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Abstract Gaits and gait transitions play a central role in
the movement of animals. Symmetry is thought to govern
the structure of the nervous system, and constrain the limb
motions of quadrupeds. We quantify the symmetry of dog
gaits with respect to combinations of bilateral, fore—aft, and
spatio-temporal symmetry groups. We tested the ability of
symmetries to model motion capture data of dogs walking,
trotting and transitioning between those gaits. Fully sym-
metric models performed comparably to asymmetric with
only a 22% increase in the residual sum of squares and
only one-quarter of the parameters. This required adding a
spatio-temporal shift representing a lag between fore and
hind limbs. Without this shift, the symmetric model resid-
ual sum of squares was 1700% larger. This shift is related
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to (linear regression, n = 5, p = 0.0328) dog morphol-
ogy. That this symmetry is respected throughout the gaits
and transitions indicates that it generalizes outside a single
gait. We propose that relative phasing of limb motions can
be described by an interaction potential with a symmetric
structure. This approach can be extended to the study of inter-
action of neurodynamic and kinematic variables, providing
a system-level model that couples neuronal central pattern
generator networks and mechanical models.

Keywords Gaits - Dogs - Symmetry - Gait transitions -
Dynamical systems

1 Background

Examination of the dynamics of neural or mechanical aspects
of moving animals has yielded important insight [1-5]. The
rules that describe these dynamics are thought to remain
unchanged under certain manipulations, a property termed
a symmetry [6—18]. An example is left-right interchange, or
bilateral symmetry. The dynamics that govern an animal run-
ning are almost identical to those of the same animal seen
running in a mirror, even though the labels we would use
(“left” and “right”) have been swapped.

Understanding these symmetries is important as they
imply the locomotor system has a specific structure. That,
in turn, means that it can be described more parsimoniously
[8,19]. Golubitsky et al. [2] employed this fact to argue
for a specific structure of neuronal central pattern genera-
tor (CPG) networks based on the symmetries of quadrupedal
gaits. Parsimonious descriptions of locomotion can be espe-
cially useful because it is a unifier of ultimate evolutionarily
imposed constraints, neuronal control structures, body mor-
phology, physiology and ecology.
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Much of the previous evidence for these symmetries takes
the form of post-diction. That is, noting that existing obser-
vations of locomotion have properties consistent with these
symmetries. Here we present a theoretical framework that
can predict the consequences of hypothesized symmetries
and that can be tested against large, spatio-temporally rich
datasets. With this tool, we directly, experimentally test previ-
ously proposed symmetries in freely moving dogs. We further
extend these symmetries to describe the transitions between
walking and trotting, such that a single framework can cap-
ture both gaits and the transitions between them.

Two related sets of symmetries for the dynamics govern-
ing quadrupedal locomotion have been proposed. One set
relates to the nervous system [2], the other to limb movements
[3]. Both have as a common hypothesis bilateral (left-right)
symmetry, but the former proposes additional symmetries
resulting from shifts in time, while the latter proposes the
additional symmetry of fore—aft limb exchange plus time
inversion.

We first test the degree to which the additional symmetries
proposed by [3] are respected. Then, we extend the fore—aft
plus time inversion symmetry to include a uniform phase
shift and discover that this phase shift, when allowed to vary
with the animal’s morphology (specifically the ratio of the
leg length to the shoulder—pelvis separation), is enough to
recover a good fit to experimental data.

2 Methods
2.1 Animals

A total of 5 dogs, of varying breeds, were used for this study.
Dogs were volunteered and used only with the owners’ con-
sent. The average weight of the dogs used was 23.5 kg with
arange from 10.5 to 32.0 kg, and an average age of 5.4 years
old, ranging from 2.5 to 7.5 years old.

2.2 Motion capture

Kinematic data were gathered using a 12-camera Qualisys
(Qualisys AB, Gothenburg, Sweden) motion capture system.
A total of 28 retro-reflective markers were placed on anatom-
ical landmarks of the dogs head, body, and legs. Data were
captured in 120-second trials at 177 Hz, markers identified
and disjoint tracks stitched together manually in the Qualisys
Track Manager (QTM) software, and then, these data were
exported to tsv files for analysis using a custom Python
script.

2.3 Experimental protocol

Dogs ran on a large equine treadmill (SATO I, SATO Tread-
mills, Knivsta, Sweden). From standing the speed of the
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treadmill was increased in 0.1-0.2 m/s increments until dogs
walked comfortably. After a minimum of ten strides, the
speed of the treadmill was then increased until the dogs made
the transition from walk to trot. Transitions were induced
by manually changing the belt speed from the characteristic
speed of one gait to another with at least ten strides prior to
the speed change. This was repeated, with an average of 8.2
transitions recorded per continuous bout of treadmill loco-
motion.

After applying our selection criteria, there were a total of
100 transitions, 55 walk-to-trot transitions, 45 trot-to-walk,
with at least five transitions per dog per transition type and a
minimum of 12 total transitions per dog. For some trials, the
motion capture markers were occluded or otherwise poorly
tracked throughout the trial. Twenty-one of these trials were
excluded. This represents a potential source of systematic
error, as position on a treadmill is known to affect gait [20]
and occlusion is likely to occur systematically as motion cap-
ture cameras are occluded by fixtures of the treadmill. This
may also systematically affect results as while this occlusion
occurred for some dogs, others were successfully tracked
throughout.

2.4 Interpolation

‘While most markers were in view most of the time, there were
occasions when individual markers would not be tracked
for large segments of a stride. Marker positions were filled
using a pair of Gaussian processes (a custom variant of the
implementation of [21]). Gaussian process interpolation was
used because interpolation with either a polynomial or a
spline would not oscillate, and this would result in very poor
estimates of the phase (for example, spurious jumps in the
number of cycles) if a marker dropped out for a few strides.

Two Gaussian processes were used, one to remove long
time-scale trends in the marker positions which trained in
the normal way on the time-series data, the other filled in the
short time-scale behaviour by training using phase instead of
time as the independent variable.

2.5 Leg oscillations and phase estimation

Our model predicts the time evolution of leg phases during
a gait transition and can be tested against experimental mea-
surements of these phases. Once the marker positions were
interpolated, it was necessary to transform the raw marker
positions on the limbs into clean, oscillatory signals centred
at zero. Then, the limb phases could be calculated.

We treat each limb as a decoupled oscillator for the
purpose of phase extraction, as this will cause the phase
dynamics to manifest in the coupling of these oscillators.

Phase was estimated using two methods. First we used the
Phaser algorithm [22] which combines the phase estimated
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by the Hilbert transform from multiple oscillatory signals
and corrects them for systematics using a Fourier series. A
deficiency of the Phaser algorithm applied to this work is
that it cannot track changes in the limit cycle during transi-
tions from walk to trot. With this as a primary motivator, we
then repeated the analysis using a second method, employ-
ing a newer phase estimator, one that we refer to as “form
phase”. All results shown use this second method; however,
the results are qualitatively identical when using Phaser (all
tested p values remain significant, and the patterns of the
residual sum of squares remain unchanged).

A complete description of “form phase” will be submit-
ted shortly (Wilshin et al., in preparation). Briefly, the “form
phase” estimator works by approximating the differential
form associated with the phase evolution of the dynamical
system. The inner product of this differential form with the
flow of the system was assumed to be constant, with this
inner product being related to the average phase advance per
unit time.

To compute the phases using “form phase”, we assume
that the animal is constrained to a plane in state space of
fixed speed when the belt speed is fixed. We then assume
that within each plane of fixed speeds there is a limit cycle
and a set of isochrones. Then under the assumption that the
structure of the isochrones and limit cycle are slowly vary-
ing functions of speed, the limit cycle will form a distorted
cylinder in the state space.

Under these assumptions, we estimate a differential one
form from which we can estimate the phase by treating the
speed of the dog as a extra variable in the state space with the
derivative with respect to time fixed to zero. This will ensure
that there is no contribution to phase advance of a limb as a
result of the variation in the belt speed other than as a result
of the animals reaction to the change of condition.

We begin with the full set of tracked marker positions
for multiple trials with the animal walking and trotting. To
remove the drift due to the motion of the body on the tread-
mill, the centre of mass position was subtracted from the
position of all of the markers, calculating the leg coordinates
in the body frame. The estimate of the centroid of the dog’s
body was computed from body markers by taking an average
of all body marker positions (left side of trunk, right side of
trunk, base of tail, centre of back at mid-line, right pelvis,
left pelvis, and withers).

We then bandpass filter these positions, combine these
with their integrals and select the subset which are most
sinusoidal (this was done subjectively) for each leg for each
subject. We then z-score and perform PCA retaining the first
two principal components which are then centred by their
median and divided by their standard deviation, again for
each leg and each subject. The principal components were
truncated at order two as the cycle count of the third prin-
cipal component did not match that of the first and second,

which had large amplitude clean oscillations. By combin-
ing multiple markers, we were able to create this strong,
clear oscillatory signal and ensure missing markers would
only make a minor contribution to the estimated phases.
This transformation process was retained and applied to the
tracked positions during transitions to get a phase for each
leg for each subject in each transition at each time point.

The filtered and transformed three-dimensional spatial
coordinates of each leg for the training data were then used
to train a phaser as noted (as described in [22]), one for each
leg, and estimate the differential form. The phases of the
transition trials were then estimated by applying these phase
estimators to the spatial coordinates of the limbs during these
trials.

Training data were identified manually with a custom
MATLAB (MathWorks, Massachusetts) GUI. This tool was
then further employed to identify and extract regions in which
gait transitions were made.

2.6 Modelling

We extend the model of [3] by incorporating the animal speed
(v, the forward velocity of our dog relative to the treadmill
belt). The original model has the form:

b = Ky + Z Apk €xp (in (¢k - ¢erl(k)))

n=1

+ Z Chi €xp (in (¢k - ¢6m(k)))

n=1

oo
+ Z E, exp (in (¢>k - ¢en-(frh(k))))

n=1

+c.c. (D

where the Latin indices run from O to 3 and O, 1, 2 and 3
correspond to fore left, rear right, rear left and fore right,
respectively, e} exchanges indices corresponding to left and
right limbs, and eg, exchanges indices corresponding to fore
and hind, and i is the principle square root of —1 when not
used as an index. The +c.c. refers to the addition of the
complex conjugate of the terms on the right-hand side. The
coefficients Ay ,, Ck., and Ej , are complex numbers as
are the terms themselves; thus, we must add their complex
conjugates to obtain real phases. The constant term, K, is
excluded from this as it is assumed to be real. We note that
the composition of e} and ey, as seen in the last term of this
equation has the effect of performing diagonal exchange of
limbs. Before we can compare this model to actual transitory
behaviours, it is necessary to extend it so that the parameters
are a function of speed or limb cycle frequency (this model
can only generate transitory behaviour between quasi-stable
states). For simplicity, we will use the animals forward speed
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relative to the substrate (in this case the treadmill belt) and
extend the model with a power series in this speed. To ease
the notational burden, we introduce the phase vector:

¢ = (Po, ¢1, P2, P3) (2)

We note that operators that exchange limbs are just matrices
when acting on this vector, that can be written in consultation
with our limb convention, as:

0 0 0 1 0O 0 1 0
0O 0 1 0 0 0 0 1
Er=1o 1 0 o] Bm=[1 0 0 o
1 0 0 O 01 0 O
3
For convenience, we define:
01 0 O
1 0 0 O
Ep = ExrEFH = 00 0 1 4
0 0 1 0

which is just the diagonal interchange of limbs. With these
additions, the equations governing our dynamics become:

00
O = Z Kmkvm

m=0

+ DD Ap™ exp (in [(I — Err) 1)

m=0n=1

+ Y > Bumkv™ exp (in [(I — Ern) ¢l

m=0n=1

+ DY Com" exp (in[( — Ep) 1)

m=0n=1

+c.c. (5)

where [ is the 4 x 4 identity matrix, and the square braces
with a subscript k denote taking the kth component of the
vector. The K1, Anmics Bumk and Cy,, are new coefficients
with the same properties as the previous quantities with the
same name up to an additional index for velocity. We further
define the set of matrices G = {ELRr, EFrn, Ep} allowing us
to simplify our equation to:

Dnmgkvm eXp (in [ —g) ¢]k)

+c.c. (6)
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where the coefficients Dy,,gx comprise the old Ak, Bunk
and Cy,;,x coefficients, depending on the value of g. We will
truncate this power series to be of order one (m = {0, 1}).
Similarly, we will fix the maximum order of the Fourier series
to 2 (an order less than this is insufficient to replicate the
observed behaviour of quadrupeds [3]). This yields:

1
O = Z Kmkvm
m=0

1 2
+ D Damgev" exp (in [ — g) dly)

m=0n=1geG
+c.c. (7

While several symmetry groups are considered in [3], only
one, when applied to eqn. 7, is capable of supporting both
walks, trots and transitions between the two:

C= {5, Or, —EOm, —5Oﬂ10r1} 8)

The symbols £, Oy, and O, refer, respectively, to the iden-
tity, left-right interchange, and front-hind limb interchange
operators. A minus sign denotes time and phase inversion.
This group has four subgroups, the first is C itself, the others
are:

Ci={} Cui={€,0u} Cm={E, —EOm} ©))

Each of these symmetries can be applied to the dynamics of
Eq. 7 to generate a new set of equations for the animal limb
phase dynamics [3].

We will illustrate how this can be reduced to a matrix trans-
formation of the equations and use the left-right symmetry
as an example. This procedure can be greatly simplified by a
change of basis. We therefore re-write Eq. 6 with respect to
new basis functions the 4-tuples X, (¢):

b= MyuyoX, (@) v". (10)

wom

where the M, are 4-tuples of new coefficients and u is a
new index that covers both the constant term and all unique
combinations of n and g (g an element of G, since we are
truncating the series the exact ordering of the map from the
old indices n, and g, does not matter) and the complex con-
jugates. o is the Hadamard (elementwise) product. Applying
our left-right symmetry to these equations, we find

Eir$ =Y My 0 X, (ELre) v" (11
w,m

E1 R isjust an element of a matrix representation of our group
C, and it is straightforward to calculate this representation of
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C in this space (they are the entries of Eq. 3 along with the
identity, up to a change of sign). Since ElR is self-inverse,
we can write

¢ = ELRMpuy 0 X, (ELr) V" (12)
w,m

We can now calculate how the left-right symmetry affects
our basis. As an example, the elements of X, (¢) where the
matrix referred to by w is Epg:

exp (in[(I — ELr) ¢;) (13)

transforms to

exp (in[(I — ELr) ELr@l;) = exp (—in [(I — ELr) ¢];) -
(14)

This transformation has simply mapped one basis element to
another (in this case their complex conjugate), up to a multi-
plicative factor. The same is true for all other basis elements
under these symmetries, and so we can write our transforma-
tion on X, (¢) as

Xy (ELR$) = ) Tir oo X0 () (15)

where the Tj R, can be interpreted as matrices drawn from
the matrix representation of the group C, albeit in a different
vector space. Our transformed equation is therefore

¢ = ELrMpny o Tir uwX, (@) 0" (16)

w,v,m

This can be rearranged to:

$= " ELRMuuTir.u 0 Xy (¢) 0" (17)

w,v,m

By comparing with Eq. 10, we infer that our coefficients must
satisfy

Mmp. = Z ELRvaTLR,U/L- (18)

Y

The same holds true for the other elements of our group C.
Although a little machinery has been introduced to reduce
this process to matrix manipulations, these results are, up to
the inclusion of velocity and a change of convention, identical
to those obtained by [3].

Therefore to find the constraints on our coefficients, we
just need to find the relevant matrix representations of the
group C and apply these equations, which is straightforward

to do in software. This software is provided in a supplemen-
tary file.

The four subgroups here correspond to different sets of
respected symmetries in animal motion, as depicted in Fig. 1.
The smallest group (Cj, the trivial subgroup) contains no
symmetries and leaves our equations unchanged. This means
that how the animals limbs will advance in phase has explicit
dependence on whether the limb is a front limb or a hind
limb, a left limb or a right limb.

The subgroup C,; implies that if we know how the left
limbs couple to the other limbs, then we know how the right
limbs couple, halving the number of parameters in our model.
The subgroup Cg, does the same for the fore and hind limbs
up to an inversion of the dynamics in time and an inversion of
phase, also halving the number of parameters. The full group
assumes all of the previous symmetries apply, quartering the
number of parameters.

This yields four models to compare, which we label by
the corresponding symmetry groups. These models were fit
to motion capture data from dogs making gait transitions on a
large treadmill, computing the residual sum of squares (RSS)
of a fit of each model to data.

We find that the residual sum of squares of models C
and Cy, are large, implying that the fore—hind symmetry is
broken. We seek to correct this by the introduction of a phase
shift:

(60,01, 02,03) = (d0. p1 — A, 2 — A, ¢3) (19)

As limbs 1 and 2 are the hind limbs in our convention, this
amounts to applying an identical, constant phase shift to both
hind limbs. One interpretation here is that the ¢ refer to
an underlying neural oscillator, and the 6 describe the limb
motion, offset from the neural system by a uniform phase
shift. However, further data containing measures of neural
outputs would be required to determine whether this phase
shift arises from the mechanical system, the neural system,
or their interaction. This phase shift is applied only to the
model corresponding to the largest symmetry group C.

While the original equations proposed in [3] generate tran-
sitory behaviour in the form of quasi-static states between
which the system will continuously move, they do not pro-
duce true gait transitions. Since these equations are not
explicitly dependent on the limb cycle frequency or forward
speed, they are incapable of having different stable gaits at
different speeds/cycle frequencies.

We therefore modified them so that the model parame-
ters depend on the animals forward velocity, thus allowing
them to generate genuine transitions. It is unclear what
the most appropriate control parameter is for transitions in
quadrupeds. An argument for cycle frequency can be made
based on the prevalence of rate encoding by the nervous sys-
tem [23]. For humans, [4] presented evidence that the relevant
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non-specific control parameter is speed. Determining what is
the most appropriate control parameter will require a study
that goes beyond kinematics to probe the mechanisms of
neural control.

For this study, the relation between oscillation frequency
and speed is roughly monotonic. They cannot be considered
independent and so the choice is less important. Any discus-
sion herein which mentions an effect of varying “speed” can
and should be viewed as an effect of speed or cycle frequency.

We need to operationalize the concept of “limb phase” if
we are to model it. All phases contain an arbitrary offset, in
the case of animal motion that offset is typically fixed using
an event in the cycle, in our case mid-stance. It is reasonable
to suppose that the symmetries we are testing are respected
at the level of spinal inter-neuronal networks (CPGs), as pro-
posed by Golubitsky et al. [2]. These networks are thought
to play a critical role in locomotion by generating a basic
“rhythmic” pattern, with which sensory feedback and other
modulatory influences (including the mechanics of limbs and
body) interact. However, our operationalization of limb phase
leaves open the possibility that a phase delay has been intro-
duced between the neural system and the limbs, which we
anticipate here and subsequently address.

2.7 Fitting to experiment

Each of the models which did not include a phase shift was
fitted by computing the terms of the right-hand side of the
model equation in the modelling section from the observed
phases, and the terms on the left-hand side by finite differ-
ences. The resulting matrix problem is inverted to find the
parameters and then the residuals computed and the residual
sum of squares (RSS) of the fits calculated.

For the model with the phase shift, we again used a least
squares technique, but optimize the resulting fit to reduce the
RSS by adjusting A for each dog using a simplex optimiza-
tion method [24].

2.8 Hysteresis

Hysteresis, an overlap in the range of values of a non-
specific control parameter where two qualitatively different
behaviours can exist due to asymmetric transition thresholds,
is an established phenomena in quadrupedal gait transitions.
The walk-to-trot transition typically occurs at a higher speed
than the trot-to-walk transition. We confirm that, consis-
tent with previous observations in quadrupeds [4,25,26],
hysteresis is present when comparing the walk-to-trot and
trot-to-walk transitions.

The speeds when transitioning were estimated by fitting a
sigmoid to the phase difference given by ¢1 — ¢o + ¢3 — @2
(in a trot this is zero, in a walk this is pi) as a function of
time, and the speed at the midpoint of the sigmoid estimated

@ Springer

by nearest neighbour interpolation. The speed when transi-
tioning from walk to trot was then compared with the speed
when transitioning from trot to walk confirming the presence
of hysteresis.

3 Results

The RSS (in radians) for the fit of the five models to the
experimental data are shown in Fig. 1.

As the results were qualitatively identical using either of
the phase extraction techniques described above, we present
those from the differential form based estimator, “form
phase”.

Applying the left-right symmetry operator (Oy) to the
dynamics has little effect on the RSS, implying that the left—
right symmetry is respected. Both models that respect the
fore—hind inversion (—£Oyy,) symmetry have considerably
higher RSS. Often these models have bimodal residual dis-
tributions and are poor descriptions of the system.

Introducing a phase shift radically improves the fits for
models which respect the fore-hind inversion symmetry and
left-right symmetry. This allows a 51-parameter model to fit
the data with performance comparable to the 100- or 200-
parameter model. The shifts in phase for the hind limbs (A)
are seen in the bottom right panel.

We hypothesized that scaling of some aspect of the neural
or mechanical systems could give rise to a size dependency
in this phase shift. We therefore examined the relationship
between the morphology quantified by the maximum sepa-
ration of the fore-left limb toe and shoulder markers to the
maximum separation of the left pelvis and shoulder mark-
ers, and this phase shift (Fig. 1). The parameter could be
thought of as an “aspect ratio” of the animal. We find a statis-
tically significant (n = 5, p = 0.0328) relationship between
morphology and the phase shift. One point had considerable
leverage, so the consistency of the model was checked by
repeating the linear regression leaving a single data point out
atatime. We confirmed that the missing point was in the 95%
prediction interval and that the gradient of the regression was
always positive.

Hysteresis was observed: the mean ratio of the walk-to-
trot transitions speeds to trot-to-walk transition speeds was
1.95. Significant differences between the walk-to-trot and
trot-to-walk transition speeds were observed in all subjects
(p < 0.05).

4 Discussion
We have confirmed the symmetries predicted by Schoner

et al. [3] in dogs. Barring the introduction and then can-
cellation of asymmetric components at levels between the
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Fig. 1 Symmetries are obeyed in moving dogs. Left column, estima-
tion of animal limb state. (fop) Centre of mass adjusted marker position
from a view of the sagittal plane for two limbs (purple front left, orange
rear right, inset indicates colour scheme for this column); (mid) con-
tinuous phase estimate for the limbs (purple and orange as above, blue
rear left, red fore right). (bottom) Continuous residual phase estimate
was calculated by subtracting the average phase advance from the mid-
dle figure. This example is a walk—trot transition. Right column, effects
of symmetry. (top) Fit performance from residual sum of square (RSS)

CPG circuitry and inter-limb coordination, it is plausible to
hypothesize based on our results that the CPG circuitry will
share these symmetry properties.

The origin of the morphology-dependent phase shift we
have observed is important to understand if a complete pic-
ture of quadrupedal gait is to be constructed [27]. A theory
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respecting different symmetry groups, note the y-axis is logarithmic,
box plot and raster plot, each individual dog is indicated by a differ-
ent marker and colour. (bottom) Scatter plot of morphology (labelled
“aspect ratio” as this is the ratio of the fore-left limb length to the left
shoulder—pelvis separation) against phase shift necessary to restore the
fore—hind inversion symmetry to the dynamics of the limb motion. Blue
region indicates the 95% confidence bounds, each of the five dogs is
indicated by a marker as above, black line is the linear line of best fit

of the organization of mammalian CPGs [25,28,29] consists
of distinct rhythm generation and pattern formation layers.
The delay could arise in the pattern formation layer, perhaps
contributed to by transmission delays that increase with the
size of the animal [30]. Alternatively, the source may be non-
neuronal, such as differences in musculoskeletal properties
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[31], inertial or other physical properties of the body/limbs,
or emergent stability mechanisms [32,33]. These hypotheses
could be differentiated by comparative study of phase shifts
across scale and morphology.

Understanding these symmetries and this phase shift
would allow this behaviour to be replicated in robotic sys-
tems (for example RHex [34,35]). If these symmetries and
the phase shift are adaptive, then this could correspond to an
enhanced performance of these robotic systems.

Our approach makes it possible to quantify to what degree
symmetries are obeyed or violated with broad applicability
within movement science. Golubitsky et al. [2] proposed neu-
ral architectures for quadrupedal CPGs based on assumptions
that fit with observed quadrupedal gaits and generalized this
approach to myriapods. The degree to which quadrupedal
locomotion agrees with the proposed neural architecture,
further refinements to the structure of that architecture, and
quantitative testing of the symmetries present in two-legged,
six-legged, and myriapodal runners are made possible by our
approach.

The symmetries presented by Schoner et al. [3] are closely
related to those of Golubitsky et al. [2]. However, the former
is a model of limb coordination and the latter a model of the
neural substrate at the level of spinal interneurons. By intro-
ducing a phase shift between pattern generation and limb
coordination, we offer a partial bridge of this gap. Our results
suggest that the common symmetries these two authors pro-
pose are respected both at the neural and at the mechanical
levels (subject to our modifications).

Known behaviours of quadrupedal systems are consistent
with the arguments of [2,3]. Our extension of these models
to transitions along with our methodological innovations has
provided further evidence that these symmetry approaches to
model construction reflect something fundamental in animal
locomotion and can make successful predictions in novel
contexts.
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