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ABSTRACT

We develop tools for the experimental study of biological and robotic systems, based on

mathematical concepts from dynamical systems theory. Many of these tools, both theoretical

and applied, may be applicable to other classes of systems which are sufficiently complicated

that their governing equations defy analytical derivation. Recent years have seen a surge

of interest in “data-driven” machine learning approaches to determine such equations of

motion, but the high dimensionality of many systems makes direct learning approaches

intractable despite modern computing advances. Our approach is to make use of the fact that

parsimonious assumptions often lead to significant insights from dynamical systems theory;

such insights can be leveraged in learning algorithms to mitigate the “curse of dimensionality”

and render them feasible. The dynamical insights we use come in two primary flavors:

existence of reduced-order models such as invariant manifolds, and existence of “normal

forms” (simple forms of the equations of motion, possibly after a change of coordinates). The

former would imply that there are fewer meaningful parameters to compute for a learning

algorithm when compared with the number of parameters informed by naive inspection. The

latter can directly inform selection of regressors for learning algorithms, reducing a problem

in nonparametric estimation to a parametric one, or else inform other targets for estimation.

After the introduction, in the second chapter we study global properties of the global

(center-)stable manifold of a normally attracting invariant manifold (NAIM), the special

case of a normally hyperbolic invariant manifold (NHIM) with empty unstable bundle. We

restrict our attention to continuous-time dynamical systems, or flows. We show that the

global stable foliation of a NAIM has the structure of a topological disk bundle, and that

xiv



similar statements hold for inflowing NAIMs and for general compact NHIMs. Furthermore,

the global stable foliation has a Ck disk bundle structure if the local stable foliation is

assumed Ck. We then show that the dynamics restricted to the stable manifold of a compact

inflowing NAIM are globally topologically conjugate to the linearized transverse dynamics

at the NAIM. Moreover, we give conditions ensuring the existence of a global Ck linearizing

conjugacy. We also prove a Ck global linearization result for inflowing NAIMs; we believe

that even the local version of this result is new, and may be useful in applications to slow-fast

systems. We illustrate the theory by giving applications to geometric singular perturbation

theory in the case of an attracting critical manifold: we show that the domain of the Fenichel

Normal Form can be extended to the entire global stable manifold, and under additional

nonresonance assumptions we derive a smooth global linear normal form.

In the third chapter, we restrict our attention to oscillators, a special case of the NAIMs

of the second chapter. Oscillators are ubiquitous in nature, and usually associated with the

existence of an “asymptotic phase” which governs the long-term dynamics of the oscillator.

We show that asymptotic phase can be expressed as a line integral with respect to a uniquely

defined closed differential 1-form, and provide an algorithm for estimating this “Temporal 1-

Form” from observational data. Unlike all previously available data-driven phase estimation

methods, our algorithm can: (i) use observations that are much shorter than a cycle; (ii)

recover phase within the entire region for which data convergent to the limit cycle is available;

(iii) recover the phase response curves (PRC-s) that govern weak oscillator coupling; (iv)

show isochron curvature, and recover nonlinear features of isochron geometry. Our method

may find application wherever models of oscillator dynamics need to be constructed from

measured or simulated time-series.

In the fourth chapter, we shift our attention to smooth locomotion (organismal, robotic)

such as swimming in viscous media. Many forms of locomotion, both natural and artificial,

are dominated by viscous friction in the sense that without power expenditure they quickly

xv



come to a standstill. From geometric mechanics, it is known that in the “Stokesian” (viscous;

zero Reynolds number) limit, the motion is governed by a reduced order “connection” model

that describes how body shape change produces motion for the body frame with respect

to the world. In the “perturbed Stokes regime” where inertial forces are still dominated by

viscosity, but are not negligible (low Reynolds number), we show that motion is still governed

by a functional relationship between shape velocity and body velocity, but this function is no

longer connection-like. We derive this model using results from noncompact NHIM theory in

a singular perturbation framework. Using a normal form derived from theoretical properties

of this reduced-order model, we develop an algorithm that estimates an approximation to the

dynamics near a cyclic body shape change (a “gait”) directly from observational data of shape

and body motion. This extends our previous work which assumed kinematic “connection”

models. To compare the old and new algorithms, we analyze simulated swimmers over a

range of inertia to damping ratios. Our new class of models performs well in the Stokesian

regime, and over several orders of magnitude outside it into the perturbed Stokes regime,

where it gives significantly improved prediction accuracy compared to previous models. This

new and more general class of models is of independent interest. Their application to data-

driven modeling improves our ability to study the optimality of animal gaits, and our ability

to use hardware-in-the-loop optimization to produce gaits for robots.

xvi



CHAPTER I

Introduction

1.1 Motivation

The fundamental question motivating this thesis is the following: how can we best study

dynamical systems which are sufficiently complicated (e.g., biological systems) that their

equations of motion defy direct derivation?

In accordance with the trends of the last decade, one idea is to take a “data-driven” ap-

proach and “learn” the equations of motion directly from experimental data. Unfortunately,

the sheer volume of data required to naively learn high-fidelity models of sufficiently com-

plex systems renders this idea infeasible in many cases. The primary culprit — the so-called

“curse of dimensionality” — obstructs intuition in addition to computation, and is also a

common affliction in many other endeavors such as the efficient design of control policies via

optimization.

However, dynamical systems theory tells us that parsimonious assumptions about a sys-

tem often lead to significant theoretical insights into its behavior. These insights can be

leveraged to inform data-driven algorithms, thereby mitigating the aforementioned difficul-

ties. We believe that the following are two particularly useful classes of insights:

1. Existence of reduced-order models (or briefly reduced models) which are lower-dimensional,

1



and which faithfully approximate the high-dimensional model in an appropriate sense.

2. Existence of normal forms.

Suppose that there exists a reduced-order model which captures all or most of the be-

havior of interest of some system. This means that there are fewer meaningful parameters

for a data-driven algorithm to compute, when compared with the number of parameters

informed by naive inspection of the system. By converting high-dimensional problems to

low-dimensional ones, approaches based on reduced models have enjoyed recent success in

areas other than model identification as well, such as the design of control laws for dynamic

behavior in bipedal robots [WGK03, HG17, DG17].

Normal forms are a general concept in mathematics, and refer to a “canonical” choice of

representative of an equivalence class of mathematical objects, and is typically “simple” in

some sense. Examples include the Jordan canonical form and row echelon form for matrices.

In dynamics, normal forms concern the existence of coordinate systems in which the equa-

tions of motion look particularly “simple.” Knowledge that a certain normal form exists is

tantamount to explicit knowledge of what qualitative behaviors are possible for a dynam-

ical system, and this knowledge can directly inform targets of estimation for data-driven

algorithms (see especially Chapter IV).

This thesis concerns the theory and applications of such normal forms and model reduc-

tions in the context of smooth dynamical systems theory.

1.2 Background: Reduction and normal forms for dynamical sys-

tems

We now introduce some notions from dynamical systems theory which are relevant for

this thesis. Consider continuous-time dynamical systems (N,Φt) and (M,Ψt) given by the

2



flows Φ: R×N → N and Ψ: R×M →M on the smooth manifolds M,N .

If dim(M) < dim(N), then we consider (M,Ψt) to be a reduced model for (N,Φt) in

either, or both, of the following two situations.

1. There exists a semiconjugacy π : N →M , which means that

∀t ∈ R : Ψt ◦ π = π ◦ Φt. (1.1)

2. There exists an embedding ι : M → N which is also a semiconjugacy:

∀t ∈ R : ι ◦Ψt = Φt ◦ ι. (1.2)

For us, ι will always be at least Ck≥1. On the other hand, we will consider semiconjugacies

π as in (1.1) which are merely continuous, although clearly a smooth π provides a better

model reduction.

Given families of continuous-time dynamical systems (Ψt
λ)λ∈Λ and (Φt

λ)λ∈Λ on M and N

generated by vector fields (Xλ)λ∈Λ and (Yλ)λ∈Λ, we will say that1 Yλ is a normal form for

Xλ if there exists a homeomorphism (or better, a diffeomorphism) h : M → N which is a

conjugacy:

∀t ∈ R : Φt ◦ h = h ◦Ψt. (1.3)

We next discuss these concepts in the context of invariant manifolds in §1.2.1. As a special

but relevant case, we then discuss oscillators in §1.2.2. Finally, in §1.2.3 we discuss model

reduction and normal forms for a class of dissipative mechanical systems with symmetry

which are relevant for the locomotion of certain animals and robots.
1Or perhaps more properly, (Yλ)λ∈Λ is a normal form for (Xλ)λ∈Λ.
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1.2.1 Invariant manifolds

An invariant manifold M ⊂ N is a submanifold of the state space of a dynamical system

(N,Φt) which is a union of trajectories: ∀t ∈ R : Φt(M) = M . Invariant manifolds are

reduced-order models in the sense of (1.2), with ι the inclusion map. In practical terms,

if the system begins in a state belonging to the reduced-order model then it can no longer

escape back to exhibiting more complex behaviors. Under additional hypotheses, invariant

manifolds are also reduced models in the sense of (1.1). A nice survey of the utility of

invariant manifold methods in science and engineering is given in [Wig94, Ch. 1].

One useful class of invariant manifolds are the normally hyperbolic invariant manifolds

(NHIMs) [HPS77, Fen71, Wig94, Eld13]. NHIMs are generalizations of hyperbolic fixed

points and periodic orbits, which are characterized by the property that the dynamics tangent

to the invariant manifold are dominated by the dynamics transverse to the invariant manifold

(at least to first order). NHIMs are roughly defined to be invariant manifolds sharing this

property; a precise definition is given in §2.3. The most relevant class of invariant manifolds

for this thesis are NHIMs which are attracting, which we call normally attracting invariant

manifolds (NAIMs). With respect to the distance induced by any Riemannian or Finsler

metric, a compact NAIM attracts all nearby states at an exponential rate. The theory and

applications of compact NAIMs are the focus of this thesis, as described in §1.3. (Hence

we focus on NAIMs below, but note that most of the mentioned results have analogues for

NHIMs as well.)

NAIMs have a few properties which make them very nice from the perspectives of math-

ematical modeling and model reduction. (For now, our NAIMs are without boundary.)

First, compact NAIMs persist under sufficiently C1-small perturbations of the vector field

defining the dynamical system [HPS77, Fen71], and generalizations exist for the noncompact

case [BLZ98, Eld13]. Conversely, any compact invariant manifold which persists under all
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C1-small perturbations are normally hyperbolic [Mañ78], with some qualifications2. This is

desirable because physical measurements cannot determine parameters of a mathematical

model with perfect accuracy, so any physically meaningful feature of a mathematical model

should persist under small perturbations. Next, there always exists a (Hölder) continuous

map P s : W s(M)→M defined on the global stable manifold (basin of attraction in the case

of a boundaryless NAIM) W s(M), with the following properties [Fen74, HPS77]:

• P s is a retraction, i.e., P s|M = idM .

• P s is a semiconjugacy between (W s(M),Φt|W s(M)) and (M,Φt|M).

Hence NAIMs are also reduced models in the sense of (1.1), with P s playing the role of π. For

a compact NAIM without boundary, the map P s is unique. Any NAIM attracts all nearby

states at an exponential rate, but the reason that NAIMs are good reduced-order models is

more subtle than this: not only do nearby states approach these invariant manifolds, but

they approach specific trajectories within the invariant manifold, and they approach these

at a faster exponential rate than they approach any other trajectories. This property follows

from the existence of the semiconjugacy P s, and it provides a precise sense in which the

restricted dynamics on the NAIM approximate the full model.

The semiconjugacy P s is sometimes called the “asymptotic phase” map in the literature

[BK94], although this terminology is much more common in the special case that M is an

exponentially stable periodic orbit for a flow (M is indeed a NAIM in this case). In the

dynamics literature, the level sets (P s)−1(m) of P s are called the leaves of the “invariant

foliation,” “stable foliation,” or “strong stable foliation” [HPS77]. Assuming that the normal

bundle of M is trivial, then it is always possible to complete m := P s(x) to a set of (contin-

uous) coordinates (m, z) defined on a (possibly small) neighborhood U of M , such that M
2Of course if underlying symmetries are present in a physical model, then arbitrary C1-perturbations

may not be possible.
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corresponds to {z = 0}, and in which the dynamics take the normal form

ż = Λ(m, z)z

ṁ = f(m),
(1.4)

and under additional hypotheses these coordinates can be chosen Ck≥1. A classical result

[PS70], generalizing the Hartman-Grobman theorem, states that it is actually possible to

choose different transverse z coordinates defined on a (possibly small) neighborhood U of M

which improve the above normal form to a linear normal form

ż = A(m)z

ṁ = f(m),

where again there exist additional hypotheses ensuring that these coordinates can be chosen

Ck≥1 [Tak71, Sel84, Sel83, BK94, Sak94].

In Chapter II, we will study the topological properties of P s in detail, and we will prove

that these normal forms extend to the entire global stable manifold of M (i.e., the entire

basin of attraction in the case of a boundaryless M).

There are also extensions to NHIM theory for invariant manifolds with boundary [Fen71,

Fen74, Fen77]. The portion of the definition of such a NHIM involving tangential/transverse

flow rates is similar (see §2.3 for the precise definition). However, here the submanifold is

merely required to be locally invariant: trajectories in the submanifold need not be confined

there for all time, but are required to enter or exit through the boundary only (through an

abuse of language, we still call the submanifold an invariant manifold). Depending on the

results one wishes to obtain, the vector field is assumed to point inward or outward at the

boundary of the invariant manifold; such a manifold is then respectively called inflowing

or overflowing (sometimes outflowing). Two key results are as follows: (i) an inflowing
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NAIM M also has a unique continuous asymptotic phase map P s : W s(M) → M , and

(ii) an overflowing NAIM persists under C1-small perturbations. We study these invariant

manifolds in Chapter II, and these invariant manifolds also play a key theoretical role in

Chapter IV.

One important class of systems in which NHIMs occur naturally are the so-called multiple

time-scale or slow-fast systems [Kue15]. The invariant manifolds and associated geometric

structures of such systems are emphasized in the context of geometric singular perturbation

theory, introduced by Fenichel [Fen79]. Here the theory of inflowing and overflowing invariant

manifolds is important, since the compact NHIMs occurring in such systems often have

boundary. We will study examples of slow-fast systems further in Chapters II and IV.

For completeness, let us relate NHIMs to the possibly more widely-known center mani-

folds. We briefly describe the most basic notion of center manifold relevant for our discus-

sion, and refer the reader to [Car82, GH83] for more details. Given a system of differential

equations ẋ = f(x) and an equilibrium point x0 with f(x0) = 0, the eigenvalues of the

linearization Df(x0) split into collections of eigenvalues having negative, zero, and positive

real part. These collections of eigenvalues respectively determine stable, center, and unsta-

ble subspaces. The center manifold theorem states that there exist “stable,” “center,” and

“unstable” invariant manifolds respectively tangent to these subspaces. Trajectories in the

stable (resp. unstable) manifold approach x0 exponentially in positive (resp. negative) time.

While the stable and unstable manifolds are always unique, in general the center manifold

need not be. Center manifolds and NHIMs have somewhat similar “spectral” properties, but

they differ in that NHIMs have an instrinsic global definition whereas center manifolds are

only defined locally. This local definition manifests itself in the fact that center manifolds

are in general nonunique (see [Eld13, Sec. 1.1.2] for more discussion). However, NHIM the-

ory is closely related to center manifold theory, and indeed the existence and properties of

center manifolds can be proven as an easy application of the general theory of NHIMs with
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boundary (see, e.g., [Wig94, Sec. 7.2]).

1.2.2 Oscillators

The image of a periodic orbit of a (continuous-time) dynamical system provides a specific

and simple example of an invariant manifold. If the periodic orbit is isolated, we call it a

limit cycle. Choose any smooth hypersurface intersecting the orbit transversely in a single

point. An easy argument using the implicit function theorem shows that there exists a well-

defined Poincaré map from the hypersurface to itself defined by following the flow of the

dynamical system (possibly after shrinking the domain of this map). If the eigenvalues of

the linearization of the Poincaré map at the periodic orbit are disjoint from the unit circle,

such a periodic orbit is a limit cycle and is called hyperbolic. (These eigenvalues of the

Poincaré map are conventionally called Floquet multipliers, and their logarithms are called

Floquet exponents.) It is easy to show that the image of such a limit cycle is actually a

NHIM. If furthermore the eigenvalues lie inside the open unit disk, then it follows that the

periodic orbit is an asymptotically stable limit cycle which attracts all nearby states at an

exponential rate. We use the term oscillator to refer to the dynamics within the basin of

attraction of such an exponentially stable limit cycle. Oscillators are useful models of a

variety of phenomena appearing in contexts such as chemical kinetics, electrical circuits,

neuroscience, and the locomotion of animals and robots. More examples and details are

given in Chapter III, and oscillators appear in the context of locomotion in Chapter IV.

Since the limit cycle’s image Γ is a NAIM, it has asymptotic phase: there exists a map

P s : W s(Γ) → Γ defined on the basin of attraction W s(Γ) to Γ which is a semiconjugacy.

We can assign a “phase coordinate” θ ∈ [0, 2π) to points on Γ which increases at a constant

rate, and we can pull this coordinate back via P s to construct a phase coordinate θ on all

of W s(Γ). This coordinate is as smooth as the underlying dynamical system except at the

discontinuity θ−1(0), although if we identify the endpoints of [0, 2π] and view θ as circle-
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valued, then this coordinate is smooth everywhere. It follows that the level sets of θ are the

leaves of the (strong) stable foliation [HPS77] discussed in § 1.2.1, often called isochrons in

the context of oscillators [Guc75, Win80] and in the physics literature. These isochrons are

permuted by the flow, and all points in a single isochron approach each other exponentially

fast as they converge toward the limit cycle. Explained differently, since Γ is a NAIM, the

normal forms (1.4) and (1.2.1) apply. Furthermore, it can be shown that the linear normal

form (1.2.1) is always C1 for an exponentially stable limit cycle, and application of Floquet

theory can further improve this normal form to

ż = Bz

θ̇ = 1,

where B is a constant Hurwitz matrix [BK94]. Hence we see that θ evolves autonomously,

as do the remaining transverse coordinates, which decay to zero after a transient phase.

The above shows that the dynamics restricted to the limit cycle are a reduced model in the

sense of both (1.1) and (1.2) (again, this is true of all NAIMs). However, for many practical

applications, this particular model reduction may be too coarse. The Floquet multipliers of

an oscillator will generically be distinct, and in that case normal form theory [BK94] shows

that there exist additional attracting invariant “slow manifolds” S corresponding to “slow”

Floquet multipliers with large magnitude/modulus3. See Figure 1.1. We can alternatively

consider such a slow manifold as a reduced model for the the dynamics on W s(Γ), and it can

be shown that trajectories in W s(Γ) converge to specific trajectories in S: explicitly, there

exists another semiconjugacy P s
1 : W s(Γ) → S. Alternatively, we may view the dynamics

restricted to Γ as a reduced model for the dynamics restricted to S: all trajectories within

S asymptotically converge to Γ in forward time, and there is yet another semiconjugacy
3Stronger results on the smoothness of S can be obtained from the pseudo-stable manifold theorem

[HPS77] applied to a Poincaré map, which implies that S is always as smooth as the underlying vector field.
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P s
2 : S → Γ. Interestingly, these semiconjugacies compose: P s = P s

2 ◦ P s
1 , which illustrates

that these model reductions are transitive. As a technical aside, we briefly mention that

it can be shown that P s and P s
2 are automatically as smooth as the underlying dynamics,

but P s
1 is a priori merely C1 in this case, and asymptotic phase maps for general normally

hyberbolic invariant manifolds might be merely (Hölder) continuous; thus natural geometric

structures for very smooth dynamics can have very poor regularity.

In the physical context of animal or robot locomotion relevant for Chapter IV, the limit

cycle may be viewed as representing a perfectly periodic gait subject to no environmental

or neuromechanical perturbations. The invariant slow manifold may then be viewed as a

collection of states having “slow recovery” when perturbed from the steady gait. Any states

not belonging to the slow manifold will quickly return, and may be viewed as “posture

errors”.

1.2.3 Locomotion of dissipative mechanical systems with symmetry

The study of the locomotion of animals and robots is the study of how bodies move

through space by deforming their “shape” to produce reaction forces from the environment

that propel the body (e.g., swimming). In this section, we consider the equations of motion

for such a mechanical locomotion system which is subject to linear viscous drag forces.

The configuration space of a large class of such locomotion systems can be written as a

trivial principle G-bundle Q = S × G, where S is a smooth manifold describing the space

of internal body shapes or shape space, with G a closed subgroup of SE(3). If the system

is subject to a viscous damping force determined by a Rayleigh dissipation function but

not subject to any additional external forces or nonholonomic constraints4, then under the
4In order to be interesting, we must of course allow an external force exerted by the locomoting body.

This physically implies that this force takes values in the annihilator of the vertical distribution 0 × TG,
with 0 the zero section of TS, and therefore it does not affect the derivation of (1.5). See Chapter IV for
details.
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Figure 1.1: A depiction of some invariant manifolds present in the basin of attraction of
a generic oscillator. The collection of states corresponding to Floquet multipliers with rel-
atively large magnitude form an invariant “slow manifold.” Normal form theory [BK94]
shows that there are also “fast manifolds” corresponding to Floquet multipliers with smaller
magnitude, on which the rate of attraction to the limit cycle is faster.

assumption that the Lagrangian and viscous force are symmetric under the action of G on

Q = S × G given by left multiplication on the second factor, it can be shown that there

always exist coordinates (r, ṙ, g, p) for T(S ×G) such that the equations of motion take the

normal form [KM96, Eq. 1]

g−1ġ = −Amechṙ + I−1
locp

IlocV−1
locṗ = Iloc(Avisc − Amech)ṙ + p+ IlocV−1

locad∗g−1ġp.

(1.5)

Here the coordinate p ∈ g∗ takes values in the dual space g∗ of the Lie algebra g of G,

and ad∗ : g∗ → End(g∗) is the dual of the adjoint representation ad: g→ End(g) defined via

the Lie bracket adξ(η) := [ξ, η]. The linear maps Amech, Avisc,Vloc, Iloc all depend on r and
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are respectively called the local mechanical connection, the local viscous connection, the local

viscous tensor, and the local locked inertia tensor. We will discuss these quantities in more

detail in Chapter IV. We mention that (1.5) can be essentially viewed as a special case of a

very general reconstruction equation providing a normal form for nonholonomic mechanical

systems with symmetry, as derived in [BKMM96].

If viscous damping forces are large relative to the inertia of the locomoting body in

a uniform way, then we expect IlocV−1
loc to be small (say, with respect to some norm on

g∗). In this case, Kelly and Murray [KM96] formally set IlocV−1
loc = 0 in (1.5) to obtain

p = Iloc(Amech − Avisc). Substituting this expression into the first equation of (1.5), they

obtain

g−1ġ = −Aviscṙ. (1.6)

In global geometric language, this equation implies that solution curves in Q are horizontal

with respect to a certain principal connection on Q (see Definition C.15 in Appendix C)

called the viscous connection.

Eldering and Jacobs studied this procedure in more detail by working in a singular pertur-

bation framework using NHIM theory [EJ16, App. A]. Roughly speaking, they additionally

show that for IlocV−1
loc small but nonzero, then under certain additional assumptions there is

a NAIM for (1.5) which is close to the viscous connection and attracts all nearby solutions5.

An (asymptotic) series approximation of this manifold can be explicitly calculated. It is

shown in [EJ16, App. A] that these calculations can be used to obtain correction terms for

the case that IlocV−1
loc is small but nonzero; these can be added to render (1.5) more accurate.

The paper [Eld16] deals with the general problem of realizing nonholonomic constraints as a

limit of friction forces in a differential geometric framework, and contains similar computa-

tions. The computation of such correction terms (for dynamics restricted to a slow manifold)
5The viscous connection is a subbundle of TQ, so in particular it is also a submanifold of TQ, and therefore

it makes sense to talk about it being “close” to another submanifold in a suitable topology.
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is a basic technique in singular perturbation theory [Jon95], and for example [SKK87] use

this technique to compute corrections to the reduced equations of motion for a robot with

flexible joints.

1.3 Contributions

This thesis contributes to the theory and applications of normally hyperbolic invariant

manifolds (NHIMs).

The first set of theoretical contributions of this work concern the theory of general NHIMs.

Restricting our attention to continuous-time dynamical systems, we study global properties

of the global (center-)stable manifold W s(M) of a normally attracting invariant manifold

(NAIM) M , the special case of a NHIM which is attracting. We show that if the local

stable foliation is Ck, then the global stable foliation has the structure of a Ck disk bundle

P s : W s(M)→M , where P s is the asymptotic phase map discussed in §1.2.1 (see Appendix

C for the definition of a disk bundle). In particular, the global stable manifold is always

a topological disk bundle. We also show that similar statements hold for inflowing NAIMs

and for general compact NHIMs.

We next show that the linear normal form (1.2.1) discussed in §1.2.1 extends globally to

the entire global stable manifold6. Moreover, we give conditions ensuring the Ck version of

this result, and we also prove a Ck global linearization result for inflowing NAIMs; we believe

that even the local version of this inflowing result is new, and may be useful in applications

to slow-fast systems.

We illustrate these new results by giving applications to geometric singular perturbation

theory in the case of an attracting critical manifold. In particular, we show that the domain
6This is true even if the normal bundle of M is nontrivial (this was assumed for simplicity of exposition

in §1.2.1), although the statement of the normal form result needs to be modified to refer to a linear flow on
a vector bundle. See Chapter II for the precise details.
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of the well-known Fenichel Normal Form [JK94, Jon95, Kap99, JT09] can be extended to

the entire global stable manifold, and under additional nonresonance assumptions we derive

a smooth global linear normal form.

The next theoretical contribution of this thesis concerns the dynamics in the basin of

attraction of an exponentially stable limit cycle, which we refer to as an oscillator. We

introduce and develop the properties of a certain closed differential 1-form which we call

the Temporal 1-Form. The distribution determined by the kernel of the Temporal 1-Form is

integrable and the associated foliation is the (strong-)stable foliation of the oscillator, whose

leaves are often called isochrons [Win80, Guc75]. In other words, the Temporal 1-Form is

locally the exterior derivative of the asymptotic phase map, when this map is viewed as

R-valued as described in §1.2.2. We show that the globally defined Temporal 1-Form is

uniquely characterized by two local properties: (i) it is closed, and (ii) its contraction with

the underlying vector field is identically one.

We give an application using the Temporal 1-Form: we develop an algorithm to compute

the asymptotic phase map of an oscillator which uses only (noisy) time-series data, but does

not assume any knowledge of the equations of motion. The algorithm works by computing

the Temporal 1-Form via least-squares regression, and is made possible by the fact that

this 1-form is globally uniquely defined by the local properties mentioned in the previous

paragraph. In contrast, previous methods to compute the asymptotic phase map require

explicit knowledge of the equations of motion [Win80, LKO14], and/or require long time

series [MM12], and/or are accurate only on the limit cycle itself [RG08]. Either of the first

two requirements preclude application of these methods to many experimental data sets,

where equations are unknown and successful long trials are rare, and accuracy only on the

limit cycle itself is an obvious limitation of an algorithm. We derive theoretical bounds on

the performance of our algorithm applied to data afflicted by both measurement and system

noise, and in particular data generated by stochastic differential equations. Using a variety
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of data sets, we test and compare our algorithm to other existing phase estimation methods.

Our final contributions are to the study of locomotion in a regime wherein viscous damp-

ing dominates the inertia of the locomoting body. In the limit as the ratio of inertia to

damping approaches zero, the motion of the body is governed by the so-called viscous con-

nection, as mentioned in §1.2.3.

Assuming this situation (the so-called “Stokesian limit”), [BHR18] have recently devel-

oped a data-driven algorithm to compute the viscous connection — and therefore the equa-

tions of motion — over a neighborhood of a periodic orbit in shape space. Their algorithm

only requires a noisy ensemble of shape, shape velocity, and body velocity measurements as

input. Computation of the equations of motion over a neighborhood of the periodic orbit

allows one to test necessary conditions for optimality of the gait (periodic orbit) of the loco-

moting system, and these tests can be nicely formulated in terms of geometric properties of

the viscous connection. Additionally, knowledge of a dynamical model enables hardware-in-

the-loop optimization for robotics engineering. To understand the value regarding this latter

application, note that the infinite dimensionality of appropriate spaces of gaits necessitates

a large number of experiments in order to compute the gradient of an appropriate cost func-

tional for use in gait optimization. The cost of running large number of physical experiments

— both in terms of time and robot wear — would render hardware-in-the-loop optimization

infeasible, but knowledge of a dynamical model allows one to offload these physical experi-

ments to simulation. Using this suggested approach for hardware-in-the-loop optimization,

only enough physical experiments to estimate a reasonable local (near a gait) model are first

required.

However, for the locomoting systems of interest the inertia/damping ratio can never

actually be zero, and is small at best. Hence the Stokesian limit assumed by [BHR18] might

not be a reasonable assumption, depending on the specific system. However, in this situation

a simplified (nonlinear) connection-like model still exists: our final theoretical contribution
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extends7 the results of [EJ16, App. A] to show that if the inertia/damping ratio is small and

the shape space is compact, then a NAIM exists which approximates the viscous connection.

This observation enables explicit computations of correction terms which, when added to the

reduced equations of motion, provably yield a more accurate model than that of the viscous

connection model. The corrected equations of motion still involve only the body velocity

together with the shape variables and their derivatives. Finally, we give an application of

this result: we modify the algorithm of [BHR18] to produce a modified algorithm which

approximates the reduced equations of motion for the dynamics restricted to the NAIM. We

test this algorithm on a computer simulation of an idealized swimming model of a robot in

a viscous fluid, and compare the results to those obtained via the algorithm of [BHR18].

We find that our new algorithm performs offers a significant improvement for a range of

inertia-damping ratios.

1.4 Overview of the sequel

The remainder of this thesis is organized as follows.

Chapter II contains our contributions to the general theory of NHIMs, and is based

on [EKR18]. Chapter III introduces the Temporal 1-Form for an oscillator, develops the

associated theory, and contains work on utilizing the Temporal 1-Form for a data-driven

algorithm to compute the asymptotic phase map of an oscillator. Chapter IV contains our

theoretical results on the existence and properties of an attracting invariant “slow manifold”

for a class of smoothly locomoting mechanical systems, and the use of these results to inform

a data-driven algorithm to approximate the dynamics restricted to the slow manifold. Our

algorithm can be viewed as an improvement of the algorithm recently developed in [BHR18],
7The result in [EJ16, App. A] assumes that configuration space Q is compact. Our extension enables

applications to, e.g., configuration spaces of the form Q = S×SE(2) with symmetry group SE(2) the special
Euclidean group of planar rigid motions and S compact. Such a situation often arises in practice.
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which used regressors determined by the assumption of a kinematic “connection” model for

the dynamics.

The “Discussion” sections in each of the following chapters contain discussions of chapter-

specific content and suggestions for future work.

Appendix A contains a technical lemma used in Chapter II, which establishes smooth-

ness of a parallel transport map covering a flow on an inflowing invariant manifold; most of

the work expended is to obtain one extra degree of differentiability. Appendix B contains a

general lemma showing that every inflowing compact NAIM can be embedded in a bound-

aryless compact NAIM, in such a way that properties like exponential rates are preserved;

the proof combines differential topological and dynamical techniques. We use this lemma to

prove linearization results for inflowing NAIMs in Chapter II, but it may be of independent

interest. Next, Appendix C contains basic definitions and concepts from the theory of fiber

bundles which are needed in Chapters II and IV. Appendix D contains variants of the weak

law of large numbers (LLN) due to Chebyshev, including an “approximate” version of the

law of large numbers. We use this approximate LLN in Chapter III for our analysis of the

performance of our phase estimation algorithm on noisy data. Finally, Appendix E contains

a proof of Grönwall’s Lemma which we use in our proof of global asymptotic stability of the

time-dependent slow manifold, or “integral manifold”, in Chapter IV.
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CHAPTER II

Global Linearization and Fiber Bundle Structure of

Invariant Manifolds
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2.2 Introduction

Much of dynamical systems theory pertains to the behavior of points evolving under

some smooth flow Φ : R×Q→ Q near an attracting invariant set. One seeks techniques to

better understand the behavior of these points. Perhaps the most important method — and
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the focus of this chapter — is the use of different coordinate systems near the attracting set,

with respect to which the dynamics take a simpler form. Particularly strong results in this

direction hold in the case that the attracting invariant set is a normally attracting invariant

manifold (NAIM). This is a special case of a normally hyperbolic invariant manifold (NHIM),

which is roughly defined as follows. A manifold M ⊂ Q is invariant if ∀t ∈ R : Φt(M) = M ,

and normal hyperbolicity means roughly that trajectories converge (or diverge) transversely

to M sufficiently faster than they converge (or diverge) within M [Fen71, HPS77, Wig94].

Restricting, for now, to the case thatM has no boundary, it is a well-known fundamental

result [Fen74, HPS77, Thm 2, Thm 4.1] that a NAIM, as a special case of a NHIM, has an

associated “stable foliation”: this is a partition of the stability basin of M into submanifolds

W s(m) for m ∈ M (called “leaves”) such that the flow Φt maps W s(m) to W s(Φt(m)), for

any t ≥ 0 and m ∈M . Furthermore, every x in the stability basin of M has a neighborhood

Nx such that Nx is topologically a product of two Euclidean spaces; the first space indexes

leaves and the second space locally parametrizes them (see Figure 2.1, left). By using this

foliation to define coordinates, one obtains a coordinate system in which the dynamics on

M are decoupled from the dynamics transverse to M .

It is also well known [PS70, HPS77, PT77]— and often used in the physical sciences, e.g.,

in the special case of the Hartman-Grobman theorem [GH83] — that for M a NAIM (or

NHIM), there exists an open neighborhood ofM in which the flow is topologically conjugate

to its partial linearization. For simplicity, we first describe this result in the special case that

M ⊂ Q has a neighborhood diffeomorphic toM×Rn via a diffeomorphism which restricts to

the identity onM×{0}. In this case, we may write the flow Φt as (Φt
1,Φt

2) onM×Rn. Then

this linearization result asserts the existence of a continuous change of coordinates (p, v) 7→

(q, w) onM×Rn —which restricts to the identity onM×{0}— such that for any (p, v) ∈ Rn,

the trajectory (Φt
1(p, v),Φt

2(p, v)) is given by (Φt
1(q, 0),DΦt

2(q, 0) ·w) in the new coordinates.

In these new coordinates on M × Rn, not only are the dynamics on M decoupled from the
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dynamics transverse toM , but the transverse component w(t) := DΦt
2(q, 0)·w of a trajectory

is the solution of a nonautonomous linear differential equation. Under additional spectral gap

assumptions, this coordinate change can be taken to be continuously differentiable [Tak71,

Rob71, Sel84, Sel83, Sak94]. Needless to say, many key results in the sciences and engineering

rely heavily on linear approximations of this form; this result shows that there exists a

coordinate system in which such approximations become exact.

In this chapter we prove several extensions of the familiar local results mentioned above,

which we hope to be of both practical and theoretical interest. Our results come in two

flavors: (i) we show that the local topological and dynamical structure near the NAIM can

be extended (often smoothly) to the entire stability basin, and (ii) we prove new local (and

global) linearization results for NAIMs with nonempty boundary, subject to the requirement

that the flow is “inward” at the boundary (inflowing NAIMs). The novelty of our results is

that, to the best of our knowledge, all previously published work only established versions

of our various results either (i) for hyperbolic attracting equilibria and periodic orbits rather

than general NAIMs1, (ii) for NAIMs without boundary, (iii) locally, or on proper subsets

of the global stable manifold (in the case of a boundaryless NAIM, this is the stability

basin), or some combination thereof. In contrast, our results apply to the entire global

stable manifold, and they apply to the even broader class of systems consisting of inflowing

NAIMs. Thus our theorems can be used to prove results on compact domains of noncompact

attracting manifolds, which can arise (for example) as intersections of a noncompact M

with a compact sub-level set of a function. Many noncompact hyperbolically attractive

manifolds appear in the sciences and engineering, e.g., in the general context of slow-fast

or multiple time scale systems [Kue15] studied using geometric singular perturbation theory
1It has recently come to our attention that in a soon-to-be published textbook [Mez17], Igor Mezić gives a

very readable proof of a global linearization theorem for the case of arbitrary compact boundaryless NAIMs
(see also Remark II.17). In contrast, we also prove a more general result for arbitrary compact inflowing
NAIMs, which may have nonempty boundary.
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(GSP) [Fen79, Jon95, Kap99]. With the addition of a proper function having a strictly

negative Lie derivative on one of its regular level sets, these give rise to compact inflowing

NAIMs. We remark that even if a compact domain of a noncompact attracting manifold

is not inflowing, useful conclusions about the dynamics can sometimes still be obtained by

making local modifications to the flow near the boundary of the domain in order to render

it inflowing, and then applying theorems for inflowing NAIMs. We do precisely this in our

applications to GSP in §2.6.

2.2.1 Flavor of the key results

We begin by examining the (differential) topology of the global stable manifold, in a form

depicted in Figure 2.1 and formulated more precisely in Theorem II.5. We show that the

entire global stable manifold of an inflowing NAIM has the structure of a “disk bundle”: for

M of dimension d in an n-dimensional ambient space, the global stable manifold admits a

continuous “projection” onto M , and every point m ∈M has a neighborhood Um ⊂M such

that the preimage of Um through the projection is homeomorphic to the product of Um with

(n − d)-dimensional Euclidean space Rn−d (“a disk”). Furthermore, projection preimages

(“fibers”) of points m ∈ M are mapped via these homeomorphisms to sets of the form

{m} × Rn−k. We further extend this result by proving that, should the foliation near M be

Ck smooth, then the entire global stable manifold has a structure of a Ck disk bundle (for

the definition, replace all homeomorphisms with Ck diffeomorphisms above). Anticipating

our global linearization results, one can think of this result as a “weak” or differential-

topological version of global linearization of the global stable manifold: the global stable

manifold always has the (differential) topological structure that one would naively expect

from the (differential) topological structure of the local stable manifold.

This result has an application to geometric singular perturbation theory related to the so-

called Fenichel Normal Form [JK94, Jon95, Kap99, JT09]; for more details on the relevance
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of this normal form for slow-fast systems, see §2.6. In the special case that the slow manifold

is attracting, we show that our Theorem II.5 implies that the domain of the Fenichel normal

form actually extends to the entire global stable manifold of the slow manifold.

We then proceed beyond “weak” linearization to the natural follow-up question, and

show that in addition to the local topological structure, the local dynamical structure near

an inflowing NAIM also extends to the entire global stable manifold: the flow on the global

stable manifold is topologically conjugate to its linearization near M , and assuming some

conditions on the relative rates of contraction of tangent vectors at M evolving under the

linearized flow, the global conjugacy of the flow to its linearization can be taken to be Ck. In

addition to this statement being a new global result, to the best of our knowledge, the local

version of this linearization result is also new: linearization results previously appearing

in the literature [PS70, Rob71, PT77, HPS77, Sel84, Sel83, Sak94] have been stated for

boundaryless invariant manifolds. This result provides a strong statement regarding how

well dynamical systems can be modeled by their transverse linearizations and the dynamics

on their attractor. We give an application of this to singular perturbation theory, where

the “slow manifold” attractors typically have boundary. Thanks to our results for inflowing

NAIMs we show that, under certain spectral conditions, singularly perturbed systems have

a global normal form which is linear in the fast variables. This normal form is therefore

stronger than the Fenichel Normal Form, which is generally (almost) fully nonlinear.

2.2.2 Overview of main results

Restated more technically, in this chapter we prove some results for NHIMs which are of

two types.

1. Global versions of well-known local results for compact normally hyperbolic invariant

manifolds (NHIMs), and compact, inflowing, normally attracting invariant manifolds
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(inflowing NAIMs).

2. New (local and global) linearization results for inflowing NAIMs.

We restrict our attention to the case of flows on a finite-dimensional smooth ambient mani-

fold. We first investigate the structure of the global stable foliation of a compact normally

hyperbolic invariant manifold M ⊂ Q for a flow Φt on a smooth manifold Q. We consider

the following local-to-global result to be our first major contribution, depicted in Figure 2.1.

Theorem II.5′. The global stable foliation of a NHIM is a topological disk bundle with

fibers coinciding with the leaves of the foliation. If additionally the local stable foliation and

the NHIM are assumed Ck, then the global foliation is a Ck disk bundle. This bundle is

isomorphic (as a disk bundle) to the stable vector bundle over the NHIM. A similar result

holds for the global unstable foliation.

In particular, if the k-center bunching condition (see Corollary II.10 in §2.4) is assumed,

it follows that the global stable foliation is a Ck disk bundle. If both stable and unstable

transverse directions are present at M , then W s(M) ⊂ Q is generally only an immersed

submanifold2. Hence our result shows that the global stable manifold is a fiber bundle in its

manifold topology, but not in the subspace topology. However if only stable transverse direc-

tions at M are present, this technicality is avoided and W s(M) ⊂ Q is a fiber bundle whose

topology coincides with the subspace topology. (Embedded and immersed submanifolds are

explained in more detail in [Lee13, Ch. 5].)

We also prove the corresponding fiber bundle result for the global stable foliation of a

compact inflowing normally attracting invariant manifold (NAIM) M . I.e., M is a NHIM

with empty unstable bundle, but M is allowed to have nonempty boundary, and inflowing
2Roughly speaking, this is because — in the case that the unstable bundle is nonempty — W s(M) can

accumulate on itself. This is analogous to the ends of a curve approaching its midpoint to form a figure-
eight. The figure-eight is not an embedded submanifold, because the midpoint has no locally Euclidean
neighborhood in the subspace topology, but the figure-eight is an immersed submanifold diffeomorphic to R.
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Foliation Fiber Bundle

M

W s(M)

Figure 2.1: The fact that the global stable foliation W s(M) of a NHIM M is a topological
foliation implies that any point in W s(M) has a neighborhood on which the leaves of the
foliation can be straightened via a homeomorphism, depicted on the left. Theorem II.5
shows that W s(M) is actually a topological disk bundle, which means that W s(M) admits
local trivializations whereby unions of entire fibers through a neighborhood of M can be
straightened via a homeomorphism, depicted on the right. Furthermore, if W s

loc(M) is a Ck

foliation and M ∈ Ck, then W s(M) is actually a Ck fiber bundle, which means that these
local trivializations can be chosen Ck.

means that M is positively invariant and that the vector field points strictly inward at ∂M .

This is the result we actually prove, and indeed, the previously mentioned result follows from

this one.

While our fiber bundle result might be expected by dynamicists, we could not find a

direct proof in the literature. If the stable foliation happens to be smooth, then we will

show that the map sending leaves to their basepoints on M is a submersion with fibers

diffeomorphic to disks, and it is shown in [Mei02, Cor. 31] that this automatically implies

that the stable manifold W s(M) is a smooth disk bundle. On the other hand, our proof

seems more elementary, directly shows that this bundle is isomorphic to Es, and handles the

general case in which the stable foliation is only continuous.

Next, we investigate global linearizations. A classic result of NHIM theory is that the

dynamics in a neighborhood of a NHIM are topologically conjugate to the dynamics linearized

at the NHIM [PS70, HPS77, PT77], and there also exist conditions for Ck linearization
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[Tak71, Rob71, Sak94, Sel84, Sel83, BK94]. For the special case of a NAIM which is either

an equilibrium point or a periodic orbit, [LM13] showed that the linearizing conjugacy can be

defined on the entire basin of attraction. We generalize the results of [LM13] in two ways: (i)

we show that local linearizability implies global linearizability for arbitrary compact NAIMs3,

and (ii) we prove a global linearizability result for inflowing NAIMs. Since the slow manifolds

for slow-fast systems typically have boundary, the latter result is necessary for our goal of

deriving a linear normal form for such systems, and we consider this to be our second major

theoretical contribution. We state this result roughly below (for the precise statement, see

Theorem II.24 in §2.5.2). Recall that the global stable manifold is the basin of attraction in

the case of a boundaryless NAIM. For the precise definition of the global stable manifold of

an inflowing NAIM, see Equation (2.5) in §2.3.1.

Theorem II.24′. The dynamics on the global stable manifold of an inflowing NAIM are

globally topologically conjugate to the dynamics linearized at the NAIM. If certain additional

spectral gap and regularity conditions are assumed, then additionally the dynamics are glob-

ally Ck conjugate to the dynamics linearized at the NAIM.

In order to prove this result, we use a geometric construction in Appendix B which may

be of independent interest. Generally speaking, in Appendix B, we show that any compact

inflowing NAIM can be embedded into a compact boundaryless NAIM, in such a way that

many properties of the original system are preserved, such as asymptotic rates.

After proving these results, we give two applications to geometric singular perturbation

theory, under the assumption that the critical manifold is a NAIM (see the references in §2.6

for examples, as well as §2.6.5). Our first application is to show that under this assumption,

the Fenichel Normal Form appearing in the literature is valid on the entire union of global

stable manifolds ∪εW s(Kε) of the slow manifolds Kε, rather than just on the union of local
3As mentioned in a previous footnote, Igor Mezić gives a proof of this boundaryless result in his soon-to-be

published textbook [Mez17] (see also Remark II.17).
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stable manifolds ∪εW s
loc(Kε). Our second application is to show that, assuming an additional

“nonresonance” condition on the eigenvalues of points on the critical manifold and using our

global linearization theorem, we derive a much stronger global normal form which is linear

in the fast variables. We reiterate that a linearization result for inflowing NAIMs is essential

here, since the slow manifolds for singular perturbation problems typically have boundary.

The remainder of the chapter is organized as follows. In §2.3 we give basic definitions, set

notation, and give basic constructions to be used in the sequel. In particular, we construct

the global stable foliation of a NHIM and show that the local stable foliation is a fiber

bundle, and remark that the same constructions work for inflowing NAIMs. In §2.4 we give

the proof that, if the local stable foliation and the NHIM are Ck, then the global stable

foliation is a Ck fiber bundle isomorphic (as a disk bundle) to Es. In §2.5, we show that

the dynamics on the global stable manifold of an inflowing NAIM are globally conjugate to

the linearized dynamics, and other related results. In §2.6, we give applications to geometric

singular perturbation theory. In §3.7 we conclude by summarizing what we have and have

not done.

2.3 Preliminary constructions

2.3.1 Construction of the global (un)stable foliation of a NHIM

Let Q be an n-dimensional C∞ Riemannian manifold, let f : Q → TQ be a Cr≥1 vector

field on Q with Cr flow Φt and let M ⊂ Q be a compact r-normally hyperbolic invariant

manifold (r-NHIM) for Φt. We recall from [HPS77] the definition; specifically we use the

most general definition of eventual relative normal hyperbolicity. This means that M is a

submanifold that is invariant under Φt, and there exists a DΦt-invariant continuous splitting

26



into a Whitney sum

TQ|M = TM ⊕ Es ⊕ Eu (2.1)

such that DΦt|Es and DΦt|Eu are exponentially contracting and expanding, respectively.

(See Appendix C for the definitions of vector bundles and Whitney sums.) Furthermore,

any contraction or expansion of the tangential flow DΦt|TM (up to power r) is dominated by

the contraction of DΦt|Es , respectively the expansion of DΦt|Eu . More precisely, there exist

C > 0 and a < 0 < b such that for all m ∈M , t ≥ 0 and 0 ≤ i ≤ r we have

TDΦt|EumU ≥ ebt

C
‖DΦt|TmM‖

i and ‖DΦt|Esm‖ ≤ CeatTDΦt|TmMUi. (2.2)

Here TAU := inf{‖Av‖ : ‖v‖ = 1} denotes the minimum norm of a linear operator A.

Denote by n = nm+ns+nu the ranks of the various bundles and note that nm = dim(M).

Since the stable and unstable cases are identical under time reversal, we restrict ourselves

from now on to the stable case. Tangent to the stable bundle Es there exists a local stable

manifold W s
loc(M), a Cr embedded submanifold4, with points in W s

loc(M) asymptotically

converging toM in forward time. W s
loc(M) is invariantly fibered by embedded disksW s

loc(m)

comprising the leaves/fibers of the local stable foliation:

W s
loc(M) =

∐
m∈M

W s
loc(m) (2.3)

such that W s
loc(m) intersects M at the unique point m and TmW

s
loc(m) = Es

m, see [HPS77,

Thm 4.1]. Each of the disks W s
loc(m) is individually a Cr embedded submanifold, but as

a family there is generally only (Hölder) continuous dependence on the basepoint m ∈ M
4We will always assume without loss of generality that W s

loc(M) has no boundary. Otherwise we can
simply relabel its manifold interior as W s

loc(M).
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[HPS77, Fen74]. We denote by P s
loc : W s

loc(M)→M the continuous projection map sending

each fiber W s
loc(m) to its corresponding basepoint m ∈ M . Note that the W s

loc(m),m ∈ M

are only invariant as a foliation — not each W s
loc(m) individually — since each m ∈ M is

generally not a fixed point of Φt. This local invariance of the foliation W s
loc(M) means that

for all t ≥ 0 and m ∈M we have5

Φt(W s
loc(m)) ⊂ W s

loc(Φt(m)). (2.4)

We also have a global stable manifold W s(M) ⊃ W s
loc(M) defined by6

W s(M) :=
⋃
t≥0

Φ−t
[
(P s

loc)−1(Φt(M))
]
. (2.5)

Each of the sets Φ−t [(P s
loc)−1(Φt(M))] is an embedded submanifold of Q (diffeomorphic to

W s
loc(M)), and thusW s(M) is a Cr immersed submanifold of Q when given the final topology

with respect to the family of inclusions Φ−t [(P s
loc)−1(Φt(M))] ↪→ W s(M). An atlas of charts

for W s(M) consists of the union of atlases for all of the manifolds Φ−t [(P s
loc)−1(Φt(M))] —

since the flow Φt is Cr, it can be checked that this is a Cr atlas.

Let us now construct a global stable foliation as

W s(M) =
∐
m∈M

W s(m), W s(m) :=
⋃
t≥0

Φ−t(W s
loc(Φt(m))). (2.6)

5When immediate relative normal hyperbolicity is assumed (as in [HPS77, Thm 4.1]) then W s
loc(M) is

automatically forward invariant when it has constant diameter. In the case of eventual relative normal
hyperbolicity, standard proofs construct W s

loc(M) as the local stable manifold of the map ΦT for some fixed
T > 0, so it might not be clear a priori that the inclusion holds for all t ≥ 0, though it is clear that it would
hold for t sufficiently large. However, we can always construct a new W s

loc(M) that is forward invariant for
all t ≥ 0, as a sublevel set of a Lyapunov function for M , see [Wil67, Wil69].

6This definition works equally well for inflowing NAIMs (see §2.3.3), as opposed to the alternative defi-
nition W s(M) :=

⋃
t≥0 Φ−t(W s

loc(M)).
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Note that equation (2.4) implies that the union consists of strictly increasing sets, i.e.,

Φ−t(W s
loc(Φt(m))) ⊂ Φ−t′(W s

loc(Φt′(m))) when t ≤ t′. (2.7)

Let us prove that W s(M) is invariant, that is, for all t ∈ R and m ∈M we have

Φt(W s(m)) = W s(Φt(m)). (2.8)

This follows from the following sequence of equivalent statements, with t ∈ R fixed:

x ∈ W s(Φt(m))

∃τ0 ≥ 0: ∀τ ≥ τ0 : x ∈ Φ−τ (W s
loc(Φτ ◦ Φt(m)))

∃τ ′0 ≥ 0: ∀τ ′ ≥ τ ′0 : x ∈ Φt ◦ Φ−τ ′(W s
loc(Φτ ′(m)))

x ∈ Φt(W s(m)).

Note that each global leaf W s(m) is a Cr embedded submanifold of W s(M). To see this,

note that given any m ∈M and x ∈ W s(m), by definition of the global foliation there exists

t > 0 such that Φt(x) ∈ W s
loc(Φt(m)). Letting U ′ be a neighborhood of Φt(x) in W s

loc(M)

and considering U := Φ−t(U ′) 3 x, we see that any point x ∈ W s(m) has a neighborhood

U ⊂ W s(M) with U ∩W s(m) an embedded submanifold of W s(M) (by invariance of the

foliation), so it follows that W s(m) is embedded in W s(M). (But since W s(M) is generally

only immersed in Q, any global leaf W s(m) is generally only immersed in Q.)

We define the global projection P s : W s(M) → M to be the map that sends global

fibers W s(m) to their basepoints, just like the local projection P s
loc. Assume now that the

local stable foliation is Ck≥0, by which we mean that P s
loc ∈ Ck. (Recall that P s

loc ∈ C0

automatically.) We now show that this implies P s ∈ Ck.
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Let x ∈ W s(M) and t ≥ 0 be such that x ∈ Φ−t(W s
loc(M)). This implies that x′ =

Φt(x) ∈ W s
loc(M). Choose a neighborhood Ux′ of x′ in W s

loc(M). Then Ux := Φ−t(Ux′) is a

neighborhood of x in W s(M). Now for any y ∈ Ux we have that Φt(y) ∈ W s
loc(M) and by

invariance of the local stable foliation it follows that

P s(y) = (Φ−t ◦ P s
loc ◦ Φt)(y). (2.9)

Thus it is clear that P s ∈ Ck if P s
loc ∈ Ck and k ≤ r (i.e., Φt ∈ Ck).

We conclude this section by showing that, not only is P s ∈ Ck if P s
loc ∈ Ck, but also that

P s is a submersion if k ≥ 1.

Proposition II.1. If P s
loc is Ck with 1 ≤ k ≤ r, then P s : W s(M)→M is a Ck submersion.

Proof. We have already shown above that P s ∈ Ck, so it suffices to show that rank (DP s
loc|TM) =

dim(M) on all of W s(M). Since P s
loc|M = idM , it follows that rank (DP s

loc|TM) = dim(M).

Since being full rank is an open condition, it follows that DP s
loc is full rank on some relatively

open neighborhood U of M in W s
loc(M).

Now let x ∈ W s(M) be arbitrary. First, by construction of W s(M) there exists a T1 > 0

such that ΦT1(x) ∈ W s
loc(M). Next, since every point in W s

loc(M) asymptotically converges

to M , there exists T2 > 0 such that ΦT2(ΦT1(x)) ∈ U . Defining T := T1 + T2 > 0, we have

ΦT (x) ∈ U .

Since ∀t ∈ R : P s◦Φt = Φt◦P s, it follows that DΦT
P s(x)DP s

x = DP s
ΦT (x)DΦT

x = D(P s
loc)ΦT (x)DΦT

x .

The latter composition is formed of two surjective linear maps, and hence DΦT
P s(x)DP s

x is also

a surjective linear map. The linear map DΦT |P s(x) is invertible since ΦT is a diffeomorphism,

so this implies that DP s
x : TxW

s(M)→ TP s(x)M is surjective.
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2.3.2 Fiber bundle structure of the local stable foliation

Let π : TQ|M → M be the natural projection sending v ∈ TmQ to m, and let Ẽs be

any Cr subbundle of TQ|M which C0 approximates Es [Wig94, p.72 Prop. 3.2.3]. (Recall

that Es is generally only a continuous subbundle of TQ|M .) As shown in [Fen74, HPS77]

there exists a fiber-preserving homeomorphism ρ0 : U ⊂ Ẽs → W s
loc(M), where U ⊂ Ẽs is a

connected neighborhood of the zero section. Additionally, the restriction of ρ0 to each fiber

Ẽs
m is a Cr map. Here we show that if additionally the local stable foliation of W s

loc(M) is

Ck≥1, then ρ0 can be taken to be a Ck fiber-preserving diffeomorphism.

Fiber bundle concepts from Appendix C (in particular, Definition C.4 and Example C.7)

will be used in the proof of Lemma II.2 below. Here and in the rest of the chapter, by a

Ck isomorphism of manifolds we mean a homeomorphism if k = 0 and a Ck diffeomorphism

if k ≥ 1. A Ck fiber bundle isomorphism is a Ck isomorphism of manifolds which is also

fiber-preserving; see Appendix C.

Lemma II.2. Let M be a 1-NAIM, and assume that P s
loc ∈ Ck (hence W s

loc(M),M ⊂ Q are

necessarily Ck submanifolds). Then P s
loc : W s

loc(M)→M is a disk bundle. More specifically,

there exists a neighborhood U of the zero section of Ẽs and a Ck disk bundle isomorphism

ρ0 : U → W s
loc(M) covering idM (identifying M with the zero section of Ẽs).

Remark II.3. IfM is an r-NAIM for a Cr vector field, thenM andW s
loc(M) are automatically

Cr submanifolds of Q (and henceW s(M) is an immersed Cr submanifold, as we have shown).

See [Eld13, Ch. 1] for a discussion of this. We will use Lemma II.2 in proving Theorem II.5

for a 1-NAIM which is a Cr submanifold — a slightly more general situation than an r-NAIM

— which explains the slightly weaker hypotheses here.

Proof. As mentioned, for k = 0 the result is shown in [Fen74, HPS77] so we may assume

k ≥ 1. The latter case is implicit in the existing proofs of Ck smoothness of local stable
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fibers, but we make it explicit here for later reference. Consider the extended exponential

map7

êxp = (π, exp) : TQ|M →M ×Q (2.10)

that remembers the base point m ∈ M . This is a fiber bundle isomorphism between a

neighborhood of the zero section of TQ|M and a neighborhood of diag(M) in the trivial

bundle M × Q, covering the identity on M , where the zero section of TQ|M and diag(M)

are identified with M . Furthermore, we view W s
loc(M) ⊂ Q as a Ck submanifold of M ×Q

via the embedding (P s, idQ), fibered by the images of the leaves W s(m). It follows that

êxp−1
(
W s

loc(M)
)
is a submanifold of TQ|M fibered by the leaves êxp−1(W s

loc(m)), and the leaf

êxp−1
(
W s

loc(m)
)
⊂ TmQ is tangent to Es

m at the zero section since the derivative of êxp|TQm

at 0 is the identity for any m ∈ M . Here we are making the usual linear identification

T0TmQ ∼= TmQ.

Let π̃s : TQ|M → Ẽs denote orthogonal projection onto Ẽs. We have that π̃s ∈ Cr, and

when Ẽs is sufficiently C0-close to Es then ker(π̃s) and Es are transverse. Thus D
(
π̃s ◦

êxp−1|W s
loc(m)

)
is surjective for each m ∈ M , so by dimension counting this map is a linear

bijection between Es
m ⊕ TmM ∼= TmW

s
loc(M) and Ẽs

m ⊕ TmM ∼= TmẼ
s for each m ∈M .

The global inverse function theorem [GP10, § 1.8 ex. 14] now implies that π̃s◦êxp−1|W s
loc(M)

is a Ck diffeomorphism from some neighborhood of diag(M) onto a neighborhood U of the

zero section of Ẽs. Thus the inverse

ρ0 : U → W s
loc(M)

is well-defined and is a fiber-preserving Ck diffeomorphism onto its image. By construction

it maps the zero section to M and covers the identity map.
7Recall that we have endowed Q with a Riemannian metric, used in the definition of spectral gap estimates

(2.2). Here — and throughout the rest of the chapter — we have in mind the exponential map associated
to this Riemannian metric, although for the purposes of this Lemma, any metric will work equally well.
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2.3.3 Inflowing and overflowing NAIMs

Suppose now thatM is a compact manifold but thatM has possibly nonempty boundary,

∂M 6= ∅. If Φt(M) ⊂M for all t ≥ 0 and the vector field f points strictly inward at ∂M , we

call M an inflowing invariant manifold. Similarly, if Φt(M) ⊂M for all t ≤ 0 and the vector

field f points strictly outward at ∂M , we call M an overflowing invariant manifold. If M is

inflowing (respectively overflowing) invariant and has a splitting (2.1) satisfying exponential

rates (2.2), but with Eu = ∅, we call M an inflowing (respectively overflowing) r-normally

attracting invariant manifold (r-NAIM). If ∂M = ∅ andM is invariant, thenM is vacuously

both inflowing and overflowing. We refer to such anM simply as an r-NAIM. We sometimes

use the term “NAIM” to refer to 1-NAIMs or if we do not wish to emphasize the precise

degree of hyperbolicity, and we similarly sometimes use “NHIM”.

The main theorem about inflowing NAIMs is that, like boundaryless NHIMs, inflowing

NAIMs also have a local stable manifold (with boundary) and a local stable foliation [Fen74,

Fen71]. Note that in this case the local stable manifold has boundary, is codimension-0, and

its manifold interior is an open neighborhood of the manifold interior ofM . Additionally, the

interior of the global stable manifold is open in Q and a neighborhood of the manifold interior

of the NAIM. Unlike boundaryless NHIMs, however, inflowing NAIMs do not generally

persist under perturbations.

The main theorem about overflowing NAIMs is that, like boundaryless NHIMs, over-

flowing NAIMs persist under perturbations [Fen71]. We will use this fact in §2.6. Unlike

boundaryless NHIMs, however, overflowing NAIMs do not generally possess a stable folia-

tion.

Remark II.4. If P s
loc ∈ Ck for an inflowing NAIM, then the same proof as for boundaryless

NHIMs shows that P s ∈ Ck also. Furthermore, Proposition II.1 and Lemma II.2 also hold

for inflowing NAIMs. The proof of Lemma II.2 is identical. For the proof of Proposition II.1,
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one simply pays attention to the facts that (i) since M is positively invariant, points never

leave the stable foliation overM when flowing forward in time, and (ii) if Φt(x) ∈ W s(m) for

t > 0, x ∈ W s(M), and m ∈ M , then Φ−t(m) ∈ M . Additionally, the same argument given

in §2.3.1 shows that each global fiber W s(m) is now an embedded submanifold of Q, since

the manifold interior of W s(M) is open in Q and thus trivially embedded. This argument

works even for W s(m) with m ∈ ∂M , since inflowing invariance implies that Φt(m) ∈ intM

for t > 0, with intM denoting the manifold interior of M .

2.4 The global stable foliation of a NHIM is a fiber bundle

As mentioned in §2.3.1, P s
loc : W s

loc(M) → M is in general only (Hölder) continuous.

However, in many cases of interest P s
loc : W s

loc(M)→M is Ck≥1 (and thus P s : W s(M)→M

is also Ck as shown in §2.3). In this section we prove that if P s
loc ∈ Ck≥0, then P s : W s(M)→

M is a Ck fiber bundle with fiber Rns . See Appendix C for the relevant fiber bundle concepts.

By reversing time the corresponding result that the global unstable manifold is a fiber bundle

follows.

The topology on W s(M) compatible with its fiber bundle structure is generally finer

than the subspace topology induced from Q since W s(M) is generally only an immersed

submanifold of Q, as discussed in §2.3. Consequently, the individual fibersW s(m) ofW s(M)

are generally also only immersed submanifolds of Q, though they are embedded submanifolds

of W s(M) as we have seen in §2.3.

However if M is a NAIM so that Eu = ∅, then M is asymptotically stable and W s(M)

is an open neighborhood of M , hence trivially an embedded submanifold. More generally,

if M has boundary and is an inflowing NAIM, then W s(M) is an embedded codimension-0

submanifold with boundary8. Every boundaryless NHIM M is a NAIM for the dynamics
8However, note that the boundary of W s(M) is only Ck if P sloc ∈ Ck, and hence generally not smooth if

P sloc ∈ C0 only.

34



restricted to the invariant manifoldW s(M), and similarlyM is a NAIM for the time-reversed

dynamics restricted to W u(M). Hence it suffices to prove that W s(M) is a fiber bundle over

M for the case that M is a NAIM.

To obtain the generality needed for our application in §2.6, we actually prove thatW s(M)

is a fiber bundle for M an inflowing NAIM — since a boundaryless NAIM is vacuously

inflowing, this implies the other results.

See [Hir94, Ch. 2] for the definition of the Whitney topologies, and also Remark II.6

below.

Theorem II.5. Let M ⊂ Q be a compact inflowing 1-NAIM for the flow Φt generated by the

Cr vector field f on Q, and assume that M ⊂ Q is a Cr submanifold. Further assume that

the local projection P s
loc : W s

loc(M) → M is Ck, with 0 ≤ k ≤ r. Then the global projection

P s : W s(M)→M defines a Ck fiber bundle structure on the global stable manifold W s(M).

Furthermore, W s(M) is Ck isomorphic (as a disk bundle) to any Ck vector bundle over M

which approximates Es in the C0 Whitney topology.

In other words, under the hypotheses of Theorem II.5, the global stable foliation W s(M)

is actually a Ck disk bundle.

Remark II.6. Since M is compact, the weak and strong Whitney topologies coincide [Hir94,

Ch. 2]. In simpler terms [Wig94, p.72], Ẽs approximates Es in the C0 Whitney topology if

there exists a sufficiently small ε > 0 such that for every m ∈M , there exists a neighborhood

Um ⊂M of m and local frames (ei)nsi=1, (ẽi)nsi=1 for Es, Ẽs such that for all m′ ∈ Um: ‖ei(m′)−

ei(m′)‖ < ε.

Remark II.7. Let us reiterate Remark II.3. If M is an r-NHIM for a Cr vector field, then

M and W s
loc(M) are automatically Cr submanifolds of Q. That is, an invariant manifold M

being r-normally hyperbolic causes “forced Cr smoothness” ofM and of the local and global

stable manifolds W s
loc(M) and W s(M) [Eld13, Ch. 1]. (Of course this is Cr smoothness
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of W s
loc(M) and W s(M) as submanifolds, not as foliations.) We state Theorem II.5 for a

1-NAIMM which is also assumed to be a Cr submanifold, in order to obtain a slight amount

of extra generality.

Remark II.8. The hypotheses required to prove the global linearization Theorems II.18 and

II.24 are much stronger than the hypotheses required to prove the fiber bundle Theorem

II.5. See Remark II.20 for more details.

Corollary II.9. Let M ⊂ Q be a compact inflowing 1-NAIM for the flow Φt generated by

the C1 vector field f on Q. Then P s : W s(M) → M defines a C0 fiber bundle structure on

W s(M), isomorphic (as a disk bundle) to Es.

Proof. As mentioned earlier, P s
loc, E

s,W s
loc(M) ∈ C0 is automatically satisfied for a compact

inflowing 1-NAIM. Hence the result follows from Theorem II.5.

Corollary II.10. Let M ⊂ Q be a compact inflowing 1-NAIM for the flow Φt generated by

the Cr vector field f on Q, and assume that M ⊂ Q is a Cr submanifold. Additionally,

assume that there exist constants K > 0 and α < 0 such that for all m ∈ M , t ≥ 0 and

0 ≤ i ≤ k < r the k-center bunching condition holds:

‖DΦt|TmM‖
i‖DΦt|Esm‖ ≤ KeαtTDΦt|TmMU. (2.11)

Then P s : W s(M) → M defines a Ck fiber bundle structure on W s(M), isomorphic (as a

disk bundle) to Es.

Proof. It is shown in [Fen77, Thm 5] that the condition (2.11) implies that P s
loc, E

s ∈ Ck.

The result then follows from Theorem II.5.

Corollary II.11. Assume now that M is a general compact r-NHIM, rather than a Cr

inflowing 1-NAIM as in Theorem II.5, and assume that P s
loc ∈ Ck. Then P s : W s(M)→M
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defines a Ck fiber bundle structure on W s(M), when W s(M) is endowed with the structure

of an immersed submanifold as described in §2.3.1. This bundle is isomorphic (as a disk

bundle) to any Ck vector bundle over M which approximates Es.

Similarly for the unstable manifold W u(M), if P u
loc ∈ Ck.

Proof. This follows immediately from Theorem II.5 and the remarks preceding it.

Remark II.12. We leave it to the reader to formulate corollaries analogous to Corollaries II.9

and II.10 for the case of general compact NHIMs.

We assume that M ∈ Cr is an inflowing 1-NAIM for the remainder of §2.4, unless stated

otherwise.

2.4.1 Overview of the proof of Theorem II.5

(Recall that by a Ck isomorphism of manifolds, we mean a homeomorphism if k = 0

and a Ck diffeomorphism if k ≥ 1. A Ck fiber bundle isomorphism is a Ck isomorphism of

manifolds which is also fiber-preserving, and a Ck vector bundle isomorphism is a Ck fiber

bundle isomorphism which is linear on the fibers; see Appendix C.)

By Lemma II.2 and Remark II.4, we have a Ck isomorphism of fiber bundles ρ0 : U ⊂

Ẽs → W s
loc(M), where Ẽs is a vector bundle approximating Es and U ⊂ Ẽs is open. We

will construct a global Ck fiber-preserving isomorphism ρ : Ẽs → W s(M) using the local

version ρ0 : U → W s
loc(M), according to the following plan. (It might be useful to first read

Definition C.4 and Example C.7 from Appendix C.)

First, we define a flow9 Ψt := ρ∗0(Φt) = ρ−1
0 ◦ Φt ◦ ρ0 on a neighborhood of M contained

9 For simplicity of presentation, we henceforth ignore the fact that Ψt and other “flows” that we sub-
sequently define, such as Θt, have possibly smaller domains of definition due to the fact that M is only
assumed inflowing invariant. The domains of these “flows” always contain an appropriate neighborhood of
M ×R≥0, and we only flow backwards in time along one “flow” after flowing forward by an equal time along
another appropriate “flow”; as an example, consider equation (2.12). We will still call these objects “flows”,
and it should be clear what is meant when discussing such objects defined on a bundle over an inflowing
invariant manifold.
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in U . Adapting a technique of [PS70], we will find a Ck Lyapunov function V : Ẽs → [0,∞)

for Ψt, such that V −1(0) = M , the sublevel set Uc := V −1(−∞, c) is positively invariant

for all 0 < c ≤ 1, and V is strictly decreasing along trajectories starting in such level sets.

Furthermore, V will be radially monotone (i.e., V (δy) > V (y) if δ > 1), and therefore it

will have the nice property that any of its level sets intersect radial rays in each fiber Ẽs
m in

precisely one point. This enables us to define a family of radial retractions Rc : Ẽs \M →

V −1(c) onto level sets of V , and we will show that this family is Ck.

We next construct a Ck flow Θt on Ẽs \M that preserves level sets of V and covers Φt|M .

Θt(y) is defined to be RV (y) ◦Πt(y), where the radial retraction family Rc is as defined above,

and Πt is the smooth linear parallel transport covering Φt|M , constructed in Appendix A.

The global Ck isomorphism ρ : Ẽs → W s(M) is now constructed as follows. First, to a

point x ∈ Ẽs we assign a time t(x) roughly proportional to the value V (x) > 0, but with t ≡ 0

on a neighborhood ofM . Next, we use the family of retractions Rc to construct a (nonlinear)

rescaling diffeomorphism that maps Ẽs diffeomorphically onto U1 := V −1(−∞, 1), with the

image of x denoted ξ(x) ∈ U1. Finally, we define ρ by first flowing ξ(x) forward by Θt(x),

applying ρ0, and then flowing backward in time by applying Φ−t(x):

ρ(x) = Φ−t(x) ◦ ρ0 ◦Θt(x) ◦ ξ(x). (2.12)

See Figure 2.2. The map ρ is Ck and fiber-preserving by construction. Properness of ρ will

follow from asymptotic stability of M , and this will in turn imply surjectivity of ρ. The map

ρ will be injective on V level sets since x 7→ t(x) will be constant on V level sets. Since

V is strictly decreasing along trajectories of Ψt contained in U1, it will follow that ρ takes

disjoint level sets of V to disjoint subsets of W s(M), so that ρ will be injective. Therefore ρ

is a homeomorphism since it is a continuous and closed bijection, so this will complete the

proof if k = 0 — if k ≥ 1, a computation in the proof of Theorem II.5 in §2.4.3 will show
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W s(M)Ẽs

MM

ρ0

U


ρ0(U)

V −1(V (ξ(x)))

x

ξ(x) Θt(x)(ξ(x)) ρ0 ◦Θt(x)(ξ(x))

ρ(x) = Φ−t(x) ◦ ρ0 ◦Θt(x)(ξ(x))

Figure 2.2: An illustration of the proof of Theorem II.5. The neighborhood U ⊂ Ẽs and its
image ρ0(U) are bounded by dashed curves. The level set V −1(V (ξ(x))) ⊂ Ẽs is depicted by
the dotted curves.

that Dρ is an isomorphism everywhere, completing the proof of Theorem II.5.

The purpose of §2.4.2 is to construct the technical devices V , Rc, and Θt that will be

used in the proof of Theorem II.5. The idea behind the proof of Theorem II.5 is simple, but

our constructions are careful in order to avoid the loss of degrees of differentiability of ρ.

2.4.2 Preliminary Results

In order to carry out the proof of Theorem II.5, we need some tools. We will use the

following result adapted from [PS70]; for the definition of a fiber metric, see Definition C.12

in Appendix C.

Proposition II.13. Suppose that M is an inflowing invariant manifold for the Cr flow Φt

on Q, and let π : E → M be a Cr subbundle of TQ|M equipped with any fiber metric. Let

At be a continuous linear flow on E such that the time one map is a uniform contraction on

fibers:

∃α < 1: ∀m ∈M : ‖A1|Em‖ ≤ α.
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Let Ψt be a Ck≥0 local flow with Ψ defined at least on a set of the form [0, 1]×E(ε) for some

ε > 0, where E(ε) := {y ∈ E : ‖y‖ ≤ ε}. Suppose that Ψt also covers Φt, leaves the zero

section of E invariant, and is Lipschitz close to At for small t, by which we mean:

∀0 ≤ t ≤ 1,m ∈M : Lip((Ψt − At)|Em) ≤ µ < min
(1

3κ, 1− α
)
, (2.13)

for κ := inf{TAt|EmU : m ∈ M, 0 ≤ t ≤ 1}. Then there exists a continuous, nonnegative,

and proper function V : E → R such that V −1(0) = M and10:

1. V is radially monotone on E. For any c > 0, V −1(c) intersects each radial ray in

exactly one point y ∈ E. By a radial ray we mean any set of the form {λx : λ > 0},

where x ∈ E is nonzero.

2. For any c with 0 < c ≤ 1, the sublevel set V −1(−∞, c] is contained in E(ε) and is

positively invariant under Ψt.

3. V is radially bi-Lipschitz: there are constants 0 < b1 < b2 < 0 such that for any

y ∈ E \M and δ 6= 1, we have the estimate

0 < b1 ≤
|V (δy)− V (y)|
‖δy − y‖

≤ b2. (2.14)

4. If Ψ ∈ Ck≥1, then V is Ck on E \M , and the derivative of V along any trajectory of

Ψ starting in V −1(0, 1) is strictly negative.

Remark II.14. In the proof of Proposition II.13 below, we make use of Rademacher’s theorem

[Fed68, Thm 3.1.6]. This is to provide a unified proof for both the Ck≥1 and C0 cases. In

the Ck≥1 case we differentiate V in the radial direction in order to obtain the inequalities
10To limit excessive parentheses, here and henceforth we abuse notation by writing, e.g., V −1(a, b) instead

of V −1((a, b)), etc.
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(2.14). This is not possible in the C0 case, but condition (2.13) implies that the function

V is locally Lipschitz, hence Rademacher’s theorem implies that V is differentiable almost

everywhere in the measure-theoretic sense. This is sufficient for our purposes.

Note that Ψt is actually radially differentiable in the context of Theorem II.5, even when

k = 0. However, by using Rademacher’s Theorem we simplify the statement of Proposition

II.13, while weakening its hypotheses.

Proof. Define the function g : E(ε)→ R by

g(y) :=
∫ 1

0
‖Ψt(y)‖dt.

In the proof of [PS70, Thm 4.1] it is shown that g is continuous, radially monotone, and

that for each 0 < µ′ ≤ µ, g−1(µ′ε) intersects each radial ray in exactly one point y ∈ E(ε).

It also follows from the proof that corresponding sublevel sets g−1(−∞, µ′ε] are positively

invariant. It follows from the last inequality in the proof of [PS70, Lem. 4.2] that for any

y ∈ E(ε) and δ > 0:

0 < (κ− 3µ) ≤ |g(δy)− g(y)|
‖δy − y‖

≤ (α + µ),

where δ > 0 is small enough that this expression is defined. Now let us assume that k ≥ 1

and Ψ ∈ Ck — it is clear that g is Ck on the complement of the zero section. We compute

∂

∂t
g ◦Ψt(y) = ∂

∂t

∫ 1

0
‖Ψt+s(y)‖ds = ∂

∂t

∫ t+1

t
‖Ψs(y)‖ds = ‖Ψ1Ψt(y)‖ − ‖Ψt(y)‖ < 0,

with the last term being negative since A1 is an α-contraction and Ψ1 is µ-Lipschitz close to

A1, with µ+ α < 1, hence Ψ1 decreases the norm of Ψt(y).

Replacing g by g/(µε), we may assume that g satisfies 1, 2, and 4, and also

0 < b1 ≤
|g(δy)− g(y)|
‖δy − y‖

≤ β (2.15)
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if we define b1 := (κ− 3µ)/(µε) and β := (α + µ)/(µε).

Now let 0 < ε′ < ε be such that g−1(−∞, 1] ⊂ E(ε′) ⊂ E(ε). We are going to extend g

to a Ck function V : E → R such that V |E(ε′) = g|E(ε′), with V satisfying 1, 2, 3, and 4. Let

χ : [0,∞)→ [0,∞) be a C∞ nonnegative, increasing function satisfying χ ≡ 0 on [0, ε′] and

χ ≡ 1 on [ε,∞), and define ψ : E → R via ψ(y) := χ(‖y‖). We now define V : E → R via

V := (1− ψ)g + ψβ‖ · ‖, (2.16)

with the understanding that V (y) = β‖y‖ for ‖y‖ > ε. Clearly V is continuous. By the

definition of ψ, we see that V is Ck on E \M and V |E(ε′) = g|E(ε′), so that when we replace

ε by ε′ then 2 and 4 are automatically satisfied. Clearly 3 implies 1, so it suffices to show

that V satisfies 3. To do this, fix any y ∈ E \M . By (2.15), the function δ 7→ g(δy) is

locally Lipschitz, and the same is true of the other functions in Equation (2.16) defining V .

Since V is a sum of products of such functions, V is also locally Lipschitz. Hence even if

k = 0, by Rademacher’s theorem δ 7→ V (δy) and δ 7→ g(δy) are differentiable except at a

set of Lebesgue measure zero. The following statements must be interpreted to hold almost

everywhere in the Lebesgue measure sense. We obtain

∂

∂δ
V (δy) = [(1− ψ) ∂

∂δ
g(δy) + ψβ‖y‖] + (β‖δy‖ − g) ∂

∂δ
ψ(δy),

where here and henceforth g and ψ are implicitly evaluated at δy. From this, we obtain the

inequalities

[(1− ψ) ∂
∂δ
g(δy) + ψβ‖y‖] ≤ ∂

∂δ
V (δy) ≤ [(1− ψ) ∂

∂δ
g(δy) + ψβ‖y‖] + β‖δy‖ ∂

∂δ
ψ(δy).

The leftmost inequality was obtained using ∂
∂δ
ψ(δy) ≥ 0 and the fact that Equation (2.15) im-

plies that β‖δy‖ ≥ g(δy), and the rightmost inequality was obtained since g(δy), ∂
∂δ
ψ(δy) ≥ 0.
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Now Equation (2.15) implies that b1‖y‖ ≤ ∂
∂δ
g(δy) ≤ β‖y‖ for δy ∈ supp(1−ψ), and β ≥ b1,

so it follows that b1‖y‖ ≤ [(1− ψ) ∂
∂δ
g(δy) + ψβ‖y‖] ≤ β‖y‖. Consequently, we have

b1‖y‖ ≤
∂

∂δ
V (δy) ≤ β‖y‖+ β‖δy‖ ∂

∂δ
ψ(δy) = β[1 + δ

∂

∂δ
ψ(δy)]‖y‖. (2.17)

The derivative term can be rewritten into a radial derivative

δ
∂

∂ρ
ψ(ρy)

∣∣∣∣∣
ρ=δ

= ∂

∂r
ψ(rδy)

∣∣∣∣∣
r=1

=: ψ′(δy),

which is zero for δy 6∈ E(ε), and bounded inside the precompact set E(ε). Defining b2 :=

β[1 + supx∈E(ε) ψ
′(x)] <∞, we see that the right hand side of (2.17) is bounded by b2‖y‖.

The function δ 7→ V (δy) is absolutely continuous since it is locally Lipschitz, so the

fundamental theorem of Lebesgue integral calculus11 implies that for any δ > 1,

V (δy)− V (y) =
∫ δ

1

∂

∂s
V (sy) ds ≥ b1‖y‖(δ − 1) = b1‖δy − y‖,

and a similar argument shows that V (δy) − V (y) ≤ b2‖δy − y‖, with b2 defined as before.

This completes the proof.

By Proposition II.13, for each c > 0 we may define a retraction Rc : E \M → V −1(c) by

sliding along radial rays. We then define R : (E \M)× (0,∞)→ E by R( · , c) := Rc.

Lemma II.15. Let all notation be as in Proposition II.13 and let R : (E \M)× (0,∞)→ E

be as defined above. Then R ∈ Ck.

Proof. If k ≥ 1, then V ∈ Ck≥1 and Equation (2.14) together with the mean value theorem

imply that the derivative of V in the radial direction is nonzero. We may therefore apply the
11This technicality is needed only for the case that the differentiability degree k = 0. If k ≥ 1, the mean

value theorem or the elementary fundamental theorem of calculus will suffice.
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implicit function theorem to the function F (δ, x, c) := V (δx) − c, defined on (0,∞) × (E \

M)× (0,∞), to obtain a Ck R-valued function δ(x, c) such that V (δ(x, c)x) = c. It follows

that R(x, c) = δ(x, c)x, and therefore R ∈ Ck.

If k = 0, we will make use of a different argument which is effectively a “Lipschitz implicit

function theorem”. The argument is sketched as follows. We will define an auxiliary C0 map

T := (0,∞) × (E \M) × (0,∞) → R such that Tx,c := T ( · , x, c) has a unique fixed point

given by δ(x, c), and additionally such that Tx,c is a contraction mapping. The domain of

each Tx,c is not a complete metric space, but the existence of the fixed point of each Tx,c will

follow from Proposition II.13 point 1, and these fixed points Rc(x) are unique since Tx,c is a

contraction. The theorem then follows from the general fact that the fixed points Rc(x) of

a continuous family Tx,c of contractions depends continuously on the parameters (x, c).

We now proceed with the proof. Define a continuous function T by

Tx,c(δ) ≡ T (δ, x, c) := δ − 1
b2

V (δx)− c
‖x‖

on (0,∞) × (E \M) × (0,∞), where b2 is as in Proposition II.13. We already know from

Proposition II.13 that for each x and c, Tx,c has a unique fixed point δ(x, c). Tx,c is a

contraction uniformly in x and c since

Tx,c(δ1)− Tx,c(δ2) = δ1 − δ2 −
1
b2

V (δ1x)− V (δ2x)
‖x‖

=
(

1− 1
b2

V (δ1x)− V (δ2x)
(δ1 − δ2)‖x‖

)
(δ1 − δ2),

so that by Equation (2.14) we have

|Tx,c(δ1)− Tx,c(δ2)| ≤ k|δ1 − δ2|,
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where k :=
(
1− b1

b2

)
< 1. It follows that the fixed point δ(x, c) depends continuously on

(x, c), since it is a general fact that the fixed points of a (uniform) family of contractions

Tx,c depend continuously on the parameters (x, c). Since V (δ(x, c)x) = c, it follows that

R(x, c) = δ(x, c)x, and therefore R ∈ C0. This completes the proof.

Lemma II.16 (Nonlinear parallel transport). Let all notation be as in Proposition II.13.

Then there exists a Ck flow Θt on E such that Θ covers the base flow and preserves level

sets of V :

∀t : V ◦Θt = V.

Proof. Let Πt be any Cr linear parallel transport covering Φt as in Lemma A.1 (see Appendix

A). We define Θt for t > 0 by flowing x forward via the linear flow Πt and then projecting

onto the V (x) level set of V :

Θt(x) := RV (x) ◦ Πt(x).

It follows from Lemma II.15 that Θ ∈ Ck. Since for each t the linear flow Πt maps radial

rays into radial rays, it follows that Θt is injective for fixed t ≥ 0 and also that Θ indeed

satisfies the group property.

By Lemma A.1 in Appendix A, Πt is a Cr linear isomorphism for each t > 0, and R is

Ck by Lemma II.15. Using the fact that Πt preserves radial rays, it follows that the map

x 7→ RV (x) ◦Π−t(x) defined on Πt(E) is a Ck inverse for Θt, so Θt is a Ck isomorphism onto

its image.

2.4.3 The proof of Theorem II.5

Now we start the proof that W s(M) is a fiber bundle isomorphic to Ẽs over the inflowing

NAIM M . (For the reader new to fiber bundles, see Appendix C and in particular Example

C.7).
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Proof of Theorem II.5. Let ρ0 : U ⊂ Ẽs → W s
loc(M) be the Ck fiber-preserving isomorphism

constructed using Lemma II.2 and Remark II.4. With Proposition II.13 in mind, we define

a Ck local flow Ψt on U and a global Cmax{k−1,0} linear flow At on Ẽs as follows:

Ψt := ρ∗0(Φt) = ρ−1
0 ◦Φt◦ρ0, ∀m ∈M : At|

Ẽsm
:= [D(ρ0|Ẽs

Φt(m)
)]−1◦DΦt◦D(ρ0|Ẽsm), (2.18)

for all t > 0. Here we are viewing D(ρ0|Ẽsm) as a map Ẽs
m → Es

m via the canonical linear

identification T0Ẽ
s
m
∼= Ẽs

m. Note that by compactness of M , the linear flow At is eventually

uniformly contracting relative to the fiber metric (see Def. C.12 in Appendix C) on Ẽs

induced by the Riemannian metric on TQ: i.e., there exists t0 > 0 and 0 ≤ α < 1 such that

∀m ∈M : ‖At0|Em‖ ≤ α.

Furthermore, even if k = 0, the restrictions ρ0|Ẽsm of ρ0 to individual linear fibers of Ẽs

are smooth (see, e.g., [Fen74, HPS77, Thm 1, Thm 4.1]). It follows that Ψt|
Ẽsm

is smooth,

and

∀m ∈M : D(Ψt|
Ẽsm

)0 = At|
Ẽsm
. (2.19)

This is because the restrictions ρ0|Ẽsm of ρ0 to individual linear fibers of Ẽs are smooth. By

NHIM theory (see [PS70, p. 191, (2.4)]), we also have that the map (m, y) 7→ D(ρ0|Ẽsm)y

is uniformly continuous at the zero section in the sense that D(ρ0|Ẽs
m′

)y tends uniformly to

D(ρ0|Ẽsm)0 as m′ → m and ‖y‖ → 0.

It therefore follows in either case (k > 0 or k = 0), possibly after a rescaling of time,

that Ψt and At satisfy the hypotheses of Proposition II.13 on some uniform neighborhood of

the zero section — the Lipschitz condition hypothesis in Proposition II.13 follows from the

preceding sentence, see also [PS70, p. 191, (2.4)(b’)]. Hence we obtain a radially monotone
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function V : Ẽs → R as in Proposition II.13, and the corresponding Ck family of radial

retractions Rc : Ẽs \M → V −1(c) with 0 < c < ∞ as in Lemma II.15. As in Lemma II.16,

we also obtain a Ck flow Θt defined on E \M , covering Φt, and preserving level sets of V .

For the sake of notation, for any 0 < c < ∞ we henceforth let Uc denote the sublevel set

V −1(−∞, c).

We next define the following smooth functions. Let χ ∈ C∞
(
[0,∞); [0, 1)

)
be a global

diffeomorphism such that χ(δ) = δ for δ ≤ 1
2 and χ′(δ) ∈ (0, 1) for δ > 1

2 . Secondly, define

τ(δ) := δ − χ(δ). Hence we have τ ∈ C∞
(
[0,∞); [0,∞)

)
with τ(δ) = 0 for δ ≤ 1

2 and

τ ′(δ) > 0 for δ > 1
2 . Thus τ restricted to (1

2 ,∞) is a diffeomorphism onto (0,∞).

Finally, we construct the global fiber bundle isomorphism ρ : Ẽs → W s(M) as follows.

Let x ∈ Ẽs
m at the base point m ∈M . Define the rescaled ξ(x) := Rχ(V (x))(x) if ‖x‖ 6= 0 and

ξ(x) = x otherwise. Note that ξ(x) ∈ U1 ⊂ Ẽs is Ck dependent on x by Lemma II.15, and

ξ is a Ck isomorphism since its Ck inverse is given by y 7→ Rχ−1(V (y))(y). Secondly, define

t(x) := τ(V (x)) if ‖x‖ 6= 0 and t(x) = 0 otherwise, and note that t is Ck dependent on x

since τ(δ) = 0 for δ ≤ 1
2 . Now define

ρ : Ẽs → W s(M), ρ(x) = Φ−t(x) ◦ ρ0 ◦Θt(x) ◦ ξ(x). (2.20)

By construction it is clear that ρ is a Ck fiber-preserving map covering the identity on M .

We now show that ρ is injective. First, note that ρ restricted to any level set of V is

injective since the function t 7→ t(x) is constant on such level sets by construction, and for

any fixed t0 ≥ 0 the map x 7→ Φ−t0 ◦ ρ0 ◦ Θt0 ◦ ξ(x) is a Ck isomorphism. Hence it suffices

to show that ρ(V −1(a)) ∩ ρ(V −1(b)) = ∅ for any a 6= b, a, b > 0. Let t1 = t(V −1(a)),

t2 = t(V −1(b)), and assume without loss of generality that b > a and hence t2 > t1. The
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following are equivalent statements:

ρ(V −1(a)) ∩ ρ(V −1(b)) = ∅

⇐⇒ Φ−t1 ◦ ρ0 ◦Θt1 ◦ ξ
(
V −1(a)

)
∩ Φ−t2 ◦ ρ0 ◦Θt2 ◦ ξ

(
V −1(b)

)
= ∅

⇐⇒ Φt2−t1 ◦ ρ0 ◦Θt1 ◦ ξ
(
V −1(a)

)
∩ ρ0 ◦Θt2 ◦ ξ

(
V −1(b)

)
= ∅

⇐⇒ Ψt2−t1 ◦Θt1 ◦ ξ
(
V −1(a)

)
∩Θt2 ◦ ξ

(
V −1(b)

)
= ∅

⇐⇒ Ψt2−t1 ◦ ξ
(
V −1(a)

)
∩ ξ(V −1(b)) = ∅

⇐⇒ Ψt2−t1
(
V −1(χ(a))

)
∩ V −1(χ(b)) = ∅,

where we used in the last line that by construction of ξ, ξ(V −1(a)) = V −1(χ(a)) and

ξ(V −1(b)) = V −1(χ(b)). Since a < b we have 0 < χ(a) < χ(b) < 1, and since for any

t ≥ 0 we have that V −1(−∞, a] is Ψt-invariant by Proposition II.13, it follows that indeed

Ψt2−t1
(
V −1(χ(a))

)
∩ V −1(χ(b)) = ∅. Hence ρ is injective.

We continue with surjectivity of ρ. Letting (yn)n∈N be any sequence in Ẽs with ‖yn‖ → ∞,

it follows that t(yn)→∞ and χ(yn)→ 1. For any δ > 0, let Uδ denote the δ-sublevel set of

V , consistent with our notation U1. Let K ⊂ W s(M) be any compact set. By compactness

and asymptotic stability of M , there exists t0 > 0 such that ∀t ≥ t0 : Φt(K) ⊂ U1/2. It

follows that for all sufficiently large n ∈ N:

ρ(yn) ∈ W s(M) ∩
⋃
t≥t0

Φ−t(ρ0(U1 \ U1/2)) ⊂ W s(M) \K.

Hence ρ takes diverging sequences to diverging sequences and is therefore a proper map, so

ρ is also a closed map. We have already shown that the continuous map ρ is injective. Using

these facts, we establish surjectivity of ρ as follows. Since ρ maps the manifold interior int Ẽs

of Ẽs into the manifold interior intW s(M) ofW s(M), it follows by invariance of domain that

ρ|int Ẽs : int Ẽs → intW s(M) is an open map, and since we also know that ρ is a closed map,
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it follows by connectivity that intW s(M) = ρ(int Ẽs). Next, since ρ(∂Ẽs) ⊂ ∂W s(M) and

since ∂Ẽs and ∂W s(M) are topological manifolds, we may invoke invariance of domain again

and similarly conclude that ρ(∂Ẽs) = ∂W s(M). This completes the proof of surjectivity of

ρ.

To summarize, we have shown that ρ is a bijective, continuous, and closed map. There-

fore, ρ is a homeomorphism. This completes the proof if k = 0.

Assuming now that k ≥ 1, it suffices to show that ρ is a local diffeomorphism. Since

ρ agrees with the diffeomorphism ρ0 on U1/2, it suffices to consider x ∈ Ẽs \M . Let y :=

ρ0 ◦Θt(x) ◦ ξ(x), ξ′ := ∂
∂δ
ξ(δx)|δ=1, and κ := ∂

∂δ
t(δx)|δ=1. A computation using ∂

∂t
Φt = DΦt ◦f

shows that

∂

∂δ
ρ(δx)|δ=1 = DΦ−t(x)

[
−κf(y) + Dρ0

(
κg(ξ(x)) + DΘt(x)ξ′

)]
, (2.21)

where g : Ẽs → TẼs is the vector field generating Θ — note that g is tangent to V level sets.

The vector in brackets points outward to Φt(x) ◦ρ(V −1(a)), where a = V (x). To see this, first

note that Proposition II.13 and the inequality τ ′ > 0 imply that κ > 0, and therefore −κf(y)

points outward to Φt(x) ◦ρ(V −1(a)). Similar reasoning also shows that ξ′ is outward pointing

at V level sets. Since Θt is a flow, it follows that DΘt(x) can be smoothly deformed to the

identity through isomorphisms (in other words, an “isotopy”), which implies that DΘt(x)ξ′

is also outward pointing at V level sets. Since ρ0 is a diffeomorphism which maps the zero

section of Ẽs to M , Dρ0 maps outward pointing vectors at V level sets to outward pointing

vectors at V ◦ ρ−1
0 level sets. Taken together, these facts show that the quantity in brackets

indeed points outward to Φt(x) ◦ ρ(V −1(a)). Now since Φt is a flow, DΦ−t(x) can also be

smoothly deformed to the identity through isomorphisms, and therefore the same reasoning

above in the case of DΘt(x) establishes that ∂
∂δ
ρ(δx)|δ=1 is outward pointing to ρ(V −1(a)) at

ρ(x). On the other hand, Dρ takes a basis for TxV
−1(a) to a basis for Tρ(x)ρ(V −1(a)), so Dρ
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is an isomorphism. This completes the proof.

2.5 Global linearization

A classic result in the theory of normally hyperbolic invariant manifolds is that the

dynamics are “linearizable” on some (a priori small) neighborhood of the NHIM [PS70,

HPS77, PT77], which is to say that there is some neighborhood U of M ⊂ Q and a fiber-

preserving homeomorphism ϕ : U → ϕ(U) ⊂ Es⊕Eu onto a neighborhood of the zero section

such that

ϕ ◦ Φt|U = DΦt|Es⊕Eu ◦ ϕ, (2.22)

for all t ∈ R such that both sides of the expression are defined. This is a vast generalization

of the Hartman–Grobman Theorem.

In [LM13], this local result is extended to a global result for the special cases of exponen-

tially stable equilibria and periodic orbits. More precisely, it is shown that the domain of the

linearization can actually be taken to be the entire basin of attraction for these attractors.

As conjectured in the conclusion of [LM13], this globalization result should generalize to

hold for arbitrary (boundaryless) NAIMs. In this section, we establish this generalization;

our methods are similar to theirs.

We would like to apply this linearization result in the context of slow-fast systems to

derive linear normal forms on a neighborhood of a slow manifold, improving upon the Fenichel

Normal Form to be discussed in §2.6. However, the relevant slow manifolds are often compact

manifolds with boundary. To the best of our knowledge, neither the results mentioned

above nor the existing (local) linearization results in the literature directly apply in this case

[PS70, Rob71, HPS77, PT77, Sel84, Sel83, Sak94, BK94]. Thus, the content of this section
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can be divided as follows.

1. In §2.5.1, we prove that the dynamics restricted to the basin of attraction of a compact

boundaryless NAIM are globally linearizable (and smoothly linearizable, assuming some

additional hypotheses). This is the content of Theorem II.18 and its corollaries.

2. In §2.5.2, we turn to the main goal of §2.5, which is to prove that the dynamics

restricted to the global stable manifold of a compact inflowing NAIM are globally

linearizable (and smoothly linearizable, assuming some additional hypotheses). This is

the content of Theorem II.24 and its corollaries. We prove this local result in the course

of proving the stronger global result. To achieve this, we use a topological construction

developed in Appendix B, which might be of independent interest.

Remark II.17. After we had proved Theorem II.18 (global linearization for the boundaryless

case), we learned that Igor Mezić independently obtained this theorem before us. A very

readable proof appears in his soon-to-be published textbook on Koopman operator theory

[Mez17]. His proof technique is the same as ours. However, his result applies only to

boundaryless NAIMs, and therefore we need our Theorem II.24 (global linearization for

inflowing NAIMs) for our goal of deriving a linear normal form for a class of slow-fast

systems, which we do in §2.6.

2.5.1 Global linearization for boundaryless NAIMs

In the following results, recall that by a Ck isomorphism, we mean a homeomorphism if

k = 0 and a Ck diffeomorphism if k ≥ 1. Theorem II.18 will be used as a stepping stone to

prove a global linearization result for inflowing NAIMs in §2.5.2 below, which we apply to

slow-fast systems in §2.6.

Theorem II.18. Let M ⊂ Q be a compact (boundaryless) 1-NAIM for the Cr flow Φt on Q.

Assume that Es ∈ Ck, with 0 ≤ k ≤ r − 1, and that Φt is locally Ck conjugate to the linear
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flow DΦt|Es on some neighborhood of M ⊂ W s(M). Then Φt is globally Ck conjugate to

DΦt|Es, which is to say that there exists a Ck fiber-preserving isomorphism ϕ : W s(M)→ Es

such that

∀t ∈ R : ϕ ◦ Φt = DΦt|Es ◦ ϕ. (2.23)

Additionally, ϕ agrees with the local conjugacy on its domain.

Remark II.19. The hypotheses of Theorem II.18 assume the existence of a local linearizing

Ck conjugacy. Theorem II.18 shows that any local linearizing conjugacy may be extended

to a global linearizing conjugacy having the same regularity.

Remark II.20. The relationship between Theorems II.5, II.18, and II.24 (see §2.5.2 below) are

as follows. The hypotheses of Theorem II.18 and II.24 are much stronger than those required

for Theorem II.5, and in particular the hypotheses of Theorem II.5 are not sufficient to prove

the conclusion of Theorems II.18 and II.24. However, the hypotheses of Theorem II.18 and

II.24 suffice to prove the conclusion of Theorem II.5 in the cases that ∂M = ∅ and M is

inflowing with ∂M 6= ∅, respectively, since the conjugacy ϕ : W s(M) → Es is in particular

a Ck fiber-preserving isomorphism.

Remark II.21. As pointed out in [LM13], the flow is automatically locally C1 linearizable

near an exponentially stable equilibrium or periodic orbit. See the references therein. It is

shown in [PS70, HPS77, PT77] that the flow is always locally C0 linearizable near a NHIM.

There are also various results in the literature giving conditions ensuring that Φt is locally Ck

linearizable near a general invariant manifold, such as [Sak94, Tak71, Rob71, Sel84, Sel83].

See also [BK94, Chap. VI] for similar results, as well as historical remarks. In particular, we

obtain the following easy corollary.

Corollary II.22. Let M , Q, P s, and Φt be as in Theorem II.18. Assume that Φt is a C1

flow and that M is a 1-NAIM. Then Φt|W s(M) is globally topologically conjugate to DΦt|Es.
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Proof. As remarked already, it is shown in [PS70, HPS77, PT77] that Φt is locally topo-

logically conjugate to DΦt|Es near M . Thus Theorem II.18 yields the existence of a global

topological conjugacy between Φt and DΦt|Es .

Remark II.23. This furnishes a proof alternative to the one given in §2.4.3 that for a 1-NAIM

M , P s : W s(M)→M is always a topological fiber bundle isomorphic to Es over M .

Proof of Theorem II.18. By assumption, there exists a neighborhood U ofM and a Ck fiber-

preserving isomorphism ϕloc : U → ϕloc(U) ⊂ Es such that for all t > 0:

ϕloc ◦ Φt|U = DΦt|Es ◦ ϕloc. (2.24)

We now extend this local conjugacy to a global one.

Let V be a strict C∞ Lyapunov function for the flow Φt [Wil67, Wil69], and let f be the

vector field generating that flow. V is nonnegative, V −1(0) = M , V is proper, and the Lie

derivative LfV of V along trajectories not contained in M is strictly negative. Since V is

proper, there is c > 0 such that V −1(c) ⊂ U , for example, take c < infx∈W s(M)\U V (x).

Since LfV < 0 on V −1(c), it follows that the vector field f intersects V −1(c) transversally.

The properties of V imply that for all x ∈ W s(M) \M there exists a unique “impact time”

τ(x) ∈ R such that Φτ(x)(x) ∈ V −1(c). Using transversality of f to V −1(c) and the implicit

function theorem applied to (x, τ) 7→ V (Φτ (x)), we see that τ : W s(M) \M → R is Cr.

Now define a map ϕ : W s(M)→ Es by

ϕ(x) :=


DΦ−τ(x) ◦ ϕloc ◦ Φτ(x)(x), x ∈ W s(M) \M

ϕloc, x ∈ U.
(2.25)

See Figure 2.3. Note that ϕ is well-defined because Equation (2.24) implies that the two

functions in (2.25) agree on U \M , and hence ϕ ∈ Ck since clearly both maps in (2.25) are.
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Note also that ϕ maps fibers W s(m) into fibers Es
m by invariance of the stable foliation and

stable vector bundle under the nonlinear and linear flows, respectively. It is easy to check

directly that ϕ conjugates the flows as in Equation (2.23) — we now show that ϕ is a Ck

isomorphism.

We first show that ϕ : W s(M)→ Es is injective. Define the Ck function V ′ : ϕloc(U)→ R

by V ′ := V ◦ (ϕloc)−1. We have that ∀v = ϕloc(x) ∈ ϕloc(U) and all t > 0:

V ′ ◦ DΦt(v) = V ′ ◦ DΦt ◦ ϕloc(x) = V ′ ◦ ϕloc ◦ Φt(x) = V ◦ Φt(x). (2.26)

It follows that V ′ is strictly decreasing along trajectory segments of DΦt|Es contained in

ϕloc(U), so that any trajectory of DΦt|Es starting in ϕloc(U \M) intersects the c level set

Σ := (V ′)−1(c) of V ′ in precisely one point. Now suppose that ϕ(x) = ϕ(y) with x 6= y. Then

we have DΦ−τ(x)(v) = DΦ−τ(y)(w), where v := ϕloc◦Φτ(x)(x) ∈ Σ and w := ϕloc◦Φτ(y)(y) ∈ Σ.

It follows that v = DΦτ(x)−τ(y)(w) which, by the previous comments, implies that τ(x) = τ(y)

and that v = w. By injectivity of ϕloc we therefore have Φτ(x)(x) = Φτ(x)(y). Since Φτ(x) is

injective, x = y. Hence ϕ is injective.

We next show that ϕ : W s(M)→ Es is surjective. Note that ϕloc mapsM one-to-one and

onto the zero section of Es (this must be the case since homeomorphisms preserve ω-limit

sets). Now consider any v ∈ Es \M , identifying M with the zero section as usual. Since M

is a NAIM, the zero section of Es is asymptotically stable for the linear flow DΦt|Es . This

fact and continuity imply that there is t0 > 0 such that DΦt0(v) ∈ Σ. Let x′ ∈ U be the

unique point with ϕloc(x′) = DΦt0(v). Setting x = Φ−t0(x′), we see that τ(x) = t0 and that

ϕ(x) = DΦ−τ(x)◦ϕloc◦Φτ(x)(x) = DΦ−t0◦ϕloc◦Φt0(x) = DΦ−t0◦ϕloc(x′) = DΦ−t0◦DΦt0(v) = v.

To complete the proof, it suffices to prove that ϕ−1 ∈ Ck. Since ϕ−1|ϕ(U) = (ϕloc)−1, ϕ−1
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W s(M) Es

M M

ϕloc

ϕloc(U)

Φτ(x)(x)

x

V −1(c)

ϕloc ◦ Φτ(x)(x)

ϕ(x) = DΦ−τ(x) ◦ ϕloc ◦ Φτ(x)(x)

U

Figure 2.3: An illustration of the proof of Theorem II.18. The neighborhood U ⊂ W s(M)
and its image ϕloc(U) are bounded by dashed curves. The level set V −1(c) ⊂ W s(M) is
depicted by the dotted curves.

is Ck on U . Now let v ∈ Es \ ϕ(U). By asymptotic stability of the zero section for DΦt|Es ,

there exists t0 > 0 such that DΦt0(v) ∈ U . Since ϕ−1 = Φ−t0 ◦ ϕ−1 ◦ DΦt0|Es by (2.23), it

follows that

ϕ−1|DΦ−t0 (ϕ(U)) = Φ−t0 ◦ (ϕloc)−1 ◦ DΦt0|DΦ−t0 (ϕ(U))

is a composition of Ck maps, so that ϕ−1 is Ck on a neighborhood of v. This completes the

proof.

2.5.2 Global linearization for inflowing NAIMs

We next proceed to our main goal for §2.5, which is to prove a global linearization theorem

for inflowing NAIMs. The key tool we use is Proposition B.1 in Appendix B, which shows

that many results about boundaryless NAIMs can be transferred to inflowing NAIMs. We

reiterate that this result is necessary for our derivation of a linear normal form (see Theorem

II.28) for slow-fast systems, since the slow manifolds for these systems are typically manifolds

with boundary.
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Theorem II.24. Let M ⊂ Q be a compact inflowing r-NAIM for the flow Φt generated

by the Cr vector field f on Q, where r ≥ 3. Assume further that there exist constants

0 < δ < −α < −β and K ≥ 1 such that −α > rδ, −β < −2α − (r − 1)δ, and such that for

all t ≥ 0
K−1e−δt ≤ TDΦt|TMU ≤ ‖DΦt|TM‖ ≤ Keδt,

K−1e−δt ≤ T(DΦt|TM)−1U ≤ ‖(DΦt|TM)−1‖ ≤ Keδt,

K−1eβt ≤ TDΦt|EsU ≤ ‖DΦt|Es‖ ≤ Keαt

(2.27)

hold uniformly on TM and Es. Then Es ∈ Cr−1 and Φt|W s(M) is globally Cr−1 conjugate to

DΦt|Es.

Proof. By Proposition B.1 in Appendix B, there exists a C∞ manifold Q̂, an open neigh-

borhood U ⊃ W s(M), a C∞ embedding ι : U → Q̂, a Cr vector field f̂ on Q̂ generating a

Cr flow Φ̂t, and a Cr compact and boundaryless r-NAIM N̂ ⊂ Q̂ for Φ̂t with the following

properties.

1. ι∗(f |W s(M)) = f̂ |ι(W s(M).

2. ∀m ∈ M : ι(W s(m)) = Ŵ s(ι(m)), where W s(M) and Ŵ s(N̂) are the global stable

foliations of M for f and N̂ for f̂ , respectively.

3. There exist constants δ′, α′, β′ arbitrarily close to δ, α, β such that (2.27) holds uni-

formly on TN̂ and Ês, after replacing δ, α, β, M , Es, and Φt by δ′, α′, β′, N̂ , Ês, and

Φ̂t, respectively. Here, Ês is the stable vector bundle of N̂ for Φ̂t.

In [Sak94, p. 335, Thm B] it is shown12 that item 3 implies that Ŵ s(N̂), Ês ∈ Cr−1

and that Φ̂t is locally Cr−1 conjugate to DΦ̂t|
Ês

near N̂ . By Theorem II.18, it follows
12Comparing (2.27) to [Sak94, Eq. (2.7)], note that we express the conditions on DΦt|TM only for t ≥ 0,

but also on the inverse to prevent issues with Φt(m) leavingM . We do not have an equivalent for Sakamoto’s
estimate for Z since we have no unstable bundle. Furthermore, the lack of minimum norms for the lower
bounds seems to be a minor oversight in Sakamoto’s conditions. Next, Sakamoto’s result is actually only
stated for a NAIM with trivial normal bundle, but this is easily extended to the general case by locally
writing the dynamics on the normal bundle and then extending them to the total space of the direct sum
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that Φ̂t|
Ŵ s(N̂) is globally Cr−1 conjugate to DΦ̂t|

Ês
. Let ϕ̂ : Ŵ s(N̂) → Ês be such a

conjugacy. Items 1 and 2 imply that restriction of ϕ̂ yields a well-defined global Cr−1

conjugacy ϕ̂|
Ŵ s(ι(M)) : Ŵ s(ι(M)) → Ês|ι(M) between Φ̂t|

Ŵ s(ι(M)) and DΦ̂t|
Ês|ι(M)

. Hence

ϕ := ι|−1
Ŵ s(ι(M))

◦ ϕ̂ ◦ ι is a global Cr−1 conjugacy from Φt|W s(M) to DΦt|Es .

Corollary II.25. Let M ⊂ Q be a compact inflowing 1-NAIM for the Cr flow Φt generated

by the Cr vector field f on Q. Then Φt|W s(M) is globally topologically conjugate to DΦt|Es.

Proof. The proof is identical to that of Theorem II.24, but with [PS70, Thm 2] used instead

of [Sak94, p. 335, Thm B] to provide a local linearizing C0 conjugacy.

2.6 Applications to Geometric Singular Perturbation Theory

We give two applications of Theorem II.5 and Theorem II.24 to slow-fast systems in

the context of geometric singular perturbation theory (GSP). Our applications assume the

special case in which the slow manifold is attracting. Both applications are improvements of

the so-called Fenichel Normal Form, discussed below, and are contained in Theorems II.26

and II.28 below.

The Fenichel Normal Form [JK94, Jon95, Kap99, JT09] is the form that the equations of

motion take near the slow manifold of a slow-fast system, when written in local coordinates

which are adapted to the slow manifold and its stable and unstable foliations. One applica-

tion of this normal form was to derive the estimates used to prove the so-called Exchange

Lemma and its extensions, which are useful tools for establishing the existence of heteroclinic

and homoclinic orbits in slow-fast systems; see, e.g., [JK94, Jon95, JKK96, Bru96, KJ01,

with an inverse bundle; this useful trick is briefly mentioned in a different context on [Sak94, pp. 333-334],
but see also [PSW97, Sec. 3] for more details. Finally, it is actually claimed in [Sak94, p. 333] that Ês ∈ Cr,
but to the best of our knowledge this seems to be a minor oversight — the references in [Sak94, p. 333]
provided to support this statement either claim Cr−1 smoothness only [Sak90, Lem. 3.2 (ii)], or omit the
details of higher degrees of smoothness in their proof [Yi93a, Thm 3.1], [Yi93b, Thm 3.1]. For a proof that
Ês ∈ Cr−1, see [Fen71, Thm 7] or [Sak90, App. B].
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Liu06, Sch08, JT09] and the references therein. In the special case that the slow manifold is

attracting, another application of the Fenichel Normal Form is to dimensionality reduction:

in this normal form, the dynamics of the transformed slow variable are decoupled from the

transient dynamics of the transformed fast variable, and therefore the transformed slow dy-

namics serves as a reduction of the full dynamics in a clear way. Stated differently, in the

coordinates placing the system in Fenichel Normal Form, the map P s sending stable fibers

to their basepoints is simply an orthogonal projection; the coordinate change “straightens

out” the stable fibers W s(m), for m in the slow manifold. We remark that the recent paper

[JT09] is a useful source of historical information on the Fenichel Normal Form.

As mentioned above, for our applications to GSP we will assume the special case in

which the critical manifold is a NAIM. This special case arises naturally in many concrete

applications, such as in understanding nonholonomic dynamics as a limit of friction forces

[Eld16], in biolocomotion [EJ16], in the context of chemical reactions and combustion [LG94],

in various problems in control theory [KOS76], and many more [Kue15, Ch. 20]. For general

background on GSP, one may consult, e.g., the seminal paper [Fen79], the expository articles

[Kap99, Jon95], or the recent book [Kue15].

Our two applications are as follows.

1. Using Theorem II.5 and assuming that the slow manifold is a NAIM, we show that

the Fenichel Normal Form is valid on the union of global stable manifolds ∪εW s(Kε) of

slow manifolds Kε, rather than just on the union of local stable manifolds ∪εW s
loc(Kε).

This is the content of Theorem II.26.

2. Using Theorem II.24 and assuming that the slow manifold is a NAIM, we show that

under additional spectral assumptions on the critical manifold, there exists a stronger

normal form which is linear in the fast variables. This normal form can be viewed as

a stronger version of the Fenichel Normal Form. Additionally, this linear normal form
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is also valid on the union of global stable manifolds ∪εW s(Kε) of slow manifolds Kε.

This is the content of Theorem II.28.

The remainder of this section is as follows. We first introduce the context for Theorems

II.26 and II.28 by describing the GSP setup in §2.6.1. Next, §2.6.2 contains the global

extension of the Fenichel Normal Form as an application of Theorem II.5. Following this,

§2.6.3 contains the derivation of the linear normal form, as well as its global extension, as

an application of Theorem II.24. Next, in in §2.6.4 we discuss our results and relate them

to the so-called method of straightening out fibers (SOF method) recently appearing in the

literature [KBS14]. Finally, in §2.6.5 we illustrate our results in an example involving a

classical mechanical system.

2.6.1 Setup and classic results

Consider a singularly perturbed system of the form

x′ = f(x, y, ε)

εy′ = g(x, y, ε),
(2.28)

where x ∈ Rnx and y ∈ Rny are functions of “slow time” τ , ε is a small parameter, and13

f, g ∈ Cr≥2. For all ε 6= 0, this system is equivalent via a time-rescaling t = τ/ε to the

regularized system

ẋ = εf(x, y, ε)

ẏ = g(x, y, ε).
(2.29)

13Note that we have adopted Fenichel’s convention of letting x denote the “slow” variable here, as a matter
of personal style.
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We let a “prime” denote a derivative with respect to τ , and a “dot” denote a derivative with

respect to the “fast time” t.

Now suppose that K0 ⊂ int K̂0 ⊂ K̂0 are compact manifolds with boundary contained

in S := {(x, y) : g(x, y, 0) = 0}, with int K̂0 denoting the manifold interior of K̂0. Noting

that S consists of critical points of the (ε = 0) system, let us assume that the eigenvalues of

D2g(x, y, 0) have strictly negative real part on K̂0. In particular, this implies that K̂0 can be

locally written as a graph K̂0 := {(x, F (x))} over some domain B ⊂ Rnx .

By making local modifications to the vector field defined by (2.29) in arbitrarily small

neighborhoods of ∂K0 and ∂K̂0, we may henceforth assume without loss of generality that

the vector field is inward pointing at ∂K0 and outward pointing at14 ∂K̂0.

By our assumption on the eigenvalues of D2g, we have that K0 × R and K̂0 × R are

noncompact NAIMs for the dynamics

ẋ = 0

ẏ = g(x, y, 0)

˙̃ε = 0,

(2.30)

since the equations for ẋ and ẏ in (2.30) are independent of ε̃. Here, ε̃ ∈ R is a new

parameter, and its relation to ε will be determined subsequently. We compactify these

NAIMs by replacing R with its one-point compactification S1, and we thereby henceforth

consider (2.30) to be defined on Rnx+ny × S1. For this new domain of definition, K0 × S1

and K̂0 × S1 are compact inflowing and overflowing NAIMs, respectively.

Next, following [Eld13, p. 142], we use a scaling parameter κ > 0 to slowly “turn on”

the ε̃ dependence. Let χ : R → [0, 1] be a C∞ nonnegative bump function such that χ ≡ 1

on [−1, 1] and χ ≡ 0 on R \ (−2, 2), and — anticipating a parameter substitution ε = κε̃ —
14Similar constructions are carried out in greater detail in [Jos00, § 2].
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consider the vector field defined by

ẋ = χ(ε̃)κε̃f(x, y, χ(ε̃)κε̃)

ẏ = g(x, y, χ(ε̃)κε̃)

˙̃ε = 0.

(2.31)

One can verify that this vector field can be made arbitrarily Cr-close to (2.30) by taking

0 < κ� 1 sufficiently small. It follows from Fenichel’s theorem on persistence of overflowing

NAIMs [Fen71, Thm 1] that there exists a κ > 0 such that K̂0 × S1 persists to a Cr-nearby

overflowing r-NAIM for (2.31), and that K0 × S1 persists to an inflowing NAIM inside it,

since K0×S1 ⊂ K̂0×S1 and inflowing invariance is an open condition. Because K0 consisted

entirely of critical points for (2.30), by a theorem of Fenichel the local stable foliation of the

inflowing NAIM is Cr−1 [Fen77, Thm 5].

We now make the change of variables ε = κε̃ and see that (2.31) is equivalent to

ẋ = χ(ε/κ)εf(x, y, χ(ε/κ)ε)

ẏ = g(x, y, χ(ε/κ)ε)

ε̇ = 0,

(2.32)

so it follows that (2.32) has compact r-NAIMs M and M̂ which are respectively inflowing

and overflowing, and with M contained in the manifold interior of M̂ . Since M and M̂

are the images of the NAIMs for (2.31) through a diffeomorphism, the local stable foliation

W s
loc(M) of M for (2.32) is also Cr−1 in all variables x, y, ε.

2.6.2 Globalizing the Fenichel Normal Form

Continuing the analysis of §2.6.1, we may apply Theorem II.5 to deduce that the leaves

of the global stable foliation of M for (2.32) fit together to form a Cr−1 disk bundle
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P s : W s(M) → M isomorphic (as a disk bundle) to Es. By the definition of χ we see

that for ε ∈ [−κ, κ], (2.32) reduces to the system

ẋ = εf(x, y, ε),

ẏ = g(x, y, ε),

ε̇ = 0.

(2.33)

As in [Jon95], let us make the commonly made assumption15 that K̂0 is the graph of a map

B ⊂ Rnx → Rny , where B is a closed ball in Rnx — as we have already noted, by the implicit

function theorem this can always be achieved by shrinking K̂0 if necessary. Thus, if κ is

sufficiently small, we can writeM as the graph of a Cr map y = F (x, ε) defined on a suitable

open subset of Rnx×S1. Making the coordinate change (x, y, ε) 7→ (x, y−F (x, ε), ε), we may

assume that M is contained in Rnx × {0} × S1. Since we assumed that K̂0 is contractible it

follows that M deformation retracts onto S1, and hence the bundle P s : W s(M)→M must

be trivializable over any subset of the formM0 := M∩(Rnx+ny×(−ε0, ε0)), for any sufficiently

small ε0 > 0. It follows that there exists a Cr−1 fiber-preserving diffeomorphism W s(M0) ∼=

M0 × Rny of the form (x, y, ε) 7→ (x̃, ỹ, ε) := (P s(x, y, ε), φ(x, y, ε), ε), with φ(x, 0, ε) ≡ 0.

Making this final coordinate change, it follows that when restricted to W s(M0), the system

(2.33) takes the form:

˙̃x = εh(x̃, ε),

˙̃y = Λ(x̃, ỹ, ε)ỹ,

ε̇ = 0,

(2.34)

15A more general situation where M cannot be written as a graph can be handled using a tubular neigh-
borhood modeled on the normal bundle of M .
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where (x̃, ỹ, ε) 7→ Λ(x̃, ỹ, ε) is a Cr−3 family of nx × nx matrices and (x̃, ε) 7→ h(x̃, ε) is16

Cr−1. The ˙̃x equation depends only on x̃ and ε because we are using an invariant fiber

bundle trivialization for coordinates on W s(M0), and x̃ and ε̃ are coordinates for M0. By

our choice of coordinates, ˙̃x is zero when ε = 0 because ẋ = 0 when ε = 0 — this fact

and Hadamard’s Lemma implies that ˙̃x is of the form εh(x̃, ε). Hadamard’s Lemma similarly

implies that ˙̃y is of the form Λ(x̃, ỹ, ε)ỹ, because after our coordinate changesM0 corresponds

to the set of points in W s(M0) with ỹ = 0, and also M0 is positively invariant, so it must

be the case that ˙̃y = 0 when ỹ = 0. Suppressing the ε̇ = 0 equation, we have proven the

following result, which we record here as a theorem.

Theorem II.26. Assume that K̂0 can be written as the graph of a Cr map B ⊂ Rnx → Rny ,

with B a closed ball in Rnx. Then there exists κ > 0 such that for any ε ∈ [−κ, κ], there is a

Cr−1 fiber-preserving diffeomorphism ϕε : W s(Kε) → Kε × Rny such that in the coordinates

x̃, ỹ = ϕε(x, y), the system (2.28) takes the form

˙̃x = εh(x̃, ε),

˙̃y = Λ(x̃, ỹ, ε)ỹ.
(2.35)

In the new coordinates, Kε corresponds to {(x̃, ỹ)|ỹ = 0}. The diffeomorphism ρε is Cr−1 in

ε. Also, h ∈ Cr−1, Λ ∈ Cr−3, and the function (x̃, ε) 7→ εh(x̃, ε) is Cr.

Restricting attention now to only positive values of ε > 0, in the original slow time-scale

(2.35) is equivalent to

x̃′ = h(x̃, ε),

εỹ′ = Λ(x̃, ỹ, ε)ỹ.
(2.36)

16However, the maps (x̃, ε) 7→ εh(x̃, ε) and (x̃, ỹ, ε) 7→ Λ(x̃, ỹ, ε)ỹ are Cr and Cr−2, respectively. The first
map is Cr because εh(x, ε) ≡ f(x, F (x, ε), ε), and the right hand side is Cr in x and ε.
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Remark II.27. Because of our assumption that the critical manifold of (2.29) was a NAIM, the

normal form which we were able to derive and state in Theorem II.26 appears considerably

simpler than the Fenichel Normal Form — c.f. [Jon95, p. 82], [Kap99, pp. 109-111], [JT09,

p. 973] or [Kue15, pp. 72–73], although our normal form actually directly follows from the

general Fenichel Normal Form. Our contribution is that, using Theorem II.5, we have shown

that this normal form is valid on a neighborhood which consists of the entire union of global

stable manifolds ∪εW s(Kε), as opposed to being valid merely on the union of local stable

manifolds ∪εW s
loc(Kε).

2.6.3 Smooth global linearization: A stronger GSP normal form

In this section we continue to assume that the critical manifold is a NAIM for (2.29),

but we make the following additional “nonresonance” assumption on the eigenvalues of the

critical points. Let rmin(x, y) ≤ rmax(x, y) < 0 denote the minimum and maximum real parts

of eigenvalues of D2g(x, y), where (x, y) ∈ K̂0, and K̂0 is defined following (2.29). We assume

that there exist negative real constants α, β such that 2α < β < α < 0 and

∀(x, y) ∈ K̂0 : β < rmin(x, y) ≤ rmax(x, y) < α. (2.37)

The payoff for this assumption is that we can obtain a Cr−1 normal form which is linear

in ỹ, improving upon the Fenichel Normal Form (2.35) significantly. This normal form is also

global in the sense that it holds on the entire union of global stable manifolds ∪εW s(Kε).

This is the content of the following result.

Theorem II.28. Assume that the vector field defined by (2.28) is Cr≥3, and assume that

the condition (2.37) holds for the regularized system (2.29), and that K̂0 can be written

as the graph of a Cr map B ⊂ Rnx → Rny , with B a closed ball in Rnx. Then there

exists κ > 0 such that for any ε ∈ [−κ, κ], there is a Cr−1 fiber-preserving diffeomorphism
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ϕε : W s(Kε)→ Kε×Rny such that in the coordinates x̃, ỹ = ϕε(x, y), the system (2.28) takes

the form

˙̃x = εh(x̃, ε),

˙̃y = A(x̃, ε)ỹ.
(2.38)

In the new coordinates, Kε corresponds to {(x̃, ỹ)|ỹ = 0}. The diffeomorphism ϕε is Cr−1 in

ε. Also, h ∈ Cr−1, A ∈ Cr−1, and the function (x̃, ε) 7→ εh(x̃, ε) is Cr.

Restricting attention now to only positive values of ε > 0, in the original slow time-scale

(2.38) is equivalent to

x̃′ = h(x̃, ε),

εỹ′ = A(x̃, ε)ỹ.
(2.39)

If the condition (2.37) does not hold, then there exists a homeomorphism ϕε such that the

same result holds, but ϕε is generally not differentiable in that case.

Proof. Consider the compact inflowing NAIMM for the system (2.32) defined on Rnx+ny×S1.

As described in §2.6.2, our assumption that K̂0 is a graph implies that if κ > 0 is sufficiently

small, then M is the graph of a Cr map (x, ε) 7→ y. Hence we may assume without loss of

generality that M ⊂ Rnx × {0} × S1.

Let Es be the stable vector bundle of M and let Φt be the flow of the system (2.32)

on Rnx+ny × S1. By continuity and compactness, it can be shown that assumption (2.37)

implies that if κ > 0 is sufficiently small, then there exist constants δ > 0 and K ≥ 1 such
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that −α > rδ, and such that for all t ≥ 0

K−1e−δt ≤ TDΦt|TMU ≤ ‖DΦt|TM‖ ≤ Keδt,

K−1e−δt ≤ T(DΦt|TM)−1U ≤ ‖(DΦt|TM)−1‖ ≤ Keδt,

K−1eβt ≤ TDΦt|EsU ≤ ‖DΦt|Es‖ ≤ Keαt

(2.40)

uniformly on TM and Es. By Theorem II.24, there exists a global Cr−1 fiber-preserving

diffeomorphism ϕ : W s(M)→ Es which conjugates Φt|W s(M) to DΦt|Es and maps M diffeo-

morphically onto the zero section of Es.

Now in any local trivialization of Es, the vector field generating the flow DΦt|Es is of the

form (2.38) augmented with ε̇ = 0 (where coordinates for the zero section are given by x̃ and

coordinates for the fibers given by ỹ). It follows that if we define ϕε( · , · ) := ϕ( · , · , ε), then

it suffices to show that W s(M) is trivializable over the subset M ∩ (Rnx+ny × [−κ, κ]). But

M ∩ (Rnx+ny × [−κ, κ]) is contractible since it is diffeomorphic to K0× [−κ, κ], so W s(M) is

indeed trivializable over Mκ.

The statement about (2.39) follows easily by replacing t with the rescaled slow time

τ = εt.

Finally, to justify the last statement for the case that (2.37) does not hold, we simply

apply Corollary II.25 instead of Theorem II.24. This completes the proof.

Remark II.29. Assume that ny = dim(y) = 1, so that the fast variable is one-dimensional

and the slow manifold is codimension-1. Then the eigenvalue condition (2.37) can always be

made to hold by taking K̂0 sufficiently small.

Remark II.30. We see from the proof that, since Kε is a manifold with boundary, our lin-

earization result Theorem II.24 for inflowing invariant manifolds is crucial. This is because,

to the best of our knowledge, all of the linearization results in the literature assume a bound-

aryless invariant manifold [PS70, Tak71, Rob71, HPS77, PT77, Sel84, Sel83, Sak94, BK94].
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2.6.4 Discussion

We have proven Theorems II.26 and II.28, both of which are statements about nor-

mal forms for slow-fast systems in the framework of geometric singular perturbation theory

(GSP). These results assume that the slow manifold is attracting.

Let us first discuss some literature regarding the Fenichel Normal Form for attracting slow

manifolds, which is the subject of Theorem II.26. Because of the practical benefits afforded

by dimensionality reduction, there has been interest in actually computing the coordinate

change placing the system in Fenichel Normal Form for the attracting slow manifold case.

Recently, the so-called method of straightening out fibers (SOF method) has been developed

to iteratively approximate the Taylor polynomials of this coordinate change17 [KBS14]; sim-

ilar techniques for systems near equilibria were previously developed in [Rob89, Rob00], and

we also mention that it was shown in [ZKK04] that the Computational Singular Perturbation

(CSP) method initially developed in [LG89, Lam93] iteratively approximates the first-order

Taylor polynomial of this coordinate change.

Theorem II.26 does not yield a new normal form; it shows that, in the attracting slow

manifold case, the domain of the coordinate change placing the system in Fenichel Normal

Form actually extends to the entire global stable manifold of the slow manifold. This result

seems to be of primarily theoretical interest. For example, the state-of-the-art SOF method

only provides a means for computing Taylor polynomials centered at the slow manifold. Since

these Taylor polynomials are only guaranteed to accurately approximate the coordinate near

the slow manifold, they are unlikely to approximate the global coordinate change. Hence

the global coordinate change, guaranteed to exist by Theorem II.26, might not be explicitly

computable except in special cases.

On the other hand, Theorem II.28 does yield a new normal form, and also shows that
17The results of [KBS14] actually apply in more general situations, such as the case of a normally elliptic

slow manifold. See [KBS14] for more details.
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the domain of the associated coordinate change extends to the entire global stable manifold.

In order for the coordinate change to be differentiable, some additional spectral conditions

(2.37) need to be satisfied, although these are automatically satisfied on a small enough

domain of the slow manifold in the codimension-1 case (see Remark II.29). The payoff

is that this normal form is linear in the fast variables. Furthermore, by combining the

SOF method of [KBS14] with additional normal form computations [GH83, Rob89, Rob00]

for the fast variable, it seems to us that it should be possible in principle to compute the

Taylor polynomials of this coordinate change in a systematic way. We hope to explore

this in future work. Of course, computing this coordinate system globally suffers the same

difficulties mentioned in the previous paragraph. Finally, we observe that our normal form

is quite similar in form to the dynamics produced by “high-gain” nonlinear control schemes

— suggesting that linearly controlled fast variables are an inherent feature of a broad class

of systems, rather than a convenient requirement imposed by control theorists.

2.6.5 Example

In this section, we consider an example of a forced pendulum with damping. This example

was chosen so that the natural state space is not Euclidean. This will allow us to illustrate

Theorems II.5, II.18, and II.24 by directly applying these theorems to obtain stronger results

than those obtainable via Theorems II.26 and II.28, which we formulated for dynamics on a

Euclidean space.

We allow the damping coefficient of the pendulum to be a function of the pendulum

angle, and consider an applied torque which depends on the pendulum angle and time. We

assume that the applied torque is periodic in time, and for simplicity we assume that the
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period is 2π. Specifically, we consider the equations of motion

εθ′′ + εg

l
sin θ + c(θ)θ′ = τ(θ, t), (2.41)

where ε is the pendulum mass which we assume to be small18, l is the pendulum length, g

is the acceleration due to gravity, c is the angle-dependent damping coefficient, and τ(θ, t)

is the applied torque — not to be confused with the slow time variable that is also denoted

by τ with some abuse of notation. We are assuming that ∀θ, t : τ(θ, t + 2π) = τ(θ, t). We

define the angular velocity ω := θ′. The periodicity of τ allows us to introduce a circular

coordinate α and write (2.41) in the following extended state space form:

θ′ = ω

α′ = 1

εω′ = −εg
l

sin θ − c(θ)ω + τ(θ, α).

(2.42)

We consider (θ, α) to be angle coordinates on the two-torus T 2 := S1 × S1, so that the

state space is T 2 × R. As in §2.6.1, for ε 6= 0 this “slow time” system is equivalent via a

time-rescaling t = τ/ε to the “fast time” system

θ̇ = εω

α̇ = ε

ω̇ = −εg
l

sin θ − c(θ)ω + τ(θ, α).

(2.43)

To relate this to our earlier notation from §2.6.1, here (θ, α) is playing the role of x and

ω is playing the role of y. For ε = 0, the set of critical points of (2.43) are given by
18Strictly speaking, in a physical context we should define ε to be a dimensionless quantity in order to

refer to it as “small” in an absolute sense. However, this will cause no problem whatsoever for applying and
illustrating our results, and we therefore do not bother with this.
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S := {(θ, α, ω) : c(θ)ω = τ(θ, α)}.

Let us first consider the special case of a constant positive damping coefficient c(θ) ≡

c0 > 0. Then S is the graph of the map F0(θ, α) := 1
c0
τ(θ, α). We henceforth assume that

τ ∈ Cr, with19 3 ≤ r < ∞. It follows that S is a Cr manifold diffeomorphic to the torus

T 2. Furthermore, the eigenvalues of all critical points in the critical manifold S are readily

checked to be (0, 0,−c0), with the zero eigenvalues corresponding to the tangent spaces of S

and −c0 corresponding to span{(0, 0, 1)}. Therefore, S is an r-NAIM for (2.43) when ε = 0.

Since ∂S = ∅, there exists ε0 > 0 such that for all 0 ≤ ε ≤ ε0, there is a unique persistent

NAIM Sε close to S, with S0 = S. As in §2.6.2, Sε is the graph of a Cr map ω = F (θ, α, ε)

with F0 = F ( · , · , 0).

Using a technique from [SW99], we next prove the following proposition.

Proposition II.31. For all sufficiently small ε > 0, Sε is globally asymptotically stable. In

other words, for all sufficiently small ε > 0, we have W s(Sε) = T 2 × R.

Proof. We already know that Sε is locally asymptotically stable for ε > 0 sufficiently small,

so it suffices to show that Sε is globally attracting for ε > 0 sufficiently small. We fix any

ε0 > 0 and define

η := 1
c0

(
ε0g

l
+ max

(θ,α)∈T 2
|τ(θ, α)|+ 1

)
.

Note that for all 0 ≤ ε ≤ ε0, the compact subset

Dη := {(θ, α, ω) : |ω| < η}

of T 2 × R is positively invariant, and every point in (T 2 × R) \ Dη will flow into Dη in

some finite time; indeed, ω̇ < −1 on (T 2 × R≥0) \ Dη, ω̇ > 1 on (T 2 × R≤0) \ Dη, and
19Even if r = ∞, we can only derive results for a finite smoothness degree. This is because persistent

NHIMs generally have only a finite degree of smoothness, even if the dynamics are C∞ and the spectral gap
is infinite [Eld13, Remark 1.12].
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the vector field points inward at ∂Dη. Therefore it suffices to show such that Sε attracts

all states in Dη for sufficiently small ε > 0. Next, by the same reasoning as in §2.6.1, we

know that the compact set ⋃0≤ε≤ε0 Sε is locally asymptotically stable for the augmented

dynamics (adding ε̇ = 0) on T 2 × R × R. Hence there exists δ > 0 such that for all ε > 0

sufficiently small, the basin of attraction of Sε contains the set Nδ of points (θ, α, ω) ∈ T 2×R

satisfying |ω − F (θ, α, ε)| < δ. In order to obtain a contradiction, suppose that there exist

arbitrarily small values of ε > 0 such that Sε does not attract all states in Dη, and let Φt
ε

denote the flow of (2.43). Then there exist sequences (εn)n∈N and (θn, αn, ωn)n∈N ⊂ Dη such

that εn → 0 and ∀t > 0, n > 0 : Φt(θn, αn, ωn) 6∈ Nδ. Since Dη is compact, by passing to

a subsequence we may assume that (θn, αn, ωn) → (θ0, α0, ω0) ∈ Dη. Since S0 is globally

asymptotically stable for Φt
0, for all sufficiently large t > 0, Φt

0(θ0, α0, ω0) ∈ Nδ/2. By

continuity of the map (t, ε, θ, α, ω) 7→ Φt
ε(θε, αε, ωε), it follows that for all sufficiently large

t, n > 0, Φt
εn(θn, αn, ωn) ∈ Nδ. This is a contradiction, showing that for all sufficiently small

ε > 0, W s(Sε) = T 2 × R for the dynamics (2.43).

Because the eigenvalues of the critical manifold are (0, 0,−c0), after taking ε1 smaller

if necessary we see that the r-center bunching conditions (2.11) are satisfied. Therefore,

Proposition II.31 and Corollary II.10 of Theorem II.5 show that there exists a a Cr−1 diffeo-

morphism ϕε : T 2 ×R→ T 2 ×R mapping Sε onto T 2 × {0} and mapping stable fibers of Sε

onto sets of the form20 (θ, α)× R. Using the coordinates θ̃, α̃, ω̃ = ϕε(θ, α, ω) and changing
20Here, and during the rest of this example, we are using the fact that the normal bundle — and hence

also the stable bundle Es — of the slow manifold is trivial.
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back to the original time scale, (2.42) takes the form

θ̃′ = F (θ̃, α̃, ε)

α̃′ = 1

εω̃′ = Λ(θ̃, α̃, ω̃, ε)ω̃,

(2.44)

for some function Λ. The same reasoning as in §2.6.2 can be used to show that ϕε is jointly

Cr−1 in all variables including ε. This result should be compared with Theorem II.26, which

was formulated for dynamics on a Euclidean space. We see that Theorem II.5 yields a global

coordinate system on all of T 2 × R placing (2.42) in the form (2.44). In contrast, without

Theorem II.5 and using only the available results in the literature, we would have only been

able to obtain such a coordinate system on a precompact neighborhood of Sε.

Alternatively, because the eigenvalues of the critical manifold are (0, 0,−c0), after taking

ε1 smaller if necessary we see that the stronger spectral conditions of Theorem II.24 are

also satisfied (c.f. (2.37)). Hence Theorem II.24 implies that there exists a global Cr−1

diffeomorphism ψε : T 2 ×R→ T 2 ×R mapping Sε onto T 2 × {0} and mapping stable fibers

of Sε onto sets of the form (θ, α)×R. Using the coordinates θ̃, α̃, ω̃ = ψε(θ, α, ω) and changing

back to the original time scale, (2.42) takes the form

θ̃′ = F (θ̃, α̃, ε)

α̃′ = 1

εω̃′ = A(θ̃, α̃, ε)ω̃,

(2.45)

for some function A. The same reasoning as in §2.6.2 can be used to show that ϕε is jointly

Cr−1 in all variables including ε. This result should be compared with Theorem II.28, which

was formulated for dynamics on a Euclidean space. We used Theorem II.24 to derive (2.45),

but since ∂Sε = ∅ this result can also be obtained by combining Theorem II.18 with the
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local smooth linearization results of [Sak94].

Still considering (2.42), we will now consider specific choices of a non-constant damping

function c(θ) and applied torque τ(θ, α) which will be chosen so that Theorem II.18 does not

apply, but so that Theorem II.24 does apply to yield a linear normal form. For the sake of

concreteness, let c(θ) := cos(θ) + 1 and τ(θ, α) := − sin(θ) + (1/2) cos(α). Then c(π) = 0, so

it follows that the critical set S := {(θ, α, ω) : c(θ)ω = τ(θ, α)} is not normally hyperbolic for

the fast time system (2.43) everywhere. However, e.g. c(θ) > 1 for |θ| < π/2, so it follows

in particular that the subset K0 := {(θ, α, ω) ∈ S : |θ| ≤ π/4} is r-normally attracting.

Furthermore, K0 is inflowing for the slow time system (2.42) restricted to S when ε = 0,

because K0 is the graph of F (θ, α, 0) with

F (θ, α, 0) := τ(θ, α)
c(θ) = − sin(θ) + (1/2) cos(α)

cos(θ) + 1

with |θ| ≤ π/4. Therefore, the projection of the slow time dynamics restricted to K0 are

given by

θ′ = − sin(θ) + (1/2) cos(α)
cos(θ) + 1

α′ = 1

and clearly the vector field points inward at the boundary of {(θ, α) : |θ| ≤ π/4}. We can

modify the flow locally near the boundary of any larger set K̂0 ⊃ K0 to render K̂0 overflowing,

and therefore there exists ε0 > 0 such that for all 0 ≤ ε ≤ ε0, K̂0 (and hence also K0) persists

to a nearby r-NAIM for the fast time system (2.43). Since inward pointing of a vector field

is an open condition, after possibly shrinking ε0 it follows that Kε is also inflowing for all

0 ≤ ε ≤ ε0. Additionally, after possibly shrinking ε0, we see that the hypotheses of Theorem

II.24 are satisfied for Kε for all 0 ≤ ε ≤ ε0 (check that (2.37) is satisfied on K0 by using
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α = −
√

2/2 − 1 ≈ 1.7 and β = −2, and use the fact that the hypotheses of Theorem II.24

are open conditions). Hence Theorem II.24 implies that there exists a Cr−1 diffeomorphism

ψε : W s(Kε)→ Kε×R mapping Kε onto Kε×{0} and mapping stable fibers of Kε onto sets

of the form {(θ, α)} × R. Using the coordinates θ̃, α̃, ω̃ = ψε(θ, α, ω) and changing back to

the original time scale, (2.43) takes the form

θ̃′ = F (θ̃, α̃, ε)

α̃′ = 1

εω̃′ = A(θ̃, α̃, ε)ω̃,

(2.46)

for suitable functions A and F . The same reasoning as in §2.6.2 can be used to show that ϕε is

jointly Cr−1 in all variables including ε. This result should be compared with Theorem II.28,

which was formulated for dynamics on a Euclidean space. Here we had to use Theorem II.24

to derive (2.46), because Theorem II.18 does not apply since ∂Kε 6= ∅. Without Theorem

II.24 and using only the explicitly available results in the literature, we would not have been

able to obtain even a local version of this coordinate system.

Finally, we note that the Taylor polynomials of the coordinate change for the normal

form (2.44) can in principle be obtained using the SOF method, although as mentioned in

§2.6.4 this does not help to compute the coordinates globally. We do not pursue this here.

As mentioned in §2.6.4, we believe it should be possible in principle to additionally compute

the Taylor polynomials of the coordinate changes for the normal forms (2.45) and (2.46),

which we hope to explore in future work.

2.7 Discussion

Stated technically, we have proven some results for NHIMs which are of two types: (i)

global versions of well-known local results, and (ii) linearization results for inflowing NAIMs.
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We restricted our attention to flows.

We first showed that the global stable foliation of an inflowing NAIM is a fiber bundle,

with fibers coinciding with the leaves of the global stable foliation, and that this fiber bundle

is as smooth as the local stable foliation. From that result, we deduced the corresponding

result for the global (un)stable foliation of a general NHIM, though one needs to be careful in

interpreting this statement as the global (un)stable manifold is generally only an immersed

submanifold of Q.

We next considered global linearizations, and showed that the linearization result of

[PS70, HPS77] for boundaryless NHIMs applies also to inflowing NAIMs. Furthermore, this

linearization extends to the entire global stable manifold — inflowing NAIMs are globally

linearizable, or topologically conjugate to the flow linearized at the NAIM. If some additional

spectral gap conditions are assumed, then the global linearizing conjugacy can be taken to be

Ck. This extends the results of [LM13] to the case of arbitrary inflowing NAIMs (although

see Remark II.17). A key tool in our proof was the geometric construction of Appendix B,

which allowed us to reduce to the boundaryless case.

We then used our theoretical results to give two applications to slow-fast systems with

attracting slow manifolds, in the context of geometric singular perturbation theory (GSP).

First, using our fiber bundle theorem we extended the domain of the Fenichel Normal Form

[JK94, Jon95, Kap99]. Second, under an additional spectral gap assumption, we derived a

global smooth linear normal form for GSP problems. If the slow manifold is codimension-1,

this assumption can always be made to hold (after possibly shrinking the slow manifold; see

Remark II.29). For this application it was essential that we proved a linearization theorem

for inflowing NAIMs, since the slow manifolds appearing in slow-fast systems typically have

boundary. We then illustrated these results on an example of a mechanical system. We noted

that it might be interesting to combine the method of straightening out fibers (SOF method)

of [KBS14] with additional normal form computations [GH83, Rob89, Rob00] for the fast
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variable, in order to develop a systematic technique for computing the Taylor polynomials

of the coordinate change for the linear normal form. We hope to explore this idea in future

work.

Less formally, what we have shown is that the local structure next to an inflowing NAIM

extends globally, in terms of structure (as a disk bundle), in its degree of smoothness, and in

the fact that the dynamics are often conjugate to their linearization. In fact, the linearization

is so robust that it can be extended consistently to yield a system linear in its fast variables

throughout all sufficiently small perturbations of a singularly perturbed system.

We have considered only compact NHIMs and compact inflowing NAIMs in stating our

results. From our experience, we expect that extending these results to noncompact man-

ifolds should be possible, but possibly quite technical. However, our results for compact

inflowing NAIMs allow our work to be applied to (for example) positively invariant compact

subsets of the phase space of a mechanical system.
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CHAPTER III

Estimating Phase from Observed Trajectories Using

the Temporal 1-Form
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3.2 Introduction

In this chapter we shift our attention to oscillators, a special case of the dynamical systems

studied in Chapter II. Our interest in oscillators arose from their utility as models of animal

locomotion, but oscillators appear in virtually every physical science: in biological models

at all scales, from the coupling neuronal firing [HI97] to coupled oscillations of predator and

prey populations [May72]; in chemistry [EP98]; in physics [GW02]; in electrical [VdP34],

civil [Duf18], and mechanical [Sto50] engineering; etc. For oscillations which are robustly

stable under perturbations, their underlying mathematical structure shares many properties

across all these cases. One of the most significant of these properties is the existence of an

asymptotic phase which encodes the long term outcome of any (recoverable) perturbation.

We have discovered that by representing phase as a Temporal 1-Form, we could bring to bear

interpolation tools from machine learning to allow asymptotic phase to be computed in a

data-driven way — directly from collections of arbitrarily short time series of measurements

— and without a need to know the governing equations. This would allow investigators to

perform phase reduction directly from experimental measurements, and thereby construct

models of oscillatory systems and how they couple to each other on a broad swath of real

world systems. In this chapter we introduce the Temporal 1-Form and an algorithm to

compute it. We test our algorithm using simulations with known asymptotic phase, as well

as animal locomotion data.

3.3 Mathematical background

In the sciences we often model the time evolution of a system using a smooth flow Φt on

a smooth n-dimensional manifold X (frequently Rn) such that Φ : X× R→ X, Φ0(x) = x,

and Φt(Φs(x)) = Φt+s(x). We define a vector field f(x) := ∂
∂t

Φt(x)|t=0 and assume that

it is C2, so that the ordinary differential equation (ODE) ẋ = f(x) generates the C2 flow
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Φt; familiar equations like Newton’s laws, chemical reaction equations, or the dynamics of

electrical circuits are usually stated in terms of these ODEs, but are often easier to analyze

mathematically by viewing the flow as the primary object of study. The curve t 7→ Φt(x)

obtained by fixing x and letting t vary is the trajectory or orbit of the flow with initial

condition x, sometimes denoted x(t). A periodic orbit γ of period T > 0 is a trajectory that

satisfies γ(t+ T ) = γ(t) with γ(t) 6= γ(0) for all 0 < t < T . We focus on dynamical systems

possessing only one nontrivial periodic trajectory γ and denote by Γ ⊂ X the image of γ.

We further assume that this periodic trajectory is exponentially stable, i.e., the distance

of any trajectory in the stability basin to the limit cycle satisfies d(x(t),Γ) < Cd(x(0),Γ)e−λt

for some λ,C > 0, where d is the distance induced by some Riemannian metric. This property

is generic in the sense that a stable periodic orbit Γ persists under all C1-small perturbations

if and only if it is exponentially stable, which is equivalent to Γ being attracting and normally

hyperbolic (see Chapter II or [HPS77]). For brevity, we will henceforth simply refer to such

exponentially stable periodic orbits as limit cycles. We refer to the stability basin of a limit

cycle and the dynamics within it as an oscillator.

The asymptotic behavior of any oscillator is described fully by its asymptotic phase, which

is the map P s : W s(Γ) → Γ of Chapter II; see also [Hal80, p. 221, Theorem 2.1]. P s is a

retraction (P s|Γ = id|Γ) and a semiconjugacy1 (∀t ∈ R : P s◦Φt = Φt◦P s). The stability basin

W s(Γ) of the oscillator is partitioned into manifolds of points W s(x) = (P s)−1(x), x ∈ Γ

having the same asymptotic phase; these manifolds are called isochrons (see Chapter II

or [Guc75, Win80]). W s(x) can be characterized as the set of initial conditions whose

trajectories coalesce with the trajectory starting at x. We note that the geometry of isochrons

can be surprisingly complicated, especially when the vector field f has “multiple time scales”

[OM10, MRMM14, LKO14, LKO15].
1It follows that P s ∈ C2 since ∀x ∈ W s(Γ) : P s(x) = o(τ(x)), where τ : W s(Γ) → R is defined by

P s ◦ Φ−τ(x)(x) = o(0). By the implicit function theorem, τ — and hence P s — are C2.
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The main problem motivating this chapter is the estimation of asymptotic phase of

an oscillator from empirically measured trajectories, without recourse to the underlying

equations of motion. Thus in the practical situations of interest our algorithm will necessarily

be subject to noise in some way, since measurements are always subject to uncertainty. We

are interested both in situations where the noise comes from measurement errors, and in

situations where the vector field is subject to stochastic and/or deterministic perturbations.

In this chapter we show how to estimate asymptotic phase when the dynamics are observed

empirically, e.g. as an ensemble of noisy measurements from system trajectories.

While there has been work to define generalized notions of asymptotic phase for stochastic

oscillators [SP10, SP13, TL14], in this chapter we restrict ourselves to estimation of the

classical asymptotic phase of a deterministic oscillator using data from a possibly perturbed

version of the underlying deterministic system. An interesting direction for future work is the

possibility of modifying our algorithm to compute one or both of these notions of stochastic

phase.

3.3.1 Classical phase and the Temporal 1-Form

Classically, phase is taken to be angle-valued or phasor-valued, i.e. S1-valued. This

kind of phase can be constructed by first taking a C2 map ϕ|Γ : Γ → S1 ⊂ C with the

property that ϕ|Γ(γ(t)) = exp(2πi t
T

)ϕ|Γ(γ(0)), and then extending to W s(Γ) by defining

ϕ(x) := ϕ|Γ ◦ P s(x). Such a phase is determined up to the choice of γ(0) ∈ Γ, and its level

sets are the isochrons.

We now define the Temporal 1-Form and show that it appears naturally as a consequence

of the existence of the asymptotic phase map P s. The vector field f is nowhere zero on Γ,

and Γ is one-dimensional. Thus there exists a unique C2 differential 1-form ω on Γ satisfying

〈ω, f〉 = 1 identically on Γ (in Euclidean space, viewing f as a column vector, this would be

ω := fT/‖f‖2). The Temporal 1-Form φ : W s(Γ) → T∗W s(Γ) is defined to be the pullback
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φ := (P s)∗ω of ω via P s. Hence the Temporal 1-Form has the following two properties: (1)

〈φ, f〉 = 1 everywhere; (2) it is closed, i.e. the exterior derivative dφ = 0.

The following theorem shows that the Temporal 1-Form is uniquely defined by these two

properties. We give a proof that does not use hyperbolicity of the limit cycle.

Theorem III.1. Let a dynamical system have an asymptotically stable limit cycle Γ. If a

C1 Temporal 1-Form exists on any positively invariant tubular neighborhood U ⊂ W s(Γ) of

Γ, it is unique.

Remark III.2. For example, Theorem II.5 of Chapter II implies in particular that W s(Γ) is

a tubular neighborhood, and hence we may take U = W s(Γ) in Lemma III.1.

Proof. Let φ1 and φ2 be any two C1 Temporal 1-Forms.

Since U is a tubular neighborhood, this implies that the limit cycle is a deformation

retraction of U2. The limit cycle is diffeomorphic to S1. The first de Rham cohomology of

S1 is isomorphic to R, and de Rham cohomology is a homotopy invariant ([Lee13] Chapter

17). It follows that there exist C1 functions V1, V2 : U → R, real numbers c1, c2 ∈ R, and a

closed 1-form θ on U such that3

φ1 = c1θ + dV1

φ2 = c2θ + dV2.

Let T be the period of the limit cycle. Since the integrals of the exact 1-forms dV1,dV2 over
2In fact, a strong deformation retract. The limit cycle is a strong deformation retract of a tubular

neighborhood [Lee13, Ch. 6] containing it. Using the flow, one may construct a strong deformation retract
of W s(Γ) onto this tubular neighborhood. Concatenating the two homotopies gives the desired strong
deformation retraction.

3Strictly speaking, this would be immediate from the standard theory of de Rham cohomology only if
X, φ1 and φ2 were C∞. However, it can be shown that on a C∞ manifold, any Cr closed form differs from
some C∞ closed form by a Cr exact form ([dR84] p. 68 Theorem 12). Additionally, every Cr+1 manifold
has a unique compatible C∞ structure ([Hir94] p. 51 Theorem 9). These facts, together with topological
invariance of de Rham cohomology, yield the equalities.
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closed loops must vanish, we have

c1

∫
Γ
θ =

∫
Γ
φ1 = T =

∫
Γ
φ2 = c2

∫
Γ
θ.

Thus the integral of θ over Γ must be nonzero, and we obtain c1 = c2. It remains only to

show that dV1 = dV2.

From the above, it follows that φ1 − φ2 = d(V1 − V2), and so V := V1 − V2 satisfies the

differential equation 〈dV, f(x)〉 = 0, and thus every solution trajectory is confined to a level

surface of V . In particular Γ ⊂ V −1(κ) for some κ. However, all y ∈ U are contained in

trajectories that approach Γ arbitrarily closely. Since V is continuous and U is positively

invariant, the value of V on any such trajectory must also be κ. We conclude that V = κ

on all of U , and thus dV1 = dV2, showing that φ1 = φ2.

We conclude this section by noting that a choice of basepoint γ(0) ∈ Γ uniquely deter-

mines the associated phasor-valued phase ϕ : W s(Γ)→ S1 ⊂ C via line integration:

ϕ(x) = exp
(2πi
T

∫
σ
φ
)
, (3.1)

where σ is any smooth path joining γ(0) to x. That this integral is independent of the choice

of σ follows from the fact that the limit cycle is a generator for the fundamental group of

W s(Γ), the fact that the line integral of φ around the limit cycle is the period T , and the

fact that line integrals of closed 1-forms are invariant under path homotopy.

3.3.2 The Temporal 1-Form measures the phase response to perturbations

Suppose ẋ = f(x) defines a (deterministic) oscillator and let φ be its Temporal 1-Form.

Let us assume that during a finite time interval [t1, t2], the dynamics are perturbed, and are

82



given instead by a model of the form

ẋ = f(x) + η(t, x). (3.2)

Here, we do not necessarily assume that the model in (3.2) represents an ODE; rather, we

loosely mean that (3.2) is any type of “equation” such that (i) for η(t, x) ≡ 0, “solutions” of

(3.2) coincide with trajectories of the unperturbed oscillator, and (ii) a well-defined notion

of line integrals of φ along “solutions” of (3.2) exists. For example, η : [t1, t2] × X → TX

could simply be a C1 vector field. Alternatively, η could represent a stochastic process, e.g.,

white noise; in this case, we may interpret (3.2) as a stochastic differential equation, along

the solutions of which line integrals of differential forms can be defined rigorously [IM79].

For any given perturbation, at times long after t2 the dynamics of the system coalesce

with some trajectory γ taking values in the limit cycle Γ. The phase, or value of γ(0) – a

distinct trajectory γ exists for every choice of γ(0) ∈ Γ – is the only remaining record of

the perturbation. This map from perturbation to phase change is the phase response, and it

plays a special role in oscillator dynamics and determines the long term effects of oscillator

coupling [Win80].

A particularly attractive feature of the Temporal 1-Form is the ease with which it allows

us to compute the phase response to a perturbation as in (3.2). The line integral of φ over the

“trajectory” is
∫
x([t1,t2]) φ =

∫ t2
t1
〈φ, f(x(t))〉 dt +

∫ t2
t1
〈φ, η(t, x(t))〉 dt and thus is ∆φ + t2 − t1

for some value ∆φ. Since t2− t1 is known, the phase response ∆φ to the perturbation η(t, x)

is as easy to compute as the integral itself. By using a computational approach such as we

propose in §3.5, an investigator may approximate φ for a system from observed trajectories.

He or she may then use this to estimate the influence of perturbations on phase and derive

oscillator coupling models, despite having no explicit model of the vector field f .
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3.4 The Temporal 1-Form estimated from uncertain systems

One of our primary motivations for consideration of the Temporal 1-Form was the hope

that the Temporal 1-Form could be computed from real-world data which may be modeled

as coming from noisy systems of the form (3.2), and which may additionally be subject to

measurement noise. This raises the question: to what extent can the Temporal 1-Form be

computed from such real-world data? In this section, we prove some results addressing this

question.

First, in §3.4.1 we prove two general theorems relating the true Temporal 1-Form of an

underlying deterministic oscillator to an estimate computed by minimizing the specific cost

function used in our algorithm. Theorem III.4 relates the quantitative performance of an

estimate (from noisy data) of the Temporal 1-Form to that of the true Temporal 1-Form.

Theorem III.6 is a qualitative result addressing to what extent the isochrons of the estimated

Temporal 1-Form approach the isochrons of the true Temporal 1-Form. The formulation in

§3.4.1 is sufficiently general that our results apply for systems subject to system noise of the

form (3.2), or to systems subject to measurement noise, or both; see Remark III.3. Next,

in §3.4.2 we elaborate in more detail on the applicability of our results to the situation that

(3.2) represents a stochastic differential equation (SDE), since SDE data is one of the primary

tools we use for testing our algorithm. We consider both Itô and Stratonovich SDEs.

Throughout the remainder of this section, we assume for simplicity that the state space

X is an open subset of Rn.

3.4.1 A general performance bound for both measurement and system noise

For the remainder of §3.4, we will assume that data takes values in a compact tubular

neighborhood with smooth boundary K ⊂ W s(Γ) which contains4 Γ.
4If it does not, we may simply discard the data not in K.
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The remainder of this section is outlined as follows. §3.4.1.1 contains the definition of

a norm making the space of C1 1-forms on K into a Banach space, and the definition of

a compact subspace F of such 1-forms. §3.4.1.2 contains our assumptions on the data and

noise. §3.4.1.3 contains the main results described above (Theorems III.4 and III.6), which

rely on the preliminaries introduced in §3.4.1.1 and 3.4.1.2.

Finally, we remark that the motivation for defining the compact subspace F introduced

in §3.4.1.1 is two-fold. First, this enables the second simpler statement of Theorem III.4.

Second — and most importantly — the introduction of F enables us to prove Theorem III.6

on the convergence of the estimated isochrons to the true isochrons.

3.4.1.1 Definitions and a compact space of 1-forms F

In what follows we let ‖ · ‖ be the Euclidean norm, which we use to identify vector fields

and 1-forms. By abuse of notation we also denote by ‖ · ‖ the norm on covectors induced by

this identification.

By a Cm function ω on K, we mean a continuous map ω which is Cm on the interior of

K, such that all partial derivatives of order less than or equal to K extend continuously to

the boundary of K. Given a d-multilinear map A : Rn × · · · × Rn → Rm, define

‖A‖ := sup
‖v1‖=1,...,‖vd‖=1

A(v1, . . . , vn).

This norm makes the space Ld(Rn,Rm) of all such d-linear maps into a Banach space. Given

a continuous map A : K → Ld(Rn,Rm), we define the sup norm ‖A‖∞ := supx∈K‖A(x)‖.

Recall that the d-th derivative Ddω of a Cd map ω is naturally identified with an element of

Ld(Rn,Rm). Given a Cm map ω : K → Rm, we define the Cm norm ‖ω‖m via

‖ω‖m := max{‖ω‖∞, ‖Dω‖∞, . . . , ‖D
mω‖∞}.

85



Note that under this definition, we have ‖ω‖0 = ‖ω‖∞. We denote by Ω1
m(K) the Banach

space of all Cm 1-forms on K, topologized with the norm ‖ · ‖m.

We define the following subset F ⊂ Ω1
1(K) which will serve as the domain of cost functions

defined subsequently, over which we perform our optimization.

F := {ω ∈ Ω1
1(K)|∀k : ‖ω‖1 ≤M0,Lip(Dω) ≤M0,dω = 0}, (3.3)

where M0 is a positive number sufficiently large that φ ∈ F . Here Lip(Dω) is defined to be

the Lipschitz constant

Lip(Dω) := sup
x,y∈K
x 6=y

‖Dω(x)− Dω(y)‖
‖x− y‖

By the Arzelà-Ascoli theorem, F is a compact subset of Ω1
1(K) with the topology induced

by the C1 norm, and F is convex by linearity of the exterior derivative and the triangle

inequality. Note that ‖ωn − ω‖1 → 0 implies that all first order partial derivatives of ωn

uniformly approach those of ω, so that dω = 0 is indeed a “closed condition”.

3.4.1.2 Assumptions about Data and Noise

We assume that we have a finite collection of pairs (xi, ẋi)Ni=1 with the xi taking values

in K ⊂ W s(Γ) ⊂ Rn, and with ẋi of the form ẋi = f(xi) + ηi. We consider the xi ∈ K and

ηi ∈ Rn to be random variables, and we assume that there are constants δ, σ2 ≥ 0 such that

the means E(ηi) and variances var(ηi) satisfy the bounds

∀i : ‖E(ηi)‖ < δ ∀i : var(ηi) < σ2. (3.4)

Remark III.3. Our assumptions are sufficiently general that, under the mild assumption

(3.4), the ηi could arise from measurement noise, or system noise (i.e., of the form (3.2)), or
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both. In §3.4.2, we will argue in detail that this formulation applies to data from Itô SDEs.

It also applies to data coming from Stratonovich SDEs, but there is a slight twist: to get a

sharper result, one should replace f by a modified vector field f̃ arising from Itô’s formula.

See §3.4.2 for details.

Let ω ∈ Ω1
0(K) be any continous 1-form. The assumptions (3.4), together with the

approximate weak law of large numbers (Corollary D.3) imply the following. Here P denotes

the probability measure and δ, σ2 ≥ 0 are the constants from above.

∀ε > 0: lim
N→∞

P
(
‖ω‖−2

∞ N
−1

N∑
i=1
〈ω(xi), ηi〉2 < ε+ σ2 + δ

)
= 1. (3.5)

This can be interpreted as a kind of “lim sup in probability” statement. By considering the

P( · ) expressions to be a function of (n,N) ∈ N2 and constructing an appropriate “diagonal

sequence,” we can find a function ζ : N → R≥0 such that ζ(N) → 0 as N → ∞ and such

that

lim
N→∞

P
(
‖ω‖−2

∞ N
−1

N∑
i=1
〈ω(xi), ηi〉2 < ζ(N) + σ2 + δ

)
= 1. (3.6)

Existence of such a function ζ(N) with a fast decay rate implies that the decay rate of the

P( · ) expression with respect to N slows only slightly as ε decreases. The function ζ thereby

provides a bound on the convergence rate of the weak law of large numbers for the noise.

We will use ζ to inform an estimate of the convergence rate to a performance bound for

estimating the Temporal 1-Form from noisy data.

3.4.1.3 Performance of the estimated Temporal 1-Form

Denote by φ the unique true Temporal 1-Form on W s(Γ) corresponding to the vector

field f on X. We define the “true” cost function JN : Ω1
1(K)→ R which has φ as its (possibly
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nonunique) global minimizer with minimum JN(φ) = 0:

JN(ω) := 1
N

N∑
i=1

(〈ω(xi), f(xi)〉 − 1)2 . (3.7)

We define the following “noisy” data-driven cost function ĴN : Ω1
1(K)→ R:

ĴN(ω) := 1
N

N∑
i=1

(〈ω(xi), f(xi) + ηi〉 − 1)2 . (3.8)

Note that for any given realization of the (xi, ηi), ĴN : F → R is easily seen to be continuous.

We denote by φ̂N ∈ Ω1
1(K) any 1-form with the property that

ĴN(φ̂N) ≤ ĴN(φ) (3.9)

In a nutshell, our algorithm to compute the Temporal 1-Form works by attempting to mini-

mize ĴN , although here we have not proven that any minimizers exist (although minimizers

of ĴN |F do exist by compactness of F and continuity of ĴN). We have the following result

giving a bound on the performance of our algorithm.

Theorem III.4. Assume φ ∈ Ω1
1(K) and that the preceding assumptions on noise hold.

Then

lim
N→∞

P
(
JN(φ̂N) ≤

(
ζ(N) + σ2 + δ

) (
‖φ̂N‖∞ +

[
2‖φ̂N‖2

∞ + ‖φ‖2
∞

] 1
2
)2
)

= 1.

Further assume that φ, φ̂N ∈ F . Then

lim
N→∞

P
(
JN(φ̂N) ≤

(
ζ(N) + σ2 + δ

) (
4 + 2

√
3
)
M2

0

)
= 1,

where M0 > 0 is as defined in (3.3).
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Remark III.5. Since ζ(N) → 0, Theorem III.4 states that J(φ̂N) will asymptotically be

smaller than or equal to (
σ2 + δ

) (
4 + 2

√
3
)
M2

0

with high probability. A similar statement holds for Theorem III.4.

Proof of Theorem III.4. Expanding the summand in the definition of ĴN and rearranging,

we see that for any ω ∈ F :

JN(ω) = ĴN(ω)− 2
N

N∑
i=1

(〈ω(xi), f(xi)〉 − 1) 〈ω(xi), ηi〉

− 1
N

N∑
i=1
〈ω(xi), ηi〉2 (3.10)

≤ ĴN(ω) + 2 [JN(ω)] 1
2

[
1
N

N∑
i=1
〈ω(xi), ηi〉2

] 1
2

+ 1
N

N∑
i=1
〈ω(xi), ηi〉2 , (3.11)

with the inequality arising from an application of the Cauchy-Schwarz inequality to the

middle term. It follows immediately from (3.10) that

ĴN(φ) = 1
N

N∑
i=1
〈φ(xi), ηi〉2 (3.12)

since the true Temporal 1-Form φ satisfies (〈φ, f〉−1) ≡ 0. Next, Equations (3.9) and (3.11)

imply that

JN(φ̂N) ≤ ĴN(φ) + 1
N

N∑
i=1

〈
φ̂N(xi), ηi

〉2
+ . . . (3.13)

. . .+ 2
[
JN(φ̂N)

] 1
2

[
1
N

N∑
i=1

〈
φ̂N(xi), ηi

〉2
] 1

2
.
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Define

ξ(N) := ζ(N) + σ2 + δ.

Substituting (3.12) into (3.13) and using (3.6) yields an inequality quadratic in
√
JN(φ̂N)/ξ(N)

which holds in probability tending to 1:

JN(φ̂N)
ξ(N) − 2‖φ̂N‖∞

[
JN(φ̂N)
ξ(N)

] 1
2
−
(
‖φ‖2

∞ + ‖φ̂N‖2
∞

)
≤ 0. (3.14)

Solving the quadratic inequality (3.14) yields

[
JN(φ̂N)

ξ(N)‖φ̂N‖2
∞

] 1
2
≤ 1 +

[
2 + ‖φ‖2

∞

‖φ̂N‖2
∞

] 1
2
, (3.15)

and substituting ξ(N) = ζ(N) + σ2 + δ yields our result.

From JN(φ) = 0 we observe that JN(φ̂N) = |JN(φ̂N)− JN(φ)|, i.e. the estimate provided

by Theorem III.4 bounds how well our algorithm does at finding a minimizer of the true goal

function. For a fixed dynamical system and fixed σ2 and δ, the performance of the estimator

comes within O(σ2 + δ) of the true 1-form asymptotically with increasing sample size, and

does so at the same rate as ζ(·). This seems to be essentially the best one could hope for

under the given assumptions.

The appearance of ‖φ‖∞ in the bound indicates that a “wilder” Temporal 1-Form is

harder to estimate. The appearance of ‖φ̂N‖∞ in the right hand side of the bound shows

that this is a bound on the relative, rather than absolute, error. However, if we assume that

φ̂N ∈ F then it is not strictly necessary to interpret the bound as a relative bound, since

φ̂N ∈ F has bounded sup norm ‖φ̂N‖∞ ≤ M0 in this case. We are aware of no other phase

estimation method with comparable guarantees on estimation accuracy and convergence
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rate.

Theorem III.4 is a result on the quantitative performance of the Temporal 1-Form esti-

mated from noisy data. We now consider the case that all of the xi are independent and

identically distributed random variables given by a continuous and nonvanishing probability

density on K. For example, this probability density could represent the stationary distribu-

tion of a Fokker-Planck equation. We also assume that φ̂N ∈ F . Under these assumptions

and the previous assumptions on noise, the following Theorem III.6 shows that in the limit

of large data, the isochrons corresponding to the estimated Temporal 1-Form restricted to

K can be made arbitrarily close to the true isochrons in the C1 topology by taking the noise

variance and mean sufficiently small, with high probability.

Theorem III.6. Assume φ, φ̂N ∈ F and the hypotheses of Theorem III.4. Additionally

assume that K is positively invariant for the underlying deterministic dynamical system

generated by the vector field f , and also assume that the xi are independent and identically

distributed random variables given by a continuous probability density on K which is nowhere

vanishing on int(K). Then for every ε > 0, there exists k0 > 0 such that if the noise variance

and mean bounds σ2, δ satisfy 0 ≤ (σ2 + δ) < k0, then

lim
N→∞

P
(
‖φ̂N − φ‖∞ > ε

)
= 0. (3.16)

Proof. Let ρ : K → R>0 be the continuous probability density function of the xi. We define

a new cost function J : F → R to be the expected value

J(ω) :=
∫
K

(〈ω(x), f(x)〉 − 1)2 ρ(x) dx. (3.17)

By Theorem III.1, φ is the unique minimizer of J since ρ is continuous and nonvanishing

on int(K): for any other 1-form, the integrand in (3.17) would be positive on an open set,
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and J(φ) = 0. Since K×F is compact and (x, ω) 7→ (〈ω(x), f(x)〉 − 1)2 is continuous, there

exists a constant M1 > 0 uniformly bounding (〈ω(x), f(x)〉 − 1)4, and therefore

∀i : ∀ω ∈ F : var
[
(〈ω(xi), f(xi)〉 − 1)2

]
< M1.

Hence by the explicit convergence rate in Chebyshev’s weak law of large numbers (Corollary

D.2), we obtain the uniform bound

∀ω ∈ F : ∀ε,N > 0: P(|JN(ω)− J(ω)| > ε) < M1

ε2N
(3.18)

and therefore

∀ε > 0: lim
N→∞

P(|JN(φ̂N)− J(φ̂N)| > ε) = 0. (3.19)

By Theorem III.4, there exists an appropriate constant K > 0 such that for every choice of

noise mean bound δ ≥ 0 and variance bound σ2 ≥ 0, for every κ > 0 we have

lim
N→∞

P
(
JN(φ̂N) > K(σ2 + δ) + κ

)
= 0. (3.20)

Let Bε ⊂ F be the open ball of radius ε centered at φ. As mentioned, we know that φ is the

unique minimizer of J and that J(φ) = 0. Since F and therefore F \Bε is compact, J attains

a minimum value α > 0 on F \Bε. Hence if σ2 + δ is sufficiently small that 2K(σ2 + δ) < α,

then we may choose κ > 0 sufficiently small so that 2K(σ2 + δ) + 2κ < α, and therefore
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∀N ∈ N :

P
(
‖φ̂N − φ‖∞ > ε

)
≤ P

(
J(φ̂N) > α

)
≤ P

(
(J(φ̂N) > 2K(σ2 + δ) + 2κ

)
≤ P

(
JN(φ̂N) + |JN(φ̂N)− J(φ̂N)| > 2K(σ2 + δ) + 2κ

)
≤ P

(
JN(φ̂N) > K(σ2 + δ) + κ

)
+ P

(
|JN(φ̂N)− J(φ̂N)| > K(σ2 + δ) + κ

)
.

(3.21)

Taking limits as N →∞ and using (3.19) and (3.20) completes the proof.

3.4.2 The Temporal 1-Form estimated from stochastic differential equation data

In this section, we consider the collection of data from solutions of a stochastic differential

equation (SDE). We consider both Itô and Stratonovich SDEs. We show that the data

collected from an Itô SDE satisfies the hypotheses of Theorem III.4, and that the data

also satisfies the hypotheses of Theorem III.6 if we assume that the data is drawn from

an appropriate stationary distribution of the SDE. We then draw similar conclusions for

Stratonovich SDEs, but show that the vector field f should be modified with an Itô correction

term in the statements of Theorems III.4 and III.6.

3.4.2.1 Itô stochastic differential equations

Let us suppose that we observe an oscillator perturbed by system noise of the form

(3.2), and furthermore that the perturbed system is described precisely by the Itô stochastic

differential equation (SDE) [Arn74, Fri75, Gar04, Eva13, Øks13]

dXt = f(Xt) dt+ λB(t,Xt) dWt, (3.22)

93



where λ is a real number, t 7→ B(t, x) is nonanticipating with respect to Wt for each fixed x,

f ∈ C2, and such that f : Rn → Rn and B : R×Rn → Rn×m satisfy the following hypotheses

of the standard SDE existence and uniqueness theorem [Fri75, Ch. 5, Thm 1.1]:

‖f(x)− f(y)‖+ ‖B(t, x)−B(t, y)‖ ≤ L1‖x− y‖ (3.23)

‖f(x)‖+ ‖B(t, x)‖ ≤ L2(1 + ‖x‖), (3.24)

for some constants L1, L2 > 0. Here ‖B‖ = trace(BTB).

Let tmax > 0 and suppose that we measure (possibly distinct) trajectories of the system at

2N ∈ N times of the form ti ∈ [0, tmax] and ti + (∆t)i, where (∆t)i > 0. Assume that at time

ti we measure the state of the system to be xi ∈ K (K is the compact neighborhood defined

in §3.4.1; if xi 6∈ K, then discard that measurement), and that at time ti + (∆t)i we measure

the state of the system to be xi + (∆x)i. For each 1 ≤ i ≤ N , define ηi := (∆x)i
(∆t)i − f(xi).

We have the following result establishing the applicability of Theorems III.4 and III.6 to

the data pairs (xi, f(xi) + ηi).

Theorem III.7. The data (xi, f(xi)+ηi) satisfies the hypotheses of Theorem III.4. Further-

more, for every δ > 0 and λmax > 0 there exists (∆t)max > 0 such that for all 0 < (∆t)i <

(∆t)max and |λ| < λmax :

‖E[ηi]‖ ≤ δ. (3.25)

Next, for each fixed (∆t)min > 0 such that (∆t)min < (∆t)i, and for each fixed σ2 > 0, there

exists λmax > 0 such that for all |λ| ≤ λmax,

var(ηi) ≤ σ2. (3.26)
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Finally, additionally assume that K is positively invariant for the deterministic dynamical

system with vector field f , and that the Fokker-Planck equation associated to (3.22) has a

stationary distribution given by a continuous probability density which is nowhere vanishing

on K. If the xi are drawn from this stationary distribution, then the data (xi, f(xi) + ηi)

satisfy the hypotheses of Theorem III.6.

To prove Theorem III.7 we will use Corollary III.9 of the following Proposition. Propo-

sition III.8 is a special case of the result on uniform mean-square continuity with respect to

parameters from [Eva13, Sec. 5.3]. For a proof of a slightly more general result, see [Fri75,

Ch. 5, Thm 5.2].

Proposition III.8 (Continuous dependence of SDE solutions on parameters). For each

k ∈ N, let fk : [t0, tmax]× Rn → Rn and Bk : [t0, tmax]× Rn → Rn×m satisfy

‖fk(t, x)− fk(t, y)‖+ ‖Bk(t, x)−Bk(t, y)‖ ≤ L1‖x− y‖

∀k ∈ N : ‖fk(t, x)‖+ ‖Bk(t, x)‖ ≤ L2(1 + ‖x‖),

for some constants L1, L2 > 0 independent of k ∈ N, x, y ∈ Rn, and t ∈ [t0, tmax]. Let Xk
t

denote the unique solution of the Itô initial value problem with deterministic initial condition

xk0:

dXk
t = fk(t, x) dt+Bk(t, x) dWt

Xk
0 = xk0.

Assume that xk0 → x0 ∈ Rn and that for each M ≥ 0,

lim
k→∞

max
t0≤t≤tmax
‖x‖≤M

(
‖fk(t, x)− f(t, x)‖+ ‖Bk(t, x)−B(t, x)‖

)
= 0.
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Then

lim
k→∞

E
[

max
t0≤t≤tmax

‖Xk
t −Xt‖2

]
= 0, (3.27)

where Xt is the unique solution of

dXt = f(t, x) dt+B(t, x) dWt

X0 = x0.

Corollary III.9. Assume the hypotheses of Proposition III.8. Then

lim
k→∞

max
t0≤t≤tmax

‖E
[
Xk
t

]
− E [Xt]‖ = 0

lim
k→∞

max
t0≤t≤tmax

|var(Xk
t )− var(Xt)| = 0.

Proof of Corollary III.9. Since in general the supremum of the expected values of a family

of random variables is less than or equal to the expected value of the supremum, we have

max
t0≤t≤tmax

E
[
‖Xk

t −Xt‖
]2
≤ max

t0≤t≤tmax
E
[
‖Xk

t −Xt‖2
]

≤ E
[

max
t0≤t≤tmax

‖Xk
t −Xt‖2

]
,

(3.28)

with the first inequality following from Cauchy-Schwarz. The first inequality together with

Proposition III.8 implies convergence of the means

E
[
Xk
t

]
→ E [Xt] (3.29)

uniformly on [t0, tmax], because

‖E
[
Xk
t

]
− E [Xt]‖ = ‖E

[
Xk
t −Xt

]
‖ ≤ E

[
‖Xk

t −Xt‖
]
.
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Next, the second inequality of (3.28), Proposition III.8, and the L2 triangle inequality imply

that ∣∣∣[E [‖Xk
t ‖

2
]] 1

2 −
[
E
[
‖Xt‖2

]] 1
2
∣∣∣ ≤ [E [‖Xk

t −Xt‖2
]] 1

2 → 0

uniformly on [t0, tmax]. Hence E
[
‖Xk

t ‖
2
]
→ E

[
‖Xt‖2

]
uniformly on [t0, tmax]. Together with

(3.29), this implies that

var(Xk
t )→ var(Xt) (3.30)

uniformly on [t0, tmax].

Proof of Theorem III.7. Throughout the proof, we use the notation ηλi to highlight the de-

pendence of ηi on λ. We let Xλ,i
t denote the solution of (3.22), defined for t ≥ ti, with initial

condition Xλ,i
ti = xi.

We first establish (3.25). We have

ηλi = −f(xi) + 1
(∆t)i

∫ ti+(∆t)i

ti
f(Xλ,i

s ) ds+ 1
(∆t)i

∫ t

0
B(t, (Xλ,i

s )) dWs. (3.31)

Since B is nonanticipating, Itô calculus rules imply that the expected value of the second

integral vanishes [Gar04, Sec. 4.2.6.e], and therefore

E[ηλi ] = R(xi, λ, ti, (∆t)i) := −f(xi) + 1
(∆t)i

∫ ti+(∆t)i

ti
E
[
f(Xλ,i

s )
]
ds. (3.32)

We estimate

‖R(xi, ti, λ, (∆t)i)‖ ≤
1

(∆t)i

∫ ti+(∆t)i

ti
‖E

[
f(Xλ,i

s )
]
− f(xi)‖ ds. (3.33)

The sample path s 7→ Xλ,i
s is continuous with probability one [Gar04], and therefore by
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the fundamental theorem of calculus we see for each fixed (ti, xi, λ) that the right hand

side of (3.33) tends to 0 as (∆t)i → 0 with probability one. Additionally, nonnegativity of

the integrand implies that this convergence is monotone. Finally, Proposition III.8 and the

Lipschitz condition (3.23) imply that the right hand side of (3.33) is a continuous function

of (ti, xi, λ) for each (∆t)i > 0. Hence Dini’s theorem [Rud76, Thm 7.13] applies to show

that R→ 0 uniformly on the compact set K × [0, λmax]× [ti, tmax] as (∆t)i → 0. Therefore,

δ > 0 in (3.25) can be made as small as desired by taking (∆t)max sufficiently small.

Next, we establish (3.26). Since X0,i
t is the deterministic solution of an ODE, we have

var(X0,i
t ) ≡ 0. Since

var(ηλi ) = 1
((∆t)i)2var(X

λ,i
t ),

uniform convergence of variances (Corollary III.9) implies that for each value of (∆t)min > 0,

var(ηi) can be made arbitrarily small by taking |λ| sufficiently small.

To complete the proof, note that the final statement merely adds the additional hypothe-

ses needed for Theorem III.6.

3.4.2.2 Stratonovich stochastic differential equations

Let us again suppose that we observe an oscillator perturbed by system noise which

is described by a stochastic differential equation, but now we consider an autonomous

Stratonovich (rather than Itô) SDE

dXt = f(Xt) dt+ λB(Xt) ◦ dWt. (3.34)

Here ◦ is not composition, but merely a somewhat standard choice of notation indicating that

this is a Stratonovich equation. We assume that f and B satisfy all of the same hypotheses

as in §3.4.2.1, and we assume that we have data xi, xi + (∆x)i collected at times and ti,

ti + (∆t)i exactly as in §3.4.2.1.
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We cannot simply repeat the proof of Theorem III.7, because to obtain Equation (3.32)

we used the fact that the expected value of the Itô integral of a nonanticipating function is

zero. This is not true of the expected value of a Stratonovich integral [Eva13, Sec. 6.5.7].

However, we can circumvent this issue by converting (3.34) into an equivalent Itô SDE:

dXt =
(
f(Xt) + λ2

2 c(Xt)
)
dt+ λB(t,Xt)dWt, (3.35)

where the i-th component ci(x) is given by

ci(t, x) =
m∑
k=1

n∑
j=1

(
∂

∂xj
Bi
k

)
Bj
k. (3.36)

I.e., Xt is a solution to the Stratonovich SDE (3.34) if and only if Xt is a solution to the Itô

SDE (3.35) [Eva13, Sec. 6.5.6].

We define a new autonomous vector field (this is why we assumed that we started with

an autonomous Stratonovich SDE; otherwise, c would also depend on t)

f̃(x) := f(x) + λ2

2 c(x) (3.37)

and new noise terms

η̃i := (∆x)i
(∆t)i

− f̃(xi). (3.38)

From Theorem III.7, we immediately obtain the following.

Theorem III.10. The data (xi, f̃(xi) + η̃i) satisfies the hypotheses of Theorem III.4. Fur-

thermore, for every δ > 0 and λmax > 0 there exists (∆t)max > 0 such that for all 0 < (∆t)i <

(∆t)max and |λ| < λmax :

‖E[η̃i]‖ ≤ δ. (3.39)
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Next, for each fixed (∆t)min > 0 such that (∆t)min < (∆t)i, and for each fixed σ2 > 0, there

exists λmax > 0 such that for all |λ| ≤ λmax,

var(η̃i) ≤ σ2. (3.40)

Finally, additionally assume that K is positively invariant for the deterministic dynamical

system with vector field f̃ , and that the Fokker-Planck equation associated to (3.35) has a

stationary distribution given by a continuous probability density which is nowhere vanishing

on K. If the xi are drawn from this stationary distribution, then the data (xi, f̃(xi) + η̃i)

satisfy the hypotheses of Theorem III.6.

Remark III.11. In principle, we could still analyze the performance of our algorithm on data

from (3.34) using f and ηi in Theorem III.4 rather than f̃ and η̃i. However, it would then

no longer be possible to make δ in (3.39) arbitrarily small by merely taking (∆t)max small,

although in this case δ can still be made small by taking both (∆t)max and λmax sufficiently

small.

3.5 Algorithm

For systems in which the dimension is low, the noise is small or the data is plentiful, data

pairs (xk, ẋk), k = 1 . . . N may be used to estimate the vector field f . Numerous investigators

proposed such approaches, primarily in the 1990s. Classical papers include Kostelich and

Yorke [KY90] who fit arbitrary continuous dynamics to trajectories, and the rich literature

on time-delay embeddings, derivatives and principal components [SWT06, GFCE92]. When

dynamical equations are known precisely, methods based on forward integration [Win80,

MM12] or on automatic differentiation and continuation [OM10, HdlL12, LKO14] can be

used to compute the isochrons or equivalently asymptotic phase.
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With fewer data points and higher levels of noise, one can no longer expect the off-

cycle dynamics to be entirely amenable to accurate estimation, and only a few of the slower

decaying modes might be observable off of the limit cycle [RG12]. At the extreme, only phase

itself might be detectable, through methods such as those proposed in [RG08], or through

various phase-locking approaches [PS08, SA10, SPNI05].

Several investigators have pursued the construction of linearized (Floquet) models for

dynamics near the limit cycle. An approach of Data Driven Floquet Analysis (DDFA)

was proposed in [RGF11, Rev09] which consisted of the estimation of phase followed by

the construction of affine models conditioned on phase. Tytell [Tyt13] reported a DDFA

approach based on harmonic balance. Wang and Srinivasan [WS12] proposed to construct

a Floquet model using “factored Poincaré maps”, and then derive a phase estimate from

this model. Ankarali et. al [AC14] applied “harmonic transfer functions” and achieved good

results on a hybrid spring-mass hopper model. Regardless of how they are obtained, linear

models of the dynamics around the limit cycle can at best only represent the hyperplanes

tangent to the isochrons at their intersection with the limit cycle. By contrast, the method

we propose here can construct nonlinear isochron approximations wherever in state space

flow data convergent to the limit cycle is available.

Finally, we remark that methods based on forward integration [Win80, MM12] can in

principle be applied directly to data without first attempting to estimate the vector field f .

However, such methods necessarily require collections of time series with lengths exceeding

several periods of oscillation. By contrast, the method we propose here can use collections

of time series having arbitrarily small lengths. This is arguably the most valuable property

of our method. We additionally have explicit theoretical guarantees on the performance of

our method applied to noisy data (§3.4); we know of no comparable guarantees for methods

based on forward integration.
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3.5.1 Approximation by topologically motivated basis functions

We construct a series approximation to the Temporal 1-Form using the basis5 functions

described below.

A naive approach would be to attempt using localized vector-valued basis functions, such

as the exterior derivatives of radial basis functions. However, the fact that the line integral

of the Temporal 1-Form along the limit cycle is non-zero implies that it is not exact, i.e.,

it is not the exterior derivative of any scalar valued function. Because linear combinations

of exact forms are exact, the Temporal 1-Form cannot be expressed as a sum of exact 1-

forms. The key insight enabling our algorithm is that although the closed 1-form we seek

is not exact, the first de Rham cohomology group of the stability basin W s(Γ) or any other

tubular neighborhood of the limit cycle Γ is isomorphic to R, meaning that all closed 1-

forms fall into equivalence classes, each class corresponding to a real number. Given an

exemplar 1-form in some non-zero class, its scalar multiples generate the entire de Rham

cohomology, and any two closed 1-forms in the same cohomology class differ by an exact

form6. Therefore, if we provide one basis function with non-zero cohomology and correctly

identify its multiplier, the residual can be approximated by an R-linear combination of exact

basis functions.

We approximate the Temporal 1-Form φ using a two-step process described below. First

we construct a closed form dθ, which7 we refer to as the θ form, which lies in the same

cohomology class as φ. The θ term captures the nontrivial cohomology of the Temporal

1-Form. As such it cannot be exact, and must have a nonzero line integral around the limit

cycle. Second, we approximate the residual exact form (φ − dθ) by a series using basis
5We use the term “basis” informally, as it is used e.g. in the notion of “radial basis functions” in machine

learning, to mean a collection of functions whose finite linear combinations are dense in the function space
of interest.

6Note that any C1 closed form on a C∞ manifold differs from some C∞ closed form by a C1 exact form
[dR84, pp. 61-70], so our statements apply to C1 forms.

7Despite the unfortunate notation, dθ is closed but not exact.
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functions of Taylor-Fourier type.

Remark III.12. The specific algorithm described below is just one possible method for com-

puting the Temporal 1-Form. It is certainly possible to compute a different θ form having the

same cohomology as φ via other means, and it is certainly possible to fit the residual exact

form using a different set of basis functions. Theoretically such algorithms are all capable of

computing the Temporal 1-Form, but in practice different choices may impact performance

for numerical reasons. Indeed, we are currently testing a variant of the algorithm described

below, to appear in a future publication.

3.5.1.1 Fitting the θ form

In typical real-world applications, data takes the form of a sequence of n-tuples of real

numbers (i.e., a time series). In these cases, the state space X is an open subset of Rn,

and so in this and all following sections we assume that X is an open subset of Rn. We

will take full advantage of the vector space structure of Rn in our algorithm to compute the

Temporal 1-Form described below. However, it should in principle be possible to adapt the

computation of the Temporal 1-Form to other cases in which X is a non-Euclidean smooth

manifold.

Noting that in all dimensions above 3 the limit cycle cannot be knotted (see, e.g., the

corollary to Theorem 1 in [Hae61]), there is a choice of smooth isotopy that “flattens” the

limit cycle to a planar, unknotted circle. The circulation 2-form of such a plane spanned by

the orthonormal pair (v1, v2) is v[1 ∧ v[2, where v[1, v[2 are the duals of v1, v2 via the Euclidean

inner product (i.e., v[i(·) = 〈vi, ·〉). This allows us to define dθ at any point x ∈ X by pulling

back v[1∧v[2, suitably normalized, via the isotopy and contracting this pulled-back form with

x minus a suitably chosen center (identifying this difference with a tangent vector via the

Euclidean structure).

Since the θ form is of non-trivial cohomology and the first de Rham cohomology of X
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is one-dimensional, we can be sure that the Temporal 1-Form is in the span of the θ form’s

cohomology class. If the magnitude of the θ form is chosen correctly, the residual will be

of trivial cohomology and can (in principle) be approximated by a suitable basis of exact

forms.

In most practical applications we have encountered in the past, the first two principal

components v1 and v2 of the data in phase space defined a 2-plane within which the data

was restricted to an annulus with a pronounced average flow around it. We thus forgo the

preceding generality by taking the isotopy to be given by orthogonal projection. This allows

rapid computation of dθ(x) using two pre-computed matrices S := v[1 ⊗ v[2 − v[2 ⊗ v[1 and

Π := v1 ⊗ v[1 + v2 ⊗ v[2, giving

dθ(x) = 1
C

〈S, x− x0〉
‖Π (x− x0)‖2 , (3.41)

where C ∈ R and x ∈ Rn are to be determined, and 〈S, x〉 is tensor contraction on the first

index of S.

As a result of this choice the θ form has three parameters: the constant C, and v[1(x), v[2x)

representing the location of the singularity of the θ form in the first two coordinates. The

latter two parameters can be obtained heuristically by simply setting x equal to the arith-

metic mean of points in the data set. We can approximate C by computing a Fourier series

approximation of the limit cycle via standard numerical methods, temporarily setting C = 1

in (3.41), integrating the resulting 1-form over the Fourier approximation of the limit cycle,

and defining C to be the value of this integral.

3.5.1.2 Fitting the residual exact form

Let v1, . . . , vn and x be the principal components and arithmetic mean of the data set,

respectively. Let y1, . . . , yn denote coordinates of the data with respect to the vi, after been

104



translated by the mean. Explicitly, yi := v[i(x − x). Let (r, α) be polar coordinates on

the plane spanned by v1 and v2, so that y1 = r cos(α) and y2 = r sin(α). Assuming that

orthogonal projection onto span{v1, v2} restricted to the limit cycle is injective, the limit

cycle may be parametrized by α. Hence we may write our Fourier series approximation of

the limit cycle as (γr(α), γ3(α), . . . , γn(α)). This enables us to define a system of coordinates

(α, z2, . . . , zn) on a tubular neighborhood of the limit cycle by

z2 := r − γr(α)

∀i ≥ 3: z3 := yi − γi(α).
(3.42)

Finally, we define z := (z2, . . . zn). Here the zi are a system of coordinates transverse to the

limit cycle, such that the limit cycle corresponds to {z = 0}.

Since the constant C of (3.41) was chosen so that dθ lies in the same cohomology class

as φ, φ− dθ = dṼ for some C1 function Ṽ . We define a function V approximating Ṽ using

a Taylor-Fourier series about the limit cycle, using our new coordinates:

V (α, z) :=
∑
j

∑
k

eikαAjk · z⊗j. (3.43)

Here Ajk is a symmetric j-linear map to be determined and ⊗ is the tensor product. The

exterior derivative dV can be computed in closed form:

dV (α, z) =
∑
j

∑
k

[(
ikeikαAjk · z⊗j

)
dα + jAjk · z⊗(j−1) ⊗ dz

]
. (3.44)

Here we use the shorthand notation dz to mean the vector-valued 1-form whose contraction

with any vector w is given by (dz2(w), . . . ,dzn(w)).
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Next, writing our data set explicitly as a set of pairs (x`, ẋ`)N`=1, we define residuals

ε` := 1− 〈dθ(x`), ẋ`〉 . (3.45)

Hence for all 1 ≤ ` ≤ N we want 〈dV, ẋ`〉 = ε`, or

∑
j

∑
k

[(
ikeikα`Ajk · z⊗j`

)
dα(ẋ`) + jAjk · z⊗(j−1)

` ⊗ dz(ẋ`)
]

= ε`, (3.46)

where (α`, z`) is the representative of x` in our new coordinates. Equation (3.46) is linear in

the Ajk terms, and therefore we choose to view (3.46) as an ordinary least squares problem

for these terms, which we obtain via a standard numerical algorithm (SciPy implementation

lstsq). Defining our estimate φ̂ := dθ + dV completes the description of our algorithm to

estimate φ. Hereafter, we refer to this estimate of phase as form phase.

An example illustration of the contributions to φ̂ of the terms in our series expansion of

dV is shown in Figure 3.1.

3.6 Empirical performance of the new algorithm

We produced three noisy simulation systems of dimensions two, three and eight8. The

deterministic limit of all systems have known asymptotic phase. The first is easy to visualize;

the second is the minimal dimension in which general complex eigenvalues can appear in the

Floquet structure; the third is more typical of the dimensionality of biological systems for

which we developed this estimation method. We examined the performance of three different

estimates of the phase of these systems and compared the estimated phase to the analytically

known asymptotic phase.
8Specifically, we generated data by numerically integrating Stratonovich SDEs of the form (3.34) repre-

senting a perturbation of an underlying deterministic oscillator.
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Figure 3.1: Shown is a plot of the contribution of each term in our form phase estimate for an
example planar system having the unit circle as a limit cycle. We show the contributions for
polynomial and Fourier terms up to sixth order. From left to right the order of the Fourier
term increases and the cosine and sine terms alternate, with the first column containing the
constant term. The order of the transverse polynomial term increases from top to bottom.
The top left square is blank, because the constant term in the expansion of V vanishes after
taking the exterior derivative, and therefore does not contribute to the phase estimate.
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The first phase estimator we used is comparable to “event-based” phase estimates com-

monly used in biological research. Researchers often use distinguished events, such as voltage

levels in the nervous system [DHF+15], footfall [TBF94, JF02], or anterior extreme position

of a limb [CS88] to identify the beginning of a cycle and presume that phase evolves uni-

formly in time between these events. As our event, we used the zero crossing of the first

principal component of the data. The second phase estimator we used was the previously

published Phaser algorithm [RG08]. The third phase estimator, described previously in this

chapter, was derived from the Temporal 1-Form and we henceforth refer to this new estimate

as form phase.

We trained our phase estimation methods on one set of noisy simulated paths and tested

them on another, generated from the same underlying equations. We calculated a residual

by subtracting the estimated phases from the ground truth phases for each method. We

removed the globally indeterminate phase difference by taking the circular mean of this

residual to zero by subtracting a constant.

For each simulation we considered three different conditions corresponding to different

levels of initial condition variability and system noise. The ratios of initial condition vari-

ance to system noise variance for the three conditions were 1 : 9 : 25. The simulations

along with the code used to generate them are available at http://github.com/BIRDSlab/

temporal1form. The results show that the form phase method consistently has lower mean-

square residual than the Phaser method, which in turn has lower mean-square residual than

the event-based method; see residuals in Table 3.1 and Figure 3.2.

3.6.1 Isochrons and phase response curves

For the two-dimensional system of the previous section, we estimated the isochrons in

the case of low system noise and highest initial condition noise. We plotted points in the

plane in 20 different phase intervals and compared them to the ground truth phase. The
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Table 3.1: Variance of residual phase for difference phase estimation techniques with different
initial condition noise and system noise levels.

noise res. var.
D initial system phase event Phaser form
2 0.1 0.1 0.1 0.110 0.0469 0.0185
2 0.2 0.1 0.1 0.107 0.0461 0.0182
2 0.1 0.2 0.1 0.113 0.0467 0.0173
2 0.1 0.1 0.2 0.214 0.0881 0.0397
3 0.066 0.0066 0.066 0.0733 0.130 0.0356
3 0.133 0.0066 0.066 0.0768 0.141 0.0174
3 0.066 0.0133 0.066 0.0873 0.132 0.0483
3 0.066 0.0066 0.133 0.143 0.104 0.0253
8 0.025 0.0025 0.025 0.0446 0.0327 0.0258
8 0.05 0.0025 0.025 0.0451 0.0344 0.0290
8 0.025 0.005 0.025 0.0683 0.0540 0.0486
8 0.025 0.0025 0.05 0.0646 0.0344 0.0264

results are depicted in Figure 3.3. We found that event-based estimates of the isochrons are

poor, with a large spread in position and poor agreement with the ground truth. Phaser

performed well on the limit cycle, but the angle of the limit cycle to the isochrons was

incorrect. The form phase estimate matched the true isochrons far more closely. Since the

angle of the isochrons to the limit cycle corresponds to the infinitesimal Phase Response

Curve (iPRC) [Erm96], this last observation suggests that in particular, the form phase

estimates can provide superior estimates of the iPRC, which is often used in the study of

neuronal coupling.

Formally, the iPRC is the Lie derivative of an angle-valued representation of asymptotic

phase (see §3.3.1) along some vector field in state space (typically one of the (constant)

coordinate vector fields), subsequently restricted to the limit cycle. Hence the iPRC is

equivalently given by the contraction of the Temporal 1-Form with such a vector field on

the limit cycle, so if the vector field is a (constant) coordinate vector field, then the iPRC

is simply given by the corresponding component of the Temporal 1-Form as a function of

points on the limit cycle. We estimated the iPRC (iPRC) of a two dimensional system to
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Figure 3.2: Comparison of phase estimators on 2D, 3D, and 8D systems. Comparison of
event phase (green) Phaser (black) and form phase (turquoise) phase noise distributions on
simulated trajectories. Plots show four different conditions for each dimension: one baseline
condition (top left), an increase in the magnitude of the SDE diffusion term (top right), an
increase in the levels of variability in the initial conditions (bottom left) and an increase
in noise on the coordinate corresponding to phase in the equivalent deterministic system
(bottom right; see Table 3.1 for details).

perturbation in the first coordinate. The result is depicted in Figure 3.4.

3.6.2 Phase estimation from partial data

Because our algorithm requires only state and state velocity pairs to calculate a phase

estimate, it can be trained using short, disjointed training examples – even if no individual

example contains more than a small portion of a cycle. This is not true of any event-based

phase, since the phase of all segments that do not contain the event cannot be determined

at all. Similarly, Phaser cannot determine the phase of any data coming from a segment

that does not cross the zero phase Poincaré section [RG08]. Furthermore, because it uses the

Hilbert transform to produce a protophase, Phaser requires each individual time series in its

training data to be multiple cycles long – otherwise the Hilbert transform exhibits ringing

artifacts.

However, to recover the isochrons our algorithm does effectively require in theory that

the union of training data from all individual trials is “dense” in some positively invariant

tubular neighborhood of the limit cycle. A sufficient formal condition is to assume that
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Figure 3.3: Comparison of the isochrons obtained from the form-based, Phaser and event-
based phase estimates. Plots show the limit cycle (gray curve) and scatter plots of trajectory
points falling in 50 equally spaced intervals of width 0.02 periods in “ground-truth” phase
(orange). Scatter plots also show trajectory points falling into the same intervals from
event ([A], green), Phaser([B], black), and form-based phase estimates ([C] , gray), with
corresponding boxes zoomed in in each sub-figure.
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Figure 3.4: Normalized phase response curves to variation in the x1 coordinate using four
different methods. For phase derived from each estimation method, we estimated the PRC
by dividing the limit cycle into 100 locations, taking the 5000 points closest to each location,
and taking from the 5000 points the 500 samples whose y coordinate was closest to that
of the location on the cycle. We then calculated the exterior derivative of the phase with
respect to this coordinate by least squares regression. Additionally, we obtained the phase
response curve on the limit cycle directly from the form-phase by taking the y-component of
the Temporal 1-Form at each location. All methods are shown in each plot, highlighting a
different method in each one (left to right): PRC from event phase (green); Phaser (black);
Form phase (blue); ground truth (orange). We calculated the PRCs and their confidence
intervals by bootstrapping a linear fit to points in restricted phase ranges. In addition, we
show a PRC calculated analytically from the deterministic system (solid orange line) and
the x1-component of the form phase (solid blue line). We show the distribution of residuals
with respect to ground truth (inset box-plots). Two box plots are plotted for form phase:
one from bootstrapping regression as in the other estimation methods (left), and one from
the x1-component of the form (right).
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the data is drawn from an appropriate continuous probability density so that Theorem III.6

applies. This can be seen as a manifestation of Theorem III.1, which asserts uniqueness of

the Temporal 1-Form on any positively invariant tubular neighborhood of the limit cycle.

On the other hand, it is easy to find examples of a neighborhood of a proper subset of the

limit cycle on which there exist infinitely many invariant foliations and therefore infinitely

many Temporal 1-Forms. Because of this, we heuristically expect that we should not be able

to compute the Temporal 1-Form or isochrons using a data set which does not fill a tubular

neighborhood of the cycle. However, in practice we have often found that somehow isochrons

can reasonably recovered using only data lying in such partial tubular neighborhoods! An

example of this surprising finding is illustrated in using guineafowl data in Figure 3.5, and

an explanation remains a topic for future work.

3.7 Discussion

We have introduced the Temporal 1-Form and shown that, for smooth exponentially

stable oscillators, it agrees with the classical definition of asymptotic phase. The properties of

the Temporal 1-Form makes evident the fact that when asymptotic phase exists (a decidedly

global requirement), the Temporal 1-Form is nevertheless uniquely determined by purely

local conditions.

These theoretical properties allowed us to develop an algorithm for approximating the

Temporal 1-Form of an oscillator from which noisy trajectory segments are available. We

have shown that this algorithm performs well on both simulated and experimental data.

The computation of the Temporal 1-Form does not require the dynamics themselves to be

integrated.

Our algorithms offers two significant improvements over previously known methods for

phase estimation.
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Figure 3.5: A mysterious result: estimating phase from partial data (c.f. §3.6.2). We
applied our technique to 292 cycles of foot positions taken at 250Hz from Numida meleagris
gineafowl running at 3Hz. We split trials into 20 sample long segments with gaps of at
least 40 samples in between. Each segment was far shorter than a cycle ([A] blue dots all
data; example segment wide solid green). We differentiated each segment of position data to
obtain velocity data using finite differences. We used the form phase estimator to estimate
phase for these data, and plotted a Fourier series approximation of the limit cycle ([B], solid
black) and isochrons ([B] light teal, every π/20 radians in phase). We then removed all data
left of the line x = −0.5 (the x coordinate is in arbitrary units since the data has been
z-scored), eliding about one third of every cycle ([A,B,C] vertical line; elided data faded to
its left). We recomputed phase, plotted the isochrons at the same points as before ([C] dark
teal; full data isochrons in faded light teal) and showed the updated Fourier approximation
of the limit cycle (solid green). We indicated the amount of available training data in each
area using contours of a kernel smoothed density plot of the training data points (50%, 70%
and 90% of max density, going from strong orange to pale orange respectively). Even with
fractional cycles and systematic inability to observe a large fraction of the cycle, form phase
recovers isochrons closely resembling those using the full data set in [B]. As discussed in
§3.6.2, this result is surprising, and an explanation remains a topic for future work.

114



1. Our algorithm has the ability to estimate phase from state and state velocity pairs

(x, ẋ). Therefore, our algorithm can use collections of time series having arbitrarily

small lengths, as long as the union of data from all time series fills an appropriate

tubular neighborhood of the cycle (Theorem III.6). In particular, this capability makes

our algorithm attractive for modeling systems for which we are unable to obtain records

of full periods of oscillation.

2. Our algorithm has the ability to estimate phase far from the limit cycle, in any re-

gion from which trajectories convergent to the limit cycle could be constructed from

observed flow data. This allows for the study of oscillatory systems undergoing large

perturbations or undergoing a qualitative change in dynamics (e.g. gait transitions in

animals).

We are not aware of any other data-driven phase estimation method which possesses either

of these important properties.

The Temporal 1-Form allows one to detect the phase response to perturbations of the

underlying deterministic dynamics. The phase response describes the only effect of a per-

turbation that persists after a long time, and even the infinitesimal phase response approx-

imation – the infinitesimal phase response curve (iPRC) – allows the observed system to

be modeled in the weakly coupled oscillator approximation. This iPRC is available directly

from the Temporal 1-Form phase estimation procedure.

Experimental data frequently contains partial cycles due to missed observations. We

have shown that our form phase estimator can be successfully trained on short fragments

of cycles, as long as the union of data from all trials fills a suitable neighborhood of the

limit cycle. Event-based methods such as anterior extreme position detection [CS88] or

heel-strike [TBF94, JF02] detection cannot use such fragmented data since the distinguished

event need not appear in every fragment of data. The Phaser algorithm cannot solve this
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problem as it performs a Hilbert transform to calculate its initial proto-phases, introducing

transients on the order of 1 to 3 cycles. Methods based on forward integration [Win80,

MM12] cannot handle partial cycles in data either, as these methods require collections

of individual time series each having length exceeding several periods. In contrast, our

algorithm readily handles this situation as long as the union of data over all trials fills

an appropriate neighborhood of the cycle (see 1 above). Furthermore, we have presented

preliminary evidence (the oscillator associated with the guineafowl data) that our form phase

estimator may still accurately produce isochrons using data lying in only a neighborhood of

a proper subset of the limit cycle. This preliminary finding is surprising, but the evidence is

compelling, and we plan to investigate this in future work.

For scientists studying oscillatory systems, a phase-based model allows the experimen-

talist to compare the outcome of experimental treatment (e.g., a mechanical perturbation to

locomotion) to that of the counterfactual unperturbed system by modeling the responses to

be deterministic functions of phase [RKF08]. The results in §3.6 indicate that for systems

of different dimensions and levels of noise, approximating phase using a Temporal 1-Form

produced by the form phase algorithm presented here is superior to event-based phase es-

timates and the Phaser algorithm. The mean-square error of the phase estimate from the

form-based technique is smaller. The inferred isochrons are closer to the ground truth. Fi-

nally, the phase response curves correspond better to those computed from the ground-truth

systems.

Future work may extend our algorithm by judicious application of domain-specific knowl-

edge, in particular by augmenting our series expansion for the residual (φ − dθ) with new

basis functions. Such extensions would no doubt improve the speed and accuracy of our

algorithm. Another future direction could include the incorporation of more general large-

scale numerical solvers for approximating the Temporal 1-Form, without resorting to explicit

basis function expansions. Additionally, we have restricted ourselves in this chapter to the
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computation of classical asymptotic phase from noisy data. An interesting direction for

future work would be to develop algorithms to compute generalized notions of asymptotic

phase that have been developed for stochastic oscillators [SP10, SP13, TL14].

The Temporal 1-Form offers a new perspective on asymptotic phase for nonlinear oscilla-

tors. Its applications to the analysis of dynamical systems, its power in organizing empirical

data, and its extension to systems with other attractor topologies remain to be explored.
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CHAPTER IV

Data-driven Gait Optimality Testing in the Perturbed

Stokes Regime
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4.2 Introduction

In this chapter, we study how animals and robots move through space by deforming

the internal “shape” of their body — typically in a cyclic fashion — to produce forces

that propel the body. We call such cyclic shape deformations gaits. We study a class of

locomotion which includes swimming and crawling in viscous media, in which the viscous
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damping forces are large compared to the inertia of the body. A classic exposition of such

locomotors “living life at low Reynold’s number” is given in [Pur77]. An important aspect

of our work is that we consider the perturbed Stokes regime [EJ16] in which the inertia-

damping ratio (or Reynolds number) is small but nonzero, as opposed to previous geometric

mechanics literature addressing only the viscous or Stokesian limit which formally assumes

the inertia-damping ratio is zero [KM96, KM95, HC11, BHR18]. We note that our methods

are related to the realization of nonholonomic constraints as a limit of friction forces [Bre81,

Kar81, Eld16].

For both scientific and engineering purposes, it is often of interest to ask whether a par-

ticular gait is is optimal with respect to a goal function. For animal locomotion, explicit

equations of motion are nigh impossible to come by, and therefore directly testing animal

gait optimality via analytic tools like the calculus of variations is not an option. How-

ever, if equations of motion can be obtained from data for the local dynamics on a tubular

neighborhood of the gait cycle, then local optimality tests can be formulated and evaluated

from the data. Such an approach was taken in [BHR18], which introduced an algorithm in-

formed by geometric mechanics and utilizing data-driven techniques for studying oscillators

[RG08, Rev09, RK15].

One limitation of [BHR18] was the assumption that motion was entirely kinematic, effec-

tively assuming that the inertia-damping ratio is zero by assuming a viscous connection-based

model as introduced by [KM95] and to be discussed more below. The real-world systems we

are interested in have small — but always nonzero — inertia-damping ratio, and therefore

we are interested in the extent to which the algorithm of [BHR18] can be improved.

By applying normally hyperbolic invariant manifold (NHIM) theory [Fen71, Fen74, Fen77,

HPS77, Fen79] in a singular perturbation context, we show that an exponentially stable

invariant slow manifold exists for small inertia-damping ratio (this was also shown in [EJ16]).

Furthermore, this slow manifold is close to the viscous connection (viewed geometrically as
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a subbundle — hence as a submanifold — of state space), and therefore the dynamics

restricted to the slow manifold are close to those assumed in the purely viscous case [KM96,

KM95, HC11, BHR18], and reduces to those in the zero inertia-damping ratio limit. Aside

from being nice theoretically, this result also has practical implications: it is possible to

explicitly compute “correction terms” which, when added to the ideal viscous connection

model, yield the dynamics restricted to the slow manifold. These dynamics are provably

more accurate than those of the idealized viscous connection model alone, yet they still

enjoy similar useful properties: (i) reduced dimensionality of the model and (ii) symmetry

of the model are preserved. The computation of such correction terms is a fundamental

technique in geometric singular perturbation theory [Fen79, Jon95], and has been used, e.g.,

to compute reduced-order models of robots with flexible joints [SKK87].

After laying the theoretical foundations needed to describe our class of models, we in-

troduce an algorithm for estimating a reduced model of the dynamics of a locomoting body

near its gait cycle. Such an algorithm would enable variational tests for local optimality of a

gait cycle with respect to any cost functional that the model allows us to evaluate. We have

in mind two applications: (i) verification of whether a postulated goal function is optimized

for an observed animal gait, and (ii) optimization of robot gaits with “hardware-in-the-loop”

— learning effective gaits without the need for precise models of the robot or its interactions

with the environment.

The main obstacle to hardware-in-the-loop optimization is that a gait, being generated

from a loop in the control inputs, is an infinite-dimensional object undergoing optimization.

Any gradient calculation or optimization of a gait must deal with the inherently high dimen-

sionality of the gait parameterization, and thus requires many experiments. Combined with

the high practical cost of hardware experiments in terms of time and robot wear, this ren-

ders hardware-in-the-loop optimization nigh infeasible. A tractably computable local model

can resolve this problem, by allowing the high-dimensional gradients to be computed by
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simulating the model, instead of directly using the hardware.

It is our hope that, through a combination of geometric mechanics and NHIM theory,

we can develop an algorithm which can serve the purposes of both biologists and robotics

engineers.

4.3 Background

In studying locomotion, we will consider dissipative Lagrangian mechanical systems on

a product configuration space Q = S × G with coordinates (r, g), and with Lagrangian of

the form kinetic minus potential energy. Here S is the shape space of the locomoting body,

and G is a Lie group (typically a subgroup of the Euclidean group SE(3) of rigid motions)

representing the body’s position and orientation in the world. We assume throughout this

chapter that S is compact. We will also assume that this system is subjected to external

viscous drag forces which are linear in velocity1.

If the physics of locomotion are independent of the body’s position and orientation, then

the Lagrangian L(r, g) and viscous drag force FR(r, g) are independent of g. Under this

symmetry assumption, [KM96] derived general equations of motion satisfied by g and by the

body momentum2 p ∈ g∗. For a detailed statement and derivations of these equations, see

§4.7.

Let us suppose that the kinetic energy metric of the body is scaled by an inertial param-

eter m > 0, that the viscous drag force FR is scaled by a damping parameter c > 0, and

define ε := m
c
a Reynolds number-like ratio of the two. [KM96] showed that in the limit

1We make this assumption for simplicity. In principle, it should be possible to relax this assumption
to derive modified but similar results for a force depending nonlinearly on velocities, as long as the linear
approximation (with respect to velocities) of this force satisfies the same assumptions that we impose on our
assumed linear force.

2Here g∗ is just a real vector space; for the knowledgable reader, it is the dual of the Lie algebra g of G.

121



ε→ 0, the equation of motion for g becomes independent of p and takes the simple form

◦
g = −Avisc(r) · ṙ, (4.1)

where Avisc is called the local viscous connection, and ◦g := DLg−1 ġ is the body velocity.3

On the other hand, [EJ16] studied the perturbed Stokes regime, in which ε is assumed to

be small but nonzero. They showed that for ε sufficiently small, there is an exponentially

stable invariant slow manifold Mε for the full dynamics; we derive similar results tailored for

our applications in §4.8. In §4.8 we also prove that the equations of motion for trajectories

withinMε take the form given by Theorem IV.1 below. Hence trajectories of the full dynamics

satisfy Equation 4.41 below, possibly after a brief transient phase of convergence to Mε. An

illustration of this situation is in Figure 4.1 (in the figure, Ω = I−1
locp is a linear function of p,

where Iloc is defined in 4.7).

Theorem IV.1. Assume that the shape space S is compact. For sufficiently small ε > 0,

there exist smooth fields of linear maps B(r) and (1, 2) tensors G(r) such that the dynamics

restricted to the slow manifold Mε satisfy

◦
g = −Avisc(r) · ṙ + εB(r) · r̈ + εG(r) · (ṙ, ṙ) +O(ε2). (4.2)

Remark IV.2. The (1,2) tensors G(r) are not, in general, symmetric: e.g., they are unlike

Hessians.

[BHR18] developed a data-driven algorithm for approximating the equations of motion

of a locomotion system assuming the model (4.1). In this chapter, we extend the domain

of application of that algorithm to approximate equations of motion of a locomoting system

operating in the perturbed Stokes regime, wherein ε is allowed to be small but nonzero. We
3The body velocity is often written g−1ġ by an abuse of notation which makes literal sense only for matrix

Lie groups. In general, the body velocity is given by DLg−1 ġ ∈ TeG ∼= g.
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Mε/G
ṙ

Ω

r

(TQ)/G

Figure 4.1: For small but nonzero inertia-damping ratio ε, an exponentially stable invariant
“slow manifold” Mε exists. Shown here is the invariant manifold Mε/G (blue) for the re-
duced dynamics written on (TQ)/G in the case that the shape variables satisfy autonomous
dynamics and have an attracting limit cycle (representing a gait). Note that in the special
case that Q = S ×G, we have (TQ)/G ∼= TS × g.

accomplish this by assuming a model of the form (4.2).

4.4 Estimating data-driven models in the perturbed Stokes regime

In this section, we develop a data-driven algorithm for estimating the dynamics in a

neighborhood of an exponentially stable limit cycle (gait) γ, based on the perturbed Stokes

model (4.2). We do this in §IV.1, after first reviewing the previous algorithm of [BHR18]

based on (4.1) for estimating the dynamics in the Stokesian limit. Our algorithm builds

on the previous one by augmenting its regressors with additional ones motivated by (4.2),

thereby extending predictive power into the perturbed Stokes regime. We conclude this

section with a discussion in §4.4.2 of the applications we have in mind for our algorithm.
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4.4.1 Determination of regressors for estimation of the dynamics

We first give an overview of the algorithm of [BHR18] for estimating dynamics in the

Stokesian limit, given an input consisting of an ensemble of noisy trajectories near a limit

cycle (for an underlying deterministic system). In the following, we will assume for simplicity

that the gait cycle is contained within a single chart of shape space, so that we can use a

single set of coordinates below; this is often the case in practice, such as the situation that

shape space is a torus and the gait is contained in a contractible subset (this is also the

case with our example in §4.5). Note that in this section we use the Einstein summation

convention.

First, we assign a “phase” value4 to each data point using an algorithm such as that of

[RG08] or Chapter III, and then use these phase values to numerically compute a Fourier

series model of the limit cycle as a function of phase. Here the utility of assigning phase

values is that it enables each point r(t) from the trajectory ensemble to be assigned to a

point γ(t) ∈ Γ (where Γ := γ(R)). Hence in local coordinates we have the observation

r(t) = γ(t) + δ(t), with δ(·) representing a perturbation off of the limit cycle which is small

in a Sobolev sense. By this we mean that the (e.g., Euclidean) norms of δ, δ̇ and δ̈ are

uniformly bounded by some κ > 0. Introducing coordinates and Taylor expanding (4.1)

gives:

◦
gk ≈ −Aki γ̇i︸ ︷︷ ︸

Ck0

− Aki︸︷︷︸
Ck1

δ̇i − ∂Aki
∂rj

γ̇i︸ ︷︷ ︸
Ck2

δj − ∂Aki
∂rj︸ ︷︷ ︸
Ck3

δj δ̇i, (4.3)

where we have omitted higher-order terms, the subscript of Avisc, and the nonlinear γ depen-

dence of the local expression Aki . From (4.3), we formulate a least-squares problem for each

γ ∈ Γ with the regressors 1, δ, δ̇, δ ⊗ δ̇ coming from the terms r assigned the same phase as
4This value could represent the asymptotic phase of r(t) (Chapter III), but we do not require this here.
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γ. The least squares solution of the regression yields us estimates of C0, . . . , C3 as a function

of γ, which we then model as a Fourier series function of phase, providing an approximation

of the dynamics of (4.1) around the limit cycle Γ for any possible δ.

Now, Theorem IV.1 tells us that additional terms appear in the (reduced) equations of

motion in the perturbed Stokes regime. We model them in the same way as we did A, giving

a functional form of a more accurate approximation of the dynamics.

Similar to the above, we Taylor expand the right hand side of (4.2) at γ(t), setting

r(t) = γ(t) + δ(t), to obtain

◦
gk ≈ −Aki γ̇i − Aki δ̇i −

∂Aki
∂rj

δj γ̇i − ∂Aki
∂rj

δj δ̇i + ε

(
Bk
i γ̈

i +Bk
i δ̈

i + ∂Bk
i

∂rj
δj γ̈i + ∂Bk

i

∂rj
δj δ̈i

. . .+Gk
ij γ̇

iγ̇j +Gk
ij γ̇

iδ̇j +Gk
ij δ̇

iγ̇j +Gk
ij δ̇

iδ̇j

. . .+
∂Gk

ij

∂r`
δ`γ̇iγ̇j +

∂Gk
ij

∂r`
δ`γ̇iδ̇j +

∂Gk
ij

∂r`
δ`δ̇iγ̇j +

∂Gk
ij

∂r`
δ`γ̇iδ̇j +

∂Gk
ij

∂r`
δ`δ̇iδ̇j

)
.

(4.4)

Partitioning these terms according to their dependence on δ,δ̇, and δ̈, we formulate a least

squares regression for (4.4) for each γ ∈ Γ with regressors 1, δ, δ̇, δ ⊗ δ̇, δ̈, δ ⊗ δ̈, δ̇ ⊗ δ̇, and

δ ⊗ δ̇ ⊗ δ̇. Because it is the only term of order κ3, we find that in practice this last term

can often be omitted if κ > 0 is sufficiently small. In the remainder of this chapter, we refer

to these regressors as the “perturbed Stokes regressors”, and refer to those used in the old

algorithm as the “Stokes regressors.”

Remark IV.3. All tensors appearing in Equations (4.3) and (4.4) above are generally not

symmetric, and therefore the order of terms matters.

Remark IV.4. Notice that even in (4.3), there are some constraints that the regression does

not enforce. Namely, C0 = [C1]i γ̇i and C2 = [C3]i γ̇i. Ignoring these implicit constraints

and solving the least squares problem, one finds that these constraints are not respected in

practice. However, an important consequence of Theorem IV.1 and Equation (4.4) is that
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statistics alone is likely not to blame for this inconsistency phenomenon for systems operating

in the perturbed Stokes regime, rather than in the Stokesian limit — this is because some

independent new terms appear in C1, . . . , C3 which would break these constraints.

4.4.2 Utility of the estimated models

The data-driven models computed by the process described above have predictive power

locally, in a neighborhood of a gait cycle. By supplying a shape trajectory in this neigh-

borhood, the local model will predict a corresponding trajectory for the body in the world.

We assume that we are interested in some R-valued goal functional φ̃(γ, gγ) defined on an

appropriate space of trajectories. Here the group trajectory gγ(t) is determined by the gait

γ(t) via (4.2), and therefore we may consider the goal functional φ(γ) := φ̃(γ, gγ) to be a

function of γ alone. Knowledge of a local model of (4.2) enables two primary applications.

1. First, the gait of an organism can be tested for optimality by checking that

∂

∂s
φ(γs)|s=0 = 0

for all smooth variations γs of a gait γ (where γ0 = γ). This condition is necessary for

optimality, but depending on the choice of φ it might be possible to argue on physi-

cal grounds that its satisfaction is also sufficient for optimality (alternatively, second

derivative tests can be formulated). Now there are infinitely many such smooth varia-

tions, but in practice this problem is rendered computationally tractable by considering

a finite-dimensional approximation consisting of an appropriate family γp with p ∈ RN

and N sufficiently large, and numerically computing the gradient ∇pφ(γp). If the Eu-

clidean norm of this gradient is sufficiently small at some parameter value p∗, then it

might be possible to argue that the gait is nearly extremal (or possibly optimal) with
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respect to5 φ. The value here is that this procedure can be carried out directly from

observation and without need for any general model of body-environment interactions

beyond the assumptions needed to justify Theorem IV.1.

2. The same gradient ∇pφ(γp) can be used in gradient ascent algorithms applied to

hardware-in-the-loop optimization of a robot. As discussed in §4.2, the main obstacle

to hardware-in-the-loop optimization is the high dimensionality of the parameter space

RN 3 p used to approximate an infinite-dimensional space of gaits. This is because

the high-dimensionality requires many experiments in order to numerically compute

∇pφ(γp), and this imposes a high practical cost related to time expenditure, robot

wear, etc. However, our algorithm allows this gradient calculation to be obtained via

simulation rather than physical experiment. For each gait, we only require enough

experimental data for building a good local model, which is subsequently simulated

to compute gradients. Such decoupling of hardware-in-the-loop optimization into data

collection and simulation components could enable rapid adaptation of robot motion

in the face of foreign environments or mechanical failures.

4.5 Performance comparison of the data-driven models

One of the primary contributions of this chapter is the introduction of new regressors

based on Theorem IV.1, which we use to augment the regressors used in the algorithm of

[BHR18] for estimating the dynamics near a gait. This allows us to extend the domain of

validity of their algorithm — the Stokesian limit — to the perturbed Stokes regime. In this

section, we will compare the accuracy of the new and old approaches on a simple swimming
5It is possible to justify this finite-dimensional approximation procedure assuming that the family γp

satisfies certain properties, and furthermore it is possible to argue that such suitable finite-dimensional
families always exist using techniques of [Mil69, Sec. 16] on finite-dimensional approximations of path spaces.
Though quite interesting, we do not wish to get bogged down by these technicalities here.
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Two-segment model Four-segment model n-segment model

α1
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α1, . . . , αn
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αn
2 +1, . . . , αn

Figure 4.2: We study a swimmer with an even number of segments, which are divided among
two paddles. The body has a mass m, moment inertia I = mI, and length L (we explicitly
write the factor m > 0 in the moment of inertia for scaling purposes). Each segment has
length L

n
, where n is the number of segments.

model.

4.5.1 Modeling the swimmer

We test the prediction quality of both models on a simple swimming model. The system

shown in Figure 4.2 has uniformly distributed mass along a central link, with two chains of

massless links extending from the center of the body. Each paddle can be broken up into an

arbitrary number n of equally spaced links, which sum to the same total length. This allows

us to vary the properties of the system from behaving like a boat with oars (for n = 1) to a

bacterial cell with flagella (for n large).

The system moves in the plane, with configuration space the product T2n × SE(2) of the

2n-torus and the special Euclidean group of planar rigid motions SE(2), and the system has

SE(2) symmetry. The group element g ∈ SE(2) provides the position and orientation of the

central link in world coordinates, i.e., with respect to some fixed inertial reference frame. In

what follows, we represent g as a column vector g = [x, y, θ]T , and similarly represent ġ as a
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column vector. We define the body velocity

◦
g = R−1(θ)ġ =


cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

 ġ. (4.5)

We treat the link at the main body (length L) and the links corresponding to the flippers

(length d) as slender members, and model their drag forces according to Cox theory [Cox70]

using the drag matrices

C
D

= c


Cxd 0 0

0 Cyd 0

0 0 1
12d

3Cy

 , C
L

= c


CxL 0 0

0 CyL 0

0 0 1
12L

3Cy

 , (4.6)

where the factor c > 0 is explicitly written for later scaling purposes. The drag coefficient

ratio Cy/Cx has a maximum value of 2 corresponding to the limit of infinitesimally thin

segments, and we will assume this limiting ratio here (c.f. [HC13, Sec. 2.B]). Given these

drag matrices, the drag wrench (force and moment in body coordinates) on the ith segment

can be written as

Fi = cF i −R(αi)CD


cos(αi) sin(αi) 0 0

− sin(αi) cos(αi) d
2

d
2

0 0 1 1



◦
g

α̇i

 , (4.7)

and the wrench on the central link can be written as

Fbody = cF body = −C
L

◦
g. (4.8)
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These forces act on the body (which has uniformly distributed massm and moment of inertia

I = mI about its midpoint) yielding the following equations of motion in world coordinates:

g̈ =


ẍ

ÿ

θ̈

 = 1
ε


1
m

0 0

0 1
m

0

0 0 1
I

R(θ)
F d1 + F d2 + F body

, (4.9)

where ε := m
c
is the inertia-damping ratio.

Upon inspection of Equation (4.9), we see that by modifying ε > 0 we can directly adjust

the ratio of inertial to viscous forces in the swimming model. The Stokesian limit corresponds

to ε→ 0; on the other hand, the ε→∞ limit corresponds to a fully “momentum dominated”

regime, wherein viscous effects are negligible and motion is governed by conservation of

momentum via Noether’s theorem (see Corollary IV.6 in §4.7.1). In the following section

§4.5.2 we simulate the swimming model at a variety of ε values, and compare the performance

of the old and new algorithms for estimating the dynamics near a gait cycle.

4.5.2 Comparison of accuracy of estimated models

In all simulations in this section, we used the parameter values L = 1, d = 0.5, Cx = 1,

Cy = 2, m = 1, and I = 1. The procedure we used for generating simulations for experiments

in this section is identical to that described in [BHR18]. Briefly, an experiment consists of

30 cycles of a numerically integrated stochastic differential equation (SDE) representing

shape space dynamics consisting of a deterministic oscillator perturbed by system noise (see

[BHR18, Sec. 6.2] for precise details on the SDE, parameter values used, etc.). These noisy

shape dynamics are used to drive the body momentum and group dynamics via the full

equations of motion (4.23) derived in §4.7.3. During each simulation, a “ground truth” body

velocity trajectory ◦gG is recorded and stored as a benchmark for the accuracy of the body

velocities predicted by the new and old algorithms. The body velocities computed using the
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Figure 4.3: The two-segment and four-segment swimmers approximately follow the symmet-
ric gaits depicted on the right (modulo noise). At each value of ε depicted by a blue vertical
line, 8 experiments were conducted with each experiment consisting of 30 simulated cycles. A
local model of the dynamics of each swimmer was constructed using the old algorithm (with
“Stokes regressors”) (s) and using the new algorithm (with “perturbed Stokes regressors”)
(ps). Using the body velocity recorded during simulation as “ground truth”, the prediction
accuracy of both models are compared by plotting the ratio of the mean absolute prediction
errors, which are computed on an individual trial basis. Qualitatively, it seems clear that
the additional regressors present in the new algorithm provide a nontrivial improvement in
predictive power in the region log10 ε ∈ [−1, 1].

new algorithm (with the “perturbed Stokes regressors”) and using the old algorithm (with

the “Stokes regressors”) will be denoted ◦gps and ◦gs, respectively. Given an experiment with

k data points, the mean absolute errors for each of the two algorithms are denoted by:

|eps| :=
1
k

k∑
i=1
|◦gps,i −

◦
gG,i| |es| :=

1
k

k∑
i=1
|◦gs,i −

◦
gG,i| (4.10)

Figure 4.3 shows the results from an experiment in which we tested the respective pre-

diction quality of both models across a spectrum of dynamical regimes corresponding to
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Figure 4.4: Here, each platform (two segment on the left, four segment on the right) is cycled
at ε = 0.5. Each experiment is taken from Figure 4.3. The modeling error is plotted with
respect to cycles (bottom) and as a scatter plot vs. phase (top). It is visually clear that the
perturbed Stokes regressors used in the new algorithm provide a more accurate prediction
of body velocity compared to that of the old algorithm using the Stokes regressors.

different values of ε. The gait for each swimmer involves symmetric sinusoidal oscillations

of the joints, such that the relative angles between adjacent segments are equal and such

that the amplitude of the oscillation is π. By simulating the dynamics for a broad range of

ε values, we are able to clearly discern a regime in which the perturbed Stokes regressors

display a significant advantage. The additional regressors used in the new algorithm appear

to improve prediction the most approximately near ε = 0.5 sec. Figure 4.4 illustrates the

difference in performance at ε = 0.5 sec specifically.

4.5.3 Discussion

The results show that for the versions of the simple swimming models that we tested (two-

link and four-link) depicted in Figure 4.2, there exists a sizable window of ε values wherein
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the new algorithm (using the perturbed Stokes regressors) provides models of superior quality

when compared to prior work (using the Stokes regressors). For very small values of ε, the

system is nearing the Stokesian limit and therefore we do not expect much improvement from

the new algorithm in this regime; this is consistent with our experiments. For very large

values of ε, predictive quality of both algorithms are hindered by three factors, although

only the first two can be observed here. First, the O(ε2) term in Theorem IV.1 becomes

more significant as ε increases. This issue is insurmountable if we restrict ourselves to Stokes

regressors, but it is possible to compute correction terms which are higher order in ε and

which can inform the selection of additional regressors for addition to our algorithm. We

do not pursue this here, but it is one possible direction for future work. The second issue

hindering the predictive quality of both algorithms is more serious: for ε sufficiently large, we

expect a bifurcation in which the slow manifold (whose existence is guaranteed by Theorem

IV.9 in §4.8) ceases to exist. For such values of ε, the hypotheses of Theorem IV.1 are not

satisfied, its conclusions are violated, and a reduced-order model does not exist. Finally, the

third issue is relevant for real-world systems. For sufficiently large values of ε, we expect the

full complications of fluid dynamics to come to the fore, eventually invalidating our linear

viscous friction model (and thereby even rendering ε ill-defined). We suspect that this third

issue should not occur until after ε is already sufficiently large for the slow manifold to have

disappeared, but this is pure speculation and it would be interesting to explore this issue

further.

4.6 Discussion

We have shown that the accuracy of data-driven models motivated from geometric me-

chanics can be improved by using a collection of regressors derived from an asymptotic series

approximation of an attracting invariant manifold in the small parameter representing the
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ratio of inertial to viscous forces, (a Reynolds number). The existence of such an invariant

manifold was previously known in similar situations6, as were the approximation techniques

we employed, but the combination of these together for producing data-driven models of

locomotion is a novel contribution. In a simulation where we tested geometrically similar

motions over a large range of Reynolds numbers, we obtained improvements of 20% over

several orders of magnitude of the Reynolds number when compared to previous work, sug-

gesting that these better-informed models can indeed capture the perturbed Stokes regime

more accurately.

Future work will include application of our algorithm to questions of locomotion optimal-

ity in animals, and to hardware-in-the-loop optimization of robot motions. An additional

direction for future work is the selection of regressors and regression techniques for hybrid

dynamical systems, and for non-viscous dissipation models.

4.7 Derivation of the equations of motion

In this and the following section we consider systems more general than those consid-

ered earlier, and in so doing assume that the reader is familiar with some basic concepts

in geometric mechanics and differential geometry: Lie groups, group actions, and princi-

pal bundles. Basic concepts and definitions from the theory of principal bundles are re-

viewed in Appendix C; we refer the reader to [KN63, MR94, Lee13, Blo15] for the relevant

standard definitions related to Lie groups and group actions, and we refer the reader to

[KN63, MOWZ91, Mar93, Blo15] for further material on bundles.

We consider a mechanical system on a configuration space Q whose Lagrangian is of the

form kinetic minus potential energy. We will also consider this system to be subjected to

external viscous forcing arising from a Rayleigh dissipation function, and also subjected to
6But see the discussion preceding Theorem IV.9 in §4.8, which details how our result differs from that of

[EJ16].
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an external force exerted by the locomoting body. We are interested in the situation that

we have a smooth action θ : G× Q → Q of a Lie group G on Q, such that the Lagrangian,

viscous forces, and external force are all invariant under the action. In this case, we say that

G is a symmetry group.

In §4.7.1, we will define some geometric quantities on Q which encode information about

the symmetry and the dynamics. Working in coordinates induced by a local trivialization,

in §4.7.2 we derive the equations of motion in terms of these quantities. In §4.7.3, we recall

how the equations become governed by the so-called viscous connection in the Stokesian limit

[KM96, EJ16], which will set the stage for our derivation in §4.8 of a corrected reduced-order

model for the perturbed Stokes regime.

4.7.1 The mechanical and viscous connections

In this section, we define the mechanical and viscous (or Stokes) connections, roughly

following [KM96]. We consider a Lagrangian L : TQ→ R which is invariant under the lifted

action Dθg of G on TQ (here D denotes the derivative or pushforward). We assume the

Lagrangian to be of the form kinetic minus potential energy, where kinetic energy is given

by m
2 k, where m > 0 is a mass parameter, k is a smooth symmetric bilinear form, and mk

is the kinetic energy metric. In what follows, we assume that k is positive definite when

restricted to tangent spaces to G orbits, but not necessarily that k is positive definite on

all tangent vectors7. Denoting by g the Lie algebra of G and g∗ its dual, we define the

(Lagrangian) momentum map J : TQ→ g∗ via

〈J(vq), ξ〉 = 〈FL(vq), ξQ(q)〉 = mkq(vq, ξQ(q)), (4.11)
7This does not affect any of the following derivations and results. However, this generality is merely a

convenience ensuring that our results apply to certain idealized examples, e.g., linkages with some links having
zero mass. Of course such examples are not physical and, e.g., must be supplemented with assumptions to
ensure that the massless links have well-defined dynamics.
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where v ∈ TqQ and ξ ∈ g. Here FL : TQ → T∗Q is the fiber derivative of L given by

FL(vq)(wq) := ∂
∂s
|s=0L(vq+swq), and the smooth vector field ξQ on Q is the infinitesi-

mal generator defined by ξQ(q) := ∂
∂s
|s=0θexp(sξ)(q). We define the mechanical connection

Γmech : TQ→ g via Γmech(vq) := I−1(q)J(vq), where I(q) : g→ g∗ is the locked inertia tensor

defined via

〈I(q)ξ, η〉 := 〈FL(ξQ(q)), ηQ(q)〉 = mkq(ξQ(q), ηQ(q)), (4.12)

where ξ, η ∈ g.

We now follow an analogous procedure to define the viscous connection Γvisc : TQ → R.

We consider a Rayleigh dissipation function R : TQ → R defined in terms of a G-invariant

smooth symmetric bilinear form ν on Q: R(vq) := c
2νq(vq, vq), where c > 0 is a parameter

representing the amount of damping or dissipation in the system due to viscous forces. As

with k, we assume that ν is positive definite when restricted to tangent spaces to G orbits,

but not necessarily that ν is positive definite on all tangent vectors8. The corresponding

force field FR : TQ → T∗Q is given by minus the fiber derivative of R, FR := F(−R). We

define a map K : TQ→ g∗, analogous to the momentum map J , via

〈K(vq), ξ〉 = 〈FR(vq), ξQ(q)〉 = −cνq(vq, ξQ(q)), (4.13)

where v ∈ TqQ and ξ ∈ g. We define the viscous connection or Stokes connection Γvisc : TQ→

g via Γvisc(vq) := V−1(q)K(vq), where V(q) : g→ g∗ is defined via

〈V(q)ξ, η〉 := 〈FR(ξQ(q)), ηQ(q)〉 = −cνq(ξQ(q), ηQ(q)), (4.14)

where ξ, η ∈ g.
8This generality simply allows for, e.g., the situation of a linkage in which not all links are subject to

viscous forces.
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Using the G-invariance of L and ν, a calculation shows that Γmech and Γvisc are equivariant

with respect to the adjoint action of G on g:

∀g ∈ G : Γmech ◦ Dθg = Adg ◦ Γmech, Γvisc ◦ Dθg = Adg ◦ Γvisc (4.15)

Hence if the natural projection πQ : Q→ Q/G from Q to the space of orbits Q/G of points

in Q is a principal G-bundle, then the mechanical and viscous connections Γmech and Γvisc

are indeed principal connections (see Definition C.15); this justifies their titles.

Now in order for our system to move itself through space, we also allow there to be a G-

invariant external force FE : R×TQ→ T∗Q exerted by the locomoting body, which physically

implies that FE takes values in the annihilator of ker DπQ, the distribution generated by the

group orbits (c.f. [EJ16, Sec. 3.3]). For future use, we now prove the following

Proposition IV.5. The derivative of J along trajectories of the G-invariant mechanical

system is given by

J̇ = K, (4.16)

making the canonical identifications TJg ∼= g.

Proof. We compute in a local trivialization on TQ induced by a chart for Q, so that we may

write a trajectory as (q, q̇). Note that in such local coordinates, FL(q, q̇)(vq) = ∂L(q,q̇)
∂q̇

vq.

Hence

〈J̇(q, q̇), ξ〉 = d

dt

(
∂L(q(t), q̇(t))

∂q̇
ξQ(q(t))

)

=
(
d

dt

∂L

∂q̇

)
ξQ(q) + ∂L

∂q̇
DξQ(q)q̇

=
(
∂L

∂q
+ FR + FE

)
ξQ(q) + ∂L

∂q̇
DξQ(q)q̇,

(4.17)

where we obtained the last line using d
dt
∂L
∂q̇
− ∂L

∂q
= FR+FE, which follows from the Lagrange-
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d’Alembert principle [Blo15, p. 8]. Since FE annihilates tangent vectors to group orbits,

〈FE, ξQ(q)〉 = 0. Hence rearranging and letting Φs
ξ denote the flow of ξQ, we find

〈J̇(q, q̇), ξ〉 = ∂

∂s
L
(
Φs
ξ(q(t)),DΦs

ξ(q(t))q̇(t)
)

+ 〈FR(q, q̇), ξQ(q)〉

= ∂

∂s
L
(
Φs
ξ(q(t)),DΦs

ξ(q(t))q̇(t)
)

+ 〈K(q, q̇), ξ〉.

The derivative term is zero due to the invariance of L under the action of G, so from the

arbitrariness of ξ ∈ g we obtain the desired result.

As a corollary, we obtain a slight generalization of the classical Noether’s theorem.

Corollary IV.6 (Noether’s theorem). Consider a mechanical system given by a G-invariant

Lagrangian of the form kinetic minus potential energy. Assume that the only external forces

take values in the annihilator of the distribution tangent to the G orbits. Then the derivative

of the momentum map J along trajectories satisfies

J̇ = 0.

Proof. Set K = 0 in Proposition IV.5.

4.7.2 Local form of the equations of motion

Assuming that the action of G on Q is free and proper [Lee13, Ch. 21] so that πQ : Q→

Q/G is a principal G-bundle, we now derive the equations in a local trivialization, following

[KM96]. In a local trivialization U × G, πQ simply becomes projection onto the first factor

and the G action is given by left multiplication on the second factor. We define S := Q/G

to be the shape space representing all possible shapes of a locomoting body, and we write a

point in the local trivialization as (r, g) ∈ U × G where U ⊂ S. We assume that U is the

domain of a chart for S, so that we have induced coordinates (r, ṙ) for TU .
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The equivariance property (4.15) of the connection forms Γmech,Γvisc imply that they may

be written in the trivialization as9

Γmech(r, g) · (ṙ, ġ) = Adg
(
g−1ġ + Amech(r) · ṙ

)
Γvisc(r, g) · (ṙ, ġ) = Adg

(
g−1ġ + Avisc(r) · ṙ

)
,

(4.18)

where Amech : TU → g and Avisc : TU → g are respectively the local mechanical connection

and local viscous connection. We define a diffeomorphism (r, ṙ, g, ġ) 7→ (r, ṙ, g, p), with p the

body momentum defined by

p := Ad∗gJ ∈ g∗. (4.19)

Here Ad∗g is the dual of the adjoint action Adg of G on g. We additionally define

Iloc := Ad∗gIAdg : g→ g∗

Vloc := Ad∗gVAdg : g→ g∗
(4.20)

to be the local forms of I and V. We note that the invariance of the Lagrangian L and

Rayleigh dissipation function R under G, together with the general identity DθgξQ(q) =

(Adgξ)Q(θg(q)), imply that Iloc(r),Vloc(r) depend on the shape variable r only.

Rearranging (4.18), using the expressions (4.19), (4.20), and using Proposition IV.5, we

obtain the equations of motion

g−1ġ = −Amech · ṙ + I−1
locp

ṗ = Vloc(Avisc − Amech) · ṙ + VlocI−1
locp+ ad∗I−1

locp
p− ad∗Amech·ṙp,

(4.21)

where we have suppressed the r-dependence of Amech, Avisc, Iloc,Vloc for readability. Notice
9As mentioned earlier, the notation g−1ġ makes literal sense as matrix multiplication for matrix Lie

groups, but in general this standard abuse of notation should be interpreted as shorthand for DLg−1 ġ, with
Lg : G → G left multiplication. However, in these final technical sections of the chapter we embrace this
abuse of notation, forgoing the less traditional notation ◦g used earlier in the paper.
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that the ṗ equation is completely decoupled from g.

In this chapter, we are interested in the effect of shape changes on body motion, and

not on the generation of shape changes themselves. Hence we have suppressed the equations

for ṙ, r̈ from (4.21), simply viewing r, ṙ as inputs in those equations, but see [BKMM96]

for more details on the specific form of the equations. We merely note that, if the kinetic

energy metric is positive-definite, then the Lagrangian is hyperregular and our assumption

of G-invariance of the exerted force FE implies that

r̈ = f(t, r, ṙ, I−1
locp) (4.22)

for some function f which depends on the local trivialization. If the kinetic energy metric is

not positive-definite (for use in toy examples; see the precise assumptions in §4.7.1, and the

footnote there), then we assume that r̈ is given by (4.22).

4.7.3 Reduction in the Stokesian limit

From the definitions (4.12), (4.14) of Iloc,Vloc, we see that we may define Iloc,Vloc by

Iloc(r) =: mIloc(r) Vloc(r) =: cVloc(r).

Defining the parameter ε := m
c
and multiplying both sides of (4.21) by IlocV−1

loc, we obtain

the rewritten equations of motion

g−1ġ = −Amech · ṙ + 1
m
I−1

locp

εIlocV
−1
locṗ = mIloc(Avisc − Amech) · ṙ + p+ εIlocV

−1
locad∗I−1

locp
p− εIlocV

−1
locad∗Amech·ṙp.

(4.23)

In considering the limit in which viscous forces dominate the inertia of the locomoting body,

[KM96] formally set ε = 0 in (4.23) to obtain p = mIloc(Amech − Avisc) · ṙ from the second
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equation. Substituting this into the first equation of (4.23), they derive the following form

of the equations of motion:

g−1ġ = −Avisc · ṙ. (4.24)

In the language of differential geometry, (4.24) states that in the Stokesian limit trajectories

are horizontal with respect to the viscous connection (Definition C.16). We will see in the

next section that this reduction can be extended away from the ε→ 0 limit.

4.8 Reduction in the perturbed Stokes regime

In [EJ16], the argument of [KM96] was explained in more detail using the theory of

normally hyperbolic invariant manifolds (NHIMs) in the context of geometric singular per-

turbation theory [Fen79, Jon95, Kap99]. The idea is to show that for ε > 0 sufficiently

small, the dynamics (4.23) possess an exponentially attractive invariant slow manifold Mε,

such that the dynamics restricted toMε approach (4.24) as ε→ 0. This situation is depicted

in Figure 4.1. We give an alternative argument which yields a result differing from that of

[EJ16] in two ways.

1. [EJ16] give an argument for general mechanical systems without symmetry under the

assumption that the configuration space Q is compact, although they do indicate that

compactness can be replaced with uniformity conditions using noncompact NHIM the-

ory [Eld13]. Our argument assumes symmetry but allows G to be noncompact, though

we do require that S := Q/G be compact. This enables application of our result to

locomotion systems with noncompact symmetry groups, such as the Euclidean group

of planar rigid motions SE(2).

2. [EJ16] consider the limitm→ 0 while holding c and the force exerted by the locomoting

body fixed. This makes sense, because if the exerted force were held fixed while taking
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c → ∞, then trivial dynamics would result in the singular limit: the system would

not move at all. Rather than holding the exerted force fixed, we will consider the

differential equation prescribing the dynamics of the shape variable to be fixed10. Under

this assumption, we show that the dynamics depend only on the ratio ε = m/c, and

in particular the dynamics obtained in the two singular limits m→ 0 and c→∞ are

the same.

Before stating Theorem IV.9, we need the following definition.

Definition IV.7 (Ck
b time-dependent vector fields). Let M be a compact manifold with

boundary, and let f : R ×M → TM a Ck≥0 time-dependent vector field. Let (Ui)ni=1 be a

finite open cover of M and (Vi, ψi)ni=1 be a finite atlas for M such that U i ⊂ Vi for all i, and

for each i define fi := (Dψi ◦ f ◦ (idR × ψ−1
i )). We define an associated Ck norm ‖f‖k of f

via

‖f‖k := max
1≤i≤n

max
0≤j≤k
x∈ψi(U i)

‖Djfi(x)‖, (4.25)

where ‖Djfi(x)‖ denotes the norm of a k-linear map; here Djf includes partial derivatives

with respect to time as well as the spatial variables. If ‖f‖ <∞, we say that f is Ck-bounded

and write f ∈ Ck
b . The norm ‖·‖k makes the Ck

b time-dependent vector fields into a Banach

space. The norms induced by any two such finite covers of M are equivalent, and thereby

induce a canonical Ck
b topology on the space of Ck

b time-dependent vector fields.

Remark IV.8. Definition IV.7 defines the Ck
b topology on the space of Ck

b time-dependent

vector fields on a compact manifold. As discussed in [Eld13, Sec. 1.7], this Ck
b topology is

finer than the Ck weak Whitney topology and coarser than the Ck strong Whitney topology

[Hir94, Ch. 2], but all of these topologies induce the same topology on the subspace of

time-independent vector fields due to compactness. Definition IV.7 is a special case of the
10This implicitly assumes that the locomoting body is capable of exerting O(c) forces.
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definition in [Eld13, Ch. 2] for the Ck
b topology on Ck

b vector fields on Riemannian manifolds

of bounded geometry, and on Ck
b maps between such manifolds.

The following theorem concerns a G-symmetric dynamical system on TQ whose equa-

tions of motion are consistent with our assumptions so far: i.e., they are given in local

trivializations by (4.23) and an equation of the form (4.22).

Theorem IV.9. Assume that S = Q/G is compact. Let 2 ≤ k < ∞, and let Xε be a Ck

family of G-symmetric time-dependent vector fields on TQ with the following properties:

1. For every compact neighborhood with Ck boundary K0 ⊂ TQ and ε > 0, Xε|R×K0 ∈ Ck
b

(Definition IV.7).

2. There exists a compact connected neighborhood K ⊂ TS of the zero section of TS with

Ck boundary, such that N := Dπ−1
Q (K) ⊂ TQ is positively invariant for Xε, for all

sufficiently small ε > 0.

3. Xε is given in each local trivialization T(U × G), where U is a chart for S, by (4.22)

and (4.23):

r̈ = f
(
t, r, ṙ,

1
m
I−1

locp
)

εIlocV
−1
locṗ = mIloc(Avisc − Amech) · ṙ + p+ εIlocV

−1
locad∗I−1

locp
p− εIlocV

−1
locad∗Amech·ṙp

g−1ġ = −Amech · ṙ + 1
m
I−1

locp

(4.26)

for some function f which depends on the local trivialization but is independent of ε.

Then for all sufficiently small ε > 0, there exists a Ck normally hyperbolic invariant manifold

with boundary Mε ⊂ R × N ⊂ R × TQ for the extended dynamics given by the extended

vector field (1, Xε) on R × TQ. Additionally, Mε is uniformly (in time and space) globally

asymptotically stable and uniformly locally exponentially stable (with respect to the distance
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induced by any complete G-invariant Riemannian metric on TQ) for the extended dynamics

restricted to R×N . Finally, there exists ε0 > 0 such that, for each local trivialization U×G,

there exists a Ck map hε : R × (TU ∩ K) × (0, ε0) → g∗ such that Mε ∩ Dπ−1
Q (TU ∩ K)

corresponds to

{(t, r, ṙ, p, g) : p = hε(t, r, ṙ, ε)}, (4.27)

hε(t, r, ṙ, ε) = Iloc [(Amech(r)− Avisc(r)) · ṙ +O(ε)]

(with p defined by (4.19)), and hε together with its partial derivatives of order k or less

are bounded uniformly in time. If f(t, r, ṙ, I−1
locp) is independent of t, then hε and Mε are

independent of t, and Mε can be interpreted as a NHIM for the (non-extended) dynamics

restricted to N .

Remark IV.10. Note that even if we assume f ∈ C∞, we can generally only obtain Ck

NHIMs Mε for k finite. This is because we obtain Mε as a perturbation of a NHIM M0,

and perturbations of C∞ NHIMs are generally only finitely smooth because the maximum

perturbation size ε required to obtain degree of smoothness k for Mε generally depends on k

in such a way that ε→ 0 as k →∞. See [Eld13, Rem. 1.12] and [vS79] for more discussion.

Remark IV.11. By replacing compactness of Q/G with uniformity conditions, it should be

possible to generalize Theorem IV.9 to the situation of Q noncompact where either Q/G is

noncompact, or where there is no symmetry at all. This was pointed out in [EJ16, App. 1].

This observation seems important for the consideration of dissipative mechanical systems

which are only approximately invariant under a symmetry group G, which seems to be a

more realistic assumption.

Remark IV.12. By taking ε→ 0 in Theorem IV.9, we find that p = Iloc(Amech − Avisc) · ṙ in

the limit. Substituting this into the first equation of (4.29), we obtain Equation (4.21) as in

[KM96].
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Proof.

Preparation of the equations of motion. Throughout the proof, we consider the dynamics in

local trivializations of the form U ×G for Q, where U is the domain of a chart for S, so that

we have induced coordinates (r, ṙ) for TU . In such a local trivialization we would like to use

(4.26) to analyze the dynamics, but there are two (related) problems with this. First, the

definition of p depends on m, and this will cause difficulties in verifying Definition IV.7 to

check that certain vector fields are close in the Ck
b topology. Second, we would like to analyze

(4.26) in a singular perturbation framework, but this is difficult to do directly because m

explicitly appears, and the size of m may or may not be commensurate with the size of ε. To

remedy this situation, we change variables via the diffeomorphism (r, ṙ, p, g) 7→ (r, ṙ,Ω, g) of

TU × g∗ ×G→ TU × g×G where Ω ∈ g is defined by

Ω := I−1
locp = Adg−1Γmech(ġ, ṙ) = g−1ġ + Amech · ṙ. (4.28)

Sometimes Ω is referred to as the (body) locked angular velocity [BKMM96, p. 61]. Differen-

tiating IlocΩ = p, using (4.26), and rearranging yields

ṫ = 1

ṙ = v

v̇ = f(t, r, v,Ω)

εΩ̇ = −εI−1
loc

(
d

dt
Iloc

)
Ω + I−1

locVloc(Avisc − Amech) · v + I−1
locVlocΩ + εI−1

locad∗g−1ġIlocΩ,

(4.29)

where we have introduced the variable v := ṙ. We have written ad∗g−1ġ for space reasons, but

note that the Ω̇ equation is independent of g since

g−1ġ = −Amech · ṙ + Ω, (4.30)
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and this implies that ad∗g−1ġ = ad∗Ω − ad∗Amech·ṙ. We see that (4.29) is split into slow (t, r, v)

and fast (Ω) variables, which is the appropriate setup for a singular perturbation analysis.

The remainder of the proof consists of two parts: (i) proving that the NHIM Mε exists, and

(ii) establishing the stability properties of Mε.

Proof that Mε exists. Introducing the “fast time” τ := 1
ε
t and denoting a derivative with

respect to τ by a prime, after the time-rescaling we obtain the regularized equations

t′ = ε

r′ = εv

v′ = εf(t, r, v,Ω)

Ω′ = −εI−1
loc

(
d

dt
Iloc

)
Ω + I−1

locVloc(Avisc − Amech) · v + I−1
locVlocΩ + εI−1

locad∗g−1ġIlocΩ.

(4.31)

This rescaling of time is equivalent to replacing the vector field (1, Xε) on R×TQ by (ε, εXε).

We see from (4.30) and (4.31) that there is a well-defined Ck time-dependent vector field

X̃0 given by the pointwise limit X̃0 := limε→0 εXε. Given any G-symmetric time-dependent

vector field Y on TQ, we let Y/G denote the corresponding reduced vector field on (TQ)/G.

Hence (4.31) shows that the extended vector field (1, X̃0/G) has a smooth embedded subman-

ifold (M0/G) of critical points whose intersection with a locally trivializable neighborhood

is given by

{(r, v,Ω) ∈ TU × g : Ω = (Amech − Avisc) · v}, (4.32)

and it is readily seen that M0/G is described globally as the quotient of the Ehresmann

connection M0 := ker Γvisc by the lifted action of G on TQ.

Furthermore, M0/G is a globally exponentially stable NHIM for the ε = 0 system. To see

this, first note that in any local trivialization t, r, v are constants when ε = 0, and hence Ω′ is

of the form Ω′ = I−1
locVlocΩ+b for a constant b, and therefore has a globally exponentially stable
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equilibrium provided that all eigenvalues of I−1
locVloc have negative real part. To see that this

is the case, fix a basis of g and corresponding dual basis for g∗, and first consider the product

I−1V. With respect to our chosen basis, I,V and their inverses I−1,V−1 are respectively

represented by r-dependent matrices Iij, Vij and their inverses I ij, V ij. It is immediate from

the definitions (4.12) and (4.14) that Iij and Vij are respectively positive definite and negative

definite symmetric matrices (this is why we required the bilinear forms k, ν to be positive

definite when restricted to vectors tangent to G orbits). Since Iij is symmetric positive

definite, we may let (
√
I)ij be a matrix square root of Iij and let (

√
I)ij be its inverse. But

then the product I ikVkj is similar to the symmetric negative definite matrix (
√
I)ikVk`(

√
I)`j

(Einstein summation implied). Hence I−1V has only eigenvalues with negative real part, and

the same is true of I−1
locVloc because of the similarity I−1

locVloc = Ad−1
g I−1VAdg.

Let π̃ : (TQ)/G → TS denote the projection induced by DπQ. Equation (4.32) implies

that M0/G is the image of a section σ0 : TS → (TQ)/G of π̃. Hence (M0/G) ∩ π̃−1(K) =

σ0(K) is compact, andM0/G intersects π̃−1(∂K) transversely. Furthermore, the assumption

that Xε|R×K0 ∈ Ck
b for any compact neighborhood with Ck boundary K0 ⊂ TQ implies that

all partial derivatives of f are bounded on compact sets uniformly in time. This makes it

clear that for any compact K1 ⊂ (TQ)/G, (εXε/G)|R×K1 can be made arbitrarily close to

(X̃0/G)|R×K1 in the Ck
b topology (Definition IV.7) by taking ε > 0 sufficiently small. Hence

by the noncompact NHIM results of [Eld13, Sec. 4.1-4.2], it follows that (M0/G) ∩ π̃−1(K)

persists in extended state space R×N to a nearby attracting NHIM11 Mε/G with boundary

for (ε, εXε/G). Furthermore, Mε/G is the image of a section σε : R×K → (TQ)/G of π̃, and

is given in each local trivialization of (TQ)/G by the graph of a function Ω = h̃ε(t, r, ṙ, ε)

which is Ck bounded uniformly in time. By symmetry, the preimage Mε = π−1
TQ(Mε/G) of

11Mε/G is unique up to the choice of a cutoff function used to modify the dynamics near the boundary of
a slightly enlarged neighborhood of π̃−1(K), used in order to render a slightly enlarged version of (M0/G)∩
π̃−1(K) overflowing invariant [Eld13, Sec. 4.3]. See [EKR18, Sec. 5] and [Jos00, Sec. 2] for more details on
such boundary modifications.
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Mε/G via the quotient πTQ : TQ→ (TQ)/G yields a NHIM Mε for (ε, εXε) (and hence also

for (1, Xε)) on the subset R×N of R× TQ, and Mε is given in each local trivialization by

the graph of the same function Ω = h̃ε as Mε/G but augmented with trivial dependence on

g. The function hε from the theorem statement is given by hε = Iloch̃ε.

Proof of the stability properties of Mε. Fix any complete G-invariant Riemannian metric

on12 TQ, so that it descends to a metric on (TQ)/G making πTQ : TQ → (TQ)/G into

a Riemannian submersion [dC92, p. 185]. We have distance functions dTQ and d̃ on TQ

and (TQ)/G induced by these metrics. For t ∈ R, we let Mε(t) := Mε ∩ ({t} × N) and

Mε(t)/G := πTQ(Mε(t)). Given w ∈ TQ and its orbit πTQ(w) ∈ (TQ)/G, it follows that

for all13 t ∈ R, d(w,Mε(t)) = d(πTQ(w),Mε(t)/G). Hence it suffices to prove that Mε/G is

uniformly globally asymptotically stable and locally exponentially stable for the vector field

(1, Xε/G) on R × π̃−1(K) = R × πTQ(N), and to do this it suffices to prove the same for

(ε, εXε/G).

Fixing an inner product 〈 · , · 〉 and associated norm ‖ · ‖ on g, we accomplish this in two

steps. First, we show that there exists a compact neighborhood K0 ⊂ πTQ(N) of Mε/G

such that K0 is positively invariant for the time-dependent flow of Xε, and such that any

other compact neighborhood K1 ⊂ πTQ(N) of Mε/G flows into K0 after some finite time

depending on K1 but independent of the initial time. Second, we show that all trajectories

in K0 converge to Mε/G at a uniform exponential rate. To achieve this second step, we

show that in the intersection of each local trivialization with K0, ‖Ω− h̃ε(t, r, v)‖ decreases

at an exponential rate. Since (TQ)/G is covered by finitely many local trivialization (by

compactness of S), and since all Riemannian metrics are uniformly equivalent on compact
12For example, take the Sasaki metric on TQ induced by any complete G-invariant metric on Q.
13To prove this, first note that d̃(w,Mε(t)) ≤ d(πTQ(w),Mε(t)/G) because the length `(γ̃) of any curve

γ̃ : [0, 1]→ TQ satisfies `(πTQ ◦ γ̃) ≤ `(γ̃). But if γ : [0, 1]→ (TQ)/G is any curve joining πTQ(w) to Mε/G,
then its horizontal lift γ̃ is a curve joining w to Mε such that `(γ̃) = `(γ). Taking the infimum over all such
γ shows that d(w,Mε(t)) = d(πTQ(w),Mε(t)/G).
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sets14, this will establish uniform exponential convergence of points in K0 with respect to

the distance induced by any Riemannian metric, and in particular the distance d̃.

Consider a local trivialization U×G of Q and the associated form (4.31) of the dynamics

restricted to π̃−1(K ∩ TU). Differentiating ‖Ω‖2 using the last equation of (4.31), it is

easy to check that d
dτ
‖Ω‖2 → −∞ as ‖Ω‖2 → ∞, uniformly in (t, r, v, ε) for ε sufficiently

small. (This follows from the negative definiteness of I−1
locVloc and the compactness of K.)

Hence we see that there exists k0 > 0 such that for all ε sufficiently small, d
dτ
‖Ω‖2 ≤ −1

when ‖Ω‖2 ≥ k2
0. Now k0 depends on the local trivialization, but we can replace k0 with

the largest such constant selected from finitely many fixed local trivializations covering Q.

Hence there exists a compact subset K0 ⊂ πTQ(N) given by {‖Ω‖ ≤ k0} in each of these

fixed local trivializations, such that K0 is positively invariant for the time-dependent flow

of Xε and such that any other compact neighborhood K1 ⊂ πTQ(N) of Mε/G flows into K0

after some finite time independent of the initial time.

It remains only to establish the uniform exponential rate of convergence of trajectories

in K0 to Mε. For each local trivialization U × G of Q, we define the translated variable

Ω̃ := Ω − h̃ε(t, r, v, ε). Since Mε/G is invariant, we must have Ω̃′ = 0 whenever Ω̃ = 0.

Differentiating Ω̃ using (4.31), we therefore find that

Ω̃′ =
[
−εI−1

loc

(
d

dt
Iloc

)
+ εI−1

locad∗g−1ġIloc + εζ(t, r, v, Ω̃) + I−1
locVloc

]
Ω̃

=:
[
εA(t, r, v, Ω̃) + I−1

locVloc(r)
]

Ω̃,
(4.33)

since all of the terms which do not vanish when Ω̃ = 0 must cancel. Here ζ is defined via
14Let ‖ · ‖, ‖ · ‖′ denote the Finslers (norms) induced by two Riemannian metrics, and K0 our compact

set. Since all norms are equivalent on finite-dimensional vector spaces, we have that the restrictions of these
norms to the tangent space of a single point x satisfy 1

c(x)‖ · ‖ ≤ ‖ · ‖
′ ≤ c(x)‖ · ‖. Defining c := supx∈K0 c(x),

we obtain the uniform equivalence 1
c‖ · ‖ ≤ ‖ · ‖

′ ≤ c‖ · ‖ on all of K0. If K0 is a connected submanifold and
we give it the restricted metrics, then by considering the lengths of curves in K0 this implies the uniform
bound 1

cd ≤ d
′ ≤ cd on the Riemannian distances between points inK0 with respect to the restricted metrics.
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Hadamard’s lemma [Nes03, Lemma 2.8]:

ζ(t, r, v, Ω̃) := ∂

∂v
h̃ε(t, r, v)

∫ 1

0

∂

∂Ωf(t, r, v, h̃ε(t, r, v) + sΩ̃) ds, (4.34)

so that ζ(t, r, v, Ω̃)Ω̃ = h̃ε(t, r, v)f(t, r, v, h̃ε + Ω̃). As previously mentioned, the Ck bounded-

ness of Xε on compact subsets of TQ implies that h̃ε, f , and their first k partial derivatives

are uniformly bounded on sets of the form R × K2 with K2 compact. Hence whenever

Ω ∈ K0 and (r, v) ∈ U ∩K, ‖A(t, r, v, Ω̃‖ ≤ L for some constant L depending on the local

trivialization; we replace L with the largest such constant chosen from finitely many local

trivializations covering Q. Integrating both sides of (4.33), taking norms using the triangle

inequality, and applying Grönwall’s Lemma (Corollary E.3) therefore yields

‖Ω̃(τ)‖ ≤ e−λ(τ−τ0)e
∫ τ
τ0
ε‖A(t(s),r(s),v(s),Ω̃(s)‖ ds‖Ω̃(τ0)‖

≤ e[−λ+εL](τ−τ0)‖Ω̃(τ0)‖.
(4.35)

where −λ < 0 is defined via −λ := supr∈S max spec(I−1
locVloc(r)), and is strictly negative since

S is compact. By the previous discussion, taking ε > 0 sufficiently small so that −λ+εL < 0

completes the proof.

Theorem IV.9 and Remark IV.12 show that, to zeroth order in ε, the dynamics restricted

to the slow manifold Mε are given by the viscous connection model (4.24). The following

theorem shows that the dynamics restricted to Mε can be explicitly computed to higher

order in ε. We compute the restricted dynamics to first order in ε. Higher order terms in ε

can also be computed recursively, but we choose not to pursue this here.

Theorem IV.13. Assume the same hypotheses as in Theorem IV.9. Then the dynamics
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restricted to the slow manifold Mε are given in a local trivialization by

g−1ġ = −Avisc · ṙ + εV−1
loc

((
∂

∂r
h0

)
ṙ +

(
∂

∂ṙ
h0

)
r̈ − ad∗g−1ġ(h0)

)
+O(ε2), (4.36)

where

h0(r, ṙ) := 1
m
h0(r, ṙ) = Iloc(Amech(r)− Avisc(r)) · ṙ,

where we are using the definition Iloc := 1
m
Iloc. Alternatively, we may write

g−1ġ = −Avisc · ṙ+εV−1
loc

((
∂

∂r
h0

)
ṙ +

(
∂

∂ṙ
h0

)
f(t, r, ṙ, I−1

loch0)− ad∗g−1ġ(h0)
)

+O(ε2), (4.37)

for a different O(ε2) term.

Remark IV.14. Notice the presence, in the second term of (4.36), of h0 rather than h0 of

(4.27). This is important because the expression for h0 contains an Iloc = mIloc factor.

Because of the possibility that the size of m is commensurate with ε, this means that h0

could be O(ε). However, h0 is O(1), ensuring that the second term is O(ε) but not O(ε2).

Remark IV.15. Equations (4.36) and (4.37) can be viewed as adding O(ε) correction terms

to the viscous connection model (4.24), valid in the limit ε → 0, to account for the more

realistic situation that the inertia-damping ratio m
c

= ε is small but nonzero.

Proof of Theorem IV.13. Consider the function

h̃ε(t, r, ṙ, ε) := I−1
lochε = (Amech(r)− Avisc(r)) · ṙ +O(ε)

from the proof of Theorem IV.9, and define hε := Iloch̃ε = 1
m
hε. Since hε, h̃ε ∈ Ck, we may
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expand them as asymptotic series

hε = h0 + εh1 + . . .+ εkhk +O(εk+1)

h̃ε = h̃0 + εh̃1 + . . .+ εkh̃k +O(εk+1),
(4.38)

where for all i, hi = Iloch̃i. We also already know from Theorem IV.9 that h̃0 = (Amech −

Avisc)· ṙ, and therefore h̃0(t, r, ṙ) ≡ h̃0(r, ṙ) has no explicit t-dependence. We now compute h̃1

via a standard technique [Jon95]. Differentiating both sides of the equation Ω = h̃ε(t, r, ṙ, ε)

with respect to time (using (4.29) to differentiate the left hand side), substituting the second

equation of (4.38) for Ω in the resulting expression, and retaining terms only up to O(ε) we

obtain

−εI−1
loc

(
d

dt
Iloc

)
h̃0 + I−1

locVloc(Avisc − Amech) · ṙ + I−1
locVloc

(
h̃0 + εh̃1

)
+ εI−1

locad∗g−1ġIloch̃0 = ε ˙̃h0 +O(ε2).

Equating the coefficients of ε yields

h̃1 = V−1
loc

(
d

dt
Iloc

)
h̃0 + V−1

locIloc
˙̃h0 − V−1

locad∗g−1ġIloch̃0

= V−1
loc
d

dt

(
Iloch̃0

)
− V−1

locad∗g−1ġIloch̃0.

Since h1 = Iloch̃1 and h0 = Iloch̃0, we find

h1 = IlocV
−1
loc
d

dt

(
h0
)
− IlocV

−1
locad∗g−1ġ

(
h0
)
, (4.39)

and therefore (substituting r̈ = f(t, r, ṙ, I−1
locp) = f(t, r, ṙ, h̃0)+O(ε) and differentiating h0(r, ṙ)
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via the chain rule),

hε(t, r, ṙ, ε) = Iloc(Amech − Avisc) · ṙ

+ εIlocV
−1
loc

((
∂

∂r
h0

)
ṙ +

(
∂

∂ṙ
h0

)
f(t, r, ṙ, h̃0)− ad∗g−1ġ(h0)

)
+ IlocO(ε2).

(4.40)

Notice that, since h̃0 is a function of r, ṙ only, the O(ε) portion of the right hand side of

(4.40) is a function of t, r, ṙ alone and not p. This is required since hε is required to be a

function of t, r, ṙ, ε alone, and is the reason that we needed to replace r̈ by f(t, r, ṙ, h̃0) in

the O(ε) term. Substituting (4.40) into the first equation of (4.23) yields Equation (4.37).

Finally, making the substitution f(t, r, ṙ, h̃0) = r̈ +O(ε) in Equation (4.37) yields Equation

(4.36).

The following theorem makes clearer the functional form of the dynamics (4.36), and it

removes the g−1ġ dependence of the right hand side of (4.36).

Theorem IV.1′. Assume the hypotheses of Theorem IV.9. For sufficiently small ε > 0, then

for each local trivialization there exist smooth fields of linear maps B(r) and (1, 2) tensors

G(r) such that the dynamics restricted to the slow manifold Mε in the local trivialization

satisfy

g−1ġ = −Avisc(r) · ṙ + εB(r) · r̈ + εG(r) · (ṙ, ṙ) +O(ε2). (4.41)

Remark IV.16. The (1,2) tensors G(r) are not generally symmetric, which is clear from

Equation (4.43) below.

Proof. Using the properties of ad∗, we may write ad∗g−1ġ(h0) = (C · h0) · (g−1ġ) for an

appropriate (r-independent) linear map C : g∗ → End(g), and hence we may rewrite (4.36)

as

(idg + εV−1
loc(C · h0)) · (g−1ġ) = −Avisc · ṙ + εV−1

loc

((
∂

∂r
h0

)
ṙ +

(
∂

∂ṙ
h0

)
r̈

)
+O(ε2).
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For sufficiently small ε, we may use the identity

(idg + εV−1
loc(C · h0))−1 = idg − εV

−1
loc(C · h0) +O(ε2)

to obtain

g−1ġ = −Avisc · ṙ+ εV−1
loc(C ·h0) ·Avisc · ṙ+ εV−1

loc

(
∂

∂r
h0

)
ṙ+ εV−1

loc

(
∂

∂ṙ
h0

)
r̈+O(ε2). (4.42)

Since h0(r, ṙ) = Iloc(r)(Amech(r) − Avisc(r)) · ṙ is linear in ṙ, it follows that the second

and third terms are bilinear in ṙ, and the fourth term is linear in r̈. Hence we may take

B(r) := V−1
loc

(
∂
∂ṙ
h0
)
and

G(r)·(ṙ, ṙ) := V−1
loc(C ·Iloc(Amech−Avisc)·ṙ)·Avisc·ṙ+εV−1

loc
∂

∂r
(Iloc(Amech − Avisc) · ṙ)·ṙ. (4.43)
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APPENDIX A

Smoothness of linear parallel transport covering an

inflowing invariant manifold

In this appendix, we show that a Cr flow on an inflowing invariant manifold M ⊂ Q can

always be lifted to a Cr linear flow on E, where π : E → M is any Cr subbundle of TQ|M .

For the definition of a fiber metric [KN63, p. 116] see Def. C.12 in Appendix C.

Lemma A.1. Let M be a Cr inflowing invariant submanifold of Q ∈ C∞ for the flow Φt

generated by a Cr vector field. Let π : E →M be a Cr subbundle of TQ|M equipped with any

fiber metric g. Then there exists a Cr fiber metric h on E arbitrarily close to g and a Cr

flow Πt on E such that for all t > 0, Πt := Π(t, · ) is an isometry with respect to the fiber

metric h, covering Φt|M .

Proof. We define a Cr submanifold (without boundary)Mε by the formulaMε := Φ−ε(intM),

with intM denoting the manifold interior of M . Because M is inflowing invariant, M ⊂Mε.

We extend E arbitrarily to a Cr subbundle Eε ⊃ E of TQ|Mε . In [PT77, App. 1] it is shown

that Mε has a compatible Cr+1 differentiable structure with respect to which the vector field

f restricted to Mε is1 Cr.
1The theorem in [PT77, App. 1] is stated for a C1 invariant manifold and C1 vector field, but the same

156



DenoteMε with this Cr+1 structure by M̃ε, and let I : M̃ε →Mε be the Cr diffeomorphism

which is the identity map when viewed as a map of sets. Thus the pullback bundle I∗Eε is

a Cr vector bundle over M̃ε which is Cr isomorphic to Eε via a vector bundle isomorphism

G1 : I∗Eε → Eε covering I [Hir94, p. 97]. Furthermore, a standard argument using a universal

bundle shows that there exists a Cr+1 vector bundle Ĩ∗Eε over M̃ε and a Cr vector bundle

isomorphism G2 : Ĩ∗Eε → I∗Eε covering the identity [Hir94, p. 101, Thm 3.5]. This situation

is depicted in the following diagram.

Ĩ∗Eε I∗Eε Eε

M̃ε M̃ε Mε

G2

P

G1

P π

id
M̃ε I

(A.1)

Now pull back the fiber metric g on Eε to Ĩ∗Eε. That is, define g̃ through

g̃(v, w) = G∗(g)(v, w) = g(G(v), G(w)),

where G = G1 ◦ G2. Now choose a Cr+1 fiber metric h̃ on Ĩ∗Eε that is close to g̃. Let

∇̃ : Γ(TM̃ε⊗ Ĩ∗Eε)→ Γ(Ĩ∗Eε) be a Cr affine connection compatible with the metric h̃ [KN63,

Chap. 3]. Then the map of parallel transport along solution curves of f , Π̃t : Ĩ∗Eε → Ĩ∗Eε,

is an isometry since ∇̃ is compatible with h̃, and it is Cr because with respect to local

coordinates x1, . . . , xnm and any local frame (σ1, . . . , σns), the parallel transport equation

takes the form

∑
k

 d

dt
vk ◦ Φt(x) +

∑
i,j

Γki,j(vif j) ◦ Φt(x)
σk ◦ Φt(x) = 0, (A.2)

proof works, mutatis mutandis, for a locally invariant Cr manifold and Cr vector field, which is our situation
here.
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where the Christoffel symbols Γki,j defined by

∇̃ ∂

∂xi
σj =

∑
k

Γki,jσk

are Cr functions Γki,j : M̃ε → R. Since f is a Cr vector field with respect to the smooth

structure of M̃ε, it follows that (A.2) defines a Cr ODE for v in local coordinates. The ODE

theorems on existence, uniqueness, and smooth dependence on parameters imply that the

solution to (A.2) depends smoothly on x, v(x), and t. Thus Π̃ : R × Ĩ∗Eε → Ĩ∗Eε is indeed

Cr.

Next, define the fiber metric h on Eε by setting h := (G−1
2 ◦G−1

1 )∗h̃ and define Π: R×Eε →

Eε via

Πt(v) := Π(t, v) := (G1 ◦G2) ◦ Π̃t ◦ (G1 ◦G2)−1(v). (A.3)

Since h̃ was arbitrarily close to g̃, the same holds for h and g. The map Π is Cr because it

is the composition of smooth functions. For any t ∈ R, Π̃t is an isometry of (Ĩ∗Eε, h̃), and

our choice of the pullback metric h on Eε implies that G1 ◦ G2 is an isometry into (Eε, h).

Thus for any t ∈ R, Πt is a composition of vector bundle isometries and is thus an isometry

of vector bundles, hence preserves h. By construction Πt covers Φt|Mε .

Now M is positively invariant under Φt since M is inflowing invariant, hence also E is

positively invariant under Πt. We therefore obtain a well-defined restriction of Πt toM ⊂Mε

and also restrict h to E, completing the proof.
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APPENDIX B

Inflowing NAIMs: Reduction to the boundaryless case

In this appendix, we prove a result which shows roughly that any compact inflowing

NAIM can always be viewed as a subset of a compact boundaryless NAIM. In particu-

lar, this result allows the application of various linearization theorems from the literature

[PS70, BK94, HPS77, Sak94, Rob71, PT77, Sel84, Sel83, BK94] to inflowing NAIMs as in

Corollaries II.24 and II.25 and in §2.5, despite the fact that in the literature these theorems

are formulated only for boundaryless invariant manifolds. We use this result in §2.6 to derive

a linear normal form result for singular perturbation problems in which the critical manifold

is a NAIM.

First, let us describe the intuition behind our construction. Let M ⊂ Q be a compact,

inflowing NAIM for some vector field onQ, andN ⊃M a slight extension along the backward

flow. We rip a hole in our space Q by removing a small neighborhood U0 of ∂N . Then we

glue two copies of Q \U0 together at their boundaries (thought of as a “wormhole”) creating

a total space Q̂. We modify the copies of N slightly such that they connect through the

wormhole as a smooth, compact submanifold N̂ ⊂ Q̂. Finally, we carefully modify the vector

field near the wormhole so that N̂ is a NAIM again for the modified vector field.
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This procedure is made precise in the proof of Proposition B.1 below, but let us already

introduce some more details using Figure B.1. A family of smooth tubular neighborhoods

U0 ⊂ . . . ⊂ U3 of ∂N are chosen so that the vector field f points inward at each N \ Ui,

and so that each W s
loc(M) ∩ Ui = ∅. We smoothly rescale f inside U3 to create a vector

field f̃ such that f̃ is zero on U2, and we smoothly approximate N inside U2 to create a

submanifold Ñ such that Ñ ∩U1 is a C∞ submanifold. We next create a copy of Q, remove

the subset U0 from each copy to form two copies of Q′ := Q \ U0, and let Q̂ be the double

of Q′ obtained by glueing the two copies of Q′ along ∂Q′ = ∂U0, forming a “wormhole”

between the two spaces. Using a standard technique from differential topology, we give Q̂

a C∞ differential structure such that N̂ ⊂ Q̂ is a Cr submanifold, where N̂ is comprised of

the two copies of Ñ (this step is the reason why we needed to approximate N by Ñ). We

give Q̂ a Riemannian metric which agrees with the original metric on each copy of Q′ except

on an arbitrarily small neighborhood of ∂Q′. The vector field f̂0, defined to be equal to f̃ on

each copy of Q′, is automatically Cr since it is zero on a neighborhood of ∂Q′. Finally, we

modify f̂0 inside each copy of U3 to create a vector field f̂ on Q̂ such that N̂ is an r-NAIM

for f̂ . We show that the resulting global stable foliation Ŵ s(M) for f̂ over a copy of M

agrees with the global stable foliation W s(M) for f , and that certain asymptotic rates for f

are preserved by f̂ .

Proposition B.1. Let M,N ⊂ Q be compact inflowing r-NAIMs, with M a proper subset

of the manifold interior of N , for the Cr≥1 flow Φt generated by the Cr≥1 vector field f on

Q. Let U0 be an arbitrarily small tubular neighborhood of ∂N , having smooth boundary ∂U0

and disjoint from W s
loc(M). Define Q̂ to be the double of Q \ U0.

Then there exists a C∞ differential structure on Q̂ and a Cr vector field f̂ : Q̂ → TQ̂

such that

1. f̂ is equal to f on each copy of Q \ U0, except on an arbitrarily small neighborhood of
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U0 ⊂ . . . ⊂ U3U0 ⊂ . . . ⊂ U3

M
Ñ

W s
loc(M)

Q

Figure B.1: A schematic figure of the constructions used in Prop. B.1.

∂U0.

2. There exists a compact and boundaryless r-NAIM N̂ for f̂ , with N̂ equal to N on each

copy of Q \ U0, except on an arbitrarily small neighborhood of ∂U0.

3. The global stable foliation of M for f does not intersect U0, and it coincides with the

global stable foliation of M for f̂ , when M and W s(M) are identified via inclusion with

subsets of a copy of Q \ U0 in Q̂.

Let Φ̂t be the Cr flow generated by f̂ , and let Ês be the DΦ̂t|
N̂
-invariant stable vector bundle

for the NAIM N̂ . If, additionally, there exist constants K > 0 and α < 0 such that for all

m ∈M , t ≥ 0 and 0 ≤ i ≤ k the k-center bunching condition

‖DΦt|TmM‖
i‖DΦt|Esm‖ ≤ KeαtTDΦt|TmMU (B.1)

is satisfied for the original system on Q, then (B.1) will also be satisfied with M,Es, and Φt

replaced by N̂ , Ês, and Φ̂t, and with α replaced by some different constant α̂ < 0.
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Similarly, if additionally there exist constants 0 < δ < −α < −β and K ≥ 1 such that

for all t ≥ 0
K−1e−δt ≤ TDΦt|TMU ≤ ‖DΦt|TM‖ ≤ Keδt,

K−1e−δt ≤ T(DΦt|TM)−1U ≤ ‖(DΦt|TM)−1‖ ≤ Keδt,

K−1eβt ≤ TDΦt|EsU ≤ ‖DΦt|Es‖ ≤ Keαt

(B.2)

uniformly on TM and Es, then we can choose f̂ appropriately, such that the same will be

true for Φ̂t, TN̂ , and Ês with modified constants 0 < δ̂ < −α̂ < −β̂ arbitrarily close to

δ, α, β.

Remark B.2. It is not an additional hypothesis to require the existence of the manifold N

in Proposition B.1. This is because given any compact inflowing NAIM M , then for any

sufficiently small ε > 0, N := Φ−ε(M) will be a compact inflowing NAIM containing M .

We mention N explicitly only to highlight the fact that any compact inflowing NAIM N

containing M in its manifold interior will do.

Proof. Let ε > 0 be any small positive number, and let U0, U1, U2, U3 be arbitrarily small

tubular neighborhoods of ∂N , disjoint from W s
loc(M), satisfying ∂N ⊂ U0 ⊂ U0 ⊂ U1 ⊂

U1 ⊂ U2 ⊂ U2 ⊂ U3 ⊂ Φ−ε(W s
loc(N)), and such that all Ui have C∞ boundary ∂Ui. See

Figure B.1. Since N is inflowing, we may further construct the Ui so that f is strictly inward

pointing at the boundary of each N \Ui, and so that all points in U3 leave U3 in a uniformly

finite time.

It follows that W s(M) ∩ U3 = ∅. We have chosen U3 to be disjoint from W s
loc(M), so

to see this, suppose that there exists m ∈ M and y ∈ (W s(m) \ W s
loc(M)) ∩ U3. Since

Φε(U3) ⊂ W s
loc(N) by construction, by continuity there exists t0 > 0 such that Φt0(y) ∈

W s
loc(N) \W s

loc(M). Let n ∈ N \M be the unique point such that Φt0(y) ∈ W s
loc(n). Since

y ∈ W s(m) and since W s(M) is Φt-invariant, it follows also that Φt0(y) ∈ W s(Φt0(m)).

By uniqueness of the stable fibers, this implies that n = Φt0(m). But n ∈ N \ M and
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Φt0(m) ∈M by positive invariance of M , so we have obtained a contradiction.

Rescaling f with a smooth cutoff function supported in Q \ U2 and identically equal to

1 on Q \U3, we replace f with a Cr vector field f̃ which is equal to f on Q \U3 and zero on

U2. By continuity of Df , U2 consists entirely of nonhyperbolic critical points for f̃ .

We next approximate N by a Cr manifold Ñ such that Ñ coincides with N on Q\U2 and

such that Ñ ∩U1 is a C∞ submanifold intersecting ∂U0 transversely. This can be achieved by

giving N a C∞ differential structure and then approximating the inclusion N ↪→ Q relative

to N \ U2 in the Cr topology, see [Hir94, Ch. 2] for approximation theory details. The fact

that f̃ |U2
= 0 implies that Ñ is invariant under f̃ .

We define Q′ := Q\U0, a C∞ manifold with boundary ∂Q′ = ∂U0. Recall that a C∞ collar

for ∂Q′ in Q′ is a C∞ embedding h : ∂Q′× [0,∞)→ Q′ such that h(x, 0) ≡ x [Hir94, p. 113].

We choose a C∞ collar h for ∂Q′ which restricts to a collar of ∂Ñ in Ñ , i.e., h|
∂Ñ×[0,∞) → Ñ

is a collar [Hir94, Thm 6.2]. Now let Q̂ be the double of Q′, the topological space obtained

by first forming the disjoint union of two copies of Q′, then identifying corresponding points

in ∂Q′. We use the collar h to henceforth endow Q̂, in the usual way, with a C∞ differential

structure (see, e.g., [Hir94, p. 184] or [Lee13, p. 226]), and we let S denote the common

image of ∂Q′ in Q̂.

Let N̂ denote the image of Ñ in Q̂. Since h was chosen to restrict to a collar for ∂Ñ in Ñ ,

it follows that N̂ is a Cr submanifold of Q̂. Letting f̂0 be the vector field on Q̂ which is equal

to f̃ on each copy of Q′, it is immediate that f̂0 ∈ Cr since f̂0 is zero on a neighborhood of

∂Q′. Finally, using a partition of unity, we give Q̂ a C∞ Riemannian metric which coincides

with the original metric on each copy of Q′, except on an arbitrarily small neighborhood of

S.

Next, we modify f̂0 near S to make N̂ normally attracting. LetX be a C∞ manifold which

is C1-close to N̂ . Let ϕ : E ′ → Q̂ be a C∞ tubular neighborhood of X. I.e., π′ : E ′ → X is a

C∞ vector bundle and ϕ is an open C∞ embedding with ϕ|X the inclusion map, identifying
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X with the zero section of E ′. If X approximates N̂ sufficiently closely, then ϕ−1(N̂) is the

image of a Cr section h : X → E ′. Let V2 ⊂ Q̂ denote the open set which is the image of

the two copies of U2 in Q̂, and define V3 similarly. Let χ : E ′ → [0,∞) be a C∞ compactly

supported bump function such that χ ≡ 1 on V2 and suppχ ⊂ V3. We define a Cr vector

field f̂ on ϕ(E ′) by

f̂ ◦ ϕ(vx) := Dϕvx
[
(ϕ∗f̂0)(vx)− ρχ(vx)(vx − h(x))

]
,

where π′(vx) = x, ϕ∗f̂0 := (ϕ−1)∗f̂0, and ρ := (α+ β)/2 if (B.2) holds and ρ := 1 otherwise.

Since χ is compactly supported, it follows that f̂(vx) is equal to f(vx) for sufficiently large

‖vx‖, hence we may extend f̂ to a Cr vector field on Q̂ (still denoted f̂) by defining f̂ to be

equal to f on Q̂ \ ϕ(E). Let Φ̂t
1 denote the flow of f̂ .

Define a subbundle E of TQ|
N̂
by E := Dϕ(VE ′|h(X)), where VE ′ := ker Dπ′ ⊂ TE ′ is the

vertical bundle. Since h is a section of E ′, it follows that TE ′|h(X) = Th(X)⊕VE ′|h(X), and

since ϕ is a local diffeomorphism it follows that Dϕ preserves this splitting: TQ̂|
N̂

= TN̂⊕E.

Let ΠE : TQ̂|
N̂
→ E be the projection TN̂ ⊕ E → E. We now argue that N̂ is an r-NAIM

for f̂ ; it suffices to show that N̂ is an r-NAIM for the linear flow ΠE ◦DΦ̂t
1|E [Fen71, Prop. 1,

Thm 6]. To do this, by the Uniformity Lemma [Fen71] it suffices to show that for each n ∈ N̂

there exist Cn > 0 and an < 0 such that for any t ≥ 0 and 0 ≤ i ≤ r,

‖ΠE ◦ DΦ̂t
1|En‖ ≤ Cne

antTDΦ̂t
1|TnN̂Ui. (B.3)

First note that f̂ is equal to f on Q̂ \V3, N̂ \V3 is positively invariant, and N is an r-NAIM

for f . It follows that for each n ∈ N̂ \ V3, we can find an and Cn such that (B.3) holds.

Next, let n ∈ N̂ be any point with f̂0(n) 6= 0. Since Φ̂t
1 takes n into N̂ \ V3 in finite time, in

this case we can also find an, Cn such that (B.3) holds. Finally, if n ∈ N̂ is any point with
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f̂0(n) = 0, then En is invariant under ΠE ◦ DΦ̂t
1|En . The definition of f̂ and E imply that n

is an exponentially stable fixed point for the restriction of this flow to En, so we again find

an, Cn such that (B.3) holds. Hence, by the Uniformity Lemma, N̂ is indeed an r-NAIM —

in particular, there exists a DΦ̂t
1-invariant stable bundle Ês

1 over N̂ .

Now suppose additionally that either the k-center bunching conditions (B.1) or (B.2)

held for the original system on Q. Considering now the flow DΦ̂t
1|Ês1 on Ês

1 and repeating the

argument in the preceding paragraph — using a different version of the Uniformity Lemma

[Fen74, Lem. 16] for the case of center bunching conditions — shows that the corresponding

condition still holds for f̂ on Q̂.

It remains only to show that the global stable foliation Ŵ s(M) for f̂ agrees with W s(M)

when we identifyM andW s(M) with either copy of their images in Q̂— for definiteness, let

us fix one such copy of M and W s(M) in what follows (with the former copy a subset of the

latter). To accomplish this, we first consider the local foliations Ŵ s
loc(M) andW s

loc(M). Both

local foliations are Φ̂t-invariant, the latter because f̂ is equal to f onW s(M). But sinceM is

a compact and inflowing NAIM, the standard Hadamard graph transform [Fen74] shows that

there exists a unique local invariant foliation transverse to M . More precisely, this means

that there exists a sufficiently small neighborhood J ofM such that ∀m ∈M : J∩W s
loc(m) =

J∩Ŵ s
loc(m). Now for any m ∈M and any y ∈ W s(m), there exists t0 > 0 such that Φt0(y) ∈

J ∩W s
loc(Φt0(m)) = J ∩ Ŵ s

loc(Φt0(m)). It follows that y ∈ Φ−t0(Ŵ s
loc(Φt0(m))) ⊂ Ŵ s(m) and

therefore that W s(m) ⊂ Ŵ s(m). A symmetric argument shows that Ŵ s(m) ⊂ W s(m), and

since m ∈ M was arbitrary it follows that the leaves of W s(M) and Ŵ s(M) coincide. This

completes the proof.
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APPENDIX C

Fiber bundles

In this appendix, we review the basic notions from the theory of fiber bundles that we

use. Our definition of Ck fiber bundles follows [Nee10, Def. 1.1.1]. Other useful references

for the topological and C∞ cases include [Ste51, Hus66, Blo15], with a self-contained and

brief introduction appearing in [Blo15, Ch. 2]. We also mention [Lee13, Hir94, KN63]

as containing nice introductions to vector bundles, and [Blo15, KN63] as containing nice

introductions to principal bundles.

Definition C.1 (Fiber bundles). A Ck fiber bundle, with 1 ≤ k ≤ ∞, is a quadruple

(E,B, F, π) consisting of Ck manifolds E, B, and F and a Ck map π : E → B with the

following property of local triviality: each point b ∈ B has an open neighborhood U ⊂ B for

which there exists a Ck diffeomorphism

ϕU : π−1(U)→ U × F,

satisfying

pr1 ◦ ϕU = π,
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where pr1 : U × F → U is the projection onto the first factor. A C0 fiber bundle is defined

by replacing all Ck manifolds and diffeomorphisms above with arbitrary topological spaces

and homeomorphisms, respectively. Often we abuse terminology and simply refer to E or to

π : E → B as the fiber bundle when the other data is understood.

Remark C.2. The following terminology is common. E is called the total space, B is called

the base space, F is the model fiber or fiber type, and π is called the bundle projection. Sets

of the form Eb := π−1(b) are called the fibers of the bundle or of π. The map ϕU is called a

local trivialization. (E,B, F, π) is sometimes called an F -bundle over B.

Example C.3 (Disk bundles). A Ck disk bundle is a Ck fiber bundle (E,B, F, π) with

F = Rn, for some n ∈ N.

Definition C.4 (Vector bundles). A (finite-dimensional) Ck vector bundle is a Ck disk

bundle (E,B, F, π) with the following additional requirement. For any open sets U, V ⊂ B

with U ∩ V 6= ∅, the transition map

ϕU,V := ϕ−1
U ϕV |(U∩V )×F : (U ∩ V )× F → (U ∩ V )× F

is given by

ϕU,V (b, v) = (b, A(b)v),

where A : U ∩ V → GL(n,R) is a Ck invertible matrix-valued map.

Example C.5 (The tangent bundle). Let Q be a smooth (C∞) n-manifold. Then its tangent

bundle π : TQ → Q is a smooth vector bundle. To see this, let (U, ψU) be a smooth chart

for Q. Identifying TRn ∼= Rn × Rn, then ϕU := (π, pr2 ◦ DψU) : TQ|U → U × Rn satisfies

pr1 ◦ ϕU = π, where TQ|U := π−1(U) and pri is projection onto the i-th factor. If (V, ψV ) is

another chart, then

ϕU,V

(
b,
∑
i

vkek

)
=
(
b,
∑
i

∂ψiU,V
∂xj

vjei

)
,
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where (ek) is the standard basis of Rn and ψU,V := ψ−1
U ◦ ψV |U∩V . Hence we may take the

Jacobian of ψU,V to play the role of A from Definition C.4, so TQ is indeed a smooth vector

bundle.

Definition C.6. A Ck isomorphism ψ : E → E ′ of Ck fiber bundles (E,B, F, π) and

(E ′, B′, F ′, π′) covering a map ρ : B → B′ is a Ck fiber-preserving diffeomorphism ψ (home-

omorphism if k = 0): each fiber π−1(b) is bijectively mapped to the fiber π′−1(ρ(b)). This is

equivalent to requiring that ψ is a Ck diffeomorphism and

π′ ◦ ψ = π ◦ ρ.

A Ck fiber bundle (E,B, F, π) is trivial as a Ck bundle if it is Ck isomorphic to the fiber

bundle (B × F,B, F, pr2), where pr2 is projection onto the second factor.

Example C.7. Let π : E → B be any Ck map, and assume there exists a fiber bundle

(E ′, B, F, π′) and a Ck diffeomorphism ψ : E → E ′ with the property that

π′ ◦ ψ = idB.

Then (E,B, F, π) is also a Ck fiber bundle. This is because if ϕU : π′−1(U)→ U ×F is a Ck

local trivialization of π′ : E ′ → B, then ϕU ◦ ψ : π−1(U)→ U × F is a Ck local trivialization

of π : E → B. In particular, if (E ′, B, F, π′) is a disk bundle, then so is (E,B, F, π). (recall

that all vector bundles are disk bundles — we use this in the proof of Theorem II.5).

Definition C.8. A map X : B → E is a Ck section of a fiber bundle (E,B, F, π) if X ∈ Ck

and π ◦X = idB.

Example C.9. A Ck section X of the tangent bundle TQ is the same thing as a Ck vector

field X on Q. The requirement π ◦ X = idQ simply means that X(q) is a tangent vector

based at q ∈ Q.
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We next give definitions of vector subbundles and the Whitney sum of vector bundles.

These concepts are fundamental to the very definition of normal hyperbolicity, see §2.3.

Definition C.10 (Vector subbundle). A vector bundle (E ′, B, F, π) is a Ck vector subbundle

or linear subbundle of a Ck vector bundle (E,B, F, π) if every b ∈ B has a neighborhood U

such that there exist pointwise linearly independent Ck sections (X1, . . . , Xd) (called a local

frame) which span E ′c for all c ∈ U .

Definition C.11 (Whitney sum). The Whitney sum of two Ck vector bundles (E,B,Rn, π)

and (E ′, B,Rm, π′) is the Ck vector bundle (E ⊕ E ′, B,Rn+m, π̃) whose fiber (E ⊕ E ′)b is

given by Eb ⊕ E ′b. The Ck vector bundle structure is determined as follows. If ϕU and ϕ′U

are local trivializations for E and E ′ over U , then (ϕU , pr2 ◦ ϕ′U) is a local trivialization for

E ⊕ E ′ over U .

Following [KN63, p. 116], we now give the definition of a fiber metric on a vector bundle,

which generalizes the notion of a Riemannian metric on the tangent bundle of a manifold.

Definition C.12 (Fiber metric). A Ck fiber metric on a Ck vector bundle π : E →M is an

assignment, to each m ∈ M , of an inner product gm on the fiber π−1(m), such that for any

Ck sections X, Y : M → E, the map m 7→ gm(X(m), Y (m)) is Ck.

Using a partition of unity, it easy to show that fiber metrics always exist on any vector

bundle over a paracompact base. A fiber metric defines a norm on each fiber π−1(m) via

‖X‖m :=
√
gm(X,X) for X ∈ Em. We will often suppress the subscript m and simply write

‖X‖.

We next define principal bundles, for which we need only the smooth case. We define

principal bundles such that the transition maps are given in terms of right multiplication by

an element of the relevant Lie group (see below). The opposite convention seems to be more

commonly used, but our convention applies to our needs in Chapter IV. See also [BKMM96],

where the same convention is adopted for similar reasons.
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Definition C.13 (Principal bundles). Let G be a Lie group. A smooth principal G-bundle

(E,B,G, π) is a smooth fiber bundle (E,B,G, π) with the following additional requirement.

For any open sets U, V ⊂ B with U ∩ V 6= ∅, the transition map

ϕU,V := ϕ−1
U ϕV |(U∩V )×F : (U ∩ V )× F → (U ∩ V )× F

is given by

ϕU,V (b, g) = (b, gt(b)),

where t : U ∩ V → G is a smooth G-valued.

Example C.14 (Principal bundles from group actions). Let E be a smooth manifold and

let θ : E × G → N be a smooth left action of the Lie group G on N . The group action is

free if for any nonidentity group element g 6= e, θg : E → E has no fixed points. The group

action is proper if the map ψ : E ×G→ E ×E defined by ψ(x, g) = (θg(x), x) is proper: for

any compact K ⊂ E × E, ψ−1(E) is compact [Lee13, Ch. 21].

Then the orbit space E/G is a topological manifold of dimension dimE − dimG, and

has a unique smooth structure with the property that π : E → E/G is a smooth submersion

[Lee13, Thm 21.10]. Furthermore, (E,E/G,G, π) is a smooth principal G-bundle as in

Definition C.13. Conversely, every principal bundle arises in this way, and therefore every

principal bundle is equipped with a natural G action on its total space.

Definition C.15 (Ehresmann and principal connections). Let (E,B, F, π) be a smooth fiber

bundle. An Ehresmann connection is a vector subbundle H of TE with the property that

TE = H ⊕ ker Dπ. (C.1)

Let (E,B,G, π) be a principal G-bundle. A principal connection is an Ehresmann connection
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H with the additional property that

∀g ∈ G : ∀x ∈ E : DθgHx = Hθg(x), (C.2)

where θ is the associated left G action on the principal bundle (see Example C.14). A

principal connection is equivalently specified by a g-valued 1-form Γ on E satisfying the

following two properties.

1. ∀v ∈ TE : Γ(Dθgv) = AdgΓ(v).

2. ∀ξ ∈ g : Γ(ξE) = E,

where ξE(q) := ∂
∂t
θexp(tξ)(q) is the infinitesimal generator of ξ ∈ g at q. The Ehresmann

connection satisfying (C.2) is recovered as H = ker Γ.

Note that the infinitesimal generator ξE as defined above is a smooth vector field on E.

Definition C.16 (Horizontal paths and lifts). Let (E,B, F, π) be a fiber bundle equipped

with an Ehresmann connection H. Let I ⊂ R be any interval. A smooth path σ : I → E is

horizontal if

∀t ∈ I : σ̇(t) ∈ Hσ(t). (C.3)

Let γ : I → B be a smooth path in B, where I ⊂ R is an interval. A horizontal path

γ̃ : I → E is a horizontal lift of γ if π ◦ γ̃ = γ.

Remark C.17. The existence and uniqueness theorem from ordinary differential equations

shows that, for any smooth path γ : I → B and any x ∈ π−1(γ(0)), there exists a unique

smooth horizontal lift γ̃ : I → E with γ(0) = x.

Remark C.18. Let (E,B,G, π) be a principal G-bundle equipped with a principal connection

H, and consider a smooth loop γ : I → B with b = γ(0) = γ(1). Then there exists g ∈ G
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such that for all horizontal lifts γ̃ : I → E of γ, γ̃(1) = θg(γ̃(0)), where θ is the natural left

G action on E. The set of all such g for all such loops γ is called the holonomy group of H

based at b.
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APPENDIX D

Chebyshev’s weak law of large numbers

In this appendix, we collect some results on the weak law of large numbers (LLN) which

are essentially due to Chebyshev [Che99]. These results apply to sequences of random

variables which are independent, but not necessarily identically distributed.

In what follows, we consider a probability space (Ω,Σ,P) comprising a set Ω, sigma alge-

bra Σ ⊂ 2Ω, and probability measure P : Σ → R. A random variable is a Borel-measurable

function X : Ω → Rn. The expected value or mean E[X] of of X is given by the Lebesgue

integral

E[X] :=
∫

Ω
X dP.

If µ = E[X], then the covariance cov(X) of X is defined via

cov(X) := E[(X − µ)(X − µ)T ]

and the variance var(X) of X is given by

var(X) := trace(cov(X)) = E[‖X − µ‖2].
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Given a sequence X1, X2, . . . of random variables, we define

XN := 1
N

N∑
i=1

Xi.

We now state the main theorem, which is a slight generalization of Chebyshev’s weak law of

large numbers. We then state some corollaries including Chebyshev’s weak LLN, deferring

the proof of Theorem D.1 to the end of the Appendix.

Theorem D.1. Let X1, X2, . . . be a sequence of independent random variables. Assume that

lim
N→∞

1
N2

N∑
i=1

var(Xi) = 0.

Then

∀ε > 0: lim
N→∞

P(‖XN − E[XN ]‖ > ε) = 0.

Furthermore, we have the explicit rate of convergence

P(‖XN − E[XN ]‖ > ε) ≤ 1
ε2N2

N∑
i=1

var(Xi).

Corollary D.2 (Chebyshev’s weak LLN). Let X1, X2, . . . be a sequence of independent ran-

dom variables such that there exists σ2 > 0 such that ∀i : var(Xi) ≤ σ2. Then

∀ε > 0: lim
N→∞

P(‖XN − E[XN ]‖ > ε) = 0.

Furthermore, we have the explicit rate of convergence

P(‖XN − E[XN ]‖ > ε) ≤ σ2

ε2N
.

Corollary D.3 (Approximate weak LLN). Let X1, X2, . . . be a sequence of independent
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random variables. Assume that

lim
N→∞

1
N2

N∑
i=1

var(Xi) = 0,

and that there exists µ ∈ Rn and δ > 0 such that

∀i : ‖E[Xi]− µ‖ < δ.

Then

∀ε > 0: lim
N→∞

P(‖XN − µ‖ > ε+ δ) = 0.

Furthermore, we have the explicit rate of convergence

P(‖XN − µ]‖ > ε) ≤ 1
ε2N2

N∑
i=1

var(Xi).

Proof of Corollary D.3. The triangle inequality yields for all N

‖XN − µ‖ − δ ≤ ‖XN − E[XN ]‖+ ‖E[XN ]− µ‖ − δ < ‖XN − E[XN ]‖.

Hence

P(‖XN − µ‖ > ε+ δ) < P(‖XN − E[XN ]‖ > ε) ≤ 1
ε2N2

N∑
i=1

var(Xi),

with the second inequality following from Theorem D.1. For fixed ε > 0, the right hand side

tends to zero as N →∞ by assumption.

We will use Chebyshev’s inequality to prove Theorem D.1. For completeness, we state

this result and give a proof.

Lemma D.4 (Extended Markov’s inequality). Let X be a random variable with mean µ.

175



Then for any k, p > 0,

P(‖X − µ‖ > k) ≤ E[‖X − µ‖p]
kp

.

In particular, if σ2 = var(X) then by taking p = 2 we obtain Chebyshev’s inequality

P(‖X − µ‖ > k) ≤ σ2

k2 .

Proof of Lemma D.4.

P(‖X − µ‖ > k) =
∫
{‖X−µ‖p/kp>1}

1 dP ≤ 1
kp

∫
Ω
{‖X − µ‖p dP = E[‖X − µ‖p

kp
.

Proof of Theorem D.1. By Lemma D.4, we have

P(‖XN − E[XN ]‖ > ε) ≤ var(XN)
ε2

.

But var(XN) = 1
N2
∑N
i=1 var(Xi) by independence of the Xi, and this quantity tends to zero

by assumption.
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APPENDIX E

Grönwall’s inequality

In this appendix, we present a reasonably general version of results due to Grönwall

[Gro19] and Bellman [Bel43]. Theorem E.1 is similar to [Kha02], though we do not require

continuity of the function α and we provide a different proof.

Theorem E.1. Let J denote an interval of the real line of the form [a,∞) or [a, b] or [a, b),

with a < b. Let u and β be continuous real-valued functions on J , and let α be a real-

valued function which is integrable on every compact subinterval of J . Assume also that β is

nonnegative, and that

∀t ∈ J : u(t) ≤ α(t) +
∫ t

a
β(s)u(s) ds, (E.1)

Then

∀t ∈ J : u(t) ≤ α(t) +
∫ t

a
α(s)β(s)e

∫ t
s
β(r) dr ds. (E.2)

Remark E.2. No assumptions are needed on the signs of the functions α or u.

Corollary E.3. Assume the hypotheses of Theorem E.1. Additionally assume that α is

nondecreasing. Then

u(t) ≤ α(t)e
∫ t
a
β(r) dr. (E.3)
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Proof of Corollary E.3.

u(t) ≤ α(t)
(

1 +
∫ t

a
β(s)e

∫ t
s
β(r) dr ds

)
= α(t)

(
1−

∫ t

a

d

ds
e
∫ t
s
β(r) dr ds

)
= α(t)e

∫ t
a
β(r) dr.

Proof of Theorem E.1. Define I(t) :=
∫ t
a β(s)u(s) ds. Then İ := d

dt
I = βu ≤ β(α + I), with

the last inequality following since β ≥ 0. (Here we used the continuity of u, β to invoke part

1 of the fundamental theorem of calculus, FTC-1 hereafter.) Hence

İ − βI ≤ αβ.

Define the antiderivative B(t) :=
∫ t
a β(s) ds. (Here continuity of β is again required, in

anticipation of another invocation of FTC-1.) Multiplying both sides of the above inequality

by the integrating factor e−B(t), we obtain

d

dt

(
e−B(t)I(t)

)
≤ e−B(t)α(t)β(t).

Integrating both sides from a to t (this is where we require integrability of α) and using the

fact that B(a) = 0, we obtain

I(t) ≤
∫ t

a
eB(t)−B(s)α(s)β(s) ds.

Since u(t) ≤ α(t) + I(t), we obtain

u(t) ≤ α(t) +
∫ t

a
eB(t)−B(s)α(s)β(s) ds = α(t) +

∫ t

a
α(s)β(s)e

∫ t
s
β(r) dr ds.

178



BIBLIOGRAPHY

179



BIBLIOGRAPHY

[AC14] M M Ankarali and N J Cowan, System identification of rhythmic hybrid dynami-
cal systems via discrete time harmonic transfer functions, 53rd IEEE Conference
on Decision and Control, IEEE, 2014, pp. 1017–1022.

[Arn74] L Arnold, Stochastic differential equations: theory and applications, 1 ed., John
Wiley and Sons, 1974.

[Bel43] R Bellman, The stability of solutions of linear differential equations, Duke Math-
ematical Journal 10 (1943), no. 4, 643–647.

[BHR18] B Bittner, R L Hatton, and S Revzen, Geometrically optimal gaits: a data-
driven approach, Nonlinear Dynamics (2018), 1–16.
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