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Abstract
We study global properties of the global (center-)stable manifold of a 
normally attracting invariant manifold (NAIM), the special case of a normally 
hyperbolic invariant manifold (NHIM) with empty unstable bundle. We restrict 
our attention to continuous-time dynamical systems, or flows. We show that 
the global stable foliation of a NAIM has the structure of a topological disk 
bundle, and that similar statements hold for inflowing NAIMs and for general 
compact NHIMs. Furthermore, the global stable foliation has a Ck disk bundle 
structure if the local stable foliation is assumed Ck. We then show that the 
dynamics restricted to the stable manifold of a compact inflowing NAIM 
are globally topologically conjugate to the linearized transverse dynamics at 
the NAIM. Moreover, we give conditions ensuring the existence of a global 
Ck linearizing conjugacy. We also prove a Ck global linearization result for 
inflowing NAIMs; we believe that even the local version of this result is new, 
and may be useful in applications to slow-fast systems. We illustrate the theory 
by giving applications to geometric singular perturbation theory in the case of 
an attracting critical manifold: we show that the domain of the Fenichel normal 
form can be extended to the entire global stable manifold, and under additional 
nonresonance assumptions we derive a smooth global linear normal form.

Keywords: invariant manifolds, normal hyperbolicity, linearization, singular 
perturbation theory, slow-fast systems
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1. Introduction

Much of dynamical systems theory pertains to the behavior of points evolving under some 
smooth flow Φ : R× Q → Q near an attracting invariant set. One seeks techniques to better 
understand the behavior of these points. Perhaps the most important method—and the focus 
of this paper—is the use of different coordinate systems near the attracting set, with respect to 
which the dynamics take a simpler form. Particularly strong results in this direction hold in the 
case that the attracting invariant set is a normally attracting invariant manifold (NAIM). This is 
a special case of a normally hyperbolic invariant manifold (NHIM), which is roughly defined 
as follows. A manifold M ⊂ Q is invariant if ∀t ∈ R : Φt(M) = M , and normal hyperbolicity 
means roughly that trajectories converge (or diverge) transversely to M sufficiently faster than 
they converge (or diverge) within M [Fen71, HPS77, Wig94].

Restricting, for now, to the case that M has no boundary, it is a well-known fundamental 
result [Fen74, HPS77, theorem 2, theorem 4.1] that a NAIM, as a special case of a NHIM, has 
an associated ‘stable foliation’: this is a partition of the stability basin of M into submanifolds 
Ws(m) for m ∈ M  (called ‘leaves’) such that the flow Φt  maps Ws(m) to Ws(Φt(m)), for any 
t � 0 and m ∈ M . Furthermore, every x in the stability basin of M has a neighborhood Nx such 
that Nx is topologically a product of two Euclidean spaces; the first space indexes leaves and 
the second space locally parametrizes them (see figure 1, left). By using this foliation to define 
coordinates, one obtains a coordinate system in which the dynamics on M are decoupled from 
the dynamics transverse to M.

It is also well known [PS70, HPS77, PT77]—and often used in the physical sciences, e.g. in 
the special case of the Hartman–Grobman theorem [GH83]—that for M a NAIM (or NHIM), 
there exists an open neighborhood of M in which the flow is topologically conjugate to its 
partial linearization. For simplicity, we first describe this result in the special case that M ⊂ Q 
has a neighborhood diffeomorphic to M × Rn via a diffeomorphism which restricts to the 
identity on M × {0}. In this case, we may write the flow Φt  as (Φt

1,Φt
2) on M × Rn. Then this 

linearization result asserts the existence of a continuous change of coordinates ( p, v) �→ (q, w) 
on M × Rn—which restricts to the identity on M × {0}—such that for any ( p, v) ∈ Rn, the 
trajectory (Φt

1( p, v),Φt
2( p, v)) is given by (Φt

1(q, 0),DΦt
2(q, 0) · w) in the new coordinates. 

In these new coordinates on M × Rn, not only are the dynamics on M decoupled from the 
dynamics transverse to M, but the transverse component w(t) := DΦt

2(q, 0) · w of a trajectory 
is the solution of a nonautonomous linear differential equation. Under additional spectral gap 
assumptions, this coordinate change can be taken to be continuously differentiable [Tak71, 
Rob71, Sel84, Sel83, Sak90]. Needless to say, many key results in the sciences and engineer-
ing rely heavily on linear approximations of this form; this result shows that there exists a 
coordinate system in which such approximations become exact.

In this paper we prove several extensions of the familiar local results mentioned above, 
which we hope to be of both practical and theoretical interest. Our results come in two flavors: 
(i) we show that the local topological and dynamical structure near the NAIM can be extended 
(often smoothly) to the entire stability basin, and (ii) we prove new local (and global) lineari-
zation results for NAIMs with nonempty boundary, subject to the requirement that the flow is 
‘inward’ at the boundary (inflowing NAIMs). The novelty of our results is that, to the best of 
our knowledge, all previously published work only established versions of our various results 
either (i) for hyperbolic attracting equilibria and periodic orbits rather than general NAIMs5, 

5 It has recently come to our attention that in a soon-to-be published textbook [Mez17], Igor Mezić gives a very read-
able proof of a global linearization theorem for the case of arbitrary compact boundaryless NAIMs (see also remark 8). 
In contrast, we also prove a more general result for arbitrary compact inflowing NAIMs, which may have nonempty 
boundary.
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(ii) for NAIMs without boundary, (iii) locally, or on proper subsets of the global stable mani-
fold (in the case of a boundaryless NAIM, this is the stability basin), or some combination 
thereof. In contrast, our results apply to the entire global stable manifold, and they apply to the 
even broader class of systems consisting of inflowing NAIMs. Thus our theorems can be used 
to prove results on compact domains of noncompact attracting manifolds, which can arise 
(for example) as intersections of a noncompact M with a compact sub-level set of a function. 
Many noncompact hyperbolically attractive manifolds appear in the sciences and engineer-
ing, e.g. in the general context of slow-fast or multiple time scale systems [Kue15] studied 
using geometric singular perturbation theory (GSP) [Fen79, Jon95, Kap99]. With the addition 
of a proper function having a strictly negative Lie derivative on one of its regular level sets, 
these give rise to compact inflowing NAIMs. We remark that even if a compact domain of a 
noncompact attracting manifold is not inflowing, useful conclusions about the dynamics can 
sometimes still be obtained by making local modifications to the flow near the boundary of 
the domain in order to render it inflowing, and then applying theorems for inflowing NAIMs. 
We do precisely this in our applications to GSP in section 5.

1.1. Flavor of the key results

We begin by examining the (differential) topology of the global stable manifold, in a form 
depicted in figure 1 and formulated more precisely in theorem 1. We show that the entire global 
stable manifold of an inflowing NAIM has the structure of a ‘disk bundle’: for M of dimension 
d in an n-dimensional ambient space, the global stable manifold admits a continuous ‘projec-
tion’ onto M, and every point m ∈ M  has a neighborhood Um ⊂ M such that the preimage of 
Um through the projection is homeomorphic to the product of Um with (n − d)-dimensional 
Euclidean space Rn−d (‘a disk’). Furthermore, projection preimages (‘fibers’) of points m ∈ M  
are mapped via these homeomorphisms to sets of the form {m} × Rn−k. We further extend this 

Figure 1. The fact that the global stable foliation Ws(M) of a NHIM M is a topological 
foliation implies that any point in Ws(M) has a neighborhood on which the leaves of 
the foliation can be straightened via a homeomorphism, depicted on the left. Theorem 
1 shows that Ws(M) is actually a topological disk bundle, which means that Ws(M) 
admits local trivializations whereby unions of entire fibers through a neighborhood 
of M can be straightened via a homeomorphism, depicted on the right. Furthermore, if 
Ws

loc(M) is a Ck foliation and M ∈ Ck, then Ws(M) is actually a Ck fiber bundle, which 
means that these local trivializations can be chosen Ck.

J Eldering et alNonlinearity 31 (2018) 4202
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result by proving that, should the foliation near M be Ck smooth, then the entire global stable 
manifold has a structure of a Ck disk bundle (for the definition, replace all homeomorphisms with 
Ck diffeomorphisms above). Anticipating our global linearization results, one can think of this 
result as a ‘weak’ or differential-topological version of global linearization of the global stable 
manifold: the global stable manifold always has the (differential) topological structure that one 
would naively expect from the (differential) topological structure of the local stable manifold.

This result has an application to geometric singular perturbation theory related to the so-
called Fenichel normal form [JK94, Jon95, Kap99, JT09]; for more details on the relevance of 
this normal form for slow-fast systems, see section 5. In the special case that the slow mani-
fold is attracting, we show that our theorem 1 implies that the domain of the Fenichel normal 
form actually extends to the entire global stable manifold of the slow manifold.

We then proceed beyond ‘weak’ linearization to the natural follow-up question, and show 
that in addition to the local topological structure, the local dynamical structure near an inflow-
ing NAIM also extends to the entire global stable manifold: the flow on the global stable 
manifold is topologically conjugate to its linearization near M, and assuming some condi-
tions on the relative rates of contraction of tangent vectors at M evolving under the linearized 
flow, the global conjugacy of the flow to its linearization can be taken to be Ck. In addition 
to this statement being a new global result, to the best of our knowledge, the local version of 
this linearization result is also new: linearization results previously appearing in the literature 
[PS70, Rob71, PT77, HPS77, Sel84, Sel83, Sak90] have been stated for boundaryless invari-
ant manifolds. This result provides a strong statement regarding how well dynamical systems 
can be modeled by their transverse linearizations and the dynamics on their attractor. We give 
an application of this to singular perturbation theory, where the ‘slow manifold’ attractors 
typically have boundary. Thanks to our results for inflowing NAIMs we show that, under 
certain spectral conditions, singularly perturbed systems have a global normal form which is 
linear in the fast variables. This normal form is therefore stronger than the Fenichel normal 
form, which is generally (almost) fully nonlinear.

1.2. Overview of main results

Restated more technically, in this paper we prove some results for NHIMs which are of two 
types.

 1.  Global versions of well-known local results for compact normally hyperbolic invariant 
manifolds (NHIMs), and compact, inflowing, normally attracting invariant manifolds 
(inflowing NAIMs).

 2.  New (local and global) linearization results for inflowing NAIMs.

We restrict our attention to the case of flows on a finite-dimensional smooth ambient mani-
fold. We first investigate the structure of the global stable foliation of a compact normally 
hyperbolic invariant manifold M ⊂ Q for a flow Φt  on a smooth manifold Q. We consider the 
following local-to-global result to be our first major contribution, depicted in figure 1.

Theorem 1′. The global stable foliation of a NHIM is a topological disk bundle with fibers 
coinciding with the leaves of the foliation. If additionally the local stable foliation and the 
NHIM are assumed Ck, then the global foliation is a Ck disk bundle. This bundle is isomorphic 
(as a disk bundle) to the stable vector bundle over the NHIM. A similar result holds for the 
global unstable foliation.

In particular, if the k-center bunching condition (see corollary 2 in section 3) is assumed, 
it follows that the global stable foliation is a Ck disk bundle. If both stable and unstable 

J Eldering et alNonlinearity 31 (2018) 4202
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transverse directions are present at M, then Ws(M) ⊂ Q is generally only an immersed sub-
manifold6. Hence our result shows that the global stable manifold is a fiber bundle in its mani-
fold topology, but not in the subspace topology. However if only stable transverse directions 
at M are present, this technicality is avoided and Ws(M) ⊂ Q is a fiber bundle whose topology 
coincides with the subspace topology. (Embedded and immersed submanifolds are explained 
in more detail in [Lee13, ch 5].)

We also prove the corresponding fiber bundle result for the global stable foliation of a 
compact inflowing normally attracting invariant manifold (NAIM) M. I.e. M is a NHIM with 
empty unstable bundle, but M is allowed to have nonempty boundary, and inflowing means 
that M is positively invariant and that the vector field points strictly inward at ∂M . This is the 
result we actually prove, and indeed, the previously mentioned result follows from this one.

While our fiber bundle result might be expected by dynamicists, we could not find a direct 
proof in the literature. If the stable foliation happens to be smooth, then we will show that 
the map sending leaves to their basepoints on M is a submersion with fibers diffeomorphic to 
disks, and it is shown in [Mei02, corollary 31] that this automatically implies that the stable 
manifold Ws(M) is a smooth disk bundle. On the other hand, our proof seems more elemen-
tary, directly shows that this bundle is isomorphic to Es, and handles the general case in which 
the stable foliation is only continuous.

Next, we investigate global linearizations. A classic result of NHIM theory is that the dynam-
ics in a neighborhood of a NHIM are topologically conjugate to the dynamics linearized at the 
NHIM [PS70, HPS77, PT77], and there also exist conditions for Ck linearization [Tak71, Rob71, 
Sak94, Sel84, Sel83, BK94]. For the special case of a NAIM which is either an equilibrium point 
or a periodic orbit, [LM13] showed that the linearizing conjugacy can be defined on the entire 
basin of attraction. We generalize the results of [LM13] in two ways: (i) we show that local 
linearizability implies global linearizability for arbitrary compact NAIMs7, and (ii) we prove a 
global linearizability result for inflowing NAIMs. Since the slow manifolds for slow-fast systems 
typically have boundary, the latter result is necessary for our goal of deriving a linear normal form 
for such systems, and we consider this to be our second major theoretical contribution. We state 
this result roughly below (for the precise statement, see theorem 3 in section 4.2). Recall that the 
global stable manifold is the basin of attraction in the case of a boundaryless NAIM. For the pre-
cise definition of the global stable manifold of an inflowing NAIM, see equation (5) in section 2.1.

Theorem 3. The dynamics on the global stable manifold of an inflowing NAIM are globally 
topologically conjugate to the dynamics linearized at the NAIM. If certain additional spectral 
gap and regularity conditions are assumed, then additionally the dynamics are globally Ck 
conjugate to the dynamics linearized at the NAIM.

In order to prove this result, we use a geometric construction in appendix B which may be 
of independent interest. Generally speaking, in appendix B, we show that any compact inflow-
ing NAIM can be embedded into a compact boundaryless NAIM, in such a way that many 
properties of the original system are preserved, such as asymptotic rates.

After proving these results, we give two applications to geometric singular perturbation the-
ory, under the assumption that the critical manifold is a NAIM (see the references in section 5 
for examples, as well as section 5.5). Our first application is to show that under this assumption, 

6 Roughly speaking, this is because—in the case that the unstable bundle is nonempty—Ws(M) can accumulate on 
itself. This is analogous to the ends of a curve approaching its midpoint to form a figure-eight. The figure-eight is 
not an embedded submanifold, because the midpoint has no locally Euclidean neighborhood in the subspace topol-
ogy, but the figure-eight is an immersed submanifold diffeomorphic to R .
7 As mentioned in a previous footnote, Igor Mezić gives a proof of this boundaryless result in his soon-to-be pub-
lished textbook [Mez17] (see also remark 8).
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the Fenichel normal form appearing in the literature is valid on the entire union of global sta-
ble manifolds ∪εWs(Kε) of the slow manifolds Kε, rather than just on the union of local stable 
manifolds ∪εWs

loc(Kε). Our second application is to show that, assuming an additional ‘non-
resonance’ condition on the eigenvalues of points on the critical manifold and using our global 
linearization theorem, we derive a much stronger global normal form which is linear in the fast 
variables. We reiterate that a linearization result for inflowing NAIMs is essential here, since 
the slow manifolds for singular perturbation problems typically have boundary.

The remainder of the paper is organized as follows. In section 2 we give basic definitions, 
set notation, and give basic constructions to be used in the sequel. In particular, we construct 
the global stable foliation of a NHIM and show that the local stable foliation is a fiber bundle, 
and remark that the same constructions work for inflowing NAIMs. In section 3 we give the 
proof that, if the local stable foliation and the NHIM are Ck, then the global stable foliation is 
a Ck fiber bundle isomorphic (as a disk bundle) to Es. In section 4, we show that the dynamics 
on the global stable manifold of an inflowing NAIM are globally conjugate to the linearized 
dynamics, and other related results. In section 5, we give applications to geometric singular 
perturbation theory. In section 6 we conclude by summarizing what we have and have not 
done. Finally, appendix A contains a lemma on parallel transport, appendix B allows us to 
extend some results from boundaryless to inflowing NAIMs, and appendix C reviews some 
terminology from the theory of fiber bundles, for those readers who are less familiar with it.

2. Preliminary constructions

2.1. Construction of the global (un)stable foliation of a NHIM

Let Q be an n-dimensional C∞ Riemannian manifold, let f : Q → TQ be a Cr�1 vector field 
on Q with Cr flow Φt  and let M ⊂ Q be a compact r-normally hyperbolic invariant manifold 
(r-NHIM) for Φt . We recall from [HPS77] the definition; specifically we use the most general 
definition of eventual relative normal hyperbolicity. This means that M is a submanifold that 
is invariant under Φt , and there exists a DΦt-invariant continuous splitting into a Whitney sum

TQ|M = TM ⊕ Es ⊕ Eu (1)

such that DΦt|Es and DΦt|Eu are exponentially contracting and expanding, respectively. (See 
appendix C for the definitions of vector bundles and Whitney sums.) Furthermore, any con-
traction or expansion of the tangential flow DΦt|TM (up to power r) is dominated by the con-
traction of DΦt|Es, respectively the expansion of DΦt|Eu. More precisely, there exist C  >  0 and 
a  <  0  <  b such that for all m ∈ M , t � 0 and 0 � i � r  we have

⌊⌊
DΦt|Eu

m

⌋⌋
�

ebt

C
‖DΦt|TmM‖

i and
∥∥DΦt|Es

m

∥∥ � Ceat ��DΦt|TmM��
i .

 (2)
Here ��A�� := inf{‖Av‖ : ‖v‖ = 1} denotes the minimum norm of a linear operator A.

Denote by n = nm + ns + nu the ranks of the various bundles and note that nm = dim(M). 
Since the stable and unstable cases are identical under time reversal, we restrict ourselves 
from now on to the stable case. Tangent to the stable bundle Es there exists a local stable mani-
fold Ws

loc(M), a Cr embedded submanifold8, with points in Ws
loc(M) asymptotically converging 

to M in forward time. Ws
loc(M) is invariantly fibered by embedded disks Ws

loc(m) comprising 
the leaves/fibers of the local stable foliation:

8 We will always assume without loss of generality that Ws
loc(M) has no boundary. Otherwise we can simply relabel 

its manifold interior as Ws
loc(M).

J Eldering et alNonlinearity 31 (2018) 4202



4208

Ws
loc(M) =

∐
m∈M

Ws
loc(m) (3)

such that Ws
loc(m) intersects M at the unique point m and TmWs

loc(m) = Es
m, see [HPS77, theo-

rem 4.1]. Each of the disks Ws
loc(m) is individually a Cr embedded submanifold, but as a fam-

ily there is generally only (Hölder) continuous dependence on the basepoint m ∈ M  [HPS77, 
Fen74]. We denote by Ps

loc : Ws
loc(M) → M  the continuous projection map sending each fiber 

Ws
loc(m) to its corresponding basepoint m ∈ M . Note that the Ws

loc(m), m ∈ M  are only invari-
ant as a foliation—not each Ws

loc(m) individually—since each m ∈ M  is generally not a fixed 
point of Φt . This local invariance of the foliation Ws

loc(M) means that for all t � 0 and m ∈ M  
we have9

Φt(Ws
loc(m)) ⊂ Ws

loc(Φ
t(m)). (4)

We also have a global stable manifold Ws(M) ⊃ Ws
loc(M) defined by10

Ws(M) :=
⋃
t�0

Φ−t [(Ps
loc)

−1(Φt(M))
]

. (5)

Each of the sets Φ−t
[
(Ps

loc)
−1(Φt(M))

]
 is an embedded submanifold of Q (diffeomorphic 

to Ws
loc(M)), and thus Ws(M) is a Cr immersed submanifold of Q when given the final topology 

with respect to the family of inclusions Φ−t
[
(Ps

loc)
−1(Φt(M))

]
↪→ Ws(M). An atlas of charts 

for Ws(M) consists of the union of atlases for all of the manifolds Φ−t
[
(Ps

loc)
−1(Φt(M))

]
—since the flow Φt  is Cr, it can be checked that this is a Cr atlas.

Let us now construct a global stable foliation as

Ws(M) =
∐

m∈M

Ws(m), Ws(m) :=
⋃
t�0

Φ−t(Ws
loc(Φ

t(m))). (6)

Note that equation (4) implies that the union consists of strictly increasing sets, i.e.

Φ−t(Ws
loc(Φ

t(m))) ⊂ Φ−t′(Ws
loc(Φ

t′(m))) when t � t′. (7)

Let us prove that Ws(M) is invariant, that is, for all t ∈ R and m ∈ M  we have

Φt(Ws(m)) = Ws(Φt(m)). (8)

This follows from the following sequence of equivalent statements, with t ∈ R fixed:

x ∈ Ws(Φt(m))

∃τ0 � 0: ∀τ � τ0 : x ∈ Φ−τ (Ws
loc(Φ

τ ◦ Φt(m)))

∃τ ′0 � 0: ∀τ ′ � τ ′0 : x ∈ Φt ◦ Φ−τ ′
(Ws

loc(Φ
τ ′
(m)))

x ∈ Φt(Ws(m)).

Note that each global leaf Ws(m) is a Cr embedded submanifold of Ws(M). To see this, note 
that given any m ∈ M  and x ∈ Ws(m), by definition of the global foliation there exists t  >  0 

9 When immediate relative normal hyperbolicity is assumed (as in [HPS77, theorem 4.1]) then Ws
loc(M) is automati-

cally forward invariant when it has constant diameter. In the case of eventual relative normal hyperbolicity, standard 
proofs construct Ws

loc(M) as the local stable manifold of the map ΦT  for some fixed T  >  0, so it might not be clear a 
priori that the inclusion holds for all t � 0, though it is clear that it would hold for t sufficiently large. However, we 
can always construct a new Ws

loc(M) that is forward invariant for all t � 0, as a sublevel set of a Lyapunov function 
for M, see [Wil67, Wil69].
10 This definition works equally well for inflowing NAIMs (see section 2.3), as opposed to the alternative definition 
Ws(M) :=

⋃
t�0 Φ

−t(Ws
loc(M)).
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such that Φt(x) ∈ Ws
loc(Φ

t(m)). Letting U′ be a neighborhood of Φt(x) in Ws
loc(M) and consid-

ering U := Φ−t(U′) � x, we see that any point x ∈ Ws(m) has a neighborhood U ⊂ Ws(M) 
with U ∩ Ws(m) an embedded submanifold of Ws(M) (by invariance of the foliation), so it 
follows that Ws(m) is embedded in Ws(M). (But since Ws(M) is generally only immersed in 
Q, any global leaf Ws(m) is generally only immersed in Q.)

We define the global projection Ps : Ws(M) → M  to be the map that sends global fibers 
Ws(m) to their basepoints, just like the local projection Ps

loc. Assume now that the local stable 
foliation is Ck�0, by which we mean that Ps

loc ∈ Ck. (Recall that Ps
loc ∈ C0 automatically.) We 

now show that this implies Ps ∈ Ck.
Let x ∈ Ws(M) and t � 0 be such that x ∈ Φ−t(Ws

loc(M)). This implies that x′ = Φt(x) ∈ 
Ws

loc(M). Choose a neighborhood Ux′ of x′ in Ws
loc(M). Then Ux := Φ−t(Ux′) is a neighbor-

hood of x in Ws(M). Now for any y ∈ Ux we have that Φt(y) ∈ Ws
loc(M) and by invariance of 

the local stable foliation it follows that

Ps(y) = (Φ−t ◦ Ps
loc ◦ Φt)(y). (9)

Thus it is clear that Ps ∈ Ck if Ps
loc ∈ Ck and k � r (i.e. Φt ∈ Ck ).

We conclude this section by showing that, not only is Ps ∈ Ck if Ps
loc ∈ Ck, but also that Ps 

is a submersion if k � 1.

Proposition 1. If Ps
loc is Ck with 1 � k � r , then Ps : Ws(M) → M  is a Ck submersion.

Proof. We have already shown above that Ps∈Ck , so it suffices to show that rank (DPs
loc|TM)= 

dim(M) on all of Ws(M). Since Ps
loc|M = idM, it follows that rank (DPs

loc|TM) = dim(M). 
Since being full rank is an open condition, it follows that DPs

loc is full rank on some relatively 
open neighborhood U of M in Ws

loc(M).
Now let x ∈ Ws(M) be arbitrary. First, by construction of Ws(M) there exists a T1  >  0 

such that ΦT1(x) ∈ Ws
loc(M). Next, since every point in Ws

loc(M) asymptotically converges 
to M, there exists T2  >  0 such that ΦT2(ΦT1(x)) ∈ U. Defining T := T1 + T2 > 0, we have 
ΦT(x) ∈ U .

Since ∀t ∈ R : Ps ◦ Φt = Φt ◦ Ps, it follows that DΦT
Ps(x)DPs

x=DPs
ΦT(x)DΦ

T
x =D(Ps

loc)ΦT(x) 

DΦT
x
. The latter composition is formed of two surjective linear maps, and hence DΦT

Ps(x)DPs
x 

is also a surjective linear map. The linear map DΦT |Ps(x) is invertible since ΦT  is a diffeomor-
phism, so this implies that DPs

x : TxWs(M) → TPs(x)M is surjective. □ 

2.2. Fiber bundle structure of the local stable foliation

Let π : TQ|M → M be the natural projection sending v ∈ TmQ to m, and let Ẽs be any Cr sub-
bundle of TQ|M which C0 approximates Es [Wig94, p 72 proposition 3.2.3]. (Recall that Es 
is generally only a continuous subbundle of TQ|M.) As shown in [Fen74, HPS77] there exists 
a fiber-preserving homeomorphism ρ0 : U ⊂ Ẽs → Ws

loc(M), where U ⊂ Ẽs is a connected 
neighborhood of the zero section. Additionally, the restriction of ρ0 to each fiber Ẽs

m  is a Cr 
map. Here we show that if additionally the local stable foliation of Ws

loc(M) is Ck�1, then ρ0 
can be taken to be a Ck fiber-preserving diffeomorphism.

Fiber bundle concepts from appendix C (in particular, definition C.2 and example C.3) will 
be used in the proof of lemma 1 below. Here and in the rest of the paper, by a Ck isomorphism 
of manifolds we mean a homeomorphism if k  =  0 and a Ck diffeomorphism if k � 1. A Ck 
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fiber bundle isomorphism is a Ck isomorphism of manifolds which is also fiber-preserving; 
see appendix C.

Lemma 1. Let M be a 1-NAIM, and assume that Ps
loc ∈ Ck (hence Ws

loc(M), M ⊂ Q are 
necessarily Ck submanifolds). Then Ps

loc : Ws
loc(M) → M  is a disk bundle. More specifically, 

there exists a neighborhood U of the zero section of Ẽs and a Ck disk bundle isomorphism 
ρ0 : U → Ws

loc(M) covering idM (identifying M with the zero section of Ẽs).

Remark 1. If M is an r-NAIM for a Cr vector field, then M and Ws
loc(M) are automatically 

Cr submanifolds of Q (and hence Ws(M) is an immersed Cr submanifold, as we have shown). 
See [Eld13, ch 1] for a discussion of this. We will use lemma 1 in proving theorem 1 for a 
1-NAIM which is a Cr submanifold—a slightly more general situation than an r-NAIM—
which explains the slightly weaker hypotheses here.

Proof. As mentioned, for k  =  0 the result is shown in [Fen74, HPS77] so we may assume 
k � 1. The latter case is implicit in the existing proofs of Ck smoothness of local stable fibers, 
but we make it explicit here for later reference. Consider the extended exponential map11

êxp = (π, exp) : TQ|M → M × Q (10)

that remembers the base point m ∈ M . This is a fiber bundle isomorphism between a neighbor-
hood of the zero section of TQ|M and a neighborhood of diag(M) in the trivial bundle M × Q, 
covering the identity on M, where the zero section of TQ|M and diag(M) are identified with 
M. Furthermore, we view Ws

loc(M) ⊂ Q as a Ck submanifold of M × Q via the embedding 

(Ps, idQ), fibered by the images of the leaves Ws(m). It follows that êxp−1(Ws
loc(M)

)
 is a sub-

manifold of TQ|M fibered by the leaves êxp−1
(Ws

loc(m)), and the leaf êxp−1(Ws
loc(m)

)
⊂ TmQ 

is tangent to Es
m  at the zero section since the derivative of êxp|TQm at 0 is the identity for any 

m ∈ M . Here we are making the usual linear identification T0TmQ ∼= TmQ.
Let π̃s : TQ|M → Ẽs denote orthogonal projection onto Ẽs. We have that π̃s ∈ Cr , and when 

Ẽs is sufficiently C0-close to Es then ker(π̃s) and Es are transverse. Thus D
(
π̃s ◦ êxp−1|Ws

loc(m)

)
 

is surjective for each m ∈ M , so by dimension counting this map is a linear bijection between 
Es

m ⊕ TmM ∼= TmWs
loc(M) and Ẽs

m ⊕ TmM ∼= TmẼs for each m ∈ M .
The global inverse function theorem [GP10, section  1.8 example 14] now implies that 

π̃s ◦ êxp−1|Ws
loc(M) is a Ck diffeomorphism from some neighborhood of diag(M) onto a neigh-

borhood U of the zero section of Ẽs. Thus the inverse

ρ0 : U → Ws
loc(M)

is well-defined and is a fiber-preserving Ck diffeomorphism onto its image. By construction it 
maps the zero section to M and covers the identity map. □ 

2.3. Inflowing and overflowing NAIMs

Suppose now that M is a compact manifold but that M has possibly nonempty boundary, 
∂M �= ∅. If Φt(M) ⊂ M  for all t � 0 and the vector field f points strictly inward at ∂M , we 

11 Recall that we have endowed Q with a Riemannian metric, used in the definition of spectral gap estimates (2). 
Here—and throughout the rest of the paper—we have in mind the exponential map associated to this Riemannian 
metric, although for the purposes of this lemma, any metric will work equally well.
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call M an inflowing invariant manifold. Similarly, if Φt(M) ⊂ M  for all t � 0 and the vec-
tor field f points strictly outward at ∂M , we call M an overflowing invariant manifold. If M 
is inflowing (respectively overflowing) invariant and has a splitting (1) satisfying exponen-
tial rates (2), but with Eu = ∅, we call M an inflowing (respectively overflowing) r-normally 
attracting invariant manifold (r-NAIM). If ∂M = ∅ and M is invariant, then M is vacuously 
both inflowing and overflowing. We refer to such an M simply as an r-NAIM. We sometimes 
use the term ‘NAIM’ to refer to 1-NAIMs or if we do not wish to emphasize the precise degree 
of hyperbolicity, and we similarly sometimes use ‘NHIM’.

The main theorem about inflowing NAIMs is that, like boundaryless NHIMs, inflowing 
NAIMs also have a local stable manifold (with boundary) and a local stable foliation [Fen74, 
Fen71]. Note that in this case the local stable manifold has boundary, is codimension-0, and 
its manifold interior is an open neighborhood of the manifold interior of M. Additionally, the 
interior of the global stable manifold is open in Q and a neighborhood of the manifold inter-
ior of the NAIM. Unlike boundaryless NHIMs, however, inflowing NAIMs do not generally 
persist under perturbations.

The main theorem about overflowing NAIMs is that, like boundaryless NHIMs, overflowing 
NAIMs persist under perturbations [Fen71]. We will use this fact in section 5. Unlike bounda-
ryless NHIMs, however, overflowing NAIMs do not generally possess a stable foliation.

Remark 2. If Ps
loc ∈ Ck for an inflowing NAIM, then the same proof as for boundary-

less NHIMs shows that Ps ∈ Ck also. Furthermore, proposition 1 and lemma 1 also hold 
for inflowing NAIMs. The proof of lemma 1 is identical. For the proof of proposition 1, one 
simply pays attention to the facts that (i) since M is positively invariant, points never leave 
the stable foliation over M when flowing forward in time, and (ii) if Φt(x) ∈ Ws(m) for t  >  0, 
x ∈ Ws(M), and m ∈ M , then Φ−t(m) ∈ M. Additionally, the same argument given in sec-
tion 2.1 shows that each global fiber Ws(m) is now an embedded submanifold of Q, since 
the manifold interior of Ws(M) is open in Q and thus trivially embedded. This argument 
works even for Ws(m) with m ∈ ∂M, since inflowing invariance implies that Φt(m) ∈ int M 
for t  >  0, with int M denoting the manifold interior of M.

3. The global stable foliation of a NHIM is a fiber bundle

As mentioned in section  2.1, Ps
loc : Ws

loc(M) → M  is in general only (Hölder) continuous. 
However, in many cases of interest Ps

loc : Ws
loc(M) → M  is Ck�1 (and thus Ps : Ws(M) → M  

is also Ck as shown in section  2). In this section  we prove that if Ps
loc ∈ Ck�0, then 

Ps : Ws(M) → M  is a Ck fiber bundle with fiber Rns. See appendix C for the relevant fiber 
bundle concepts. By reversing time the corresponding result that the global unstable manifold 
is a fiber bundle follows.

The topology on Ws(M) compatible with its fiber bundle structure is generally finer than 
the subspace topology induced from Q since Ws(M) is generally only an immersed submani-
fold of Q, as discussed in section 2. Consequently, the individual fibers Ws(m) of Ws(M) are 
generally also only immersed submanifolds of Q, though they are embedded submanifolds of 
Ws(M) as we have seen in section 2.

However if M is a NAIM so that Eu = ∅, then M is asymptotically stable and Ws(M) is an 
open neighborhood of M, hence trivially an embedded submanifold. More generally, if M has 
boundary and is an inflowing NAIM, then Ws(M) is an embedded codimension-0 submanifold 
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with boundary12. Every boundaryless NHIM M is a NAIM for the dynamics restricted to 
the invariant manifold Ws(M), and similarly M is a NAIM for the time-reversed dynamics 
restricted to Wu(M). Hence it suffices to prove that Ws(M) is a fiber bundle over M for the 
case that M is a NAIM.

To obtain the generality needed for our application in section 5, we actually prove that 
Ws(M) is a fiber bundle for M an inflowing NAIM—since a boundaryless NAIM is vacuously 
inflowing, this implies the other results.

See [Hir94, ch 2] for the definition of the Whitney topologies, and also remark 3 below.

Theorem 1. Let M ⊂ Q be a compact inflowing 1-NAIM for the flow Φt  generated by the 
Cr vector field f on Q, and assume that M ⊂ Q is a Cr submanifold. Further assume that 
the local projection Ps

loc : Ws
loc(M) → M  is Ck, with 0 � k � r . Then the global projection 

Ps : Ws(M) → M  defines a Ck fiber bundle structure on the global stable manifold Ws(M). 
Furthermore, Ws(M) is Ck isomorphic (as a disk bundle) to any Ck vector bundle over M 
which approximates Es in the C0 Whitney topology.

In other words, under the hypotheses of theorem 1, the global stable foliation Ws(M) is 
actually a Ck disk bundle.

Remark 3. Since M is compact, the weak and strong Whitney topologies coincide [Hir94, 
ch 2]. In simpler terms [Wig94, p 72], Ẽs approximates Es in the C0 Whitney topology if 
there exists a sufficiently small ε > 0 such that for every m ∈ M , there exists a neighbor-
hood Um ⊂ M of m and local frames (ei)

ns
i=1, (ẽi)

ns
i=1 for Es, Ẽs such that for all m′ ∈ Um: 

‖ei(m′)− ei(m′)‖ < ε.

Remark 4. Let us reiterate remark 1. If M is an r-NHIM for a Cr vector field, then M and 
Ws

loc(M) are automatically Cr submanifolds of Q. That is, an invariant manifold M being r-
normally hyperbolic causes ‘forced Cr smoothness’ of M and of the local and global stable 
manifolds Ws

loc(M) and Ws(M) [Eld13, ch 1]. (Of course this is Cr smoothness of Ws
loc(M) and 

Ws(M) as submanifolds, not as foliations.) We state theorem 1 for a 1-NAIM M which is also 
assumed to be a Cr submanifold, in order to obtain a slight amount of extra generality.

Remark 5. The hypotheses required to prove the global linearization theorems 2 and 3 are 
much stronger than the hypotheses required to prove the fiber bundle theorem 1. See remark 
10 for more details.

Corollary 1. Let M ⊂ Q be a compact inflowing 1-NAIM for the flow Φt  generated by the 
C1 vector field f on Q. Then Ps : Ws(M) → M  defines a C0 fiber bundle structure on Ws(M), 
isomorphic (as a disk bundle) to Es.

Proof. As mentioned earlier, Ps
loc, Es, Ws

loc(M) ∈ C0 is automatically satisfied for a compact 
inflowing 1-NAIM. Hence the result follows from theorem 1. □ 

Corollary 2. Let M ⊂ Q be a compact inflowing 1-NAIM for the flow Φt  generated by the 
Cr vector field f on Q, and assume that M ⊂ Q is a Cr submanifold. Additionally, assume that 
there exist constants K  >  0 and α < 0 such that for all m ∈ M , t � 0 and 0 � i � k < r  the 
k-center bunching condition holds:

12 However, note that the boundary of Ws(M) is only Ck if Ps
loc ∈ Ck, and hence generally not smooth if Ps

loc ∈ C0 
only.
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‖DΦt|TmM‖
i ∥∥DΦt|Es

m

∥∥ � Keαt ��DΦt|TmM�� . (11)

Then Ps : Ws(M) → M  defines a Ck fiber bundle structure on Ws(M), isomorphic (as a disk 
bundle) to Es.

Proof. It is shown in [Fen77, theorem 5] that the condition (11) implies that Ps
loc, Es ∈ Ck . 

The result then follows from theorem 1. □ 

Corollary 3. Assume now that M is a general compact r-NHIM, rather than a Cr inflow-
ing 1-NAIM as in theorem 1, and assume that Ps

loc ∈ Ck. Then Ps : Ws(M) → M  defines a Ck 
fiber bundle structure on Ws(M), when Ws(M) is endowed with the structure of an immersed 
submanifold as described in section 2.1. This bundle is isomorphic (as a disk bundle) to any 
Ck vector bundle over M which approximates Es.

Similarly for the unstable manifold Wu(M), if Pu
loc ∈ Ck.

Proof. This follows immediately from theorem 1 and the remarks preceding it. □ 

Remark 6. We leave it to the reader to formulate corollaries analogous to corollaries 1 and 
2 for the case of general compact NHIMs.

We assume that M ∈ Cr is an inflowing 1-NAIM for the remainder of section 3, unless 
stated otherwise.

3.1. Overview of the proof of theorem 1

(Recall that by a Ck isomorphism of manifolds, we mean a homeomorphism if k  =  0 and a Ck 
diffeomorphism if k � 1. A Ck fiber bundle isomorphism is a Ck isomorphism of manifolds 
which is also fiber-preserving, and a Ck vector bundle isomorphism is a Ck fiber bundle iso-
morphism which is linear on the fibers; see appendix C.)

Figure 2. An illustration of the proof of theorem 1. The neighborhood U ⊂ Ẽs and 
its image ρ0(U) are bounded by dashed curves. The level set V−1(V(ξ(x))) ⊂ Ẽs is 
depicted by the dotted curves.
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By lemma 1 and remark 2, we have a Ck isomorphism of fiber bundles ρ0 : U ⊂ Ẽs → 
Ws

loc(M), where Ẽs is a vector bundle approximating Es and U ⊂ Ẽs is open. We will con-
struct a global Ck fiber-preserving isomorphism ρ : Ẽs → Ws(M) using the local version 
ρ0 : U → Ws

loc(M), according to the following plan. (It might be useful to first read definition 
C.2 and example C.3 from appendix C.)

First, we define a flow13 Ψt := ρ∗0(Φ
t) = ρ−1

0 ◦ Φt ◦ ρ0 on a neighborhood of M contained 
in U. Adapting a technique of [PS70], we will find a Ck Lyapunov function V : Ẽs → [0,∞) 
for Ψt, such that V−1(0) = M, the sublevel set Uc := V−1(−∞, c) is positively invariant 
for all 0 < c � 1, and V  is strictly decreasing along trajectories starting in such level sets. 
Furthermore, V  will be radially monotone (i.e. V(δy) > V(y) if δ > 1), and therefore it will 
have the nice property that any of its level sets intersect radial rays in each fiber Ẽs

m  in pre-
cisely one point. This enables us to define a family of radial retractions Rc : Ẽs \ M → V−1(c) 
onto level sets of V , and we will show that this family is Ck.

We next construct a Ck flow Θt on Ẽs \ M that preserves level sets of V  and covers Φt|M. 
Θt(y) is defined to be RV(y) ◦Πt(y), where the radial retraction family Rc is as defined above, 
and Πt is the smooth linear parallel transport covering Φt|M, constructed in appendix A.

The global Ck isomorphism ρ : Ẽs → Ws(M) is now constructed as follows. First, to a point 
x ∈ Ẽs we assign a time t(x) roughly proportional to the value V(x) > 0, but with t ≡ 0 on a 
neighborhood of M. Next, we use the family of retractions Rc to construct a (nonlinear) rescal-
ing diffeomorphism that maps Ẽs diffeomorphically onto U1 := V−1(−∞, 1), with the image 
of x denoted ξ(x) ∈ U1. Finally, we define ρ by first flowing ξ(x) forward by Θt(x), applying 
ρ0, and then flowing backward in time by applying Φ−t(x):

ρ(x) = Φ−t(x) ◦ ρ0 ◦Θt(x) ◦ ξ(x). (12)

See figure 2. The map ρ is Ck and fiber-preserving by construction. Properness of ρ will follow 
from asymptotic stability of M, and this will in turn imply surjectivity of ρ. The map ρ will 
be injective on V  level sets since x �→ t(x) will be constant on V  level sets. Since V  is strictly 
decreasing along trajectories of Ψt contained in U1, it will follow that ρ takes disjoint level sets 
of V  to disjoint subsets of Ws(M), so that ρ will be injective. Therefore ρ is a homeomorphism 
since it is a continuous and closed bijection, so this will complete the proof if k  =  0—if k � 1, 
a computation in the proof of theorem 1 in section 3.3 will show that Dρ is an isomorphism 
everywhere, completing the proof of theorem 1.

The purpose of section 3.2 is to construct the technical devices V , Rc, and Θt that will be 
used in the proof of theorem 1. The idea behind the proof of theorem 1 is simple, but our con-
structions are careful in order to avoid the loss of degrees of differentiability of ρ.

3.2. Preliminary results

In order to carry out the proof of theorem 1, we need some tools. We will use the following 
result adapted from [PS70]; for the definition of a fiber metric, see definition C.7 in appen-
dix C.

13 For simplicity of presentation, we henceforth ignore the fact that Ψt and other ‘flows’ that we subsequently 
define, such as Θt, have possibly smaller domains of definition due to the fact that M is only assumed inflowing 
invariant. The domains of these ‘flows’ always contain an appropriate neighborhood of M × R�0, and we only flow 
backwards in time along one ‘flow’ after flowing forward by an equal time along another appropriate ‘flow’; as an 
example, consider equation (12). We will still call these objects ‘flows’, and it should be clear what is meant when 
discussing such objects defined on a bundle over an inflowing invariant manifold.
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Proposition 2. Suppose that M is an inflowing invariant manifold for the Cr flow Φt  on 
Q, and let π : E → M be a Cr subbundle of TQ|M equipped with any fiber metric. Let At be a 
continuous linear flow on E such that the time one map is a uniform contraction on fibers:

∃α < 1: ∀m ∈ M :
∥∥A1|Em

∥∥ � α.

Let Ψt be a Ck�0 local flow with Ψ defined at least on a set of the form [0, 1]× E(ε) for some 
ε > 0, where E(ε) := {y ∈ E : ‖y‖ � ε}. Suppose that Ψt also covers Φt , leaves the zero sec-
tion of E invariant, and is Lipschitz close to At for small t, by which we mean:

∀0 � t � 1, m ∈ M : Lip((Ψt − At)|Em) � µ < min

(
1
3
κ, 1 − α

)
, (13)

for κ := inf{��At|Em�� : m ∈ M, 0 � t � 1}. Then there exists a continuous, nonnegative, and 
proper function V : E → R such that V−1(0) = M and14:

 1.  V  is radially monotone on E. For any c  >  0, V−1(c) intersects each radial ray in exactly 
one point y ∈ E. By a radial ray we mean any set of the form {λx : λ > 0}, where x ∈ E 
is nonzero.

 2.  For any c with 0 < c � 1, the sublevel set V−1(−∞, c] is contained in E(ε) and is posi-
tively invariant under Ψt.

 3.  V  is radially bi-Lipschitz: there are constants 0 < b1 < b2 < 0 such that for any 
y ∈ E \ M  and δ �= 1, we have the estimate

0 < b1 �
|V(δy)− V(y)|

‖δy − y‖
� b2. (14)

 4.  If Ψ ∈ Ck�1, then V  is Ck on E \ M , and the derivative of V  along any trajectory of Ψ 
starting in V−1(0, 1) is strictly negative.

Remark 7. In the proof of proposition 2 below, we make use of Rademacher’s theorem 
[Fed68, theorem 3.1.6]. This is to provide a unified proof for both the Ck�1 and C0 cases. In 
the Ck�1 case we differentiate V  in the radial direction in order to obtain the inequalities (14). 
This is not possible in the C0 case, but condition (13) implies that the function V  is locally 
Lipschitz, hence Rademacher’s theorem implies that V  is differentiable almost everywhere in 
the measure-theoretic sense. This is sufficient for our purposes.

Note that Ψt is actually radially differentiable in the context of theorem 1, even when k  =  0. 
However, by using Rademacher’s theorem we simplify the statement of proposition 2, while 
weakening its hypotheses.

Proof. Define the function g : E(ε) → R by

g(y) :=
∫ 1

0
‖Ψt(y)‖ dt.

In the proof of [PS70, theorem 4.1] it is shown that g is continuous, radially monotone, and 
that for each 0 < µ′ � µ, g−1(µ′ε) intersects each radial ray in exactly one point y ∈ E(ε). 
It also follows from the proof that corresponding sublevel sets g−1(−∞,µ′ε] are positively 

14 To limit excessive parentheses, here and henceforth we abuse notation by writing, e.g. V−1(a, b) instead of 
V−1((a, b)), etc.

J Eldering et alNonlinearity 31 (2018) 4202



4216

invariant. It follows from the last inequality in the proof of [PS70, lemma 4.2] that for any 
y ∈ E(ε) and δ > 0:

0 < (κ− 3µ) �
|g(δy)− g(y)|

‖δy − y‖
� (α+ µ),

where δ > 0 is small enough that this expression is defined. Now let us assume that k � 1 and 
Ψ ∈ Ck —it is clear that g is Ck on the complement of the zero section. We compute

∂

∂t
g ◦Ψt(y) =

∂

∂t

∫ 1

0

∥∥Ψt+s(y)
∥∥ ds =

∂

∂t

∫ t+1

t
‖Ψs(y)‖ ds =

∥∥Ψ1Ψt(y)
∥∥− ‖Ψt(y)‖ < 0,

with the last term being negative since A1 is an α-contraction and Ψ1 is μ-Lipschitz close to 
A1, with µ+ α < 1, hence Ψ1 decreases the norm of Ψt(y).

Replacing g by g/(µε), we may assume that g satisfies 1, 2 and 4, and also

0 < b1 �
|g(δy)− g(y)|

‖δy − y‖
� β (15)

if we define b1 := (κ− 3µ)/(µε) and β := (α+ µ)/(µε).
Now let 0 < ε′ < ε be such that g−1(−∞, 1] ⊂ E(ε′) ⊂ E(ε). We are going to ex-

tend g to a Ck function V : E → R such that V|E(ε′) = g|E(ε′), with V  satisfying 1–4. Let 
χ : [0,∞) → [0,∞) be a C∞ nonnegative, increasing function satisfying χ ≡ 0 on [0, ε′] and 
χ ≡ 1 on [ε,∞), and define ψ : E → R via ψ(y) := χ(‖y‖). We now define V : E → R via

V := (1 − ψ)g + ψβ ‖ · ‖ , (16)

with the understanding that V(y) = β ‖y‖ for ‖y‖ > ε. Clearly V  is continuous. By the defini-
tion of ψ, we see that V  is Ck on E \ M  and V|E(ε′) = g|E(ε′), so that when we replace ε by 
ε′ then 2 and 4 are automatically satisfied. Clearly 3 implies 1, so it suffices to show that V  
satisfies 3. To do this, fix any y ∈ E \ M . By (15), the function δ �→ g(δy) is locally Lipschitz, 
and the same is true of the other functions in equation (16) defining V . Since V  is a sum of 
products of such functions, V  is also locally Lipschitz. Hence even if k  =  0, by Rademacher’s 
theorem δ �→ V(δy) and δ �→ g(δy) are differentiable except at a set of Lebesgue measure 
zero. The following statements must be interpreted to hold almost everywhere in the Lebesgue 
measure sense. We obtain

∂

∂δ
V(δy) = [(1 − ψ)

∂

∂δ
g(δy) + ψβ ‖y‖] + (β ‖δy‖ − g)

∂

∂δ
ψ(δy),

where here and henceforth g and ψ are implicitly evaluated at δy. From this, we obtain the 
inequalities

[(1 − ψ)
∂

∂δ
g(δy) + ψβ ‖y‖] � ∂

∂δ
V(δy) � [(1 − ψ)

∂

∂δ
g(δy) + ψβ ‖y‖] + β ‖δy‖ ∂

∂δ
ψ(δy).

The leftmost inequality was obtained using ∂∂δψ(δy) � 0 and the fact that equation (15) implies 
that β ‖δy‖ � g(δy), and the rightmost inequality was obtained since g(δy), ∂

∂δψ(δy) � 0. Now 
equation (15) implies that b1 ‖y‖ � ∂

∂δg(δy) � β ‖y‖ for δy ∈ supp (1 − ψ), and β � b1, so 
it follows that b1 ‖y‖ � [(1 − ψ) ∂

∂δg(δy) + ψβ ‖y‖] � β ‖y‖. Consequently, we have
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b1 ‖y‖ �
∂

∂δ
V(δy) � β ‖y‖+ β ‖δy‖ ∂

∂δ
ψ(δy) = β[1 + δ

∂

∂δ
ψ(δy)] ‖y‖ .

 (17)

The derivative term can be rewritten into a radial derivative

δ
∂

∂ρ
ψ(ρy)

∣∣∣∣
ρ=δ

=
∂

∂r
ψ(rδy)

∣∣∣∣
r=1

=: ψ′(δy),

which is zero for δy �∈ E(ε), and bounded inside the precompact set E(ε). Defining 
b2 := β[1 + supx∈E(ε) ψ

′(x)] < ∞, we see that the right hand side of (17) is bounded by 
b2 ‖y‖.

The function δ �→ V(δy) is absolutely continuous since it is locally Lipschitz, so the funda-
mental theorem of Lebesgue integral calculus15 implies that for any δ > 1,

V(δy)− V(y) =
∫ δ

1

∂

∂s
V(sy) ds � b1 ‖y‖ (δ − 1) = b1 ‖δy − y‖ ,

and a similar argument shows that V(δy)− V(y) � b2 ‖δy − y‖, with b2 defined as before. 
This completes the proof. □ 

By proposition 2, for each c  >  0 we may define a retraction Rc : E \ M → V−1(c) by slid-
ing along radial rays. We then define R : (E \ M)× (0,∞) → E  by R( · , c) := Rc.

Lemma 2. Let all notation be as in proposition 2 and let R : (E \ M)× (0,∞) → E  be as 
defined above. Then R ∈ Ck.

Proof. If k � 1, then V ∈ Ck�1 and equation  (14) together with the mean value theo-
rem imply that the derivative of V  in the radial direction is nonzero. We may therefore 
apply the implicit function theorem to the function F(δ, x, c) := V(δx)− c, defined on 
(0,∞)× (E \ M)× (0,∞), to obtain a Ck R-valued function δ(x, c) such that V(δ(x, c)x) = c. 
It follows that R(x, c) = δ(x, c)x , and therefore R ∈ Ck.

If k  =  0, we will make use of a different argument which is effectively a ‘Lipschitz implicit 
function theorem’. The argument is sketched as follows. We will define an auxiliary C0 map 
T := (0,∞)× (E \ M)× (0,∞) → R such that Tx,c := T( · , x, c) has a unique fixed point 
given by δ(x, c), and additionally such that Tx,c is a contraction mapping. The domain of each 
Tx,c is not a complete metric space, but the existence of the fixed point of each Tx,c will follow 
from proposition 2 point 1, and these fixed points Rc(x) are unique since Tx,c is a contraction. 
The theorem then follows from the general fact that the fixed points Rc(x) of a continuous fam-
ily Tx,c of contractions depends continuously on the parameters (x, c).

We now proceed with the proof. Define a continuous function T by

Tx,c(δ) ≡ T(δ, x, c) := δ − 1
b2

V(δx)− c
‖x‖

on (0,∞)× (E \ M)× (0,∞), where b2 is as in proposition 2. We already know from propo-
sition 2 that for each x and c, Tx,c has a unique fixed point δ(x, c). Tx,c is a contraction uni-
formly in x and c since

15 This technicality is needed only for the case that the differentiability degree k  =  0. If k � 1, the mean value theo-
rem or the elementary fundamental theorem of calculus will suffice.
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Tx,c(δ1)− Tx,c(δ2) = δ1 − δ2 −
1
b2

V(δ1x)− V(δ2x)
‖x‖

=

(
1 − 1

b2

V(δ1x)− V(δ2x)
(δ1 − δ2) ‖x‖

)
(δ1 − δ2),

so that by equation (14) we have

|Tx,c(δ1)− Tx,c(δ2)| � k|δ1 − δ2|,

where k :=
(

1 − b1
b2

)
< 1. It follows that the fixed point δ(x, c) depends continuously on (x, c), 

since it is a general fact that the fixed points of a (uniform) family of contractions Tx,c depend 
continuously on the parameters (x, c). Since V(δ(x, c)x) = c, it follows that R(x, c) = δ(x, c)x , 
and therefore R ∈ C0. This completes the proof. □ 

Lemma 3 (Nonlinear parallel transport). Let all notation be as in proposition 2. Then 
there exists a Ck flow Θt on E such that Θ covers the base flow and preserves level sets of V:

∀t : V ◦Θt = V .

Proof. Let Πt be any Cr linear parallel transport covering Φt  as in lemma A.1 (see appendix 
A). We define Θt for t  >  0 by flowing x forward via the linear flow Πt and then projecting onto 
the V(x) level set of V :

Θt(x) := RV(x) ◦Πt(x).

It follows from lemma 2 that Θ ∈ Ck . Since for each t the linear flow Πt maps radial rays into 
radial rays, it follows that Θt is injective for fixed t � 0 and also that Θ indeed satisfies the 
group property.

By lemma A.1 in appendix A, Πt is a Cr linear isomorphism for each t  >  0, and R is Ck by 
lemma 2. Using the fact that Πt preserves radial rays, it follows that the map x �→ RV(x) ◦Π−t(x) 
defined on Πt(E) is a Ck inverse for Θt, so Θt is a Ck isomorphism onto its image. □ 

3.3. The proof of theorem 1

Now we start the proof that Ws(M) is a fiber bundle isomorphic to Ẽs over the inflowing 
NAIM M. (For the reader new to fiber bundles, see appendix C and in particular example C.3).

Proof of theorem 1. Let ρ0 : U ⊂ Ẽs → Ws
loc(M) be the Ck fiber-preserving isomorphism 

constructed using lemma 1 and remark 2. With proposition 2 in mind, we define a Ck local 
flow Ψt on U and a global Cmax{k−1,0} linear flow At on Ẽs as follows:

Ψt := ρ∗0(Φ
t) = ρ−1

0 ◦ Φt ◦ ρ0, ∀m ∈ M : At|Ẽs
m

:= [D(ρ0|Ẽs
Φt(m)

)]−1 ◦ DΦt ◦ D(ρ0|Ẽs
m
), (18)

for all t  >  0. Here we are viewing D(ρ0|Ẽs
m
) as a map Ẽs

m → Es
m via the canonical linear identi-

fication T0Ẽs
m
∼= Ẽs

m. Note that by compactness of M, the linear flow At is eventually uniformly 
contracting relative to the fiber metric (see definition C.7 in appendix C) on Ẽs induced by the 
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Riemannian metric on TQ: i.e. there exists t0  >  0 and 0 � α < 1 such that

∀m ∈ M : ‖At0 |Em‖ � α.

Furthermore, even if k  =  0, the restrictions ρ0|Ẽs
m
 of ρ0 to individual linear fibers of Ẽs are 

smooth (see, e.g. [Fen74, HPS77, theorem 1, theorem 4.1]). It follows that Ψt|Ẽs
m
 is smooth, 

and

∀m ∈ M : D(Ψt|Ẽs
m
)0 = At|Ẽs

m
. (19)

This is because the restrictions ρ0|Ẽs
m
 of ρ0 to individual linear fibers of Ẽs are smooth. By 

NHIM theory (see [PS70, p 191, (2.4)]), we also have that the map (m, y) �→ D(ρ0|Ẽs
m
)y is uni-

formly continuous at the zero section in the sense that D(ρ0|Ẽs
m′
)y tends uniformly to D(ρ0|Ẽs

m
)0  

as m′ → m and ‖y‖ → 0.
It therefore follows in either case (k  >  0 or k  =  0), possibly after a rescaling of time, 

that Ψt and At satisfy the hypotheses of proposition 2 on some uniform neighborhood of the 
zero section—the Lipschitz condition hypothesis in proposition 2 follows from the preced-
ing sentence, see also [PS70, p 191, (2.4)(b’)]. Hence we obtain a radially monotone func-
tion V : Ẽs → R as in proposition 2, and the corresponding Ck family of radial retractions 
Rc : Ẽs \ M → V−1(c) with 0 < c < ∞ as in lemma 2. As in lemma 3, we also obtain a Ck 
flow Θt defined on E \ M , covering Φt , and preserving level sets of V . For the sake of nota-
tion, for any 0 < c < ∞ we henceforth let Uc denote the sublevel set V−1(−∞, c).

We next define the following smooth functions. Let χ ∈ C∞(
[0,∞); [0, 1)

)
 be a global 

diffeomorphism such that χ(δ) = δ for δ � 1
2 and χ′(δ) ∈ (0, 1) for δ > 1

2. Secondly, de-
fine τ(δ) := δ − χ(δ). Hence we have τ ∈ C∞(

[0,∞); [0,∞)
)
 with τ(δ) = 0 for δ � 1

2 and 
τ ′(δ) > 0 for δ > 1

2. Thus τ restricted to ( 1
2 ,∞) is a diffeomorphism onto (0,∞).

Finally, we construct the global fiber bundle isomorphism ρ : Ẽs → Ws(M) as follows. 
Let x ∈ Ẽs

m at the base point m ∈ M . Define the rescaled ξ(x) := Rχ(V(x))(x) if ‖x‖ �= 0 
and ξ(x) = x otherwise. Note that ξ(x) ∈ U1 ⊂ Ẽs is Ck dependent on x by lemma 2, and 
ξ is a Ck isomorphism since its Ck inverse is given by y �→ Rχ−1(V(y))(y). Secondly, define 

t(x) := τ(V(x)) if ‖x‖ �= 0 and t(x) = 0 otherwise, and note that t is Ck dependent on x since 
τ(δ) = 0 for δ � 1

2. Now define

ρ : Ẽs → Ws(M), ρ(x) = Φ−t(x) ◦ ρ0 ◦Θt(x) ◦ ξ(x). (20)

By construction it is clear that ρ is a Ck fiber-preserving map covering the identity on M.
We now show that ρ is injective. First, note that ρ restricted to any level set of V  is injective 

since the function t �→ t(x) is constant on such level sets by construction, and for any fixed 
t0 � 0 the map x �→ Φ−t0 ◦ ρ0 ◦Θt0 ◦ ξ(x) is a Ck isomorphism. Hence it suffices to show that 
ρ(V−1(a)) ∩ ρ(V−1(b)) = ∅ for any a �= b, a, b > 0. Let t1 = t(V−1(a)), t2 = t(V−1(b)), 
and assume without loss of generality that b  >  a and hence t2 > t1. The following are equiva-
lent statements:
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ρ(V−1(a)) ∩ ρ(V−1(b)) = ∅
⇐⇒ Φ−t1 ◦ ρ0 ◦Θt1 ◦ ξ

(
V−1(a)

)
∩ Φ−t2 ◦ ρ0 ◦Θt2 ◦ ξ

(
V−1(b)

)
= ∅

⇐⇒ Φt2−t1 ◦ ρ0 ◦Θt1 ◦ ξ
(
V−1(a)

)
∩ ρ0 ◦Θt2 ◦ ξ

(
V−1(b)

)
= ∅

⇐⇒ Ψt2−t1 ◦Θt1 ◦ ξ
(
V−1(a)

)
∩Θt2 ◦ ξ

(
V−1(b)

)
= ∅

⇐⇒ Ψt2−t1 ◦ ξ
(
V−1(a)

)
∩ ξ(V−1(b)) = ∅

⇐⇒ Ψt2−t1
(
V−1(χ(a))

)
∩ V−1(χ(b)) = ∅,

where we used in the last line that by construction of ξ, ξ(V−1(a)) = V−1(χ(a)) and 
ξ(V−1(b)) = V−1(χ(b)). Since a  <  b we have 0 < χ(a) < χ(b) < 1, and since for any 
t � 0 we have that V−1(−∞, a] is Ψt-invariant by proposition 2, it follows that indeed 
Ψt2−t1

(
V−1(χ(a))

)
∩ V−1(χ(b)) = ∅. Hence ρ is injective.

We continue with surjectivity of ρ. Letting (yn)n∈N be any sequence in Ẽs with ‖yn‖ → ∞, 
it follows that t(yn) → ∞ and χ(yn) → 1. For any δ > 0, let Uδ denote the δ-sublevel set of 
V , consistent with our notation U1. Let K ⊂ Ws(M) be any compact set. By compactness and 
asymptotic stability of M, there exists t0  >  0 such that ∀t � t0 : Φt(K) ⊂ U1/2. It follows that 
for all sufficiently large n ∈ N:

ρ(yn) ∈ Ws(M) ∩
⋃
t�t0

Φ−t(ρ0(U1 \ U1/2)) ⊂ Ws(M) \ K.

Hence ρ takes diverging sequences to diverging sequences and is therefore a proper map, so 
ρ is also a closed map. We have already shown that the continuous map ρ is injective. Using 
these facts, we establish surjectivity of ρ as follows. Since ρ maps the manifold interior int Ẽs  
of Ẽs into the manifold interior int Ws(M) of Ws(M), it follows by invariance of domain that 

ρ|int Ẽs : int Ẽs → int Ws(M) is an open map, and since we also know that ρ is a closed map, it 
follows by connectivity that int Ws(M) = ρ(int Ẽs). Next, since ρ(∂Ẽs) ⊂ ∂Ws(M) and since 
∂Ẽs and ∂Ws(M) are topological manifolds, we may invoke invariance of domain again and 
similarly conclude that ρ(∂Ẽs) = ∂Ws(M). This completes the proof of surjectivity of ρ.

To summarize, we have shown that ρ is a bijective, continuous, and closed map. Therefore, 
ρ is a homeomorphism. This completes the proof if k  =  0.

Assuming now that k � 1, it suffices to show that ρ is a local diffeomorphism. Since ρ agrees 
with the diffeomorphism ρ0 on U1/2, it suffices to consider x ∈ Ẽs \ M . Let y := ρ0 ◦Θt(x) ◦ ξ(x), 
ξ′ := ∂

∂δ ξ(δx)|δ=1, and κ := ∂
∂δ t(δx)|δ=1. A computation using ∂∂tΦ

t = DΦt ◦ f  shows that

∂

∂δ
ρ(δx)|δ=1 = DΦ−t(x)

[
−κf (y) + Dρ0

(
κg(ξ(x)) + DΘt(x)ξ′

)]
, (21)

where g : Ẽs → TẼs is the vector field generating Θ—note that g is tangent to V  level sets. The 
vector in brackets points outward to Φt(x) ◦ ρ(V−1(a)), where a = V(x). To see this, first note 
that proposition 2 and the inequality τ ′ > 0 imply that κ > 0, and therefore −κf (y) points 
outward to Φt(x) ◦ ρ(V−1(a)). Similar reasoning also shows that ξ′ is outward pointing at V  
level sets. Since Θt is a flow, it follows that DΘt(x) can be smoothly deformed to the identity 
through isomorphisms (in other words, an ‘isotopy’), which implies that DΘt(x)ξ′ is also out-
ward pointing at V  level sets. Since ρ0 is a diffeomorphism which maps the zero section of Ẽs 
to M, Dρ0 maps outward pointing vectors at V  level sets to outward pointing vectors at V ◦ ρ−1

0  
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level sets. Taken together, these facts show that the quantity in brackets indeed points outward 
to Φt(x) ◦ ρ(V−1(a)). Now since Φt  is a flow, DΦ−t(x) can also be smoothly deformed to the 
identity through isomorphisms, and therefore the same reasoning above in the case of DΘt(x) 

establishes that ∂∂δρ(δx)|δ=1 is outward pointing to ρ(V−1(a)) at ρ(x). On the other hand, Dρ 
takes a basis for TxV−1(a) to a basis for Tρ(x)ρ(V−1(a)), so Dρ is an isomorphism. This com-
pletes the proof. □ 

4. Global linearization

A classic result in the theory of normally hyperbolic invariant manifolds is that the dynamics 
are ‘linearizable’ on some (a priori small) neighborhood of the NHIM [PS70, HPS77, PT77], 
which is to say that there is some neighborhood U of M ⊂ Q and a fiber-preserving homeo-
morphism ϕ : U → ϕ(U) ⊂ Es ⊕ Eu onto a neighborhood of the zero section such that

ϕ ◦ Φt|U = DΦt|Es⊕Eu ◦ ϕ, (22)

for all t ∈ R such that both sides of the expression are defined. This is a vast generalization of 
the Hartman–Grobman theorem.

In [LM13], this local result is extended to a global result for the special cases of expo-
nentially stable equilibria and periodic orbits. More precisely, it is shown that the domain of 
the linearization can actually be taken to be the entire basin of attraction for these attractors. 
As conjectured in the conclusion of [LM13], this globalization result should generalize to 
hold for arbitrary (boundaryless) NAIMs. In this section, we establish this generalization; our 
methods are similar to theirs.

We would like to apply this linearization result in the context of slow-fast systems to derive 
linear normal forms on a neighborhood of a slow manifold, improving upon the Fenichel nor-
mal form to be discussed in section 5. However, the relevant slow manifolds are often compact 
manifolds with boundary. To the best of our knowledge, neither the results mentioned above 
nor the existing (local) linearization results in the literature directly apply in this case [PS70, 
Rob71, HPS77, PT77, Sel84, Sel83, Sak94, BK94]. Thus, the content of this section can be 
divided as follows.

 1.  In section 4.1, we prove that the dynamics restricted to the basin of attraction of a com-
pact boundaryless NAIM are globally linearizable (and smoothly linearizable, assuming 
some additional hypotheses). This is the content of theorem 2 and its corollaries.

 2.  In section 4.2, we turn to the main goal of section 4, which is to prove that the dynamics 
restricted to the global stable manifold of a compact inflowing NAIM are globally lin-
earizable (and smoothly linearizable, assuming some additional hypotheses). This is the 
content of theorem 3 and its corollaries. We prove this local result in the course of proving 
the stronger global result. To achieve this, we use a topological construction developed in 
appendix B, which might be of independent interest.

Remark 8. After we had proved theorem 2 (global linearization for the boundaryless case), 
we learned that Igor Mezić independently obtained this theorem before us. A very readable 
proof appears in his soon-to-be published textbook on Koopman operator theory [Mez17]. His 
proof technique is the same as ours. However, his result applies only to boundaryless NAIMs, 
and therefore we need our theorem 3 (global linearization for inflowing NAIMs) for our goal 
of deriving a linear normal form for a class of slow-fast systems, which we do in section 5.
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4.1. Global linearization for boundaryless NAIMs

In the following results, recall that by a Ck isomorphism, we mean a homeomorphism if k  =  0 
and a Ck diffeomorphism if k � 1. Theorem 2 will be used as a stepping stone to prove a global 
linearization result for inflowing NAIMs in section 4.2 below, which we apply to slow-fast 
systems in section 5.

Theorem 2. Let M ⊂ Q be a compact (boundaryless) 1-NAIM for the Cr flow Φt  on Q. As-
sume that Es ∈ Ck, with 0 � k � r − 1, and that Φt  is locally Ck conjugate to the linear flow 
DΦt|Es on some neighborhood of M ⊂ Ws(M). Then Φt  is globally Ck conjugate to DΦt|Es, 
which is to say that there exists a Ck fiber-preserving isomorphism ϕ : Ws(M) → Es such that

∀t ∈ R : ϕ ◦ Φt = DΦt|Es ◦ ϕ. (23)

Additionally, ϕ agrees with the local conjugacy on its domain.

Remark 9. The hypotheses of theorem 2 assume the existence of a local linearizing Ck 
conjugacy. Theorem 2 shows that any local linearizing conjugacy may be extended to a global 
linearizing conjugacy having the same regularity.

Remark 10. The relationship between theorems 1–3 (see section 4.2 below) are as follows. 
The hypotheses of theorems 2 and 3 are much stronger than those required for theorem 1, and 
in particular the hypotheses of theorem 1 are not sufficient to prove the conclusion of theo-
rems 2 and 3. However, the hypotheses of theorems 2 and 3 suffice to prove the conclusion of 
theorem 1 in the cases that ∂M = ∅ and M is inflowing with ∂M �= ∅, respectively, since the 
conjugacy ϕ : Ws(M) → Es is in particular a Ck fiber-preserving isomorphism.

Remark 11. As pointed out in [LM13], the flow is automatically locally C1 linearizable near 
an exponentially stable equilibrium or periodic orbit. See the references therein. It is shown in 
[PS70, HPS77, PT77] that the flow is always locally C0 linearizable near a NHIM. There are 
also various results in the literature giving conditions ensuring that Φt  is locally Ck lineariz-
able near a general invariant manifold, such as [Sak94, Tak71, Rob71, Sel84, Sel83]. See also 

Figure 3. An illustration of the proof of theorem 2. The neighborhood U ⊂ Ws(M) 
and its image ϕloc(U) are bounded by dashed curves. The level set V−1(c) ⊂ Ws(M) is 
depicted by the dotted curves.
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[BK94, ch. VI] for similar results, as well as historical remarks. In particular, we obtain the 
following easy corollary.

Corollary 4. Let M, Q, Ps, and Φt  be as in theorem 2. Assume that Φt  is a C1 flow and that 
M is a 1-NAIM. Then Φt|Ws(M) is globally topologically conjugate to DΦt|Es.

Proof. As remarked already, it is shown in [PS70, HPS77, PT77] that Φt  is locally topologi-
cally conjugate to DΦt|Es near M. Thus theorem 2 yields the existence of a global topological 
conjugacy between Φt  and DΦt|Es. □ 

Remark 12. This furnishes a proof alternative to the one given in section 3.3 that for a 
1-NAIM M, Ps : Ws(M) → M  is always a topological fiber bundle isomorphic to Es over M.

Proof of theorem 2. By assumption, there exists a neighborhood U of M and a Ck fiber-
preserving isomorphism ϕloc : U → ϕloc(U) ⊂ Es such that for all t  >  0:

ϕloc ◦ Φt|U = DΦt|Es ◦ ϕloc. (24)

We now extend this local conjugacy to a global one.
Let V  be a strict C∞ Lyapunov function for the flow Φt  [Wil67, Wil69], and let f be the 

vector field generating that flow. V  is nonnegative, V−1(0) = M, V  is proper, and the Lie de-
rivative Lf V  of V  along trajectories not contained in M is strictly negative. Since V  is proper, 
there is c  >  0 such that V−1(c) ⊂ U , for example, take c < infx∈Ws(M)\U V(x).

Since Lf V < 0 on V−1(c), it follows that the vector field f intersects V−1(c) transversally. 
The properties of V  imply that for all x ∈ Ws(M) \ M  there exists a unique ‘impact time’ 
τ(x) ∈ R such that Φτ(x)(x) ∈ V−1(c). Using transversality of f to V−1(c) and the implicit 
function theorem applied to (x, τ) �→ V(Φτ (x)), we see that τ : Ws(M) \ M → R is Cr.

Now define a map ϕ : Ws(M) → Es by

ϕ(x) :=
{
DΦ−τ(x) ◦ ϕloc ◦ Φτ(x)(x), x ∈ Ws(M) \ M
ϕloc, x ∈ U.

 (25)

See figure 3. Note that ϕ is well-defined because equation (24) implies that the two functions 
in (25) agree on U \ M, and hence ϕ ∈ Ck since clearly both maps in (25) are. Note also that ϕ 
maps fibers Ws(m) into fibers Es

m  by invariance of the stable foliation and stable vector bundle 
under the nonlinear and linear flows, respectively. It is easy to check directly that ϕ conjugates 
the flows as in equation (23)—we now show that ϕ is a Ck isomorphism.

We first show that ϕ : Ws(M) → Es is injective. Define the Ck function V ′ : ϕloc(U) → R 
by V ′ := V ◦ (ϕloc)

−1. We have that ∀v = ϕloc(x) ∈ ϕloc(U) and all t  >  0:

V ′ ◦ DΦt(v) = V ′ ◦ DΦt ◦ ϕloc(x) = V ′ ◦ ϕloc ◦ Φt(x) = V ◦ Φt(x). (26)

It follows that V ′ is strictly decreasing along trajectory segments of DΦt|Es contained in ϕloc(U), 
so that any trajectory of DΦt|Es starting in ϕloc(U \ M) intersects the c level set Σ := (V ′)−1(c) 
of V ′ in precisely one point. Now suppose that ϕ(x) = ϕ(y) with x �= y . Then we have 
DΦ−τ(x)(v) = DΦ−τ(y)(w), where v := ϕloc ◦ Φτ(x)(x) ∈ Σ and w := ϕloc ◦ Φτ(y)(y) ∈ Σ. It 
follows that v = DΦτ(x)−τ(y)(w) which, by the previous comments, implies that τ(x) = τ(y) 
and that v = w. By injectivity of ϕloc we therefore have Φτ(x)(x) = Φτ(x)(y). Since Φτ(x) is 
injective, x  =  y. Hence ϕ is injective.
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We next show that ϕ : Ws(M) → Es is surjective. Note that ϕloc maps M one-to-one and 
onto the zero section of Es (this must be the case since homeomorphisms preserve ω-limit 
sets). Now consider any v ∈ Es \ M , identifying M with the zero section as usual. Since M is a 
NAIM, the zero section of Es is asymptotically stable for the linear flow DΦt|Es. This fact and 
continuity imply that there is t0  >  0 such that DΦt0(v) ∈ Σ. Let x′ ∈ U  be the unique point 
with ϕloc(x′) = DΦt0(v). Setting x = Φ−t0(x′), we see that τ(x) = t0 and that

ϕ(x) = DΦ−τ(x) ◦ ϕloc ◦ Φτ(x)(x) = DΦ−t0 ◦ ϕloc ◦ Φt0(x) = DΦ−t0 ◦ ϕloc(x′) = DΦ−t0 ◦ DΦt0(v) = v.

To complete the proof, it suffices to prove that ϕ−1 ∈ Ck. Since ϕ−1|ϕ(U) = (ϕloc)
−1, ϕ−1 

is Ck on U. Now let v ∈ Es \ ϕ(U). By asymptotic stability of the zero section for DΦt|Es, there 
exists t0  >  0 such that DΦt0(v) ∈ U. Since ϕ−1 = Φ−t0 ◦ ϕ−1 ◦ DΦt0 |Es by (23), it follows that

ϕ−1|DΦ−t0 (ϕ(U)) = Φ−t0 ◦ (ϕloc)
−1 ◦ DΦt0 |DΦ−t0 (ϕ(U))

is a composition of Ck maps, so that ϕ−1 is Ck on a neighborhood of v. This completes the 
proof. □ 

4.2. Global linearization for inflowing NAIMs

We next proceed to our main goal for section 4, which is to prove a global linearization theo-
rem for inflowing NAIMs. The key tool we use is proposition B.1 in appendix B, which shows 
that many results about boundaryless NAIMs can be transferred to inflowing NAIMs. We 
reiterate that this result is necessary for our derivation of a linear normal form (see theorem 
5) for slow-fast systems, since the slow manifolds for these systems are typically manifolds 
with boundary.

Theorem 3. Let M ⊂ Q be a compact inflowing r-NAIM for the flow Φt  generated by the Cr 
vector field f on Q, where r � 3. Assume further that there exist constants 0 < δ < −α < −β  
and K � 1 such that −α > rδ , −β < −2α− (r − 1)δ , and such that for all t � 0

K−1e−δt � ��DΦt|TM�� � ‖DΦt|TM‖ � Keδt,

K−1e−δt �
⌊⌊
(DΦt|TM)

−1⌋⌋ � ∥∥(DΦt|TM)
−1

∥∥ � Keδt,

K−1eβt � ��DΦt|Es�� � ‖DΦt|Es‖ � Keαt

 (27)

hold uniformly on TM and Es. Then Es ∈ Cr−1 and Φt|Ws(M) is globally Cr−1 conjugate to 
DΦt|Es.

Proof. By proposition B.1 in appendix B, there exists a C∞ manifold Q̂, an open neighbor-
hood U ⊃ Ws(M), a C∞ embedding ι : U → Q̂, a Cr vector field f̂  on Q̂ generating a Cr flow 
Φ̂t , and a Cr compact and boundaryless r-NAIM N̂ ⊂ Q̂ for Φ̂t  with the following properties.

 1.  ι∗( f |Ws(M)) = f̂ |ι(Ws(M).
 2.  ∀m ∈ M : ι(Ws(m)) = Ŵs(ι(m)), where Ws(M) and Ŵs(N̂) are the global stable folia-

tions of M for f and N̂  for f̂ , respectively.
 3.  There exist constants δ′,α′,β′ arbitrarily close to δ,α,β  such that (27) holds uniformly 

on TN̂  and Ês, after replacing δ, α, β, M, Es, and Φt  by δ′, α′, β′, N̂ , Ês, and Φ̂t , respec-
tively. Here, Ês is the stable vector bundle of N̂  for Φ̂t .
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In [Sak94, p 335, theorem B] it is shown16 that item 3 implies that Ŵs(N̂), Ês ∈ Cr−1 and that 
Φ̂t  is locally Cr−1 conjugate to DΦ̂t|Ês near N̂ . By theorem 2, it follows that Φ̂t|Ŵs(N̂) is globally 

Cr−1 conjugate to DΦ̂t|Ês. Let ϕ̂ : Ŵs(N̂) → Ês be such a conjugacy. Items 1 and 2 imply that 

restriction of ϕ̂ yields a well-defined global Cr−1 conjugacy ϕ̂|Ŵs(ι(M)) : Ŵs(ι(M)) → Ês|ι(M) 

between Φ̂t|Ŵs(ι(M)) and DΦ̂t|Ês|ι(M)
. Hence ϕ := ι|−1

Ŵs(ι(M))
◦ ϕ̂ ◦ ι is a global Cr−1 conjugacy 

from Φt|Ws(M) to DΦt|Es. □ 

Corollary 5. Let M ⊂ Q be a compact inflowing 1-NAIM for the Cr flow Φt  generated by 
the Cr vector field f on Q. Then Φt|Ws(M) is globally topologically conjugate to DΦt|Es.

Proof. The proof is identical to that of theorem 3, but with [PS70, theorem 2] used instead 
of [Sak94, p 335, theorem B] to provide a local linearizing C0 conjugacy. □ 

5. Applications to geometric singular perturbation theory

We give two applications of theorems 1 and 3 to slow-fast systems in the context of GSP. Our 
applications assume the special case in which the slow manifold is attracting. Both applica-
tions are improvements of the so-called Fenichel normal form, discussed below, and are con-
tained in theorems 4 and 5 below.

The Fenichel normal form [JK94, Jon95, Kap99, JT09] is the form that the equations of 
motion take near the slow manifold of a slow-fast system, when written in local coordinates 
which are adapted to the slow manifold and its stable and unstable foliations. One application 
of this normal form was to derive the estimates used to prove the so-called exchange lemma 
and its extensions, which are useful tools for establishing the existence of heteroclinic and 
homoclinic orbits in slow-fast systems; see, e.g. [JK94, Jon95, JKK96, Bru96, KJ01, Liu06, 
Sch08, JT09] and the references therein. In the special case that the slow manifold is attract-
ing, another application of the Fenichel normal form is to dimensionality reduction: in this 
normal form, the dynamics of the transformed slow variable are decoupled from the tran-
sient dynamics of the transformed fast variable, and therefore the transformed slow dynamics 
serves as a reduction of the full dynamics in a clear way. Stated differently, in the coordinates 
placing the system in Fenichel normal form, the map Ps sending stable fibers to their base-
points is simply an orthogonal projection; the coordinate change ‘straightens out’ the stable 
fibers Ws(m), for m in the slow manifold. We remark that the recent paper [JT09] is a useful 
source of historical information on the Fenichel normal form.

As mentioned above, for our applications to GSP we will assume the special case in which 
the critical manifold is a NAIM. This special case arises naturally in many concrete applica-
tions, such as in understanding nonholonomic dynamics as a limit of friction forces [Eld16, 

16 Comparing (27) to [Sak94, equation (2.7)], note that we express the conditions on DΦt|TM only for t � 0, but also 
on the inverse to prevent issues with Φt(m) leaving M. We do not have an equivalent for Sakamoto’s estimate for Z 
since we have no unstable bundle. Furthermore, the lack of minimum norms for the lower bounds seems to be a mi-
nor oversight in Sakamoto’s conditions. Next, Sakamoto’s result is actually only stated for a NAIM with trivial nor-
mal bundle, but this is easily extended to the general case by locally writing the dynamics on the normal bundle and 
then extending them to the total space of the direct sum with an inverse bundle; this useful trick is briefly mentioned 
in a different context in [Sak94, pp 333–4], but see also [PSW97, section 3] for more details. Finally, it is actually 
claimed in [Sak94, p 333] that Ês ∈ Cr, but to the best of our knowledge this seems to be a minor oversight—the 
references in [Sak94, p 333] provided to support this statement either claim Cr−1 smoothness only [Sak90, lemma 
3.2 (ii)], or omit the details of higher degrees of smoothness in their proof [Yi93a, theorem 3.1, Yi93b, theorem 3.1]. 
For a proof that Ês ∈ Cr−1, see [Fen71, theorem 7] or [Sak90, appendix B].
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ch 20], in biolocomotion [EJ16], in the context of chemical reactions and combustion [LG94], 
in various problems in control theory [KOS76], and many more [Kue15]. For general back-
ground on GSP, one may consult, e.g. the seminal paper [Fen79], the expository articles 
[Kap99, Jon95], or the recent book [Kue15].

Our two applications are as follows.

 1.  Using theorem 1 and assuming that the slow manifold is a NAIM, we show that the 
Fenichel normal form is valid on the union of global stable manifolds ∪εWs(Kε) of slow 
manifolds Kε, rather than just on the union of local stable manifolds ∪εWs

loc(Kε). This is 
the content of theorem 4.

 2.  Using theorem 3 and assuming that the slow manifold is a NAIM, we show that under 
additional spectral assumptions on the critical manifold, there exists a stronger normal 
form which is linear in the fast variables. This normal form can be viewed as a stronger 
version of the Fenichel normal form. Additionally, this linear normal form is also valid on 
the union of global stable manifolds ∪εWs(Kε) of slow manifolds Kε. This is the content 
of theorem 5.

The remainder of this section is as follows. We first introduce the context for theorems 4 
and 5 by describing the GSP setup in section 5.1. Next, section 5.2 contains the global exten-
sion of the Fenichel normal form as an application of theorem 1. Following this, section 5.3 
contains the derivation of the linear normal form, as well as its global extension, as an applica-
tion of theorem 3. Next, in in section 5.4 we discuss our results and relate them to the so-called 
method of straightening out fibers (SOF method) recently appearing in the literature [KBS14]. 
Finally, in section 5.5 we illustrate our results in an example involving a classical mechanical 
system.

5.1. Setup and classic results

Consider a singularly perturbed system of the form

x′ = f (x, y, ε)
εy′ = g(x, y, ε),
 (28)

where x ∈ Rnx and y ∈ Rny are functions of ‘slow time’ τ, ε is a small parameter, and17 
f , g ∈ Cr�2. For all ε �= 0, this system is equivalent via a time-rescaling t = τ/ε to the regu-
larized system

ẋ = εf (x, y, ε)
ẏ = g(x, y, ε).
 (29)

We let a ‘prime’ denote a derivative with respect to τ, and a ‘dot’ denote a derivative with 
respect to the ‘fast time’ t.

Now suppose that K0 ⊂ int K̂0 ⊂ K̂0 are compact manifolds with boundary contained in 
S := {(x, y) : g(x, y, 0) = 0}, with int K̂0 denoting the manifold interior of K̂0. Noting that 
S consists of critical points of the (ε = 0) system, let us assume that the eigenvalues of 
D2g(x, y, 0) have strictly negative real part on K̂0. In particular, this implies that K̂0 can be 
locally written as a graph K̂0 := {(x, F(x))} over some domain B ⊂ Rnx.

17 Note that we have adopted Fenichel’s convention of letting x denote the ‘slow’ variable here, as a matter of 
personal style.
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By making local modifications to the vector field defined by (29) in arbitrarily small neigh-
borhoods of ∂K0 and ∂K̂0, we may henceforth assume without loss of generality that the vec-
tor field is inward pointing at ∂K0 and outward pointing at18 ∂K̂0.

By our assumption on the eigenvalues of D2g, we have that K0 × R and K̂0 × R are non-
compact NAIMs for the dynamics

ẋ = 0
ẏ = g(x, y, 0)
˙̃ε = 0,
 (30)

since the equations for ẋ and ẏ in (30) are independent of ε̃ . Here, ε̃ ∈ R is a new parameter, 
and its relation to ε will be determined subsequently. We compactify these NAIMs by replac-
ing R  with its one-point compactification S1, and we thereby henceforth consider (30) to be 
defined on Rnx+ny × S1. For this new domain of definition, K0 × S1 and K̂0 × S1 are compact 
inflowing and overflowing NAIMs, respectively.

Next, following [Eld13, p 142], we use a scaling parameter κ > 0 to slowly ‘turn on’ the ε̃  
dependence. Let χ : R → [0, 1] be a C∞ nonnegative bump function such that χ ≡ 1 on [−1, 1] 
and χ ≡ 0 on R \ (−2, 2), and—anticipating a parameter substitution ε = κε̃—consider the 
vector field defined by

ẋ = χ(ε̃)κε̃f (x, y,χ(ε̃)κε̃)
ẏ = g(x, y,χ(ε̃)κε̃)
˙̃ε = 0.

 (31)

One can verify that this vector field can be made arbitrarily Cr-close to (30) by taking 
0 < κ � 1 sufficiently small. It follows from Fenichel’s theorem on persistence of overflow-
ing NAIMs [Fen71, theorem 1] that there exists a κ > 0 such that K̂0 × S1 persists to a Cr-
nearby overflowing r-NAIM for (31), and that K0 × S1 persists to an inflowing NAIM inside it, 
since K0 × S1 ⊂ K̂0 × S1 and inflowing invariance is an open condition. Because K0 consisted 
entirely of critical points for (30), by a theorem of Fenichel the local stable foliation of the 
inflowing NAIM is Cr−1 [Fen77, theorem 5].

We now make the change of variables ε = κε̃  and see that (31) is equivalent to

ẋ = χ(ε/κ)εf (x, y,χ(ε/κ)ε)
ẏ = g(x, y,χ(ε/κ)ε)
ε̇ = 0,
 (32)

so it follows that (32) has compact r-NAIMs M and M̂ which are respectively inflowing and 
overflowing, and with M contained in the manifold interior of M̂. Since M and M̂ are the 
images of the NAIMs for (31) through a diffeomorphism, the local stable foliation Ws

loc(M) of 
M for (32) is also Cr−1 in all variables x, y, ε.

5.2. Globalizing the Fenichel normal form

Continuing the analysis of section 5.1, we may apply theorem 1 to deduce that the leaves of the 
global stable foliation of M for (32) fit together to form a Cr−1 disk bundle Ps : Ws(M) → M  
isomorphic (as a disk bundle) to Es. By the definition of χ we see that for ε ∈ [−κ,κ], (32) 
reduces to the system

18 Similar constructions are carried out in greater detail in [Jos00, section 2].
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ẋ = εf (x, y, ε),
ẏ = g(x, y, ε),
ε̇ = 0.

 (33)

As in [Jon95], let us make the commonly made assumption19 that K̂0 is the graph of a map 
B ⊂ Rnx → Rny, where B is a closed ball in Rnx—as we have already noted, by the implicit 
function theorem this can always be achieved by shrinking K̂0 if necessary. Thus, if κ is suf-
ficiently small, we can write M as the graph of a Cr map y = F(x, ε) defined on a suitable 
open subset of Rnx × S1. Making the coordinate change (x, y, ε) �→ (x, y − F(x, ε), ε), we 
may assume that M is contained in Rnx × {0} × S1. Since we assumed that K̂0 is contract-
ible it follows that M deformation retracts onto S1, and hence the bundle Ps : Ws(M) → M  
must be trivializable over any subset of the form M0 := M ∩ (Rnx+ny × (−ε0, ε0)), for any 
sufficiently small ε0 > 0. It follows that there exists a Cr−1 fiber-preserving diffeomor-
phism Ws(M0) ∼= M0 × Rny of the form (x, y, ε) �→ (x̃, ỹ, ε) := (Ps(x, y, ε),φ(x, y, ε), ε), with 
φ(x, 0, ε) ≡ 0. Making this final coordinate change, it follows that when restricted to Ws(M0), 
the system (33) takes the form:

˙̃x = εh(x̃, ε),
˙̃y = Λ(x̃, ỹ, ε)ỹ,
ε̇ = 0,

 (34)

where (x̃, ỹ, ε) �→ Λ(x̃, ỹ, ε) is a Cr−3 family of nx × nx matrices and (x̃, ε) �→ h(x̃, ε) is20 Cr−1. 
The ˙̃x equation depends only on x̃ and ε because we are using an invariant fiber bundle trivi-
alization for coordinates on Ws(M0), and x̃ and ε̃  are coordinates for M0. By our choice of 
coordinates, ˙̃x is zero when ε = 0 because ẋ = 0 when ε = 0—this fact and Hadamard’s 
lemma implies that ˙̃x is of the form εh(x̃, ε). Hadamard’s Lemma similarly implies that ˙̃y is of 
the form Λ(x̃, ỹ, ε)ỹ, because after our coordinate changes M0 corresponds to the set of points 
in Ws(M0) with ỹ = 0, and also M0 is positively invariant, so it must be the case that ˙̃y = 0 
when ỹ = 0. Suppressing the ε̇ = 0 equation, we have proven the following result, which we 
record here as a theorem.

Theorem 4. Assume that K̂0 can be written as the graph of a Cr map B ⊂ Rnx → Rny, 
with B a closed ball in Rnx. Then there exists κ > 0 such that for any ε ∈ [−κ,κ], there is a 
Cr−1 fiber-preserving diffeomorphism ϕε : Ws(Kε) → Kε × Rny such that in the coordinates 
x̃, ỹ = ϕε(x, y), the system (28) takes the form

˙̃x = εh(x̃, ε),
˙̃y = Λ(x̃, ỹ, ε)ỹ.
 (35)

In the new coordinates, Kε corresponds to {(x̃, ỹ)|ỹ = 0}. The diffeomorphism ρε is Cr−1 in ε. 
Also, h ∈ Cr−1, Λ ∈ Cr−3, and the function (x̃, ε) �→ εh(x̃, ε) is Cr.

Restricting attention now to only positive values of ε > 0, in the original slow time-scale 
(35) is equivalent to

19 A more general situation where M cannot be written as a graph can be handled using a tubular neighborhood 
modeled on the normal bundle of M.
20 However, the maps (x̃, ε) �→ εh(x̃, ε) and (x̃, ỹ, ε) �→ Λ(x̃, ỹ, ε)ỹ are Cr and Cr−2, respectively. The first map is Cr 
because εh(x, ε) ≡ f (x, F(x, ε), ε), and the right hand side is Cr in x and ε.
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x̃′ = h(x̃, ε),
εỹ′ = Λ(x̃, ỹ, ε)ỹ.
 (36)

Remark 13. Because of our assumption that the critical manifold of (29) was a NAIM, 
the normal form which we were able to derive and state in theorem 4 appears considerably 
simpler than the Fenichel normal form—see [Jon95, p 82, Kap99, pp 109–11, JT09, p 973] 
or [Kue15, pp 72–3], although our normal form actually directly follows from the general 
Fenichel normal form. Our contribution is that, using theorem 1, we have shown that this 
normal form is valid on a neighborhood which consists of the entire union of global stable 
manifolds ∪εWs(Kε), as opposed to being valid merely on the union of local stable manifolds 
∪εWs

loc(Kε).

5.3. Smooth global linearization: a stronger GSP normal form

In this section we continue to assume that the critical manifold is a NAIM for (29), but we 
make the following additional ‘nonresonance’ assumption on the eigenvalues of the criti-
cal points. Let rmin(x, y) � rmax(x, y) < 0 denote the minimum and maximum real parts of 
eigenvalues of D2g(x,y), where (x, y) ∈ K̂0, and K̂0 is defined following (29). We assume that 
there exist negative real constants α,β  such that 2α < β < α < 0 and

∀(x, y) ∈ K̂0 : β < rmin(x, y) � rmax(x, y) < α. (37)

The payoff for this assumption is that we can obtain a Cr−1 normal form which is linear 
in ỹ, improving upon the Fenichel normal form (35) significantly. This normal form is also 
global in the sense that it holds on the entire union of global stable manifolds ∪εWs(Kε). This 
is the content of the following result.

Theorem 5. Assume that the vector field defined by (28) is Cr�3, and assume that the con-
dition (37) holds for the regularized system (29), and that K̂0 can be written as the graph of a 
Cr map B ⊂ Rnx → Rny, with B a closed ball in Rnx. Then there exists κ > 0 such that for any 
ε ∈ [−κ,κ], there is a Cr−1 fiber-preserving diffeomorphism ϕε : Ws(Kε) → Kε × Rny such 
that in the coordinates x̃, ỹ = ϕε(x, y), the system (28) takes the form

˙̃x = εh(x̃, ε),
˙̃y = A(x̃, ε)ỹ.
 (38)

In the new coordinates, Kε corresponds to {(x̃, ỹ)|ỹ = 0}. The diffeomorphism ϕε is Cr−1 in ε. 
Also, h ∈ Cr−1, A ∈ Cr−1, and the function (x̃, ε) �→ εh(x̃, ε) is Cr.

Restricting attention now to only positive values of ε > 0, in the original slow time-scale 
(38) is equivalent to

x̃′ = h(x̃, ε),
εỹ′ = A(x̃, ε)ỹ.
 (39)

If the condition (37) does not hold, then there exists a homeomorphism ϕε such that the same 
result holds, but ϕε is generally not differentiable in that case.
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Proof. Consider the compact inflowing NAIM M for the system (32) defined on Rnx+ny × S1. 
As described in section 5.2, our assumption that K̂0 is a graph implies that if κ > 0 is suffi-
ciently small, then M is the graph of a Cr map (x, ε) �→ y. Hence we may assume without loss 
of generality that M ⊂ Rnx × {0} × S1.

Let Es be the stable vector bundle of M and let Φt  be the flow of the system (32) on 
Rnx+ny × S1. By continuity and compactness, it can be shown that assumption (37) implies that 
if κ > 0 is sufficiently small, then there exist constants δ > 0 and K � 1 such that −α > rδ , 
and such that for all t � 0

K−1e−δt � ��DΦt|TM�� � ‖DΦt|TM‖ � Keδt,

K−1e−δt �
⌊⌊
(DΦt|TM)

−1⌋⌋ � ∥∥(DΦt|TM)
−1

∥∥ � Keδt,

K−1eβt � ��DΦt|Es�� � ‖DΦt|Es‖ � Keαt

 

(40)

uniformly on TM and Es. By theorem 3, there exists a global Cr−1 fiber-preserving diffeomor-
phism ϕ : Ws(M) → Es which conjugates Φt|Ws(M) to DΦt|Es and maps M diffeomorphically 
onto the zero section of Es.

Now in any local trivialization of Es, the vector field generating the flow DΦt|Es is of the 
form (38) augmented with ε̇ = 0 (where coordinates for the zero section are given by x̃ and 
coordinates for the fibers given by ỹ). It follows that if we define ϕε( · , · ) := ϕ( · , · , ε), then 
it suffices to show that Ws(M) is trivializable over the subset M ∩ (Rnx+ny × [−κ,κ]). But 
M ∩ (Rnx+ny × [−κ,κ]) is contractible since it is diffeomorphic to K0 × [−κ,κ], so Ws(M) is 
indeed trivializable over Mκ.

The statement about (39) follows easily by replacing t with the rescaled slow time τ = εt.
Finally, to justify the last statement for the case that (37) does not hold, we simply apply 

corollary 5 instead of theorem 3. This completes the proof. □ 

Remark 14. Assume that ny = dim(y) = 1, so that the fast variable is one-dimensional and 
the slow manifold is codimension-1. Then the eigenvalue condition (37) can always be made 
to hold by taking K̂0 sufficiently small.

Remark 15. We see from the proof that, since Kε is a manifold with boundary, our 
linearization result theorem 3 for inflowing invariant manifolds is crucial. This is be-
cause, to the best of our knowledge, all of the linearization results in the literature assume 
a boundaryless invariant manifold [PS70, Tak71, Rob71, HPS77, PT77, Sel84, Sel83, 
Sak94, BK94].

5.4. Discussion

We have proven theorems 4 and 5, both of which are statements about normal forms for 
slow-fast systems in the framework of GSP. These results assume that the slow manifold is 
attracting.

Let us first discuss some literature regarding the Fenichel normal form for attracting slow 
manifolds, which is the subject of theorem 4. Because of the practical benefits afforded by 
dimensionality reduction, there has been interest in actually computing the coordinate change 
placing the system in Fenichel normal form for the attracting slow manifold case. Recently, the 
so-called method of straightening out fibers (SOF) method has been developed to iteratively 
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approximate the Taylor polynomials of this coordinate change21 [KBS14]; similar techniques 
for systems near equilibria were previously developed in [Rob89, Rob00], and we also men-
tion that it was shown in [ZKK04] that the computational singular perturbation (CSP) method 
initially developed in [LG89, Lam93] iteratively approximates the first-order Taylor polyno-
mial of this coordinate change.

Theorem 4 does not yield a new normal form; it shows that, in the attracting slow mani-
fold case, the domain of the coordinate change placing the system in Fenichel normal form 
actually extends to the entire global stable manifold of the slow manifold. This result seems 
to be of primarily theoretical interest. For example, the state-of-the-art SOF method only 
provides a means for computing Taylor polynomials centered at the slow manifold. Since 
these Taylor polynomials are only guaranteed to accurately approximate the coordinate near 
the slow manifold, they are unlikely to approximate the global coordinate change. Hence the 
global coordinate change, guaranteed to exist by theorem 4, might not be explicitly comput-
able except in special cases.

On the other hand, theorem 5 does yield a new normal form, and also shows that the domain 
of the associated coordinate change extends to the entire global stable manifold. In order for 
the coordinate change to be differentiable, some additional spectral conditions (37) need to 
be satisfied, although these are automatically satisfied on a small enough domain of the slow 
manifold in the codimension-1 case (see remark 14). The payoff is that this normal form is 
linear in the fast variables. Furthermore, by combining the SOF method of [KBS14] with 
additional normal form computations [GH83, Rob89, Rob00] for the fast variable, it seems to 
us that it should be possible in principle to compute the Taylor polynomials of this coordinate 
change in a systematic way. We hope to explore this in future work. Of course, computing this 
coordinate system globally suffers the same difficulties mentioned in the previous paragraph. 
Finally, we observe that our normal form is quite similar in form to the dynamics produced by 
‘high-gain’ nonlinear control schemes—suggesting that linearly controlled fast variables are 
an inherent feature of a broad class of systems, rather than a convenient requirement imposed 
by control theorists.

5.5. Example

In this section, we consider an example of a forced pendulum with damping. This example 
was chosen so that the natural state space is not Euclidean. This will allow us to illustrate theo-
rems 1–3 by directly applying these theorems to obtain stronger results than those obtainable 
via theorems 4 and 5, which we formulated for dynamics on a Euclidean space.

We allow the damping coefficient of the pendulum to be a function of the pendulum angle, 
and consider an applied torque which depends on the pendulum angle and time. We assume 
that the applied torque is periodic in time, and for simplicity we assume that the period is 2π. 
Specifically, we consider the equations of motion

εθ′′ +
εg
l
sin θ + c(θ)θ′ = τ(θ, t), (41)

where ε is the pendulum mass which we assume to be small22, l is the pendulum length, g is 
the acceleration due to gravity, c is the angle-dependent damping coefficient, and τ(θ, t) is the 

21 The results of [KBS14] actually apply in more general situations, such as the case of a normally elliptic slow 
manifold. See [KBS14] for more details.
22 Strictly speaking, in a physical context we should define ε to be a dimensionless quantity in order to refer to it 
as ‘small’ in an absolute sense. However, this will cause no problem whatsoever for applying and illustrating our 
results, and we therefore do not bother with this.
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applied torque—not to be confused with the slow time variable that is also denoted by τ with 
some abuse of notation. We are assuming that ∀θ, t : τ(θ, t + 2π) = τ(θ, t). We define the 
angular velocity ω := θ′. The periodicity of τ allows us to introduce a circular coordinate α 
and write (41) in the following extended state space form:

θ′ = ω

α′ = 1

εω′ = −εg
l
sin θ − c(θ)ω + τ(θ,α).

 

(42)

We consider (θ,α) to be angle coordinates on the two-torus T2 := S1 × S1, so that the state 
space is T2 × R. As in section 5.1, for ε �= 0 this ‘slow time’ system is equivalent via a time-
rescaling t = τ/ε to the ‘fast time’ system

θ̇ = εω

α̇ = ε

ω̇ = −εg
l
sin θ − c(θ)ω + τ(θ,α).

 

(43)

To relate this to our earlier notation from section  5.1, here (θ,α) is playing the role of 
x and ω is playing the role of y. For ε = 0, the set of critical points of (43) are given by 
S := {(θ,α,ω) : c(θ)ω = τ(θ,α)}.

Let us first consider the special case of a constant positive damping coefficient 

c(θ) ≡ c0 > 0. Then S is the graph of the map F0(θ,α) := 1
c0
τ(θ,α). We henceforth assume 

that τ ∈ Cr, with23 3 � r < ∞. It follows that S is a Cr manifold diffeomorphic to the torus 
T2. Furthermore, the eigenvalues of all critical points in the critical manifold S are readily 
checked to be (0,0, −  c0), with the zero eigenvalues corresponding to the tangent spaces of 
S and  −c0 corresponding to span{(0, 0, 1)}. Therefore, S is an r-NAIM for (43) when ε = 0. 
Since ∂S = ∅, there exists ε0 > 0 such that for all 0 � ε � ε0, there is a unique persistent 
NAIM Sε close to S, with S0  =  S. As in section 5.2, Sε is the graph of a Cr map ω = F(θ,α, ε) 
with F0 = F( · , · , 0).

Using a technique from [SW99], we next prove the following proposition.

Proposition 3. For all sufficiently small ε > 0, Sε is globally asymptotically stable. In 
other words, for all sufficiently small ε > 0, we have Ws(Sε) = T2 × R.

Proof. We already know that Sε is locally asymptotically stable for ε > 0 sufficiently small, 
so it suffices to show that Sε is globally attracting for ε > 0 sufficiently small. We fix any 
ε0 > 0 and define

η :=
1
c0

(
ε0g

l
+ max

(θ,α)∈T2
|τ(θ,α)|+ 1

)
.

Note that for all 0 � ε � ε0, the compact subset

Dη := {(θ,α,ω) : |ω| < η}

of T2 × R is positively invariant, and every point in (T2 × R) \ Dη will flow into Dη in some 

23 Even if r = ∞, we can only derive results for a finite smoothness degree. This is because persistent NHIMs gen-
erally have only a finite degree of smoothness, even if the dynamics are C∞ and the spectral gap is infinite [Eld13, 
remark 1.12].
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finite time; indeed, ω̇ < −1 on (T2 × R�0) \ Dη, ω̇ > 1 on (T2 × R�0) \ Dη, and the vec-
tor field points inward at ∂Dη . Therefore it suffices to show such that Sε attracts all states 
in Dη for sufficiently small ε > 0. Next, by the same reasoning as in section 5.1, we know 
that the compact set 

⋃
0�ε�ε0

Sε is locally asymptotically stable for the augmented dynam-
ics (adding ε̇ = 0) on T2 × R× R. Hence there exists δ > 0 such that for all ε > 0 suffi-
ciently small, the basin of attraction of Sε contains the set Nδ of points (θ,α,ω) ∈ T2 × R 
satisfying |ω − F(θ,α, ε)| < δ. In order to obtain a contradiction, suppose that there exist 
arbitrarily small values of ε > 0 such that Sε does not attract all states in Dη, and let Φt

ε 
denote the flow of (43). Then there exist sequences (εn)n∈N and (θn,αn,ωn)n∈N ⊂ Dη such 
that εn → 0 and ∀t > 0, n > 0 : Φt(θn,αn,ωn) �∈ Nδ. Since Dη is compact, by passing to a 
subsequence we may assume that (θn,αn,ωn) → (θ0,α0,ω0) ∈ Dη. Since S0 is globally as-
ymptotically stable for Φt

0, for all sufficiently large t  >  0, Φt
0(θ0,α0,ω0) ∈ Nδ/2. By continu-

ity of the map (t, ε, θ,α,ω) �→ Φt
ε(θε,αε,ωε), it follows that for all sufficiently large t, n > 0, 

Φt
εn
(θn,αn,ωn) ∈ Nδ. This is a contradiction, showing that for all sufficiently small ε > 0, 

Ws(Sε) = T2 × R for the dynamics (43). □ 

Because the eigenvalues of the critical manifold are (0,0, −  c0), after taking ε1 smaller 
if necessary we see that the r-center bunching conditions (11) are satisfied. Therefore, 
proposition 3 and corollary 2 of theorem 1 show that there exists a a Cr−1 diffeomorphism 
ϕε : T2 × R → T2 × R mapping Sε onto T2 × {0} and mapping stable fibers of Sε onto sets of 
the form24 (θ,α)× R. Using the coordinates θ̃, α̃, ω̃ = ϕε(θ,α,ω) and changing back to the 
original time scale, (42) takes the form

θ̃′ = F(θ̃, α̃, ε)
α̃′ = 1

εω̃′ = Λ(θ̃, α̃, ω̃, ε)ω̃,

 (44)

for some function Λ. The same reasoning as in section 5.2 can be used to show that ϕε is 
jointly Cr−1 in all variables including ε. This result should be compared with theorem 4, which 
was formulated for dynamics on a Euclidean space. We see that theorem 1 yields a global 
coordinate system on all of T2 × R placing (42) in the form (44). In contrast, without theorem 
1 and using only the available results in the literature, we would have only been able to obtain 
such a coordinate system on a precompact neighborhood of Sε.

Alternatively, because the eigenvalues of the critical manifold are (0,0, −  c0), after tak-
ing ε1 smaller if necessary we see that the stronger spectral conditions of theorem 3 are also 
satisfied (see (37)). Hence theorem 3 implies that there exists a global Cr−1 diffeomorphism 
ψε : T2 × R → T2 × R mapping Sε onto T2 × {0} and mapping stable fibers of Sε onto sets 
of the form (θ,α)× R. Using the coordinates θ̃, α̃, ω̃ = ψε(θ,α,ω) and changing back to the 
original time scale, (42) takes the form

θ̃′ = F(θ̃, α̃, ε)
α̃′ = 1

εω̃′ = A(θ̃, α̃, ε)ω̃,

 (45)

for some function A. The same reasoning as in section 5.2 can be used to show that ϕε is 
jointly Cr−1 in all variables including ε. This result should be compared with theorem 5, which 
was formulated for dynamics on a Euclidean space. We used theorem 3 to derive (45), but 

24 Here, and during the rest of this example, we are using the fact that the normal bundle—and hence also the stable 
bundle Es—of the slow manifold is trivial.
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since ∂Sε = ∅ this result can also be obtained by combining theorem 2 with the local smooth 
linearization results of [Sak94].

Still considering (42), we will now consider specific choices of a non-constant damping 
function c(θ) and applied torque τ(θ,α) which will be chosen so that theorem 2 does not 
apply, but so that theorem 3 does apply to yield a linear normal form. For the sake of con-
creteness, let c(θ) := cos(θ) + 1 and τ(θ,α) := − sin(θ) + (1/2) cos(α). Then c(π) = 0, so 
it follows that the critical set S := {(θ,α,ω) : c(θ)ω = τ(θ,α)} is not normally hyperbolic 
for the fast time system (43) everywhere. However, e.g. c(θ) > 1 for |θ| < π/2, so it fol-
lows in particular that the subset K0 := {(θ,α,ω) ∈ S : |θ| � π/4} is r-normally attracting. 
Furthermore, K0 is inflowing for the slow time system (42) restricted to S when ε = 0, because 
K0 is the graph of F(θ,α, 0) with

F(θ,α, 0) :=
τ(θ,α)

c(θ)
=

− sin(θ) + (1/2) cos(α)
cos(θ) + 1

with |θ| � π/4. Therefore, the projection of the slow time dynamics restricted to K0 are given 
by

θ′ =
− sin(θ) + (1/2) cos(α)

cos(θ) + 1
α′ = 1

and clearly the vector field points inward at the boundary of {(θ,α) : |θ| � π/4}. We can mod-
ify the flow locally near the boundary of any larger set K̂0 ⊃ K0 to render K̂0 overflowing, and 
therefore there exists ε0 > 0 such that for all 0 � ε � ε0, K̂0 (and hence also K0) persists to a 
nearby r-NAIM for the fast time system (43). Since inward pointing of a vector field is an open 
condition, after possibly shrinking ε0 it follows that Kε is also inflowing for all 0 � ε � ε0. 
Additionally, after possibly shrinking ε0, we see that the hypotheses of theorem 3 are satisfied 
for Kε for all 0 � ε � ε0 (check that (37) is satisfied on K0 by using α = −

√
2/2 − 1 ≈ 1.7 

and β = −2, and use the fact that the hypotheses of theorem 3 are open conditions). Hence 
theorem 3 implies that there exists a Cr−1 diffeomorphism ψε : Ws(Kε) → Kε × R mapping 
Kε onto Kε × {0} and mapping stable fibers of Kε onto sets of the form {(θ,α)} × R. Using 
the coordinates θ̃, α̃, ω̃ = ψε(θ,α,ω) and changing back to the original time scale, (43) takes 
the form

θ̃′ = F(θ̃, α̃, ε)
α̃′ = 1

εω̃′ = A(θ̃, α̃, ε)ω̃,

 (46)

for suitable functions A and F. The same reasoning as in section 5.2 can be used to show that 
ϕε is jointly Cr−1 in all variables including ε. This result should be compared with theorem 5, 
which was formulated for dynamics on a Euclidean space. Here we had to use theorem 3 to 
derive (46), because theorem 2 does not apply since ∂Kε �= ∅. Without theorem 3 and using 
only the explicitly available results in the literature, we would not have been able to obtain 
even a local version of this coordinate system.

Finally, we note that the Taylor polynomials of the coordinate change for the normal form 
(44) can in principle be obtained using the SOF method, although as mentioned in section 5.4 
this does not help to compute the coordinates globally. We do not pursue this here. As men-
tioned in section 5.4, we believe it should be possible in principle to additionally compute the 
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Taylor polynomials of the coordinate changes for the normal forms (45) and (46), which we 
hope to explore in future work.

6. Conclusion

Stated technically, we have proven some results for NHIMs which are of two types: (i) global 
versions of well-known local results, and (ii) linearization results for inflowing NAIMs. We 
restricted our attention to flows.

We first showed that the global stable foliation of an inflowing NAIM is a fiber bundle, 
with fibers coinciding with the leaves of the global stable foliation, and that this fiber bundle 
is as smooth as the local stable foliation. From that result, we deduced the corresponding 
result for the global (un)stable foliation of a general NHIM, though one needs to be careful 
in interpreting this statement as the global (un)stable manifold is generally only an immersed 
submanifold of Q.

We next considered global linearizations, and showed that the linearization result of [PS70, 
HPS77] for boundaryless NHIMs applies also to inflowing NAIMs. Furthermore, this lineari-
zation extends to the entire global stable manifold—inflowing NAIMs are globally lineariz-
able, or topologically conjugate to the flow linearized at the NAIM. If some additional spectral 
gap conditions are assumed, then the global linearizing conjugacy can be taken to be Ck. This 
extends the results of [LM13] to the case of arbitrary inflowing NAIMs (although see remark 
8). A key tool in our proof was the geometric construction of appendix B, which allowed us to 
reduce to the boundaryless case.

We then used our theoretical results to give two applications to slow-fast systems with 
attracting slow manifolds, in the context of GSP. First, using our fiber bundle theorem we 
extended the domain of the Fenichel normal form [JK94, Jon95, Kap99]. Second, under an 
additional spectral gap assumption, we derived a global smooth linear normal form for GSP 
problems. If the slow manifold is codimension-1, this assumption can always be made to hold 
(after possibly shrinking the slow manifold; see remark 14). For this application it was essen-
tial that we proved a linearization theorem for inflowing NAIMs, since the slow manifolds 
appearing in slow-fast systems typically have boundary. We then illustrated these results on an 
example of a mechanical system. We noted that it might be interesting to combine the method 
of straightening out fibers (SOF method) of [KBS14] with additional normal form computa-
tions [GH83, Rob89, Rob00] for the fast variable, in order to develop a systematic technique 
for computing the Taylor polynomials of the coordinate change for the linear normal form. We 
hope to explore this idea in future work.

Less formally, what we have shown is that the local structure next to an inflowing NAIM 
extends globally, in terms of structure (as a disk bundle), in its degree of smoothness, and in 
the fact that the dynamics are often conjugate to their linearization. In fact, the linearization 
is so robust that it can be extended consistently to yield a system linear in its fast variables 
throughout all sufficiently small perturbations of a singularly perturbed system.

We have considered only compact NHIMs and compact inflowing NAIMs in stating our 
results. From our experience, we expect that extending these results to noncompact manifolds 
should be possible, but possibly quite technical. However, our results for compact inflowing 
NAIMs allow our work to be applied to (for example) positively invariant compact subsets of 
the phase space of a mechanical system.
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Appendix A. Smoothness of linear parallel transport covering an inflowing 
invariant manifold

In this appendix, we show that a Cr flow on an inflowing invariant manifold M ⊂ Q can 
always be lifted to a Cr linear flow on E, where π : E → M is any Cr subbundle of TQ|M. For 
the definition of a fiber metric [KN63, p 116] see definition C.7 in appendix C.

Lemma A.1. Let M be a Cr inflowing invariant submanifold of Q ∈ C∞ for the flow Φt  
generated by a Cr vector field. Let π : E → M be a Cr subbundle of TQ|M equipped with any 
fiber metric g. Then there exists a Cr fiber metric h on E arbitrarily close to g and a Cr flow 
Πt on E such that for all t  >  0, Πt := Π(t, · ) is an isometry with respect to the fiber metric h, 
covering Φt|M.

Proof. We define a Cr submanifold (without boundary) Mε by the formula Mε := Φ−ε(int M), 
with int M denoting the manifold interior of M. Because M is inflowing invariant, M ⊂ Mε. 
We extend E arbitrarily to a Cr subbundle Eε ⊃ E of TQ|Mε. In [PT77, appendix 1] it is shown 
that Mε has a compatible Cr+1 differentiable structure with respect to which the vector field f 
restricted to Mε is25 Cr.

Denote Mε with this Cr+1 structure by M̃ε, and let I : M̃ε → Mε be the Cr diffeomorphism 
which is the identity map when viewed as a map of sets. Thus the pullback bundle I∗Eε is 
a Cr vector bundle over M̃ε which is Cr isomorphic to Eε via a vector bundle isomorphism 
G1 : I∗Eε → Eε covering I [Hir94, p 97]. Furthermore, a standard argument using a universal 
bundle shows that there exists a Cr+1 vector bundle Ĩ∗Eε over M̃ε and a Cr vector bundle iso-
morphism G2 : Ĩ∗Eε → I∗Eε covering the identity [Hir94, p 101, theorem 3.5]. This situation 
is depicted in the following diagram

 (A.1)

Now pull back the fiber metric g on Eε to Ĩ∗Eε. That is, define g̃ through

g̃(v, w) = G∗(g)(v, w) = g(G(v), G(w)),

where G = G1 ◦ G2. Now choose a Cr+1 fiber metric h̃ on Ĩ∗Eε that is close to g̃. Let 

25 The theorem in [PT77, appendix 1] is stated for a C1 invariant manifold and C1 vector field, but the same proof 
works, mutatis mutandis, for a locally invariant Cr manifold and Cr vector field, which is our situation here.
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∇̃ : Γ(TM̃ε ⊗ Ĩ∗Eε) → Γ(Ĩ∗Eε) be a Cr affine connection compatible with the metric ̃h [KN63, 
ch 3]. Then the map of parallel transport along solution curves of f, Π̃t : Ĩ∗Eε → Ĩ∗Eε, is an 
isometry since ∇̃ is compatible with h̃, and it is Cr because with respect to local coordinates 
x1, . . . , xnm and any local frame (σ1, . . . ,σns), the parallel transport equation takes the form

∑
k


 d

dt
vk ◦ Φt(x) +

∑
i,j

Γk
i,j(v

if j) ◦ Φt(x)


σk ◦ Φt(x) = 0, (A.2)

where the Christoffel symbols Γk
i,j defined by

∇̃ ∂
∂xi
σj =

∑
k

Γk
i,jσk

are Cr functions Γk
i,j : M̃ε → R. Since f is a Cr vector field with respect to the smooth structure 

of M̃ε, it follows that (A.2) defines a Cr ODE for v in local coordinates. The ODE theorems on 
existence, uniqueness, and smooth dependence on parameters imply that the solution to (A.2) 
depends smoothly on x, v(x), and t. Thus Π̃ : R× Ĩ∗Eε → Ĩ∗Eε is indeed Cr.

Next, define the fiber metric h on Eε by setting h := (G−1
2 ◦ G−1

1 )∗h̃ and define Π : R×
Eε → Eε via

Πt(v) := Π(t, v) := (G1 ◦ G2) ◦ Π̃t ◦ (G1 ◦ G2)
−1(v). (A.3)

Since h̃ was arbitrarily close to g̃, the same holds for h and g. The map Π is Cr because it is 
the composition of smooth functions. For any t ∈ R, Π̃t is an isometry of (Ĩ∗Eε, h̃), and our 
choice of the pullback metric h on Eε implies that G1 ◦ G2 is an isometry into (Eε, h). Thus for 
any t ∈ R, Πt is a composition of vector bundle isometries and is thus an isometry of vector 
bundles, hence preserves h. By construction Πt covers Φt|Mε.

Now M is positively invariant under Φt  since M is inflowing invariant, hence also E is posi-
tively invariant under Πt. We therefore obtain a well-defined restriction of Πt to M ⊂ Mε and 
also restrict h to E, completing the proof. □ 

Appendix B. Inflowing NAIMs: reduction to the boundaryless case

In this appendix, we prove a result which shows roughly that any compact inflowing NAIM 
can always be viewed as a subset of a compact boundaryless NAIM. In particular, this result 
allows the application of various linearization theorems from the literature [PS70, BK94, 
HPS77, Sak94, Rob71, PT77, Sel84, Sel83, BK94] to inflowing NAIMs as in corollaries 3 
and 5 and in section 4, despite the fact that in the literature these theorems are formulated only 
for boundaryless invariant manifolds. We use this result in section 5 to derive a linear normal 
form result for singular perturbation problems in which the critical manifold is a NAIM.

First, let us describe the intuition behind our construction. Let M ⊂ Q be a compact, inflow-
ing NAIM for some vector field on Q, and N ⊃ M  a slight extension along the backward flow. 
We rip a hole in our space Q by removing a small neighborhood U0 of ∂N . Then we glue two 
copies of Q \ U0 together at their boundaries (thought of as a ‘wormhole’) creating a total 
space Q̂. We modify the copies of N slightly such that they connect through the wormhole as 
a smooth, compact submanifold N̂ ⊂ Q̂. Finally, we carefully modify the vector field near the 
wormhole so that N̂  is a NAIM again for the modified vector field.
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This procedure is made precise in the proof of proposition B.1 below, but let us already 
introduce some more details using figure  B1. A family of smooth tubular neighborhoods 
U0 ⊂ . . . ⊂ U3 of ∂N  are chosen so that the vector field f points inward at each N \ Ui, and so 
that each Ws

loc(M) ∩ Ui = ∅. We smoothly rescale f inside U3 to create a vector field f̃  such 
that f̃  is zero on Ū2, and we smoothly approximate N inside U2 to create a submanifold Ñ  
such that Ñ ∩ U1 is a C∞ submanifold. We next create a copy of Q, remove the subset U0 from 
each copy to form two copies of Q′ := Q \ U0, and let Q̂ be the double of Q′ obtained by glue-
ing the two copies of Q′ along ∂Q′ = ∂U0, forming a ‘wormhole’ between the two spaces. 
Using a standard technique from differential topology, we give Q̂ a C∞ differential structure 
such that N̂ ⊂ Q̂ is a Cr submanifold, where N̂  is comprised of the two copies of Ñ  (this step 
is the reason why we needed to approximate N by Ñ ). We give Q̂ a Riemannian metric which 
agrees with the original metric on each copy of Q′ except on an arbitrarily small neighborhood 
of ∂Q′. The vector field f̂0, defined to be equal to f̃  on each copy of Q′, is automatically Cr 
since it is zero on a neighborhood of ∂Q′. Finally, we modify f̂0 inside each copy of U3 to 
create a vector field f̂  on Q̂ such that N̂  is an r-NAIM for f̂ . We show that the resulting global 
stable foliation Ŵs(M) for f̂  over a copy of M agrees with the global stable foliation Ws(M) 
for f, and that certain asymptotic rates for f are preserved by f̂ .

Proposition B.1. Let M, N ⊂ Q be compact inflowing r-NAIMs, with M a proper subset of 
the manifold interior of N, for the Cr�1 flow Φt  generated by the Cr�1 vector field f on Q. Let 
U0 be an arbitrarily small tubular neighborhood of ∂N , having smooth boundary ∂U0 and 
disjoint from Ws

loc(M). Define Q̂ to be the double of Q \ U0.
Then there exists a C∞ differential structure on Q̂ and a Cr vector field f̂ : Q̂ → TQ̂ such 

that

 1.  ̂f  is equal to f on each copy of Q \ U0, except on an arbitrarily small neighborhood of 
∂U0.

 2.  There exists a compact and boundaryless r-NAIM N̂  for f̂ , with N̂  equal to N on each 
copy of Q \ U0, except on an arbitrarily small neighborhood of ∂U0.

Figure B1. A schematic figure of the constructions used in proposition B.1.
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 3.  The global stable foliation of M for f does not intersect U0, and it coincides with the 
global stable foliation of M for f̂ , when M and Ws(M) are identified via inclusion with 
subsets of a copy of Q \ U0 in Q̂.

Let Φ̂t  be the Cr flow generated by f̂ , and let Ês be the DΦ̂t|N̂-invariant stable vector bundle 
for the NAIM N̂ . If, additionally, there exist constants K  >  0 and α < 0 such that for all 
m ∈ M , t � 0 and 0 � i � k the k-center bunching condition

‖DΦt|TmM‖
i ∥∥DΦt|Es

m

∥∥ � Keαt ��DΦt|TmM�� (B.1)

is satisfied for the original system on Q, then (B.1) will also be satisfied with M,Es, and Φt  
replaced by N̂, Ês, and Φ̂t , and with α replaced by some different constant α̂ < 0.

Similarly, if additionally there exist constants 0 < δ < −α < −β  and K � 1 such that for 
all t � 0

K−1e−δt � ��DΦt|TM�� � ‖DΦt|TM‖ � Keδt,

K−1e−δt �
⌊⌊
(DΦt|TM)

−1⌋⌋ � ∥∥(DΦt|TM)
−1

∥∥ � Keδt,

K−1eβt � ��DΦt|Es�� � ‖DΦt|Es‖ � Keαt

 (B.2)

uniformly on TM and Es, then we can choose f̂  appropriately, such that the same will be true 
for Φ̂t , TN̂ , and Ês with modified constants 0 < δ̂ < −α̂ < −β̂  arbitrarily close to δ,α,β .

Remark B.1. It is not an additional hypothesis to require the existence of the manifold N 
in proposition B.1. This is because given any compact inflowing NAIM M, then for any suf-
ficiently small ε > 0, N := Φ−ε(M) will be a compact inflowing NAIM containing M. We 
mention N explicitly only to highlight the fact that any compact inflowing NAIM N containing 
M in its manifold interior will do.

Proof. Let ε > 0 be any small positive number, and let U0, U1, U2, U3 be arbitrarily small 
 tubular neighborhoods of ∂N , disjoint from Ws

loc(M), satisfying ∂N⊂U0⊂ Ū0⊂U1⊂ Ū1⊂ 
U2 ⊂ Ū2 ⊂ U3 ⊂ Φ−ε(Ws

loc(N)), and such that all Ui have C∞ boundary ∂Ui. See figure B1. 
Since N is inflowing, we may further construct the Ui so that f is strictly inward pointing at 
the boundary of each N \ Ui, and so that all points in U3 leave U3 in a uniformly finite time.

It follows that Ws(M) ∩ U3 = ∅. We have chosen U3 to be disjoint from Ws
loc(M), so to 

see this, suppose that there exists m ∈ M  and y ∈ (Ws(m) \ Ws
loc(M)) ∩ U3. Since Φε(U3) ⊂ 

Ws
loc(N) by construction, by continuity there exists t0  >  0 such that Φt0(y)∈Ws

loc(N)\Ws
loc(M). 

Let n ∈ N \ M  be the unique point such that Φt0(y) ∈ Ws
loc(n). Since y ∈ Ws(m) and since 

Ws(M) is Φt-invariant, it follows also that Φt0(y) ∈ Ws(Φt0(m)). By uniqueness of the stable 
fibers, this implies that n = Φt0(m). But n ∈ N \ M  and Φt0(m) ∈ M  by positive invariance of 
M, so we have obtained a contradiction.

Rescaling f with a smooth cutoff function supported in Q \ U2 and identically equal to 1 on 
Q \ U3, we replace f with a Cr vector field f̃  which is equal to f on Q \ U3 and zero on Ū2. By 
continuity of Df, Ū2 consists entirely of nonhyperbolic critical points for f̃ .

We next approximate N by a Cr manifold Ñ  such that Ñ  coincides with N on Q \ U2 and 
such that Ñ ∩ U1 is a C∞ submanifold intersecting ∂U0 transversely. This can be achieved by 
giving N a C∞ differential structure and then approximating the inclusion N ↪→ Q relative to 
N \ U2 in the Cr topology, see [Hir94, ch 2] for approximation theory details. The fact that 
f̃ |Ū2

= 0 implies that Ñ  is invariant under f̃ .
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We define Q′ := Q \ U0, a C∞ manifold with boundary ∂Q′ = ∂U0. Recall that a C∞ collar 
for ∂Q′ in Q′ is a C∞ embedding h : ∂Q′ × [0,∞) → Q′ such that h(x, 0) ≡ x  [Hir94, p 113]. 

We choose a C∞ collar h for ∂Q′ which restricts to a collar of ∂Ñ  in Ñ , i.e. h|∂Ñ×[0,∞) → Ñ  
is a collar [Hir94, theorem 6.2]. Now let Q̂ be the double of Q′, the topological space obtained 
by first forming the disjoint union of two copies of Q′, then identifying corresponding points 
in ∂Q′. We use the collar h to henceforth endow Q̂, in the usual way, with a C∞ differential 
structure (see, e.g. [Hir94, p 184] or [Lee13, p 226]), and we let S denote the common image 
of ∂Q′ in Q̂.

Let N̂  denote the image of Ñ  in Q̂. Since h was chosen to restrict to a collar for ∂Ñ  in Ñ , 
it follows that N̂  is a Cr submanifold of Q̂. Letting f̂0 be the vector field on Q̂ which is equal 
to f̃  on each copy of Q′, it is immediate that f̂0 ∈ Cr since f̂0 is zero on a neighborhood of 
∂Q′. Finally, using a partition of unity, we give Q̂ a C∞ Riemannian metric which coincides 
with the original metric on each copy of Q′, except on an arbitrarily small neighborhood of S.

Next, we modify f̂0 near S to make N̂  normally attracting. Let X be a C∞ manifold which 
is C1-close to N̂ . Let ϕ : E′ → Q̂ be a C∞ tubular neighborhood of X. I.e. π′ : E′ → X  is a C∞ 
vector bundle and ϕ is an open C∞ embedding with ϕ|X the inclusion map, identifying X with 
the zero section of E′. If X approximates N̂  sufficiently closely, then ϕ−1(N̂) is the image of 
a Cr section h : X → E′. Let V2 ⊂ Q̂ denote the open set which is the image of the two copies 
of U2 in Q̂, and define V3 similarly. Let χ : E′ → [0,∞) be a C∞ compactly supported bump 
function such that χ ≡ 1 on V̄2 and supp χ ⊂ V3. We define a Cr vector field f̂  on ϕ(E′) by

f̂ ◦ ϕ(vx) := Dϕvx

[
(ϕ∗ f̂0)(vx)− ρχ(vx)(vx − h(x))

]
,

where π′(vx) = x, ϕ∗ f̂0 := (ϕ−1)∗ f̂0, and ρ := (α+ β)/2 if (B.2) holds and ρ := 1 otherwise. 
Since χ is compactly supported, it follows that f̂ (vx) is equal to f (vx) for sufficiently large 
‖vx‖, hence we may extend f̂  to a Cr vector field on Q̂ (still denoted f̂ ) by defining f̂  to be 

equal to f on Q̂ \ ϕ(E). Let Φ̂t
1 denote the flow of f̂ .

Define a subbundle E of TQ|N̂  by E := Dϕ(VE′|h(X)), where VE′ := kerDπ′ ⊂ TE′ is the 
vertical bundle. Since h is a section of E′, it follows that TE′|h(X) = Th(X)⊕ VE′|h(X), and 
since ϕ is a local diffeomorphism it follows that Dϕ preserves this splitting: TQ̂|N̂ = TN̂ ⊕ E. 
Let ΠE : TQ̂|N̂ → E  be the projection TN̂ ⊕ E → E. We now argue that N̂  is an r-NAIM for 
f̂ ; it suffices to show that N̂  is an r-NAIM for the linear flow ΠE ◦ DΦ̂t

1|E  [Fen71, proposition 
1, theorem 6]. To do this, by the uniformity lemma [Fen71] it suffices to show that for each 
n ∈ N̂  there exist Cn  >  0 and an  <  0 such that for any t � 0 and 0 � i � r ,

∥∥∥ΠE ◦ DΦ̂t
1|En

∥∥∥ � Cneant
⌊⌊
DΦ̂t

1|TnN̂

⌋⌋i
. (B.3)

First note that f̂  is equal to f on Q̂ \ V3, N̂ \ V3 is positively invariant, and N is an r-NAIM for 
f. It follows that for each n ∈ N̂ \ V3, we can find an and Cn such that (B.3) holds. Next, let 
n ∈ N̂  be any point with f̂0(n) �= 0. Since Φ̂t

1 takes n into N̂ \ V3 in finite time, in this case we 
can also find an, Cn such that (B.3) holds. Finally, if n ∈ N̂  is any point with f̂0(n) = 0, then 
En is invariant under ΠE ◦ DΦ̂t

1|En. The definition of f̂  and E imply that n is an exponentially 
stable fixed point for the restriction of this flow to En, so we again find an, Cn such that (B.3) 
holds. Hence, by the uniformity lemma, N̂  is indeed an r-NAIM—in particular, there exists a 
DΦ̂t

1-invariant stable bundle Ês
1 over N̂ .
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Now suppose additionally that either the k-center bunching conditions (B.1) or (B.2) held 

for the original system on Q. Considering now the flow DΦ̂t
1|Ês

1
 on Ês

1 and repeating the argu-

ment in the preceding paragraph—using a different version of the uniformity lemma [Fen74, 
lemma 16] for the case of center bunching conditions—shows that the corresponding condi-
tion still holds for f̂  on Q̂.

It remains only to show that the global stable foliation Ŵs(M) for f̂  agrees with 
Ws(M) when we identify M and Ws(M) with either copy of their images in Q̂—for defi-
niteness, let us fix one such copy of M and Ws(M) in what follows (with the former copy 
a subset of the latter). To accomplish this, we first consider the local foliations Ŵs

loc(M) 
and Ws

loc(M). Both local foliations are Φ̂t-invariant, the latter because f̂  is equal to f on 
Ws(M). But since M is a compact and inflowing NAIM, the standard Hadamard graph 
transform [Fen74] shows that there exists a unique local invariant foliation transverse to 
M. More precisely, this means that there exists a sufficiently small neighborhood J of M 
such that ∀m ∈ M : J ∩ Ws

loc(m) = J ∩ Ŵs
loc(m). Now for any m ∈ M  and any y ∈ Ws(m), 

there exists t0  >  0 such that Φt0(y) ∈ J ∩ Ws
loc(Φ

t0(m)) = J ∩ Ŵs
loc(Φ

t0(m)). It follows that 
y ∈ Φ−t0(Ŵs

loc(Φ
t0(m))) ⊂ Ŵs(m) and therefore that Ws(m) ⊂ Ŵs(m). A symmetric argu-

ment shows that Ŵs(m) ⊂ Ws(m), and since m ∈ M  was arbitrary it follows that the leaves of 
Ws(M) and Ŵs(M) coincide. This completes the proof. □ 

Appendix C. Fiber bundles

In this appendix, we review the basic notions from the theory of fiber bundles that we use. 
Our definition of Ck bundles follows [Nee10, definition 1.1.1]. Other useful references for 
the topological and C∞ cases include [Ste51, Hus66, Blo15], with a self-contained and brief 
introduction appearing in [Blo15, ch 2]. We also mention [Lee13, Hir94, KN63] as containing 
nice introductions to vector bundles.

Definition C.1 (Fiber bundles). A Ck fiber bundle, with 1 � k � ∞, is a quadruple 
(E, B, F,π) consisting of Ck manifolds E, B, and F and a Ck map π : E → B with the following 
property of local triviality: each point b ∈ B has an open neighborhood U ⊂ B for which there 
exists a Ck diffeomorphism

ϕU : π−1(U) → U × F,

satisfying

pr1 ◦ ϕU = π,

where pr1 : U × F → U is the projection onto the first factor. A C0 fiber bundle is defined 
by replacing all Ck manifolds and diffeomorphisms above with arbitrary topological spaces 
and homeomorphisms, respectively. Often we abuse terminology and simply refer to E or to 
π : E → B as the fiber bundle when the other data is understood.

Remark C.1. The following terminology is common. E is called the total space, B is called 
the base space, F is the model fiber or fiber type, and π is called the bundle projection. Sets of 
the form Eb := π−1(b) are called the fibers of the bundle or of π. The map ϕU is called a local 
trivialization. (E, B, F,π) is sometimes called an F-bundle over B.
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Example C.1 (Disk bundles). A Ck disk bundle is a Ck fiber bundle (E, B, F,π) with 
F = Rn, for some n ∈ N.

Definition C.2 (Vector bundles). A (finite-dimensional) Ck vector bundle is a Ck disk 
bundle (E, B, F,π) with the following additional requirement. For any open sets U, V ⊂ B 
with U ∩ V �= ∅, the transition map

ϕU,V := ϕ−1
U ϕV |(U∩V)×F : (U ∩ V)× F → (U ∩ V)× F

is given by

ϕU,V(b, v) = (b, A(b)v),

where A : B → GL(n,R) is a Ck invertible matrix-valued map.

Example C.2 (The tangent bundle). Let Q be a smooth (C∞) n-manifold. Then its 
tangent bundle π : TQ → Q is a smooth vector bundle. To see this, let (U,ψU) be a smooth 
chart for Q. Identifying TRn ∼= Rn × Rn, then ϕU := (π, pr2 ◦ DψU) : TQ|U → U × Rn satis-
fies pr1 ◦ ϕU = π , where TQ|U := π−1(U) and pri is projection onto the i-th factor. If (V ,ψV) 
is another chart, then

ϕU,V

(
b,
∑

i

vkek

)
=

(
b,
∑

i

∂ψi
U,V

∂x j v jei

)
,

where (ek) is the standard basis of Rn and ψU,V := ψ−1
U ◦ ψV |U∩V . Hence we may take the 

Jacobian of ψU,V  to play the role of A from definition C.2, so TQ is indeed a smooth vector 
bundle.

Definition C.3. A Ck isomorphism ψ : E → E′ of Ck fiber bundles (E, B, F,π) and 
(E′, B′, F′,π′) covering a map ψ : B → B′ is a Ck fiber-preserving diffeomorphism ψ (homeo-
morphism if k  =  0): each fiber π−1(b) is bijectively mapped to the fiber π′−1(ψ(b)). This is 
equivalent to requiring that ψ is a Ck diffeomorphism and

π′ ◦ ψ = π ◦ ρ.

A Ck fiber bundle (E, B, F,π) is trivial as a Ck bundle if it is Ck isomorphic to the fiber bundle 
(B × F, B, F, pr2), where pr2 is projection onto the second factor.

Example C.3. Let π : E → B be any Ck map, and assume there exists a fiber bundle 
(E′, B, F,π′) and a Ck diffeomorphism ψ : E → E′ with the property that

π′ ◦ ψ = idB.

Then (E, B, F,π) is also a Ck fiber bundle. This is because if ϕU : π′−1(U) → U × F  is a Ck 
local trivialization of π′ : E′ → B, then ϕU ◦ ψ : π−1(U) → U × F  is a Ck local trivialization 
of π : E → B. In particular, if (E′, B, F,π′) is a disk bundle, then so is (E, B, F,π). (Recall that 
all vector bundles are disk bundles—we use this in the proof of theorem 1.)

Definition C.4. A map X : B → E is a Ck section of a fiber bundle (E, B, F,π) if X ∈ Ck 
and π ◦ X = idB.
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Example C.4. A Ck section X of the tangent bundle TQ is the same thing as a Ck vector 
field X on Q. The requirement π ◦ X = idQ simply means that X(q) is a tangent vector based 
at q ∈ Q.

We next give definitions of vector subbundles and the Whitney sum of vector bundles. 
These concepts are fundamental to the very definition of normal hyperbolicity, see section 2.

Definition C.5 (Vector subbundle). A vector bundle (E′, B, F,π) is a Ck subbundle of a 
Ck vector bundle (E, B, F,π) if every b ∈ B has a neighborhood U such that there exist point-
wise linearly independent Ck sections (X1, . . . , Xd) (called a local frame) which span E′

c  for 
all c ∈ U .

Definition C.6 (Whitney sum). The Whitney sum of two Ck vector bundles (E, B,Rn,π) 
and (E′, B,Rm,π′) is the Ck vector bundle (E ⊕ E′, B,Rn+M , π̃) whose fiber (E ⊕ E′)b is given 
by Eb ⊕ E′

b. The Ck vector bundle structure is determined as follows. If ϕU and ϕ′
U are local 

trivializations for E and E′ over U, then (ϕU , pr2 ◦ ϕ′
U) is a local trivialization for E ⊕ E′ 

over U.

Following [KN63, p 116], we now give the definition of a fiber metric on a vector bundle, 
which generalizes the notion of a Riemannian metric on the tangent bundle of a manifold.

Definition C.7 (Fiber metric). A Ck fiber metric on a Ck vector bundle π : E → M is an 
assignment, to each m ∈ M , of an inner product gm on the fiber π−1(m), such that for any Ck 
sections X, Y : M → E, the map m �→ gm(X(m), Y(m)) is Ck.

Using a partition of unity, it easy to show that fiber metrics always exist on any vec-
tor bundle over a paracompact base. A fiber metric defines a norm on each fiber π−1(m) 
via ‖X‖m :=

√
gm(X, X) for X ∈ Em. We will often suppress the subscript m and simply 

write ‖X‖.
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