequently
compared to figure 4.10 for clarity - the controllers are still given by polynomials.

The controllers presented for the horizontal SLIP did not have such a difficulty, but

would require a controllable mechanical impedance.

Another limitation is one that is a concern in robotics, where a problem archetype

frequently encountered is applying a “controller” to a “plant”, i.e. finding signal

u(t) so that the dynamics of the vector field fA exhibit a desired behavior. The G

manifold, our tracking objective, is not in general going to be an attractive surface,

so an independent scheme would have to be used to create a suitable input signal

to keep trajectories contained in this set. No general method is proposed here. The

ease or difficulty of tracking the surface is determined by the dynamics and control

freedom availability in A, and requires separate analysis and design. Additionally, the

level set is not defined outside of the transition region O. It will likely be necessary
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Figure 4.12: A gait where the controller has failed to stabilize the SLIP model with
respect to ground height, illustrating that producing meaningful controller numeri-
cally may be computationally expensive to gain rich enough data sets for produce
very reliable feedforward controllers. δl = ([ 0. , 0.0408, -0.0090, -0.0345,

-0.0024, 0.0414])

to take action outside the neighborhood in O, so that trajectories smoothly intersect

and reside in G.

An additional limitation that must be considered is the rank requirement that 0

is a regular value of g∗. While the rank of a smooth function is an open condition, it

is clear this does not completely obviate the design problem of stipulating a full-rank

cost function g. While the existence of submersions locally presents no obstacles,

maintaining rank on an arbitrarily large set faces non-trivial topological obstructions

(Hirsch et al., 1974).

Failure of rank can have physical significance, indicated there is a “real” problem,
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as opposed to a badly chosen g that could be perturbed to have maximal rank; e.g.,

when attempting to extend our control scheme on the horizontal SLIP, we discovered

that not all kinds of transition uncertainty are straightforward to resolve via the

feedforward method we propose. When the uncertainty was in the ground stiffness,

no feedforward controller could be found. We believe that this is a intrinsic limitation

of the ground stiffness having no dependency on the chosen state variables. No motion

in the air is capable of determining anything about the spring stiffness of the ground

without contacting it. We could speculatively consider augmenting the state space

through clever choice of auxiliary variables, but we did not pursue this idea further.

The control scheme associates with each point in O an outcome, encoded in the

goal function g. If the dependence of the uncertainty on state is degenerate, then

there may not be a way to map a given transition state to a particular outcome.

For example, given function T : O → R that maps out the transition events, T−1(a)

corresponds to those points in O such that if ΦA(t) ∈ T−1(a), it will transition into

the uncontrolled region. The control method solves for a trajectory at each of those

points that satisfies some control objective. If there is no way to parameterize those

points as a function of the state in high control region A, so that the flow may pass

through them, it is not clear if a controller can be prescribed.

There are clearly general cases were such controllers would exist. For example, if

the foliation Ga := {x ∈ O |G(x) = a} is invaraint (in the sense of e.g., Lee (2013,

Prop 19.23), then it is clear that a trajectory intersects each manifold once. Such a

thing can be possible even for non-smooth flows, e.g. the event-selected vector fields

of this document have this property with regards to their event functions h. However,

if DT is not of maximal rank, then it is not immediately clear how to parameterize

them.

Finally, there is a matter of implementability. For the horizontal SLIP example,

the feedforward law is an action taken during the descent of the leg. The same motion
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Figure 4.13: Examples of transition sets. The left figure shows a sequence of level
sets, each a manifold, so there is a clear way to pass a trajectory through them. The
red arc denotes a solution of the underlying vector field. The figure on the right shows
a transition surface that is not an embedded submanifold. Here, the point of common
intersection would pose a problem.

is repeated per stride, but during the ascent of the SLIP, the leg and damping will

have to be reset to their starting values. Necessarily, the controller requires both

accurate time-sensing, as well as accurate detection of the apex event. In general,

practical models are going to need finite time to reset the system to prepare for the

next execution.

4.2.2 Implication For Mechanical Design

In natural environments, organisms share the problems robots encounter. The

geometric controller presented here may provide a potential improvement to under-

standing how animals locomote, as an organism’s performance is exceptional com-

pared to most robots. Using the ideas presented here, an animal may be able to

select a stride that mitigates the impact ground height uncertainty has on their gait.

Simultaneously, it compensates for the model uncertainty, as morphological fea-

tures vary slightly across members of a species and even within the lifetime of an

animal, yet they’re able to maintain robust movement. A reasonable hypothesis is
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that from the perspective of the animal, uncertainty in the environment is perceived

similarly as morphological uncertainty of the body. The feedforward strategy pre-

scribes a method to eliminate the impact of uncertain contact, be that due to an

unknown ground height or an unknown leg length. If a limb is slightly longer or

shorter than “nominal”, the same stride configuration can be used to preserve the

gait of the animal. Such a scheme compensates for the minor variation present in

living creatures without neural sensing.

Finally, while mentioned above, it bears repeating that the geometric control

scheme imposes a dynamic constraint. A trajectory must remain within a level set

of g∗; while the problem was originally formulated to suggest that this would be a

tracking problem, the factorization of the system into a “plant” and a “controller”

is artificial. If the design problem is broadened to alteration of the “plant”, the un-

modified dynamics of the system in A could satisfy the control constraint without

any input. Rather than design a controller to track the target submanifold, the plant

could be designed so that its dynamics lay tangent to the submanifold already. This

extends the control idea beyond the idea of formulating an external controller to

force an undesirable plant to behave in a specific manner. Since the control problem

is not dependent upon online data, it can be incorporated in the plant directly. The

consequence of this observation is that the mechanical shape of the limb can directly

encode the geometric controller, so that despite no apparent feedback, the gait would

demonstrate perfect rejection of ground height variation. In the natural world, organ-

isms could arrive at the proper limb morphologies through an evolutionary process

– iteration over many generations could produce such a solution through trial-and-

error. While the method proposes that animals have the capacity to achieve this kind

of behavior, it remains an open question as to whether their structure exhibits these

kind of features. From an engineering perspective, two similar considerations follow.

Mamely, that for some problems, intelligent design of the plant can satisfy a control
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objective, and feedforward control methods could replace inner loop, high-bandwidth

controllers. By embedding the control directly in the dynamics of the plant, distur-

bance rejection and model uncertainty insensitivity can be mitigated without external

sensing.

4.3 Future Work

An eminently clear limitation of the suggested control strategy is the lack of

stability of the feedforward trajectory, and the extension to multiple-contact systems.

While it may be satisfactory to assume that proprioceptive feedback is adequate

to stabilize the desired trajectory, another avenue for investigation is enabled by

event selected vector fields. Motivated by the contractive “device” of 3.8, it may

be possible to have totally mechanical stable deadbeat robot. Given a multi-limbed

robot, one could use our feedforward technique to generate a deadbeat controller

for the trajectory going the multi-contact point ρ. In 3.8, we saw how to stabilize

general curves – presumably, one could engineer a “device” so that the feedforward

trajectory is the stable attractor. Such a case would be interesting, as it could be

done without any sensing. The mechanical structure could both naturally introduce

event selected dynamics and deadbeat tracking exclusively through interaction with

the ground. Such a mechanism would be highly resilient to variability in contact

timing and sequencing, despite the lack of any apparent feedback mechanism.
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CHAPTER V

Conclusion

What we have hoped to established with this document is that a substantial

amount of structure can be attributed to legged robots without needing to fully de-

fine equations of motion, and that the structural form can be used to make strong

predictions or prescriptions for stable gaits. In particular, the structures we have

employed are accessible with data-driven techniques defining natural, simple, opti-

mization problems that can be solved with shooting methods that presumably have

better conditioned gradients compared to more conventional approaches. We have

especially focused on methods to improve an exemplar motion – event-selected vector

fields, behavioral specifications, and deadbeat hopping are all mutually attempting

to improve the resiliency of a designer-specified behavior that is desired, but other-

wise fragile. By anticipating that the desired motion is produced from a known class

of models, but whose specific equations are unknown, additional structure can ex-

ploited to harden the motion to destructive disruption. In doing so, we hope to have

convinced the reader that lessons from machine learning, theoretical mechanics, and

control can be synthesized to achieve good outcomes. In other words, machine learn-

ing problems can be simplified with knowledge from mathematics, and conversely,

analytically intractable objectives from theory can be re-cast as parsimonious opti-

mization problems. By leveraging several perspectives simultaneously, we can exploit
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their strengths, while mitigating some of their respective weaknesses.
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APPENDIX A

Extension of ECr fields

Let ρ ∈ U ⊂ Rd be a simply connected, precompact open set. Assume that

h : U→ Rm is uniformly continuous and thus bounded on U. We wish to investigate

when it is possible to define f := (h, g) such that f is event-selected (and thus a

diffeomorphism) with respect to the vector field F : U→ TU.

Suppose that such an f := (h, g) existed, but Dg · F was not sign-definite. Then,

we can express

F (x) =
m∑
i=1

〈F (x),∇hi(x)〉 · ∇hi(x)

+
d∑

k=m+1

〈F (x),∇gk(x)〉 · ∇gk(x)

We know that 〈F (x),∇hi(x)〉 ≥ c > 0. On any compact subset V of U, ∃α, β, ∀k, 〈∇gk(x)〉·

∇gk(x) ∈ (−α, β). We can define putative event functions

f̂(x) := (h(x), 0, . . . ,−αgk(x), . . . , 0)

, where the first m components are the original h, and the remaining d−m coordinates

have −αgk(x) in the k-th place, and 0 in the rest. Then Df̂ · F ≥ c + α > 0. Thus,
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f̂ is the desired diffeomorphism on V ⊂ U.

It is not immediately clear to the authors that defining such a g is an easy thing

to do. We aim to give at least some conditions on which such a thing is possible.

A.0.1 f is proper

Suppose that f = (h, g) is a local diffeomorphism from U → V ⊂ Rn. To reiterate

we insist that U is simply connected. If f is a covering map, then since U is simply

connected, it must be diffeomorphic to any other covering map - e.g., it must be a

diffeomorphism, as U is a universal cover. It is well-known that if f is a smooth local

diffeomorphism that is also proper, then f is a smooth covering map. (Lee, 2013,

Prop 4.45) Thus, it is a diffeo on U .

A.0.2 Path lifting

Roughly repeating the previous argument, if we can otherwise show that f is a

covering map, it must be a diffeomorphism. One such condition is the path-lifting

property (Browder , 1954, Thm. 3). Let γ : [0, 1]→ Rm be a rectifiable smooth path.

We want λ(t) such that f(λ(t)) = γ(t). If we differentiate, we get Dfλ(t) ·λ′(t) = γ′(t),

which allows us to write: λ′(t) = Df−1
λ(t) · γ′(t). If ||Dfx · v|| ≥ α||v||, equivalently,

||Df−1||−1 > b > 0. Df−1 is bounded and continuous, and since we demand γ′(t) 6= 0,

this defines a complete differential equation with solution λ(t). (OlECH , 1998) The

global rank of ||DF || can be employed very generally to conclude the existence of

global diffeomorphisms by the Hadamard-Levy theorem (Galewski and Koniorczyk ,

2016, Thm. 3.12).

A.0.3 h defines a bundle

If the map h : U → Rm defines a fibre bundle over Rm. A sufficient condition for

this is that every set h−1(x) is diffeomorphic to Rd−m (Meigniez , 2002, Cor. 31). By
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the homotopy invariance of fiber bundles, and the fact that Rm is contractible, the

bundle is trivial. The global trivialization provides the requisite diffeomorphism.

A.0.4 Sampled Vector Field

If the piecewise constant vector field F has the event functions hi := 〈ei, ·〉, the

previous examples demonstrate it is always possible.
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APPENDIX B

Asymptotic Phase for Limit Cycles

Since our primary interest is in steady gaits, which we assume are defined by limit

cycles, Eqn. (2.1) simplifies. Given an exponentially stable periodic solution, two

points x, y are considered to be “asymptotically equivalent” if and only if, for open

set D ⊂ R, vector field f : D → TD with flow φ(x, t), and x, y ∈ D

lim
t→∞
‖φ(x, t)− φ(y, t)‖ = 0 (B.1)

Denoting two such points via x ∼ y, we observe that this is a equivalence rela-

tionship. As such, the equivalence classes partition D, and for each class, we denote

a representative with θ(x) ∈ D, and say θ(x) is the “asymptotic phase” or simply

“phase” of x.

For f ∈ C∞, and an exponential stable limit cycle for attractor, Winfree and

Guckenheimer (Guckenheimer) illustrated that these equivalence classes (which they

dub as “isochrons” as they are permuted under the flow φt(x)) have more structure.

Denote the limit cycle of f by Γ ⊂ D. No two points of Γ are asymptotically

equivalent, while every point in the stability basin B of Γ is equivalent to some point

of Γ. Furthermore, each isochron is permuted under the flow, and are immersed
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submanifolds that foliate the stability basin of the attractor. The following theorem

(B.1) , which is a restatement of Theorem 3 of Revzen and Kvalheim (2015),

Theorem B.1. Asymptotic Phase and Isochrons

∀β ∈ Γ, let Sβ := θ−1(β). The isochron Sβ is a C∞ injective immersion of Rn−1,

and the map θ : B → Γ is a C∞ submersion. Each isochron Sβ is transverse to f ,

i.e, ∀x ∈ Sβ, f(x) /∈ TxSβ. Additionally, B =
⋃
β∈Γ Sβ, and φ(Sθ(x), t) = Sθ(φ(x,t)).

Remark The map θ has an image that is diffeomorphic to S1, which allows phase

to be naturally represented with parameterizations of the circle, so that the “phase

of a point” is not a point on Γ, but instead a real or complex number in the chosen

coordinates of S1. In Revzen et al. (2018), phase can be equivalently defined with

respect to an arbitrary point on Γ, leading to the definition of τ : B → [0, T ), where

T is the period of Γ. While in this formulation, phase is a real number that denotes

progress around the cycle from a reference point, it is not continuous at 0. The issue

of “wrapping” around the circle continuously can be resolved by considering S1 ⊂ C,

and defining φ : B → S1, where φ(x) := exp (iωτ(x)).

θ(x) can be used to define the temporal 1 form in the following fashion. Γ is

one-dimensional. Therefore, there exists a unique ω ∈ T ∗Γ such that ω(f |Γ) = 1.

Then, we have the pullback θ∗ω ∈ T ∗B. By definition, θ∗ω(f) = 1 everywhere on B.

ω is a 1-form (The closed form ω is analogous gradient of asymptotic phase, but is

not assumed to be exact) on B that allows phase comparison of vector fields through

sign and magnitude. ω(v) > 0 would imply a curve is evolving in the same direction

temporally as the isochrons; ω(v) < 0 would show the opposite, for example.

Geometrically, each isochron intersects the limit cycle once, the solutions starting

on the same isochons asymptotically coalesce together as time flows forward. Given

that the limit cycle is stable, we know points in the stability collapse onto Γ, but

the phase map identifies a specific point on Γ that points of the same phase evolve

synchronously with, i.e, given a point x(0) ∈ Sθ(x) \ Γ, x(t) asymptotically collapses
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to and flows synchronously with the solution starting at θ(x) ∈ Γ.

The foliation of the stability basin into forward-commuting sets highlights that,

for a given oscillator, states have a temporal ordering that is preserved even off the

limit cycle. To have a specific periodic solution with desired dynamics, certain states

come before other states, and through the perspective of recovery, suggests a recovery

condition by preserving a sequence of motions. One posture follows another, etc.

The above discussion of phase is historical, and restricted to smooth systems. The

alert reader will note that the models used in legged locomotion are not smooth -

they are often hybrid systems with an aerial and ground domains, that are separated

by a non-trivial reset map. While in each domain, the dynamics are smooth, the

entire system is not.

The extension of asymptotic phase to hybrid systems is an open question. For

classes of periodic hybrid system that have constant-rank Poincaré maps, Burden,

Revzen, and Sastry (Burden et al., 2015) show that the hybrid dynamics can be

smoothed by forming the adjunction space with a smooth structure for which the hy-

brid dynamics have a smooth periodic push-forward. The smooth system may admit

the existence of aysmptotic phase in the sense above, which could lifted back to the

original hybrid system. However, the lift may not itself be smooth - the isochrons may

have cusps induced by each hybrid transition. As isochrons are extended to the entire

stability basin of an oscillator by flowing backwards through time (Guckenheimer),

a potentially infinite number of non-smooth points in each isochron develop as it

approaches the boundary of the basin. Such a difficulty might be resolved through

restricting to a compact neighborhood of the basin, for which only a finite number of

degenerate point may exist. In even a more general periodic hybrid systems, the limit

definition in 2.1 may still be considered, but the nature of the associated equivalence

classes (isochrons) is less obvious, if they exist. The point being, the specific nature

of a isochron in a hybrid system is still unclear, though several potential avenues for
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generalization are present.
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