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Abstract The study of optimal motion of animals or
robots often involves seeking optimality over a space
of cyclic shape changes, or gaits, specified using a
large number of parameters. We show a data-driven
method for computing the gradient of a cost functional
with respect to a large number of gait parameters by
employing geometric properties of the dynamics to effi-
ciently construct a local model of the system, and then
using this model to rapidly compute the gradients. Our
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modeling step specifically applies to systems governed
by connection-like models from geometric mechanics,
which encompass a number of high-friction regimes.
We demonstrate using our method for optimizing gaits
under noisy, experiment-like conditions by simulat-
ing planar multi-segment serpent-like swimmers in a
low Reynolds number (viscous friction) environment.
Our optimization results recover known results for 3-
segment swimmers with a 66 dimensional gait param-
eterization, and extend to optimizing the motion of a 9
segment swimmer with a 264 dimensional gait space,
using only 30 simulation trials of 30 gait cycles each.
The data-driven geometric gait optimization approach
we present is designed to operate on noisy, stochas-
tically perturbed dynamics—as noisy and variable as
experimental data—and efficiently optimize a large
number of parameters. We believe this approach has
the potential to significantly advance our ability to opti-
mize robot gaits with hardware in the loop and to study
the optimality of animal gaits with respect to hypothe-
sized cost functions.

Keywords Gait optimization · Locomotion · Geo-
metric mechanics · Oscillator · Data-driven floquet
analysis

1 Introduction

The ability to move effectively through the environ-
ment is both a defining property of animals and a
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highly desirable capability for man-made systems such
as robots and vehicles. Locomotion (aquatic, terres-
trial, and aerial) is most commonly achieved by having
a moving body change shape in a way that produces
reaction forces from the environment; these reaction
forces in turn propel the body. A key question in both
robotics and animal research is thus “does a given gait
cycle optimally exploit this propulsive relationship, and
if not, what changes to the gait would improve its per-
formance?”

This paper details a new approach to answering
these questions, by presenting a practical extension of
geometric gait optimization theory that incorporates
techniques from the data-driven modeling of gaits as
oscillators. By efficiently producing a local geometric
mechanics model of the observed motion, we can then
employ this model to rapidly evaluate the gradient of a
goal function with respect to gait parameters. Because
this performance simulation is very fast, the number of
gait parameters being optimized can be so large that
estimating such a gradient by direct experimentation is
nigh impossible; below we give an example with 264
parameters optimized in 30 trials of 30 cycles each.

The framework presented in this paper is made
possible by combining work in two fields that have
developed largely in parallel. In the field of geometric
mechanics,Hatton has developed a framework for char-
acterizing gait efficiency in terms of the length and area
of the cycle in the shape space [8,11,13,23,24]. Apply-
ing these principles to systems that lack an analytical
model remains an open area of investigation, especially
when high-dimensionalitymakes the exhaustive explo-
ration of system dynamics from [5,12] infeasible, or
when considering an animal whose motions we cannot
directly command.

In the field of oscillator theory, Revzen developed a
set of tools for extracting oscillator-like motion models
from noisy and irregularly spaced data [26,28]. In addi-
tion to the method’s robustness to the intrinsic system
noise of biological andphysical systems, it extendswell
to high dimensional shape spaces. A limitation, how-
ever, is the lack of insight that these models provide for
gait improvements.

Applying the data-driven oscillator and geometric
approaches together enhances their respective capabil-
ities: the data-driven oscillator tools can provide the
geometric models with the specific information needed
for evaluating a performance criterion and its gradient,
improving their predictive power relative to the quan-

tity of available data. Conversely, by viewing the sys-
tem as a mechanical connection (as a opposed to a gen-
eral second-order dynamical system) the data-driven
oscillator models can ignore certain aspects of the sys-
tem dynamics that are irrelevant to the optimality of the
gait, thus significantly reducing the algorithmic com-
plexity of model extraction.

Here,we lay out a framework for combining the geo-
metric insights fromHatton’sworkwith the data-driven
oscillatormodel construction fromRevzen’s work. Our
combined approach uses noise in the dynamics of a sys-
tem that follows a nominal gait cycle to build a model
of the system dynamics in the neighborhood of this gait
cycle. Inserting thismodel into our geometric tools then
provides estimates of both how optimal this gait is rel-
ative to nearby cycles and what perturbations can be
applied to the cycle to best improve its performance.
This estimation technique has two primary use cases.

– The first is as a tool that allows for verification of
postulated goal functions for observed animal loco-
motion.

– The second is in field robotics, where an effi-
cient, noise resistant gait optimization algorithm
can potentially enable learning effective gaits with-
out requiring precise analytical models of the robot
or its interactions with the environment.

2 Contributions

The approach presented in this paper offers a collection
of advantages in speed, scalability, and model reduc-
tion for the estimation of motion models and subse-
quent optimization of gaits. These advantages derive
from the use of geometric mechanics models governed
by a connection (the “principal kinematic case” in the
language of [21]). The absence of a momentum term
in the equation of motion implies that the contribution
of different segments of motion do not strongly depend
on each other, allowing motion models to be integrated
in parallel instead of sequentially in time. With multi-
processor computing becoming cheaper, this offers the
opportunity for dramatic speedups in the computation
of motion plans. Additionally, connections expose the
fact that the systems they govern are, for practical pur-
poses, half the dimension of general mechanical sys-
tems. As the very name “geometric mechanics” sug-
gests, in these systems, the geometry of motion in body
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shape space governs the outcome of motions, admit-
ting a description with only one dimension per degree
of freedom, instead of the two needed in conventional
Newtonian mechanics. Despite this great promise of
geometric mechanics models, little work has been done
on producing them in a data-driven way. Developing a
tool for the data-driven creation of such models allows
us to explore their value for both scientific and engi-
neering applications.

Our most significant contribution is the demonstra-
tion of an algorithm for producing data-driven connec-
tion models in the neighborhood of a (noisy) rhythmic
motion. Because it estimates linear models as a func-
tion of phase, our algorithm requires a number of cycles
proportional to the state-space dimension, rather than
being exponential in the state-space dimension.No pre-
viousmethod for data-driven connection estimation has
less than exponential data requirements.

Our second contribution is the demonstration of
a gradient ascent algorithm that can utilize the data-
driven connection models we identify to optimize a
goal function. Our algorithm constructs a local model
and estimates the gradient with respect to this fast-to-
integrate connection model. It then steps within the
volume supported by the local model it used. The
power of our algorithm is that it replaces gradient
estimation against the full model or physical system
with gradient estimation against a fast, easy to par-
allelize model evaluation. This allows policies with
orders of magnitude more parameters to be optimized.
In our example, a 264 parameter policy, optimized with
30 trials of 30 movement cycles each, finding strong
solutions from a broad collection of seeded initial
gaits.

Below we review the geometric and data-driven
approaches, and then synthesize them into a tool for
simultaneously estimating and optimizing locomotion
models. Using simulated mechanical swimming plat-
forms, we illustrate the precision of these data-driven
geometric mechanics models and demonstrate that
optimal gaits can be learned with very few trials.
Finally, we discuss the utility of the new methods for
both system identification and field robotics.

3 Geometry of locomotion

The first thread of prior work that this paper draws upon
is geometric modeling of locomotion. When analyzing

a mobile deformable system, it is convenient to sep-
arate its configuration space Q (i.e., the space of its
generalized coordinates q) into a position space G and
a shape space R, such that the position g ∈ G locates
the system in the world, and the shape r ∈ R gives the
relative arrangement of the particles that compose it.1

During locomotion, changes in the system’s shape
provoke reaction forces from the environment that in
turn drive changes in the system’s position. For the pur-
poses of this paper, we adopt a (geometric) locomotion
model

◦
g = A(r)ṙ, (1)

whereA, the local connection, linearly maps the shape
velocity ṙ to the body velocity

◦
g = g -1ġ (i.e., the

position velocity in the body frame’s current forward,
lateral, and rotational directions). The local connec-
tion acts similarly to the Jacobian map of a kine-
matic mechanism—it takes the velocity of joints to the
position velocity (here, of the body frame instead of
end effector) that they generate under the constraints
imposed on the system.

Wemodel the cost of changing shape as correspond-
ing to the length s of the trajectory through the shape
space,

s =
ˆ √

drTM(r) dr =
ˆ T

0

√
ṙTM(r) ṙ dt, (2)

where M is a Riemannian metric on the shape space
that weights the costs of changing shape in different
directions.

This connection-and-metric model applies to sys-
tems that move by pushing directly against their envi-
ronment with negligible accumulated momentum in
“gliding” modes, and whose energetic costs are dom-
inated by internal or external dissipative effects. This
model has been analytically derived for swimmers in
viscous fluids [1,13], and experimentally validated for
several robots in dry granular media [5,12,19].

The meaning of the cost encoded by the metric M
depends on the system physics, but at a high level it can
be considered as the time it will take the system to exe-
cute the motion given a unit power budget. For systems

1 In the parlance of geometric mechanics, this assigns Q the
structure of a (trivial, principal) fiber bundle, with G the fiber
space and R the base space.
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moving in dry-friction environments, s can be specif-
ically taken the energy dissipated while executing the
motion [5]; for the viscous friction model we consider
in this paper, s is the time-integral of the square root of
power dissipated [13].

3.1 Extremal and optimal gaits

Locomoting systems typically move by repeatedly
executing gaits—cyclic changes in shape that pro-
duce characteristic net displacements in position. Such
cycles can be chained together to produce larger
motions through the world.

Geometrically, a gait θ is a cyclic trajectory through
the shape space with period T ,

θ : [0, T ] → R (3)

θ(0) = θ(T ), (4)

and the system shape at any time t while executing the
gait is r = θ(t).

Under the locomotionmodel in (1), the net displace-
ment over one cycle of a gait is equal to the path inte-
gral of the local connection A over that trajectory. By
an extension of Stokes’ theorem, this displacement can
be approximated2 as the integral of the curvature of A
over a surface θa bounded by the gait,

gθ =
‰

θ

gA(r) dr ≈
¨

θa

curvature DA︷ ︸︸ ︷
dA + ∑[

Ai ,A j>i
]
. (5)

The curvature DA (formally, the total Lie bracket
or covariant exterior derivative of A [11]) measures
how much the coupling between shape and position
motions changes across the cycle, and thus how much
displacement the system can extract from a cyclic
motion. Its components dA and [Ai ,A j ] are the exte-
rior derivative (curl) and local Lie bracket of the system
constraints and, respectively, capture the net forward-
minus-backward motion and parallel-parking motion
available to the system. They are calculated as

2 The quality of this approximation depends on the choice of
body frame for the system, which can be optimally selected once
A is calculated in an arbitrary convenient frame. See [8,9,11] for
further discussion of this point.

dA =
∑
j>i

(
∂A j

∂ri
− ∂Ai

∂r j

)
dri ∧ dr j (6)

and

[Ai ,A j ] = g -1
(

∂(gA j )

∂g
Ai − ∂(gAi )

∂g
A j

)
dri ∧ dr j

(7)

=
⎡
⎣
Ay
i A

θ
j − Ay

jA
θ
i

Ax
jA

θ
i − Ax

i A
θ
j

0

⎤
⎦ dri ∧ dr j , (8)

where the wedge product dri ∧ dr j is the basis area
spanned by the i th and j th basis vectors.

For systems with two shape variables, dA and
[Ai ,A j ] have only a single component (on the dr1∧dr2
plane), and (5) reduces to a simple area integral whose
integrand is the magnitude of DA. Extremal gaits for
these systems (maximizing net displacement per cycle)
lie along zero-contours of DA, maximizing the sign-
definite region they enclose.

As a general rule, these extremal gaits aremore inter-
esting mathematically than as a motion for a robot or
animal to follow. With the exception of sports such
as basketball that explicitly count steps, displacement-
per-cycle is not a useful quantity to optimize, as it leads
towasting time or energy eking out all the available dis-
placement in the cycle, instead of executing smaller but
more productive cycles more times. When considering
the optimality of a gait, it is thus typically more useful
to measure its efficiency by dividing the displacement
the gait induces over each cycle by the effort or time
required to execute it.

In our model, we take the efficiency γ as the ratio
between net displacement gθ it induces and the path-
length cost s calculated in (2), γ := gθ

s . The path-
length cost, s, which in the viscous case determines the
energy dissipated over a cycle under optimal pacing,
can be computed independently of the pacing of the
gait. This enables γ to represent the proper notion of
efficiency for such systems [13]. Note that maximizing
this efficiency is equivalent to maximizing speed at a
given power (or minimizing power for a given desired
speed), and so gaits with this property are always the
most desirable for effective locomotion, even when the
goal is “move fast” instead of “move efficiently.”

As discussed in [13], optimally-efficient gaits are
contracted versions of extremal gaits: they give up low-

123



Geometrically optimal gaits: a data-driven approach

y
b

α1

α2

x
b

(x, y, θ) 1.5

0

-1.5 1.50

-1.5

α1

α2
Curvature

curl + 
Lie bracket

Constraints

Δxb/gait

0.23

0.23

Maximum-displacement 
gait 

(encloses whole 

gait
(best ratio of enclosure 

to perimeter length)

0

0

-0.14

-0.14

Fig. 1 Key elements of our geometric paradigm, drawn from to
[8,13]. Given a locomoting system (left), the system dynamics
and constraints produce a relationship between changes in shape
and changes in position (center). When the system executes a
cyclic change in shape (bottom), the net displacement induced
by this gait corresponds to howmuch curvature of the constraints
the gait encompasses, and the time-effort cost of executing this

gait is the length of the path it traces out in the shape space
(right). In the bottom animation, the top row indicates the phase
of the swimmer in a gait, with the shape at each phase shown in
the bottom row. The motion can be viewed from left-to-right or
right-to-left, with the vertical bar (red) serving as a static refer-
ence point. (Color figure online)

yield regions of DA in exchange for a shorter path
length, and thus, a smaller expenditure of power or
time. These gaits lie along curves where the gradient
of efficiency with respect to changes in the gait param-
eters p,

∇pγ = ∇p
gθ

s
= 1

s
∇pgθ − gθ

s2
∇ps (9)

is equal to zero.As further discussed in [23,24], the gra-
dient terms in (9) can be expanded in terms of DA,M
and ∇M evaluated along the gait. Given these expan-
sions, the dynamics of optimizing γ resemble those
seen in a soap bubble, with an inflating pressure pro-
vided by DA balanced against a surface tension corre-
sponding to s.

3.2 Empirical geometric models

The geometric approach described above was origi-
nally developed for systemswhose equations ofmotion
can be shown from first principles to have the form
in (1). Building on these results, we demonstrated
[5,12] that the constraint curvature DA is also a use-
ful tool for understanding the locomotion of systems
whose dynamics are less “clean,” and are only tractable
through numerical modeling or empirical observation.

In these previous works, we first used nonlinear
models [12] or experimental measurements [5] to sam-
ple the relationship between

◦
g and ṙ across the tangent

bundle T R. We fit a linear form to this relationship on
a grid of tangent space base-points Tr R, giving A on a
sampling of the shape space, fromwhichwe then calcu-
lated the components of DA as per (6) and (7). Plotting
the curvature over the shape space then allowed us to
directly identify effective gaits for translation and rota-
tion for three-link and serpenoid system geometries,
following the procedure illustrated in Fig. 1.

4 Oscillators and data-driven modeling

The second thread of prior work that this paper draws
upon is a robust theory of gaits as oscillators, com-
bined with a statistical approach to data-driven model
construction. For an observed physical system, it is not
always known a priori what this limit cycle is, what the
dynamics of attraction to the limit cycle are, or even
what the precise period of oscillation is. These prop-
erties of the gait can be extracted using techniques of
Data-DrivenFloquetAnalysis (DDFA) [26,29], the key
elements of which we review below.

For simplicity of exposition, we will assume all
observations come in a single regularly sampled time-
series consisting of (gn, rn) position and shape sam-
ples,which can be numerically differentiated (e.g.,with
a second-order Kalman smoother [25,30]) to augment
the samples with velocities ġn , ṙn , and

◦
gn = g -1n ġn .

From oscillator theory [7,29], we know that every
exponentially stable oscillator (which we assume this
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Fig. 2 Data-Driven Floquet Analysis applied to a Hopf oscil-
lator with system noise. Trajectories of the oscillator converge
to a (noisy) cycle (left plots, three colors, one per trajectory).
This cycle appears as a circle in state-space (extreme left) and
as sinusoidal time-series (second from left). By differentiation,
we obtain vector field samples at the data points (middle). We
estimate the limit cycle as a function of phase (second from

right) computed using the phase estimator from [28] providing a
canonical map from every trajectory point to a point with iden-
tical phase on the limit cycle (thin black lines, right plots). Such
surfaces of constant phase—isochrons—form radial lines in the
(particularly simple) case of the Hopf oscillator. (Color figure
online)

to be) can be parameterized with a phase coordinate
ϕ : R → [0, T ) ⊂ R based on the following rules:

1. Each point on the limit cycle has a unique phase
value, spaced such that limit cycle trajectories
advance in phase at rate ϕ̇ = 1.

2. Each point not on the limit cycle inherits its phase
value from a corresponding point on the limit cycle,
selected such that trajectories starting at the two
points ultimately converge. The set of all points
sharing a value of ϕ are called an isochron of
the oscillator, and the trajectories of the oscillator
advance across isochrons such that ϕ̇ = 1 every-
where.

Ourmodeling processwas as follows:we assigned each
sample n a phase ϕn via a phase estimator such as that
presented in [27], which takes the multivariate time-
series of measured data from an oscillator and gives a
phase estimate for every data point. Figure 2 provides
a visual example.

Oncewe grouped the samples by phase, wemodeled
the limit cycle (nominal-gait-as-executed) by comput-
ing a pair of Fourier series θ0 and ω with respect to the
phase: θ0(ϕn) ≈ rn was fitted to the sampled shapes,
and ω(ϕn) ≈ ṙn was fitted to the shape velocities.
Because each of θ0 and ω is computed from its own
noisy dataset, the condition θ̇0 = ω neednot be satisfied
after this fitting procedure. We create a self-consistent
model θ of the limit cycle by producing the analytical
integral of ω, and using a matched filter to combine
this integral with the θ0 estimate to obtain a single self-
consistent cyclic trajectory. Past experience [26] has
shown that this estimation procedure provides a better

representation of the limit cycle than the directly fitted
shape model θ0.

5 Data-driven modeling of the connection

The gait analysis methods described in Sect. 3 pro-
vide a powerful link between gaits’ optimality and their
geometry. Their utility, however, depends on having
a model for how small shape changes induce body
motion changes. For systems that experience com-
plex interactions with their environments, such models
are not readily available from first principles [even if
their net effect can be modeled as the linear relation-
ship in (1)], and exhaustive empirical evaluations [5]
become infeasible as we move to system with many
shape variables and/or limited control affordances.

Conversely, the data-driven methods described
in Sect. 4 are able to extract a meaningful model of
a system from noisy measurements. This model, how-
ever, is limited to the specific gait being executed and
does not provide context for comparing the gait against
other motions the system could execute, or for optimiz-
ing the motion.

Our key innovation in this paper is based on the
observation that the data-drivenmodeling approach can
allow us to quickly build up a first-order model of the
connection in a tube around a given gait cycle. In turn,
the first-order model allows us to rapidly compute the
influence of any gait change within themodel’s domain
of validity. Such computations allow us to numerically
approximate, at this given gait cycle, the gradient of any
goal function computed from a gait with respect to any
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parameterization of gaits—even when this parameter-
ization is fairly high dimensional and requires a great
many “simulations” of gaits.

In this innovation, we exploit two properties
of the geometric model: (1) the variational opti-
mizer/definition of optimality described in (9) only
needs to know DA along the given gait to identify the
direction in which that gait can be perturbed to best
improve performance. (2) DA, being a two-form and
thus a linear map, can be reconstructed at every point
along a gait cycle using regressions applied to the rela-
tionship between g and r collected from experiments.

5.1 Analytic approximation of the connection near a
gait

In this section, we introduce an approximation of the
mechanical connection and the cost metric, both cen-
tered about a nominal gait. We then construct a proce-
dure to estimate the local model elements from data. As
discussed in Sect. 4, a gait cycle θ(·) can be extracted
from shape data r via Data-Driven Floquet Analysis.
Perturbations from this phase-averaged behavior are
written as δ(t) := r(t) − θ(t). These terms can be
used to construct a first-order approximation ofA(·) in
a neighborhood of the point-set Im θ using its Taylor
series,

Ak
i (r)ṙ

i = Ak
i (θ + δ)ṙ i ≈

[
Ak
i (θ) + ∂Ak

i

∂r j
(θ)δ j

]
ṙ i ,

(10)

where, as per Einstein index notation, Ak
i corresponds

to the element in the k-th row and i-th column of A.
Including the derivative of the connection across the
shape space allows us to estimate the connection for
behaviors that are not on the current gait cycle θ(·),
and that thus provide velocity samples in nearby, but
not identical, tangent spaces of the shape space.

It is important to stress that ∂Ak

∂r is not simply the
Hessian matrix of gk with respect to r around points
on the gait, i.e., it is not the gradient of a gradient. The
Hessian could only be computed if g were a function
of r , but it is not. In fact, locomotion via gaits would
be impossible if it were such a function since a cycli-
cal change in r could not induce a net change in g.
In particular, Hessians are symmetric operators, and
the difference term that appears when calculating dAk

in (6) directlymeasures the system’s ability to locomote
along the k-th direction in terms of the asymmetry of
∂Ak

∂r . Similarly, the [Ai ,A j ] term from (7) measures

the covariant asymmetry of ∂gA
∂g when the connection

is expanded from local to global coordinates.

5.2 Estimating A(θ) and DA(θ) from data

Our input data was time series of the system shape rn ,
shape velocity ṙn , and observed body velocity

◦
gn , at

sufficiently many time points n = 1 . . . N . We begin
our system identification process by applying the gait
extraction algorithm described in Sect. 4, producing
Fourier seriesmodels of θ(·) and of θ̇ (·).We then select
M evenly spaced values of phase, ϕ1 . . . ϕM , to obtain
θm := θ(ϕm) and θ̇m := θ̇ (ϕm)—the shapes and shape
velocities of a system that is following the gait cycle
precisely. We use these as the points at which we esti-
mate the connection and its derivative.

For each cycle point θm , we collect all shapes rn that
are sufficiently close, i.e., n such that ‖rn−θm‖ < δmax.
For notational simplicity, when both index n and index
m appear in an equation below, we take the values of
n to be restricted to only those sufficiently close time-
series points. We now define the offset between the
shape sample and its current on-gait reference point as
δn := rn − θm .

Within each θm neighborhood, we now estimate the
local connection and its derivatives by using a linear
regression to find the slopes of the relationship between◦
g, ṙ , and δ. Naively, this regression is the solution to
the Generalized Linear Model formed by placing the
Taylor-series expansion of A from (10) into the loco-
motion model from (1):

◦
gkn ∼

(
Ak
i

)
ṙ in +

(
∂Ak

i

∂r j

)
δ
j
n ṙ

i
n, (11)

where
(
Ak
i

)
are theM separate estimates ofAk

i (θm) and(
∂Ak

i
∂r j

)
are the M separate estimates of

∂Ak
i

∂r j
(θm).

When applied to samples generated from an oscilla-
tor as illustrated in Fig. 2, this straightforward regres-
sion is biased by the shape velocity samples being
centered around ṙ = θ̇m rather than ṙ = 0. We cor-
rect for this bias by re-centering the regression around
A(θm)θ̇m . We separate the perturbations of the shape
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Observed shape motion
and averaged gait

Velocity samples in neighborhood
of one point on gait

Geometric locomotion model from regression
between shape and position velocities

x

α1

α2

α2 α2α1 α1

x

Fig. 3 Illustration of the connection estimation process.We take
the rhythmic data, group it by phase, and average using a Fourier
series to obtain a periodic gait (left; red cycle). We collect shape
velocity and body velocity data (middle; rooted arrows) within
the neighborhood of point on the gait (black oval, left; zoomed
in area, middle). Using these data, we fit a first-order approxi-

mation of the connection model (black planes; right). We repeat
this process for a collection of points on the gait cycle at fixed
phase intervals, and fit the parameters of the estimated models
with a Fourier Series to obtain a model of the connection that
smoothly varies with phase. Further detail in Sect. 5.2. (Color
figure online)

velocity away from the gait cycle velocity from the
influence of the gait cycle velocity itself by defining
δ̇n := ṙn − θ̇m , and re-writing the GLM of (11) as (for
velocity component k and each value of m):

◦
gkn ∼Ck + Bk

jδ
j
n +

(
Ak
i

)
δ̇
i
n +

(
∂Ak

i

∂r j

)
δ
j
n δ̇

i
n (12)

where Ck := Ak
i θ̇

i is the connection applied to the
(unmodified) gait cycle shape velocity, and Bk

j :=
∂Ak

i
∂r j

θ̇ i is the interaction effect of shape offset and shape
velocity applied to the (unmodified) gait cycle shape
velocity. Here, Ck is a constant (with k, m fixed); and
Bk is a (“co-”)vector that acts on shape offsets from the
gait, rather than on conventional tangent vectors. The(
Ak
i

)
element is a true co-vector that acts on velocity

offsets away from the typical gait velocity, and

(
∂Ak

i
∂r j

)

is the interaction matrix of shape offsets and shape
velocity offsets, offset being taken relative to the nom-
inal gait cycle θ (Fig. 3).

We compute the regression by writing it in matrix
form and thereby posing the least-squares problem (for
each k andm; indices k andm elided below for clarity):

⎡
⎢⎣

◦
g1
...

◦
gN

⎤
⎥⎦ =

⎡
⎢⎣
1, δ1 , δ̇1 , δ̇1 ⊗ δ1
...

...
...

...

1, δN , δ̇N , δ̇N ⊗ δN

⎤
⎥⎦ ·

[
Ĉ, B̂ j , Âi ,

∂̂Ai
∂r j

]T

(13)

wherêindicates “estimated” and ⊗ is the outer prod-
uct. For a d dimensional shape space, the row of
unknowns on the right consists of 1 + d + d + d2

elements.
Once we have the model for every m, we construct

a Fourier series model of each of the matrices of the
GLM, allowing them to be smoothly interpolated at
any phase value.

5.3 Estimating the metric

In the same manner as we estimate A, we can estimate
a Riemannian effort-metric M on the shape space by
recording the differential cost of motion ṡ along with
the system kinematics, and then fitting these costs to a
linearized expansion of (2) taken at the points θm using
the matching n indices,

ṡ2n ∼ ṙn
T
[
M +

(
∂M
∂r j

)
δ
j
n

]
ṙn . (14)

This regression suffers from the afore-mentioned bias
stemming from the ṙ values being centered around
θ̇ instead of 0;, so we recenter it in a similar man-
ner as in (13). Additionally, because M is a symmet-
ric tensor, only

(d
2

)
elements need to be estimated,

reducing by about half the number of quantities to
estimate. Details of this regression calculation are in
“Appendix A”.
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5.4 Comparison of estimates to previous work

This process is analogous to the processeswe described
for empirically estimating A and its derivatives in [5,
12], but offers some distinct advantages.

In our previous work, the shape velocity samples to
identify A at a point all had to be in the tangent space
of that point. Here, we have relaxed that requirement
by fitting to a linearized expansion of (1) instead of (1)
itself.

Furthermore, since our regression here uses intrin-
sic noise in the system, it provides an estimate of the
average behavior under noise. The average behavior
of a system when noise is added depends also on the
variance of the noise. In the analysis here, we account
for the actual noise present in the system, rather than
treating it as meremeasurement error of a deterministic
system.

The presence of system noise and the form of the
linearized expansion allow for collection of data over a
singular repeated gait cycle, rather than collection over
the whole shape space (as was done for the prior model
estimation methods).

5.5 Assumptions for the modeling estimation

We make the following assumptions for modeling: (1)
the deterministic part of the systems time evolution is
governed by a connection; (2) the dynamics are sub-
ject to sufficient IID (independent and identically dis-
tributed) system noise to allow them to be identified;
(3) noise is sufficiently small to allow a distinct rhyth-
mic motion to be observed andmodeled as a limit cycle
oscillator representing a gait. For gait optimization, we
further assume that the system is fully actuated and able
to follow (on average) any trajectories we command.

6 Performance of the data-driven models

To benchmark the accuracy of our data-driven geomet-
ric modeling process, we compared its prediction of
the body velocity for a test system against three system
models that had various levels of knowledge about the
“true” system dynamics used in the simulation. The test
system had a geometric locomotion model of the form
in (1), and its shape trajectories were generated via a
noisy oscillator like that illustrated in Fig. 2.

6.1 Reference models

As described in Sect. 5, we used a data-driven process
to construct a phase varying first-order model of A at
points θm along our observed gait cycle. Each rn data
point from the (noisy) trial was associated with a corre-
sponding (phase-matched) point θn on the gait cycle,3

which allowed us to compare several different models
for the body velocity:

1. The ground truth model

◦
gG,n = A(rn)ṙn, (15)

in which each (rn, ṙn) pair is passed directly to the
simulator dynamics, giving

2. The fully data-driven model, where the regression
estimates of the Taylor expansion of A are used
to approximate A at points off of the gait cycle,
and

◦
gD,n is given by (12), used with the quantities

estimated from (13).
3. An analytic model

◦
gA,n = A(θn)ṙn + ∂A

∂r
(θn)δnṙn (16)

that uses a Taylor-series expansion of the simula-
tor model computed at the same point as the data-
driven model, without using any regression or sim-
ulation data. This model tests the correctness of the
regression in the data-driven model.

4. A template projection model

◦
gT ,n = A(θn)θ̇n . (17)

that projects each (rn, ṙn) data point onto its corre-
sponding (θn, θ̇n) values for the gait cycle that was
used to derive the data-driven model. This approx-
imation tests how much additional information is
gained from the higher order term in the Taylor
expansion.

Note that the template approximation in (17) can be
considered as the leading term of the analytical approx-
imation (after separating ṙn into θ̇n and δ̇n components),

3 These phase-matched θn points can be individually computed
for each rn , and so are not restricted to the previously-sampled
θm values. Similarly, the estimates of A and its derivative from
Sect. 5.1 are computed as Fourier series, and can thus be inter-
polated to any θn .

123



B. Bittner et al.

A

B

C

Fig. 4 Comparison ofmodel accuracy for 3 link and 9 link swim-
mers. a We drove each platform to follow the extremal gait for
the three-link swimmer (black) generating 30 strokes (blue and
red; plotted on first two principal components). Of these, we
plotted Cycles 13–18 (red) in the time domain (b), showing the
additional motion predicted beyond the template model by the
ground truth model (black), the data-driven model (teal), and
the analytic model (red). Because both analytic and data-driven

models follow the ground truth closely, we also plotted a scatter
plot of their errors as a function of phase (c), showing that the
data-driven model (teal) has zero average error, unlike the ana-
lytic (red) model. As the number of DOF grows (right; 9 link
plots) the mean (solid) and variance (dashed) of the data-driven
model (teal) become smaller than those of the analytic model
(red). (Color figure online)

and that the partial-derivative terms in (12) and (16)
contain the information required to predict the effect
of modifying the gait limit cycle.

6.2 Simulation setup: swimming with system noise

For our baseline system model, we used a three-
link Purcell swimmer [22] modeled as described in
[10]. This system moves through a viscous fluid
with linear drag, which we take as having a 2:1 lat-
eral/longitudinal ratio. To demonstrate the ease with
which we can extend our approach to systems with
higher-dimensional shape spaces, we also considered a
nine-link swimmer. Both are pictured in Fig. 4 part A.

To simulate the effects of noise in the shape dynam-
ics (e.g., weak or imprecise shape control), we gen-
erated the shape trajectories from sample paths of a
(Stratonovich) stochastic differential equation, injected
into the shape space:

dϕ = 1 dt + η ◦ dWθ

dδ = −(α δ) dt + η ◦ dWδ,

r(t) := θREF(ϕ(t)) + δ(t). (18)

where θREF(·) was a reference motion we specified as a
Fourier series; α was the coefficient of attraction bring-
ing the system back to the reference gait cycle; and η

was a noise magnifier for the Weiner processes dW
driving both phase noise and shape noise.

For all simulations in this paper α = 0.05 and η =
0.025, chosen based on the superficial similarity the
noisy trajectory ensembles have to experimental data
we have worked with.

6.3 Model accuracy results

To illustrate the performance of our data-driven mod-
els, we examined the differences between motion pre-
dicted by the models in Sect. 6.1 when the reference
gait was the extremal gait maximizing motion in the
x direction, known from [9,33]. We specifically chose
an extremal gait as our example because non-extremal
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Fig. 5 Comparing analytic and data-driven approximations.
Given the same input gait and attraction laws of Fig. 4, we plot-
ted the accuracy of both models (data-driven in red; analytic in
teal) over a range of system noise values (0.5η, η and 2η example
trajectories in insets) and indicated the range of estimation error
observed for x velocity over an ensemble of 20 trials at each
noise level. System noise can be seen to strongly degrade the
accuracy of the analytic model, whereas the data-driven model
retains accuracy at high levels of noise, at the expense of accuracy
at low-noise levels. (Color figure online)

gaits should be even easier to model—perturbations
around them have first-order effects. These results are
shown in Fig. 4.

In high-noise regimes, the data-driven approach
yields better models than the analytic Taylor expan-
sion of the dynamics around the gait cycle. This effect
is illustrated in Fig. 5, which shows estimation error
as a function of noise level for our example gait. The
data-driven model also outperforms the analytic model
when the system dynamics are very nonlinear, as for
the nine-link swimmer at the right of Fig. 4c, and when
the system noise is large.

These differences stem from the fact that the ana-
lytic model is a linearization of the system dynamics
that extrapolates the system dynamics from their values
on the gait cycle, whereas the data-driven approxima-
tion acts like a secant approximation to a curve, and
averages the rate of change of the system dynamics
across the neighborhood of the cycle. At the limit of
large samples and small noise, the data-driven model
approaches the analytic model. Thus, at the limit for
many samples and finite noise, the data-driven model
should always out-perform the analytic model—giving
the best linearization for prediction over the available
data, rather than the linearization locally at the gait

cycle. However, with finite sample sizes, the accuracy
of the estimated linearization can suffer, allowing the
analytic model to out-perform the data-driven one.

7 Data-driven geometric gait optimization

Given both the model of the connection (from
Sect. 5.2), and the model of the cost metric (from
Sect. 5.3), we can evaluate the efficiency of gait cycles
in a Sobolev neighborhood of an initial gait cycle. In
particular, this allows us to compute the gradient of effi-
ciency [as in (9)] and use a gradient ascent optimization
scheme to optimize gait efficiency.

In implementing the gait optimization procedure,
two key choices to be made: (1) How is the space of
gaits to be represented? (2) How big a step should the
optimizer take along the gradient each time it is com-
puted?

7.1 Gait parametrization

For our reference implementation of the gait optimiza-
tion process, we constructed gaits in which the motion
of each shape variable (here, joint angle) is the sum of
a set of compactly supported bump functions added to
first-order Fourier series. Each shape-space coordinate
of the gait θi (t) is thus given, for an order No parame-
terization, as:

ri (t) := ci + ai sin(
t + φi )

+
No∑
k=0

ui,k w

(
t − k

2π

No

)
(19)

w(x) :=
{
1 + cos(xNo) |xNo| < π

0 |xNo| ≥ π
, (20)

with gait parameters

pi = (ci , ai , φi , {ui,k}). (21)

By construction, only 30 window functions from the
sum in Eq. (19) can be non-zero at any time in the
gait—making the sum fast to compute, and restrict-
ing the influence of each ui,k to only 1/No of the gait
cycle. The expressiveness of this representation in a
two-dimensional shape space is illustrated in Fig. 6.
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elliptical approximation

phase-partitioned splines

full shape trajectory

Fig. 6 Illustration of gait parameterization as an ellipse with
bump functions. In this parameterization, each gait starts out as
an ellipse—the image of a first-order Fourier series (black). To
this we added a collection of overlapping, compactly supported,
cosine window bumps. The number of bumps is the only order
parameter for complexity of the model (here order 30). The sum
of the circle and the plotted individual bumps (teal) combine
together to give a diamond shaped gait cycle (red). (Color figure
online)

7.2 Choosing a step size

Once we have identified an efficiency gradient vector
p̂ = ∇pγ on the parameter space, our optimizer must
decide how large a step α to take along the gradient.
This step size should be informed by the size of the
neighborhood around the current gait which was sam-
pled in themost recent trial, which is in turn determined
by the level of system noise in the trial (Fig. 7).

To compute the step size, we first measure the noise
at each phase bin m as the covariance matrix of off-
cycle displacements in the neighborhood of that bin,
Ĉm := E

[
δnδn

T], which we can interpolate to any
phase ϕ via a Fourier series. We then take:

– θ0 as the current gait;
– p0 as the parameters of this gait;
– pα = p0 + α p̂ as the parameters reached by step-
ping along the efficiency gradient by α; and

– θα as the gait defined by these parameters,

and calculate the Mahalanobis distance with respect
to the sampling noise [18] between the updated and
current gait cycles as

Z(α) := 1

2π

ˆ
S1

(θα − θ0)
TC−1(θα − θ0) dϕ, (22)

where θα, θ0 and C are all functions of a phase param-
eter ϕ which we elide for clarity.

This distance measures the uncertainty of our data-
driven modeling process and, generally speaking,
grows with α. Presuming this growth to be monotonic,

Fig. 7 Optimization is insensitive to initial gait. We provided
28 different initial gaits (cartoons top) each with a different pair
of joints (red dots in cartoon) following ri (ϕ) = sin(ϕ), with
all other joints set to constant angle 0. We optimized each initial
gait 3 times, for a total of 84 optimization runs, and plotted the
mean (black dots) and covariance ellipsoid (red) of the ensemble
of gaits at every simulation iteration on axes of cost and dis-
placement. In these axes, cost of transport (COT) corresponds
to a slope. The initial gaits hardly move, giving a distribution
along the horizontal axis, which improves to COT 36.9 after one
iteration. As optimization progressed, all gaits moved toward the
COT = 7.0 line, with the final (30th) iteration showing almost
no progress and a fairly tight clustering of cost and displacement
(black ellipse). Each optimization procedure converged to a ser-
penoidal motion, although these were not identical and retained
some hint of the original choice of active joints. We used the ini-
tial gait highlighted (gray circle) for the noise regime testing in
Figs. 8 and 9. Our choice of initial gaits was motivated by the fol-
lowing factors. By using reciprocal motions, we ensured (using
the Scallop Theorem; see e.g., [17,22]) that all initial gaits have
zero net displacement. By having twomoving joints—effectively
a 3-link swimmer—we ensured that non-reciprocal motions are
easily reachable. With only one moving joint, the motion is by
definition reciprocal. (Color figure online)

we can use a line search (e.g., a bisection search) to
locate (to a user-selectable relative error tolerance; we
used 5%) the α value at which Z(α) crosses some
threshold value. For the experiments in the next sec-
tion, we used a threshold constant of 9.5.

The gait optimization framework can be summa-
rized as a gradient ascent algorithm with careful con-
siderations for the parametrization of the gait and step
selection. Given an initial parametrization (detailed in
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Sect. 7.1), we collect experimental data (30 cycles in
our results section) and compute the local motion-and-
metric models. We extract a gradient on the efficiency
of a motion with respect to the gait parameters by sam-
pling many gaits in the neighborhood of the current
policy, using the estimated local model to predict the
performance of each sampled gait. We then determine
the magnitude of the step size as described in Sect. 7.2.
This allows the next gait parametrization to represent
a behavior that is reliably informed by the data of the
prior trial. Once the next gait is selected, we collect
experimental data, repeating the above process. The ter-
mination criterion for the gradient ascent algorithm is
a pre-specified number of iterations. A more advanced
termination criterion will be explored in future work.

8 Swimming gait optimization results

Asademonstration of our gait optimization framework,
we applied our algorithm to a 9-link chain “swimmer”.
All swimming behaviors shown were optimized with
respect to the efficiency metric γ = gθ

s , which we
report in units of body lengths per unit time at unit
power. For any given power budget, this efficiency
is inversely proportional to the mechanical cost of
transport.

8.1 Optimization is robust to choice of initial condition

One important test of an optimization algorithm is
its ability to achieve good outcomes irrespective of
initial conditions. To test this ability, we provided
the system with gaits in which two selected joints
follow identical sinusoidal inputs (no phase offset and
amplitude of 1), the other joints attempt to hold at zero
angle, and all joints are subjected to noise as discussed
in (18). The power costs of these gaits depended on
the lengths of the segments between the active joints,
and, as illustrated in Fig. 9, as reciprocal motions, they
produced no net displacement.

From each of these initial conditions, our optimizer
consistently converged (within 30 trials at 30 cycles per
trial) to gaits with a cost of transport of 7.0 ± 0.7. As
illustrated in Fig. 8, these resulting motions were very
close to ellipses embedded in the eight-dimensional
shape space, and produced serpenoid undulations trav-
eling along the length of the swimmer. Qualitatively,

Fig. 8 Visualization of gaits throughout an optimization. We
projected all gaits onto the first two principal components of the
final gait (viewed as embedded in R

8) and plotted the projec-
tion of the x motion connection on that subspace (arrows). The
initial gait (top cartoon), allowing only two joints to move (red
dots in cartoon swimmer), is a line in the shape space coordi-
nates (black line). The following iterations expand this contour
as an ellipse and eventually embellish the ellipse with bumps
(red closed ovals) leading to the final gait (black oval) and the
serpenoid shape (bottom cartoon). (Color figure online)

the motions are in agreement with the conclusions
about optimal swimming behavior in [31], with the
exception of maximizing the amplitude of the undu-
lations at the mid-body of the swimmer. In this case,
the amplitudes of the discovered gait are typically
maximized near the joints that are excited in the initial
gait. The reason for the discovery of this family of
gaits and their relation to the global optimum in [31]
will be the subject of future work.

8.2 Robustness to noise level

A second test of optimizer performance, which is
of particular importance to hardware-in-the-loop
optimization, is its ability to tolerate a variety of
noise levels and produce comparably good results. To
demonstrate this ability, we took a single starting gait
(in which the active joints are each set two links in
from the end, as illustrated in Fig. 8) and optimized its
motion under different levels of system noise.

For all four noise regimes tested, the system con-
verged to serpenoidal motions with geometrically sim-
ilar shapes (similar ratio of wavelength to amplitude),
but with different numbers of waves along the body. As
illustrated in Fig. 8, the gaits found at different noise
levels have similar costs of transport (with mean values
ranging from 6.9 to 7.7), but the systems at higher noise
levels tended toward gaits that were high-cost/high-
displacement, at the expense of some efficiency.
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Fig. 9 Course of optimization under different levels of noise.
We started with the same initial gait (gray circle highlight in
Fig. 7 and top cartoon in Fig. 8), but multiplied the noise level
η of Eq. (18) by 0.5, 1., 1.5, 2 (colors yellow, red, teal, and
green, respectively). For each noise level, we plotted an example
simulation to illustrate the noise level (ovals framed in color;
top). We ran 48 optimizations at each noise level, allowing 60
iterations of 30 swimming cycles each, and plotted the mean
(circle marker) and covariance (translucent ellipses) of these
trials at every iteration of the algorithm, highlighting the final
mean (black dot) and covariance (black ellipse). All gaits started
unable to move, and reached COT 7.3 ± 0.4 with high-noise
optimal gaits being slightly less efficient than low-noise gaits
(COT of mean 7.7 vs. 6.9). The two lower noise level achieved
indistinguishable cost. It is notable that at higher noises, opti-
mization moved away from the origin, producing larger motions
with larger cost. (Color figure online)

Additionally, we note that at all noise levels, the
systems initially modified their gait to increase their
net displacement, then “pulled left” on the graph to
reduce the cost of producing this displacement. The
step sizes between trials are smaller on the low-noise
systems, as they experience smaller perturbations
during the trials, and thus have a lower bound on step
size as discussed in Sect. 7.2.

9 Conclusions, limitations, and future work

We have presented two main contributions: (1) a
method for locally modeling a connection and a cost
metric in the neighborhood of a gait cycle, based
solely on the observation of noisy trajectories; (2)
an algorithm for gait optimization that employs this
method for gradient climbing.

Our modeling relied strongly on system noise to
produce sufficient excitations to allow us to employ
regression and identify the structure of the dynamics
at every phase of the cycle. In this, there is both a
strength and a weakness. The strength comes from
exploiting noise and being able to model systems with
levels of noise comparable to those we have observed
in animal and robot data. The weakness comes from
relying on noise to be “system” noise—i.e., arising
from true changes in the system state rather than from
measurement errors. Measurement noise could mask
some of the structure we expose by regression. It could
also suggest to the optimization to move in a direction
that is not achievable by the actual hardware.

The great strength of our gait optimization algo-
rithm is that it decouples the dimension of the gait
parameter space from the dimension of the shape space
and the number of trials needed. For a shape space
of dimension d, order d cycles are needed to identify
the model. Once the model is identified for a gait,
numerical evaluations of gait perturbations are very
quick, and allow the goal function to be differentiated
with respect to hundreds of variables with little effort.

Some natural extensions of our work include
expanding to a broader class of data-driven models
outside those systems which admit connection-like
models [2,4,20]. This could enable comparison
between analysis of discovered gaits from the data-
driven optimizer with geometric analysis on articulated
swimming in more complex fluids [14–16]. One nat-
ural question which arises is that of systems that are
“nearly” geometric—is there a useful and easy to
identify notion of “nearly” geometric that translates to
good predictive ability of geometric tools?

Improvements to regression, phase estimation, and
state estimation could enhance our results even more;
in particular, other approaches to gradient ascent
step-size choice seem to hold some promise. Elab-
orating further the relationship between noise level
and which gaits are optimal may provide new insights
into biological mechanisms of robust locomotion.
Expanding to broader notions of asymptotic phase
of normally hyperbolic attractors other than limit
cycles [6], our methods could perhaps be extended to
optimize control policies on more elaborate attractors.

Direct extensions of this work are to test our algo-
rithm on physical hardware-in-the-loop optimization
problems in robotics. We have also applied our algo-
rithm to C. elegans swimming data kindly provided by
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[32], allowing us to asses optimality of low Reynolds
number swimming gaits of these animals [3].

Compliance with ethical standards

Conflicts of interest Conflict of Interest: The authors declare
that they have no conflict of interest.

Appendix A: Regression for estimating the cost
metric

The regression for computation of the metric M is
centered about θ and θ̇ , similarly to the construction
of the regression for the connection A. The metric
approximation now takes the form:

ṡ2n ∼ (θ̇n + δ̇n
T
)

[
M +

(
∂M
∂r j

)
δ
j
n

]
(θ̇n + δ̇n) (23)

leading to the regression:

⎡
⎢⎢⎢⎣

ṡ2
1

.

.

.

ṡ2
N

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1, δ̇1, δ̇1 ⊗̂ δ̇1 , δ1, δ1 ⊗ δ̇1 , δ1 ⊗ δ̇1 ⊗̂δ̇1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

1, δ̇N , δ̇N ⊗̂ δ̇N , δN , δN ⊗ δ̇N , δN ⊗ δ̇N ⊗̂δ̇N

⎤
⎥⎥⎥⎦ · RT,

(24)

R =
[

̂Mi, j θ̇ i θ̇ j , ̂Mi, j θ̇ i , ̂Mi, j ,
̂∂Mi, j
∂rk

θ̇ i θ̇ j ,
̂∂Mi, j
∂rk

θ̇ j ,
∂̂Mi, j

∂rk

]

(25)

Here the modified exterior product ⊗̂ includes only the
upper triangular elements, i.e., x⊗̂ y = [. . . , xi y j , . . .]
s.t. i ≤ j . Following (14), at each m we solved for
1 + d + (d

2

) + d + d2 + d
(d
2

) ≈ 1
2d

3 unknowns to
construct our model of the metric.
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