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Abstract

Mechanical systems encountered in biology typically have many more degrees of freedom (DOF) than the 6 DOF required to

manipulate a body in space. Even the relatively rigid arthropods and crustaceans have at least 5 DOF in each limb; tentacles and

human hands have many more. Robotics engineers are routinely required to choose the number of DOF in a robot in the early

design stages, potentially limiting the robot’s future uses. We theoretically motivate the definition of “mechanical versatility” as

the ability of a mechanical system to express distinct static configurations and switch among them rapidly. Requiring versatility

and assuming that the systems are power and force limited, and must furthermore resist finite energy environmental disturbances

to their state, we show that such multiuse 1 mechanical systems have a lower bound on the number of DOF they require. For bio-

mechanics, this suggests which organs and organisms will be driven to become more complex mechanically by indicating domains

where higher DOF systems would intrinsically out-compete lower DOF systems.
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Nomenclature

Q Configuration space

Σ Alphabet of mechanical “symbols”; a finite discrete subset of Q

q A configuration, q ∈ Q
V The “mechanical versatility” of the system (defined herein)

Vmax Maximal velocity through configuration space

Fmax Maximal force exerted

Wmax Maximal power available

ΔE Maximal disturbance energy
1
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1. Background2

One of the mysteries of the natural world is the staggering mechanical complexity of organisms2. Why does nature3

select for mechanisms so much more complex than those we build? For example, why did natural selection provide4

many more DOF in the limbs of an animal than the 6 DOF required to arbitrarily place and orient that limb in space?5

In this short paper we offer a motivating argument for why a high DOF count is an inevitable consequence of6

requiring “mechanical versatility” in a physically limited system. This argument has close ties to the broader question7

of understanding the limits and benefits of “morphological computation”3 – the computational contribution of animal8

(and robot) bodies to their motions. We believe this is among the first results of this kind to be published, and hope it9

will motivate further research into the fundamental trade-offs inherent in embodiment of agents. The science of both10

biological and artificial agents could be advanced by understanding the requirements and limitations of embodied11

cognition4.12

We begin in section 1.1 by motivating and defining a notion of mechanical versatility using notions derived from13

the theory of computation.14

1.1. Mechanical Versatility – a definition15

To define “mechanical versatility” we rely on notions from formal language theory in computer science5. The16

intuitive essence of versatility is the presence of multiple capabilities – defined formally by the term “multi-ability”17

in Ferguson et al. 1 – and the further ability to rapidly switch among those capabilities. Let us indicate each such18

capability as symbol from a finite alphabet Σ. Versatility is thus the ability to express any string in the language Σ∗19

generated by this set of symbols Σ.20

To obtain a simple and tractable theory of “mechanical versatility” we will take each symbol σ ∈ Σ to be some

nominal static configuration of the system. By “expressing a symbol σ” we will mean the system needs to maintain its

configuration close enough to this nominal static configurationσ. Here we abuse notation, taking Σ ⊆ Q to be a discrete

finite subset of the configuration space Q of our mechanical system. We will further and assume this configuration

space to be embedded in a real space Q ⊆ R
N , which we will use to induce a norm on Q. A symbol σ is expressed

if the state q(t) remains within distance ρ from σ for an interval of time of length δt, i.e. symbol σ was expressed at

time t is equivalent to:

∀s ∈ [t − δt, t] : ‖q(s) − σ‖ ≤ ρ (1)

We have thus obtained a definition of “(static configuration) mechanical versatility” in terms of the ability of the21

system to express arbitrary strings of (static configuration) symbols. From an information theoretic perspective, we22

thus suggest that a natural measure of mechanical versatility V is in bits – the number of bits needed to express the23

alphabet Σ, i.e. V := log2(#Σ) where # is used to indicate set cardinality.24

1.2. Adding mechanical realism to the system25

Mechanical systems operate in the physical world, and comprise materials of limited strength, driven by power26

limited actuators. To capture some of this realism we add assumptions as follows. We assume our mechanism can27

only exert a force of Fmax or less, because of limitations on its material properties and actuators. We assume the28

configuration space Q of our mechanism is compact. Finally, we also assume mechanism has a limited power budget29

Wmax. The limited power budget and limited force together imply a limited maximal velocity Vmax when changing30

configurations – regardless of the number of DOF being moved.31

It should be noted that in both robotics and biology the limiting factor for actuator velocity is that actuator force32

decreases with speed. These limits derive from the underlying physics of the actuators themselves, and the non-zero33

dissipation arising from friction or fluid dynamics.34

1.3. Environmental disturbances35

The physical environment in which a system operates is never ideal. We will assume that the environment intro-36

duces arbitrary disturbances of bounded energy ΔE, which our system must resist.37
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To resist these disturbances and maintain the state in a neighborhood of a symbol σ, requires introducing a potential38

energy well that is at least ΔE deep. Doing so with a force limited to Fmax requires a ball of radius r := ΔE/Fmax or39

larger around σ to be contained within the potential well, otherwise the mechanical work done by the potential energy40

is insufficient to neutralize some disturbances. Thus to meet the requirement that symbols can be reliably expressed41

at all, our mechanism must satisfy ρ ≥ r.42

1.4. Mechanical Versatility in the face of Disturbances43

Let us now examine the switching time between some pair of symbols α and β. To switch between symbols, our

mechanism must escape the potential well of α and enter the ball of states which express β. As a consequence of the

previous section we may conclude

∀α, β ∈ Σ : ‖α − β‖ > 2ρ (2)

However, because there are non-intersecting balls of radius ρ around each and every symbol, that is a severe

underestimate. Instead, one must look to mathematical theory to estimate the density of packing of hyper-spheres6. As

as a crude underestimate, since hyper-spheres are measurable sets with the standard Borel measure μ(·), one may safely

estimate an upper bound on their packing density using volumes. Denoting the “ball” Br(x) := {y ∈ RN | ‖x − y‖ < r},
and exploiting the fact that volume scales with the exponent of dimension, we obtain:

∀x ∈ RN : # (Σ ∩ BR(x)) <
μ(BR(0))

μ(Br(0))
=
μ(B1(0))RN

μ(B1(0))rN = (R/r)N (3)

1.5. Symbol rate limits44

Let us choose a τ to indicate the maximal inter-symbol delay, i.e. our mechanism is to express #Σ symbols at a45

rate of at least one for each δt + τ units of time. Even if the disturbances placed us at the most convenient state within46

Bρ(α), the transition to Bρ(β) requires a configuration change travel distance of at least ‖α− β‖ − 2ρ. Thus, for a given47

α, if we require the ability to travel to any σ ∈ Σ, then ‖σ − α‖ < 2ρ + τVmax =: R. Choosing R in this way gives48

Σ ⊆ BR(α), leading to #Σ ≤ (R/r)N , orV ≤ N log2(R/r).49

2. Main results50

One immediate conclusion from this argument, is that the mechanical versatilityV is limited to:

V = log2(#Σ) ≤ N log2(R/r) = N log2

(
2ρ + τVmax

r

)
≤ N log2

(
2 +
τFmaxVmax

ΔE

)
(4)

Recognizing that τFmaxVmax is the power available for stabilizing each symbol, we define ξ := τFmaxVmax/ΔE,51

and identify ξ as a “safety factor” or a “signal to noise ratio” – the non-dimensional power excess available for each52

symbol, in units of the maximal disturbance.53

We can thus conclude:

N ≥ V
log2(2 + ξ)

(5)

This leads to the following prediction: in adverse conditions where the safety margin is low – either due to large54

noise, or to high symbol rate – organisms and robots will require a number of DOF that scales with the mechanical55

versatility in bits.56

3. An illustrative example57

Let us consider a case of 1, 2, and 3 DOF systems, with parameters Fmax,ΔE,Vmax all set to 1, and τ = 2. For all58

these systems, each symbol must be surrounded by a unit ball associated with it. For the 1 DOF system, only 3 unit59
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Fig. 1. An example of symbol packing in 1, 2 and 3 DOF systems. If we require symbols to be accessible within τVmax = 2 units ofdistance (left

column) or τVmax = 4 units of distance (right column), the number of available symbols in the alphabet changes. Starting with a central symbol

(black), there is one layer of adjacent symbols (green) in the τVmax = 2 case, and there is anadditional layer (red) in the τVmax = 4 case. For 1DOF

systems, each of the layers contains 2 symbols. For 2DOF systems, layers increase in size linearly. For 3DOF systems, layers increase in size

quadratically

balls (intervals) can be within τVmax of each other, and therefore at our desired rate τ = 2, only 3 symbols at most can60

be expressed reliably. If we relax τ, the number of symbols will grow linearly with τ.61

For a 2 DOF system, at most 7 unit balls (discs) can be within τVmax of each other, and therefore at our desired rate62

τ = 2, 7 symbols at most can be expressed reliably. If we relax τ, the number of symbols will grow quadratically with63

τ.64

Holding the number of symbols and τ constant, we must conclude that a mechanical system that needs to express65

more than 7 symbols must have at least 3 DOF.66

4. Conclusion67

The argument we present is very elementary, and includes many simplifying assumptions. We make no claim68

that these assumptions correctly describe the constraints placed on real world systems, but rather that they capture an69

essential fact – mechanical versatility requires complexity in terms of the number of degrees of freedom. While more70

subtle and realistic formulation of the assumptions might come closer to predicting the actual numerical bound on the71

number of DOF in a given collection of mechanical systems, the existence of this inherent scaling relationship whereby72

the number of DOF grows with the logarithm of the number of mechanical symbols seems nearly inescapable.73

The core of our argument is that expressing symbols in manner robust to noise implies a packing problem for the74

stability basins of the symbols, and that the limitations of packing neighboring balls bound the rate of expression of75

such symbols. The consequence is that at a given symbol rate and noise, the number of bits per symbol expressed76

– the mechanical versatility – scales at most linearly with the number of DOF. Thus a high number of DOF is an77

essential requirement for expressing many distinct symbols rapidly and robustly.78
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Our astute reader may wonder why organisms would need to express many symbols in the sense we describe here.79

The inspiration for this notion comes from looking at locomotion and manipulation2. In both cases, organisms must80

rapidly and deftly adopt a set of contacts that transfer the required forces the ground or object being manipulated.81

While that problem requires only few DOF with flat ground, or spherical objects, it seems to require many distinct82

specialized configurations when manipulating complex objects or when small animals move through complex terrain.83

One may thus envision that the life of a mouse critically depends on escaping predators through the clutter of a forest84

floor, and requiring many distinct, complex, rapid, and deft foot placement choices. Thus, the mouse with many85

effective DOF in its feet out-competes the one whose feet are simpler, and allow fewer ways to interact with the86

substrate rapidly and reliably.87

Finally, we draw the reader’s attention to the fact that nowhere in this calculation did we presume an inertia88

for the system, nor did our bounds depend on the value of δt required to express a symbol. This means that our89

conclusion is truly non-dimensional and applies equally to mechanical systems at all length scales and time scales.90

The implication is that for systems of all scales, at high levels of environmental noise (or equivalently at low signal91

to noise ratios), versatility – the ability to express many distinct mechanical configurations – is Why we need more92

Degrees of Freedom.93
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