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4.5.1 INTRODUCTION

Within integrative biology, template models have enabled us to gain insight and
understanding into a variety of complex motor control tasks. Indeed, we see
that despite the relative complexity of our musculoskeletal systems, locomo-
tion is often well modeled conceptually with relatively few degrees of freedom.
Species from crabs to kangaroos bounce in a dynamically similar fashion, well
described by the Spring-Loaded Inverted Pendulum (SLIP) template model.
While the SLIP only captures the role of spring-leg operation in governing the
center of mass (CoM) dynamics, in principle, increasingly complex template
models may be sought and developed to describe increasingly rich aspects of
motion. However, the importance of conceptual models is hypothesized to ex-
tend well beyond merely these descriptive capabilities.

In addition, template models may be used as prescriptive models of loco-
motion, providing low dimensional dynamic targets for closed-loop control in
biological and robotic systems alike. It has been hypothesized that the cogni-
tive processes regulating locomotion may include reasoning centered around
reduced dimensional subsets of our full dynamics – template dynamics that cap-
ture the most salient aspects of a locomotory behavior (Full and Koditschek,
1999). This conjecture is a central tenant of the templates and anchors hypothe-
sis from Chapter 3. These principled reductions capture universal characteristics
of locomotion and may play an important role in enabling animals to general-
ize dynamic performance across such a wide range of scenarios in nature. This
section aims to illuminate how conceptually similar reductions may be applied
within control of our robots, enabling versatile locomotion with template mod-
els for control.

Before we begin, why should one consider the use of these reductive models
for control when performance guarantees in the full state space may be pro-
vided by other control techniques in this chapter? At present, many methods
with performance guarantees are not yet computationally viable for real-time
application in the high-dimensional state space of our robots. Some methods,
for instance those in Subchapter 4.7, provide certificates of stability and robust-
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ness through offline analysis. However, these guarantees are often only valid in
a narrow region of the state space. The hybrid and nonlinear dynamics in our
high-degree-of-freedom (DoF) robots challenge the development of guarantees
that hold more broadly. These challenges collectively motivate the use of tem-
plate models for control: by addressing an important subset of the dynamics,
template-based control provides computational and analytical advantages that
enable real-time computation and simplify control system analysis.

As we start to view template models for control, it is important to understand
the fundamental differences from the use of template models in biology. Within
biology, it is a role of the integrative biologist to discover reduced dimensional
template dynamics embedded in human or animal motion. These template dy-
namics may take the form

ẋT = f(xT )

where f(·) captures the effects of closed-loop sensorimotor control, and xT rep-
resents the state of the template. Rather than discover existing dynamics, within
robotics, it is instead the goal to synthesize closed-loop dynamics through real-
time control. For an uncontrolled robot, it is possible that no template dynamics
exist in advance. As a result, the specific aim of template-based control is to re-
alize the behavior of a template through feedback in the full model. To guide the
design of this feedback, we view templates themselves as controlled dynamic
systems

ẋT = f(xT ,uT ) (4.5.1)

with template control inputs uT used to shape the closed-loop response. By
strategically crafting closed-loop template controls that achieve a high-level goal
(a desired running speed, or recovery from a push disturbance, for instance),
anchoring a template imparts satisfaction of these performance objectives in the
full model.

4.5.1.1 A Design Process for Template-Based Control

Despite the wide range of applications for template models in control, the de-
velopment of template-based controllers generally follows a common workflow.
This design process can be broken down into three rough steps as depicted
in Fig. 4.5.1: template selection, template control, and establishing the tem-
plate/anchor relationship. Template selection entails the choice or design of a
reduced dimensional control dynamic system that captures the challenges of a
motion control task while respecting the limitations of any target hardware. Fol-
lowing this selection, reduced dimensional control strategies may be designed
for the template. Properties of the closed-loop dynamics for this template may
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FIGURE 4.5.1 Three step design process to employ template models for control. The steps pro-
ceeding top to bottom represent a linear progression of designing a template-based control system.
At each stage in the process, design decisions from earlier steps should be refined, as represented
by the upward flows.

then be used to guide control in a high-DoF robot towards establishing a tem-
plate/anchor relationship.

We further detail each of these steps in the sections that follow. Examples
of developing walking and running controllers for a humanoid are presented to
clarify the design steps. Despite the rather linear progression in the presentation
of the examples, we note that the design process in general should be iterative.
In practice, insights gained at each step should be used to continually inform
refinements to decisions made earlier in the process. For example, following
the development of a SLIP-based template controller in step (2), attempted ap-
plication to a robot with high-impedance transmissions in step (3) may require
redesign of the template model selected from step (1). At the conclusion of the
process, the final output is a real-time control system, which may be used in a
physical or simulated robot.

4.5.2 TEMPLATE MODEL SELECTION

In the first step of the process, an appropriate template for the motion control
task must be selected or designed. This selection may come from study into mo-
tor control for biological systems, from previously applied models in robotics,
or from personal insight into the fundamental physics of the motor control task.
There is no explicitly right or wrong template model for a given task, and within
robotics one need not be confined to those models that have appeared in biology.
Indeed, fundamental differences between mechanical actuators and materials
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FIGURE 4.5.2 The linear inverted pendulum (LIP) and spring loaded inverted pendulum (SLIP)
models are commonly employed templates for walking and running control in legged robots.

compared to biological muscles and tissues necessitates strategically principled
bio-inspiration. As a result, the validity of a template model in robotics may
only be judged based on the results of the final template-based control system.
This may be viewed as a downside. However, we see a similar story for the use
of template models in biology. Across both realms, a template model can never
explicitly be proven as the correct template, but instead must be judged based
on its usefulness to understand or control new physical behaviors.

Within the control of locomotion to date, popular template models have gen-
erally been simple physical dynamic systems. That is to say, systems whose
dynamics follow the laws of Newtonian physics. Such models include the lin-
ear inverted pendulum model (LIP) as commonly used for walking control
(Kajita et al., 2001, 2003; Herdt et al., 2010), the SLIP model used in run-
ning control (Blickhan, 1989; Seipel and Holmes, 2005; Garofalo et al., 2012;
Wensing and Orin, 2013b), and many others. Examples below detail these com-
mon center of mass (CoM) template models further, highlighting their benefits
to control dynamic walking (Kuindersma et al., 2015) and running (Wensing and
Orin, 2013b). We will follow these examples though the design process of tem-
plate models for control applied to a high-DoF robot in the sections to come.
Through this development xT ∈ R

nT and uT ∈ R
mT will denote the state and

controls for the template.

4.5.2.1 Linear CoM Models for Walking

Example 1 (LIP Model for Walking). The Linear Inverted Pendulum (LIP)
Model, shown in Fig. 4.5.2, captures the connection between the Center of Mass
(CoM) and ZMP dynamics under an assumption of constant walking height. It is
a commonly selected template to develop walking controllers. The model con-
sists of a point mass m located at a position pcom = [x, y, z]T ∈R

3. The position
of the mass is intended to represent the CoM of a system with more degrees
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of freedom. The model evolves according to forces fzmp = [fx,fy, fz]T ∈ R
3

that act at a ZMP pzmp = [px,py,pz]T ∈ R
3. For walking on level ground, pz

remains constant. As is standard with point-mass template models, the LIP as-
sumes that ground reaction forces (GRFs) create no moment about the CoM.
This condition defines the line of action for the GRF and requires fx/fz =
(x − px)/(z − pz) with similar conditions for fy . As a result, the template dy-
namics take the form:

mẍ = fz

z − pz

(x − px), (4.5.2)

mÿ = fz

z − pz

(y − py), (4.5.3)

mz̈ = fz − mg, (4.5.4)

where g is the gravitational constant. Under the assumption of a constant height,
ż = z̈ ≡ 0. Thus, letting ω =√g/(z − pz), we obtain

ẍ = ω2(x − px), (4.5.5)

ÿ = ω2(y − py) . (4.5.6)

These dynamics are unstable, with poles on the real axis at s = ±ω. The ZMP
positions in the plane can be viewed as the control input uT = [px,py]T ∈ R

2

for this system, with state xT = [x, y, ẋ, ẏ]T . For this template, a constraint that
the ZMP must remain in a support polygon, discussed in Section 4.1.2.2, can be
expressed directly through constraints on uT (t).

For use in the next section, we note that the LIP dynamics can be expressed
in state space:

ẋT (t) = A xT (t) + B uT (t) (4.5.7)

=
[

0 I

ω2I 0

]
xT (t) +

[
0

−ω2I

]
uT (t), (4.5.8)

with the CoM accelerations considered as an output yT = [ẍ, ÿ]T ∈R
2, where

yT (t) = C xT (t) + D uT (t) (4.5.9)

=
[
ω2I 0

]
xT (t) +

[
−ω2I

]
uT (t) . (4.5.10)

Example 2 (ZMP/CoM Dynamics for Walking with Nonconstant Height). In
some cases, such as walking up stairs, the assumption of a fixed CoM height
may be prohibitive within a template model for walking control. In the case
that a nonconstant desired CoM height z(t) is known in advance, the remaining
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dynamic equations for x(t) and y(t) are no longer time invariant. We again
assume that the forces create no moment about the CoM. Considering that
fz(t) = mg + mz̈(t), redefinition of ω := ω(t) to be time varying according
to

ω(t) =
√

g + z̈(t)

z(t) − pz

results in an linear time varying (LTV) system for the lateral (x, y) dynamics:

ẍ = ω(t)2 (x − px), (4.5.11)

ÿ = ω(t)2 (y − py). (4.5.12)

Despite the additional complexity, constraints on the ZMP are still readily ad-
dressed through constraints directly on uT (t) = [px,py]T .

4.5.2.2 SLIP Models for Running

Example 3 (A Passive SLIP Model for Humanoid Running). The Spring-
Loaded Inverted Pendulum (SLIP) model, described in Subchapter 3.3, is a
commonly selected template for control of running and hopping robots. In the
SLIP, a point mass m alternates between periods of flight and stance. In flight,
the point mass experiences ballistic physics p̈com

T = g, where g ∈R
3 is the grav-

ity vector.
During flight, the leg may be repositioned through touchdown angles

(θ,φ) in the forward and lateral directions. For application to humanoid
control, these touchdown angles may be given with respect to an estimated
hip position, phip

T , at a fixed offset from the CoM as shown in Fig. 4.5.3.
The hip offset may change from step to step to account for the leg in
stance. In comparison to defining touchdown angles in spherical coordi-
nates relative to the CoM, this alternate touchdown angle definition pro-
vides closer correspondence with the virtual leg angles in a robot that in-
cludes hip separation. As an alternative, the Cartesian position of the foot
may be used directly as a control input in flight. This requires more care-
ful consideration of virtual leg length constraints, but provides a close cor-
respondence between the LIP and SLIP in terms of their states and con-
trols.

SLIP stance begins at touchdown (TD) of its virtual leg, wherein a Hookean
spring of stiffness ks and initial length �0 imparts conservative forces on the
mass. The stance dynamics follow

m p̈com
T = ks(�0 − ‖�‖) �̂ + mg (4.5.13)
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FIGURE 4.5.3 Leg angle definitions for 3D-SLIP applied to humanoid control. Leg angles are
given with respect to a virtual hip position that exists at a fixed offset from the CoM during flight.

where � := pcom
T − pzmp

T ∈ R
3 represents the virtual leg, �̂ ∈ R

3 the unit vec-
tor along the leg, and �0 the rest length computed at touchdown. Often, the
ZMP position pzmp

T is fixed following touchdown for simplicity even when the
SLIP acts as a template for a robot with flat feet. Stance ends at liftoff (LO),
wherein the model transitions back to flight. This energetically passive SLIP
model can be controlled through touchdown angle inputs uT [n] = [θ,φ]T at
each step n.

A unique event for each step (e.g. apex during flight) may be used
to define a Poincaré section for study of the step-to-step dynamics. Let-
ting xT [n] = [z, ẋ, ẏ]T at the nth apex, we define the step-to-step dynamics
through

xT [n + 1] = f(n,xT [n],uT [n]) (4.5.14)

where f(n,xT ,uT ) is a Poincaré return map.

Example 4 (An Active SLIP Model to Enable Energetic Transitions). As one
of a variety of potential extensions for this model, the examples in this chapter
will consider modulating the stiffness of the SLIP leg once per step. Other valid
actuation schemes for the SLIP may consider changes to its rest leg length,
which are equivalent to the addition of a linear actuator in series with the spring.
For simplicity, we consider a fixed stiffness ks1 before maximum compression
of the spring in stance, and a stiffness ks2 following maximum compression.
This consideration modulates the total energy E by �E = 1

2 (ks2 − ks1)(�0 −
‖�‖)2, enabling changes in speed and height from step to step. Considering these
stiffnesses as control variables along with the leg touchdown angles, the active
SLIP may be controlled by selecting

uT [n] = [θ,φ, ks1, ks2]T (4.5.15)
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at each step n. As in the LIP, a key aspect of the template is that the forces
emanate from a well defined point pzmp

T that must reside under the supporting
contacts.

4.5.2.3 Perspectives of Template Model Selection

Each of these template models have a notable characteristic in that they follow
the laws of Newtonian physics. Templates that follow the laws of Newtonian
physics have benefits when targeted to legged robots, which themselves must
follow the laws of physics. Physical template models may often easily be re-
stricted to operate in a regime that is dynamically feasible for the target system.
For instance, control inputs across each of these pendular models directly influ-
ence the center of pressure. Constraints for this point to remain within a support
polygon are easy to formulate, which can be used to simplify template planning
and control. To contrast, for a target system such as a humanoid, constraints
on its control inputs (joint torques) to satisfy center of pressure constraints are
much more complex, and in general are nonlinearly dependent on state.

Despite these benefits afforded in physical template models, such physicality
is not a requirement. With such freedom, template models may be judiciously
crafted to possess linear (Kajita et al., 2003; Kuindersma et al., 2014), integrable
(Mordatch et al., 2010), polynomial (Park et al., 2015), or other simplified dy-
namics. These simplifications may be sought to further facilitate analysis and
control. We again stress that, within robotics, the applicability of template mod-
els need not be grounded in biological or exact physical plausibility. Instead
templates should ultimately be assessed based on the additional performance
that they bring to motion control in physical robots.

Selections of control inputs uT also have important reachability implications
for the template. For instance, the selection of controls for a passive SLIP pre-
cludes the possibility to reach any states at higher or lower total energy levels. As
template controls are designed to improve reachability properties, they need not
match those controls available the full system. Design choices should be made,
however, such that the resultant template dynamics are able to be replicated in
the full model given its associated control authority.

4.5.3 TEMPLATE MODEL CONTROL

After selecting a candidate template for a motor control task, the second step
in the process is to develop a control system for the template itself. The key
idea in using template models for control is that the solution of this template
control problem can provide guiding principles to solve the control problem for
the full system. General methods to design control systems for template mod-
els are the same as those that might otherwise applied for the full model. As a
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benefit, approaches that might not scale (in time or space complexity) to the full
model may become practical when considered in the scope of a template. Tra-
jectory optimization for optimal control (Diehl et al., 2006) may offer applica-
bility for real-time model-predictive control, feedback motion planning libraries
(Tedrake et al., 2010) may scale to the dimensionality of template models, and
feedforward knowledge-bases may be developed through offline computation
(Wu and Geyer, 2013). Template model control has enabled many contempo-
rary systems (Kuindersma et al., 2015; Feng et al., 2013; Pratt et al., 2012;
Takenaka et al., 2009; Rezazadeh et al., 2015) to skirt Bellman’s curse of di-
mensionality (Bellman, 1957) while maintaining real-time computation.

4.5.3.1 Control of Linear CoM Models for Walking

Many center of mass (CoM) templates have led to template controllers real-
ized in modern walking humanoids. CoM templates driven by the zero moment
point (ZMP) in discrete time (Kajita et al., 2003; Dimitrov et al., 2011) and con-
tinuous time (Tedrake et al., 2015) enable real-time optimal control solutions,
highlighted in the example below. Whether in the LIP model, or its extension
with a fixed CoM height trajectory, linear template dynamics simplify the de-
velopment of optimal controllers. Other methods have used differential dynamic
programming (DDP) to solve the optimal control problem locally when vertical
CoM dynamics are allowed to vary but are not fixed a priori (Feng et al., 2013).

Example 5 (ZMP Preview Control Through LQR). A common method of
walking control for humanoid robots attempts to control the ZMP position un-
derneath the feet. The linear inverted pendulum template model from Example 1
can enable efficient computation of ZMP controllers for use in a high-DoF robot.
Let us assume that a desired ZMP trajectory ud

T (t) has been generated in ad-
vance and that an assumption of constant CoM height is reasonable. Due to the
unstable pole in the LIP dynamics, blindly using this ZMP trajectory as input to
the LIP template will result in an unstable CoM motion, which must be handled
through feedback in a ZMP controller.

ZMP Preview control attempts to predict (and minimize) future CoM mo-
tions and ZMP errors through model predictive control (MPC). This main idea
has been pursued by many authors (Kajita et al., 2003; Dimitrov et al., 2011;
Tedrake et al., 2015) with different solution methods and formulations. Follow-
ing the techniques in Kuindersma et al. (2015) and Tedrake et al. (2015), this
problem can be formulated as one of continuous time linear optimal control

J ∗(t0,x0) = min
u(t)

∫ ∞

t0

‖yT (t)‖2
R + ‖uT (t) − ud

T (t)‖2
Q dt (4.5.16)

s.t. ẋT (t) = A xT (t) + B uT (t), (4.5.17)
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yT (t) = C xT (t) + D uT (t), (4.5.18)

xT (t0) = x0, (4.5.19)

where J ∗(t0,x0) represents the optimal cost-to-go for an optimal ZMP preview
controller. The matrices R = RT > 0 and Q = QT > 0 are positive definite
matrices that encode the relative importance of minimizing CoM accelerations
and ZMP tracking errors through the weighted �2-norms ‖y‖R =√

yT Ry and
‖u‖Q =√uT Qu, respectively.

We note that due to the invertibility of D, uT , or yT could either be viewed
as the control for optimization. Regardless, this is a standard LQR problem
(Tedrake et al., 2015) with an optimal cost-to-go of the form:

J ∗(t,xT ) = xT
T S1(t)xT + xT

T s2(t) + s3(t). (4.5.20)

Details to analytically form S1(t), s2(t), and s3(t) are provided in (Tedrake
et al., 2015) for the interested reader and may be derived as an exercise. The
optimal control law is given by the Hamilton–Jacobi–Bellman (HJB) equation
(Bertsekas, 2005) for uT or yT as

u∗
T (t,xT (t))

= argmin
uT

(
‖CxT (t) + DuT ‖T

R + ‖uT − ud
T (t)‖2

Q + d

dt
J ∗(t,xT (t))

)
, or

(4.5.21)

y∗
T (t,xT (t)) = argmin

yT

L(t,xT (t),yT ) (4.5.22)

= argmin
yT

(
‖yT (t)‖T

R + ‖D−1(yT − CxT (t)) − ud
T (t)‖2

Q + d

dt
J ∗(t,xT (t))

)
,

(4.5.23)

which balances instantaneous costs with long-term costs encoded in the optimal-
cost-to-go (Kuindersma et al., 2015; Tedrake et al., 2015). The next subsection
will explore how this optimal control solution can be lifted into a more complex
robot model.

Capture point methods provide a different perspective to controlling the
CoM. The capture point (CP) was originally introduced as a point on the ground
where a robot would have to step to bring its CoM to a complete stop (Pratt et
al., 2006, 2012; Koolen et al., 2012). This concept is illustrated in Fig. 4.5.4.
For the linear inverted pendulum model, the CP ξ = [ξx, ξy,0]T is a composite
variable in a sense that it incorporates both position and velocity information:

ξx = x + 1

ω
ẋ (4.5.24)
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FIGURE 4.5.4 A capture point is a place where the foot may be placed such that the model may
be brought to a complete stop. For the LIP model, the capture point is a linear combination of the
CoM (x, y) position and the (ẋ, ẏ) velocity.

with similar definition in y (Koolen et al., 2012). Beyond seeing the capture
point as a place to step, it should be noted that the capture point may be viewed
as a bandwidth-tuned CoM look-ahead. Indeed, the term 1/ω in (4.5.24) rep-
resents a time constant for the LIP dynamics. Performing a linear change of
variables (x, ẋ) → (x, ξx) results in the system

ẋ = −ω (x − ξx), (4.5.25)

ξ̇x = ω (ξx − px) . (4.5.26)

In the case that the ZMP is placed at the capture point, (4.5.26) provides ξ̇ = 0
while (4.5.25) implies that the (x, y) CoM exponentially converges to the cap-
ture point. Thus, (4.5.25) describes the system dynamics due to the stable pole
of the LIP at s = −ω, again providing an attractor for the CoM to the capture
point. In contrast, (4.5.26) describes the dynamics from the unstable pole of
the LIP at s = +ω. These unstable capture point dynamics, however, represent
a controllable subsystem, motivating the development of explicit capture point
controllers.

As a result of the cascaded structure in the CoM/CP dynamics, control of
the second-order LIP dynamics (4.5.5) may be instead pursued through control
of the first-order capture point dynamics (4.5.26). Under proper tracking con-
trol of the capture point itself, stable attraction of the CoM to the capture point
provides CoM tracking as a byproduct. As a result of this first-order structure,
the instantaneous capture point and its 3D extension, also called the divergent
component of motion (Takenaka et al., 2009; Englsberger et al., 2015), have
provided an analytically clean framework to consider CoM control. Capture
point-based methods are able to plan CoM trajectories directly for push re-
covery and walking over uneven terrains through closed-form analysis that is
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judiciously enabled by this reductive change of variables. Insightful geometric
interpretations from the capture point and its implications for push recovery are
elegantly covered in Koolen et al. (2012) with extensions to 3D in Englsberger
et al. (2015).

4.5.3.2 Control for SLIP-Based Models

Within the domain of running, SLIP-based template models have provided
many principles for adjusting leg behaviors to control dynamic balance. Due
to the hybrid structure of the SLIP dynamics, control of the SLIP may be man-
aged both through the selection of discrete control variables (i.e., touchdown
angles) as well as continuous actions (i.e., changes in leg stiffness, nominal
rest length, etc.). As in Example 4, continuous controls may often be pa-
rameterized by a discrete set of variables to simplify Poincaré analysis. Wu
and Geyer (2013) developed deadbeat controllers for the 3D-SLIP using of-
fline optimization to determine leg touchdown angles for ground height distur-
bance rejection. For online computation, the lack of an analytical expression
for the Poincaré return map presents computational challenges. Carver (2003)
and Wensing and Orin (2013b) developed locally deadbeat controllers using
a linearized analysis of the Poincaré return map to reactively handle distur-
bances. Other authors have developed approximations to the return map to
accelerate online control computations (Arslan et al., 2009; Geyer et al., 2005;
Piovan and Byl, 2016). The following example highlights the ability to develop
SLIP-based footstep controllers through linearized analysis.

Example 6 (Approximate Deadbeat Control of the 3D-SLIP). In this example,
we will develop a stabilizing controller for the actuated 3D-SLIP model running
on level terrain. Following Example 4, let us assume that we have precomputed
nominal controls ud

T [n] and associated apex states xd
T [n] that follow the discrete

dynamics:

xd
T [n + 1] = f(n,xd

T [n],ud
T [n]) . (4.5.27)

In this example, we seek to find a control law uT [n] = π(n,xT [n]) that provides
local asymptotic tracking xT [n] → xd

T [n] to the nominal state trajectory as n →
∞. As one of many possible approaches, constructing a deadbeat controller
would remove all tracking error within a single step. This would require a policy
such that

xd
T [n + 1] = f(n,xT [n],π(n,xT [n])) . (4.5.28)

Finding a policy satisfying this equation exactly requires detailed computation
that may not be viable online. We demonstrate an approximate solution here.
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Taking a Taylor expansion of (4.5.14) around the nominal trajectory provides

x̃T [n + 1] = A[n] x̃T [n] + B[n] ũT [n] + o
(∥∥(x̃T [n], ũT [n])∥∥) (4.5.29)

where x̃T [n] = xT [n] − xd
T [n], ũT [n] = uT [n] − ud

T [n],

A[n] = ∂f
∂xT

∣∣∣∣
(n,xd

T [n],ud
T [n])

, and (4.5.30)

B[n] = ∂f
∂uT

∣∣∣∣
(n,xd

T [n],ud
T [n])

. (4.5.31)

When the matrix B[n] has full row rank, the deadbeat condition (4.5.28) can be
satisfied locally through the selection of any feedback law ũT [n] = K[n] x̃T [n]
satisfying

0 = A[n] + B[n]K[n] . (4.5.32)

The control policy in original coordinates

π(xT [n], n) = ud
T [n] + K[n] (xT [n] − xd

T [n]) (4.5.33)

then admits local asymptotic tracking to the desired trajectory.
This simple approach can automatically capture many of the powerful

heuristics that enabled dynamic gaits in Raibert’s machines (Raibert, 1986). For
instance, considering the actuated 3D-SLIP from Examples 1 and 2 with param-
eters m = 72.5 kg, �h = 0.97 m, and phip

T = pcom
T + [0, 12 cm · (−1)n, 0]T , the

controls

θd [n] = 0.4 rad, φd [n] = 0 rad, (4.5.34)

kd
s1

[n] = 12.7 kN/m, kd
s2

[n] = 12.7 kN/m (4.5.35)

can be used to generate a left-right symmetric 2-step periodic running gait for
a nominal speed of ẋ = 3.5 m/s (Wensing and Orin, 2013b). For such a gait, a
feedback policy K[n] that satisfies (4.5.32) can also be developed to be 2-step
periodic. For a left-foot step (i.e., phip

T = pcom
T + [0, 12 cm, 0]T with coordi-

nates given in Fig. 4.5.3), one such feedback gain is⎡⎢⎢⎢⎢⎣
θ̃

φ̃

k̃s1

k̃s2

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
−0.51 0.13 −0.01
−1.95 −0.08 0.90
36.9 13.2 0.86

−36.9 −13.2 −0.86

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

K[n]

⎡⎢⎣z̃

˙̃x
˙̃y

⎤⎥⎦ (4.5.36)
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FIGURE 4.5.5 (Left) Nominal 2-step periodic 3D-SLIP gait for running at 3.5 m/s. (Center) Local
deadbeat performance of the SLIP controller with small disturbances. (Right) Asymptotic tracking
performance for larger disturbances with the local deadbeat SLIP controller.

where an additional constraint k̃s1 = −k̃s2 has been employed to resolve the fact
that four control variables exist to satisfy three deadbeat constraints. Looking
at the bottom two rows shows the control response to a state having excess
potential energy in z, or excess kinetic energy in ẋ or ẏ. In all cases, the feedback
law is one that employs a stiffer spring at touchdown, and softens at maximum
compression in order to remove the excess energy. Other heuristics exist in each
column. The first column shows that a running state that begins too high should
be countered by placing the foot further under the CoM at touchdown. Similar
leg placement heuristics are shown in the second and third columns. We note
that these automatically tuned heuristics can provide guiding principles, not just
for template control, but for humanoid control as we will pursue in the next
subsection.

To demonstrate the performance of the control law (4.5.33), Fig. 4.5.5 shows
the nominal state trajectory, the state trajectory subject to a small disturbance
wherein local deadbeat behavior is approximately observed, and response to a
larger perturbation wherein asymptotic tracking is recovered.

It should be noted that certain operating regimes of the 2D-SLIP model have
been shown to possess so-called self-stable behavior. That is to say, for a fixed
touchdown angle θ and leg stiffness ks , open-loop stable gaits have been shown
to exist (Seyfarth et al., 2002; Ghigliazza et al., 2003). While these results are
an interesting finding, they do not extend to 3D (Seipel and Holmes, 2005) and
represent a lower bound on the domain of attraction and robustness achievable
by the addition of feedback.

More recently, the bipedal SLIP model has been proposed as an alternative
walking template (Geyer et al., 2006) for the CoM. Recent work has devel-
oped controllers for this template based on analysis of its Poincaré return map
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(Vejdani et al., 2015; Liu et al., 2015) similar to in the 3D-SLIP for running.
This template includes rich nonlinear hybrid dynamics, due to two virtual spring
legs making and breaking contact. As a result, control strategies for this model
have often required offline computation with detailed knowledge bases used for
real-time control.

4.5.3.3 Beyond Tracking Control for Pendular Models

Beyond these traditional CoM models, the computer graphics community has
employed many other nontraditional template models for physics-based simu-
lation of virtual characters. Mordatch et al. (2010) used a translational LIP with
decoupled vertical SLIP to provide a relaxation of the SLIP model for locomo-
tion planning with evolutionary search. da Silva et al. (2008) used iLQR with a
three-link model as a template for the body and leg CoM motions. Ye and Liu
(2010) applied differential dynamic programming to a CoM and angular mo-
mentum model that included an integrated centroidal angular momentum (Orin
et al., 2013) as a nonphysical surrogate angular state.

Many of these cited works have focused template control on asymptotic
tracking guarantees. Moving forward, template control warrants investigation
to achieve other important control specifications such as robustness, viabil-
ity, and yet others. Terrain robustness specifically has been a focus of much
work within SLIP frameworks (Ernst et al., 2009; Wu and Geyer, 2013;
Liu et al., 2016). Other work has advocated for viability (Wieber, 2008) as a
more appropriate goal in legged systems. For a state to be viable intuitively
means that it can be controlled to avoid any undesirable regions of the state space
(such as those in which the robot has fallen to the ground). Indeed, in robotics
when we say a system is “stable” it rarely is meant rigorously in a Lyapunov
sense, but rather is more loosely meant in a sense of not falling down. Viability
theory offers potential to bring rigor to this loose specification. Its rigorous tech-
nical definitions lead, in principle, to methods for identifying viable regions of
the state space. Such verifications are beyond the reach of current computational
methods for high-DoF systems. Yet, a notion of viability drives the definition of
capturability (Koolen et al., 2012), and motivates the use of low-DoF template
models to pursue viability more broadly (Sherikov et al., 2015).

4.5.4 ESTABLISHING A TEMPLATE/ANCHOR RELATIONSHIP

In the last step of the process, a high-DoF control system must be developed to
establish the template in the anchor dynamics. Control of the template itself does
not consider the issue of how the various actuators in the full system should be
recruited. Thus, a high-DoF control problem exists to realize any template/an-
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chor (T/A) relationship. Fig. 4.5.6 provides a rough diagram of how a solution
to this realization fits into a full solution for real-time template-based control in
a high-DoF anchor.

An initial part of this design stage entails the selection of which template/an-
chor notion to pursue. As alluded to in Subchapter 3.2, there are a wide range
of specifications for what a proper T/A relationship may entail. At one extreme,
the template states may be represented by a normally hyperbolic invariant mani-
fold (NHIM) embedded in the state space of the anchor. To satisfy this notion of
the T/A relationship, a diffeomorphic copy of the controlled template dynamics
must be rendered on the NHIM in closed-loop. Towards realizing this condition,
the template may be sought as the hybrid zero dynamics (HZD) (Westervelt et
al., 2003; Poulakakis and Grizzle, 2009) of a judiciously crafted output regu-
lation problem. HZD methods will be described further in Subchapter 4.7, and
offer promise to bring the full scope of the templates and anchors hypothesis to
bear in experimental machines.

Simpler methods may strive to replicate only select aspects of the template
within the anchor dynamics. For instance, rather than the SLIP state encoding
a target whole body state for the anchor (as in the NHIM notion of the T/A
relationship), it may instead simply encode a target state for the anchor CoM.
In this light, we will denote “anchor features” as any features of motion in the
anchor whose control is informed by the template. Existing methods for con-
trolling anchor features to match a template differ considerably in the degree of
replication quality that they provide. In methods that only loosely achieve the
desired template dynamics, this inaccuracy itself may represent a disturbance to
any template-level controller. In methods that more precisely achieve the target
template dynamics, a greater burden may exist on the template to operate in a
manner that is replicable in the full system.

4.5.4.1 Realizing Template Dynamics Through Task-Space
Control

Task-space or operational-space control provides a formal framework to pursue
an exact realization of a template’s continuous dynamics in a more complex
anchor system. The state of the anchor system can be given as [q, q̇]T ∈ RnA

with configuration q. In legged robots, the configuration q generally pos-
sesses the structure q = [qb, qj ] where qb ∈ SE(3) is the configuration of a
floating-base and qj ∈R

nj is the configuration of the internal joints. We denote
xA(q, q̇) ∈ R

nT (same dimensions as xT ) as the anchor feature state (i.e., the
projection of the anchor state onto those features that are captured in the tem-
plate). For instance, for CoM templates where xT = [pcom

T , ṗcom
T ], the projection

would extract the CoM position and velocity xA := [pcom
A , ṗcom

A ] of the anchor
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FIGURE 4.5.6 Real-time template-based control diagram. The relevant features of the anchor
system xA = g(q, q̇) are propagated to the template xT . A control system applied to the template
uT = π(xT ) gives rise to target properties of the closed-loop template dynamics. These properties
are lifted into the full system by a high-dimensional controller that coordinates many actuators uA

to realize a template/anchor relationship.

system. For physical template models more broadly, this relationship is often
clear, however, for more abstract templates, this assignment itself may present
another degree of design freedom.

As shown in Fig. 4.5.6, this projected state xA is propagated to the tem-
plate xA → xT to begin the application of template-based control. As one of
many possibilities, let us assume that such propagation happens discretely, with
trajectories of the controlled template xT (t) provided between updates. For in-
stance, in the SLIP model, such propagation might only occur at the Poincaré
section, with xT (t) representing a controlled SLIP trajectory for the next step.
Controlling the full system trajectory xA(t) to asymptotically anchor the tem-
plate xA(t) → xT (t) is then a well studied problem within the context of the
operational-space and whole-body control literature.

Replicating the Dynamics of CoM Templates

A common whole-body control solution applied to the replication of template
dynamics is to minimize the replication errors at a dynamic level through real-
time optimization in closed-loop. To build towards this solution, we reintroduce
the standard dynamic equations of motion

H(q)q̈ + C(q, q̇)q̇ + G(q) = ST
a τ + Js(q)T Fs (4.5.37)

where H, Cq̇, and G are the familiar mass matrix, velocity product terms, and
gravitational terms, respectively. Here Fs collects ground reaction forces (GRFs)
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for appendages in support and Js is a combined support Jacobian. The matrix
Sa = [0nj ×6 1nj ×nj

] is a selection matrix for the actuated joints.
For CoM templates with anchor features xA = [pcom

A , ṗcom
A ], an optimization

problem can first be formulated to partial-feedback linearize the CoM dynamics
of the anchor under whole-body constraints. Given a desired acceleration for
the CoM p̈com,d

A , the goal of the whole-body controller is to select joint torques
uA := τ that most closely realize this commanded acceleration. This can be
formulated as an optimization problem

min
q̈,τ ,Fs

1

2

∥∥∥Jcomq̈ + J̇comq̇ − p̈com,d
A

∥∥∥2
(4.5.38)

subject to H q̈ + C q̇ + G = ST
a τ + JT

s Fs , (4.5.39)

Js q̈ + J̇s q̇ = 0, (4.5.40)

Fs ∈ C, (4.5.41)

where Jcom ∈ R
3×(nj +6) is the CoM Jacobian, Fs ∈ R

6nf are ground reaction
forces for nf feet in planar contact, and C is the convex cone of forces that
can be created through the available contacts (Wensing and Orin, 2013a). The
constraint (4.5.40) enforces that any supporting contacts must not move. While
ground forces Fs may often be viewed as the Lagrange multipliers associated
with this constraint, their solution is not unique when multiple feet are in pla-
nar contact. As a result, the optimization enforces that at least one set of these
Lagrange multipliers must satisfy frictional constraints.

If the optimization problem can be solved to an optimal objective function
value of 0, then the current contacts provide the necessary control authority to
exactly realize the commanded dynamics. When this is the case, solution of
the optimization problem in closed-loop will provide a feedback linearization
from the commanded dynamics p̈com,d

A to the anchor feature pcom
A . As a result,

a common approach to achieve template tracking is to select the commanded
feature dynamics according to the law

p̈com,d
A = p̈com

T + kD(ṗcom
T − ṗcom

A ) + kP (pcom
T − pcom

A ) (4.5.42)

where kP and kD are positive definite gain matrices. This selection provides
an asymptotically stable second-order dynamic for the anchoring error e(t) =
pcom

T (t) − pcom
A (t). If the template includes only kinematic features and their

associated derivatives, then the above development is general through the use of
an appropriate task Jacobian. If the template includes purely velocity-dependent
features, such as angular momentum, then minimal modifications to the above
development can be employed (Wensing and Orin, 2013a).
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Exploiting Redundancy

It should be noted that there is significant redundancy remaining after only ful-
filling the commanded anchor feature dynamics. Often the use of this flexibility
is needed to track aspects of the full system that are absent in the template. For
instance, in running with the SLIP template, the lack of a swing leg in the tem-
plate requires coordinated swing leg torques in the full model to move the swing
leg into place for the following step.

These torques may be found algorithmically through solving a subsequent
optimization problem that respects the optimal anchor feature dynamics from
(4.5.38). Given desired accelerations p̈d

1 ∈ R
n1 for another feature of motion,

such as a swing foot position, modified torques can be derived from the solution
to

min
q̈,τ ,Fs

1

2

∥∥∥J1q̈ + J̇1q̇ − p̈d
1

∥∥∥2
(4.5.43)

subject to H q̈ + C q̇ + G = ST
a τ + JT

s Fs , (4.5.44)

Js q̈ + J̇s q̇ = 0, (4.5.45)

Jcomq̈ + J̇comq̇ = p̈∗
A, (4.5.46)

Fs ∈ C, (4.5.47)

where p̈∗
A is the optimal anchor feature acceleration resulting from first solving

(4.5.38). By solving (4.5.38) and then (4.5.43) in a cascaded fashion, a strict pri-
oritization is being given to tracking the anchor features above all else. When a
strictly ordered hierarchy exists between yet further tasks, this approach may be
extended through additional cascaded solves or through dedicated hierarchical
solvers (Escande et al., 2014).

As an alternative, soft priorities can be implemented through solving a single
optimization problem with an objective that is a weighted combination of the
task command errors:

min
q̈,τ ,Fs

wA‖Jcom q̈ + J̇com q̇ − p̈com,d
A ‖2 +

∑
i

wi‖Ji q̈ + J̇i q̇ − p̈d
i ‖2

(4.5.48)

subject to H q̈ + C q̇ + G = ST
a τ + JT

s Fs , (4.5.49)

Js q̈ + J̇s q̇ = 0, (4.5.50)

Fs ∈ C. (4.5.51)

In comparison to using a strict prioritization, soft prioritization requires fewer
invocations of an optimization solver, but can suffer from numeric conditioning
issues if a large disparity in weights is desired. Overall, these optimization-
based whole-body control methods perform well in practice, and have been a
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FIGURE 4.5.7 Template-based whole-body response to a push disturbance and associated whole-
body control system. Following a push (red arrow in the upper-left subfigure), the disturbed state of
the humanoid is projected and propagated to the SLIP template xA → xT . SLIP control uT = π(xT )

suggests touchdown angles for the upcoming steps and a dynamically feasible CoM trajectory xT (t)

for a template-based recovery in the following stance. (For interpretation of the colors in this figure,
the reader is referred to the web version of this chapter.)

workhorse for modern humanoids in recent years. However, they are fundamen-
tally single-step model predictive control schemes where the actions that are
instantaneously greedy are designed to play out favorably in the long term. The
template controllers from Section 4.5.3 readily admit formal guarantees on their
performance. However, when coupled to optimization-based whole body con-
trollers such as (4.5.38), currently little can be proven or guaranteed about the
long-term behavior of these systems.

Example 7 (Closed-Loop Control of High-Speed Humanoid Running).
Fig. 4.5.7 shows the results of a full template-based control system applied to
humanoid push recovery while running at 3.5 m/s with the SLIP controller de-
veloped in Example 6. At each liftoff, anchor features are propagated to the SLIP
template. Controlled SLIP trajectories xT (t) then provide physics-based recov-
ery motions. At each step, (4.5.33) provides touchdown angles and matched
spring stiffnesses ks1 and ks2 to provide approximate deadbeat tracking back to
the nominal gait within one step. Due to system features, such as ground/foot
impacts that are not captured in the SLIP, this full template-based controller does
not experience the strong deadbeat behavior shown in Example 6. Fig. 4.5.8
shows the CoM response in the simulation experiment demonstrating that the
template recovery motions are realized in the anchor.
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FIGURE 4.5.8 Response of a full template-based control system for a humanoid following a lateral
push disturbance of 40 Ns. At each step a CoM reference trajectory is generated based on the results
of the local deadbeat template controller from Example 6. At each transition from flight to stance,
an impact impulse in the full system, which is due to leg mass not captured in the SLIP, provides a
persistent disturbance to the full template-based control system. The system nominally recovers to
its steady-state gait within 4 steps.

Since the SLIP assumes massless legs that can be instantly repositioned
in flight, a state machine is used in the humanoid to coordinate leg motions.
This state machine does so through providing foot acceleration commands to an
optimization-based controller as in (4.5.43). Foot acceleration commands simi-
larly take a PD form as in (4.5.42). However, rather than the template providing
reference trajectories, cubic spline references are generated online to achieve
the desired virtual leg configuration at touchdown. To resolve remaining re-
dundancy, a centroidal angular momentum (Orin et al., 2013) rate of change
command and pose acceleration command (Wensing and Orin, 2013b) are also
provided to (4.5.43). The optimization is solved at rate of 200 Hz, and resulting
joint torques τ are applied in dynamic simulation. Further details can be found
in Wensing and Orin (2013b).

4.5.4.2 Lifting Other Properties of Template Control

The previous example included feedback to the template on a discrete basis.
Other methods continuously resolve the behavior of the full system with an
optimal reaction from the template by lifting properties of an optimal template
controller. For instance, optimal controllers for template models as in Example 5



Control of Motion and Compliance Chapter | 4 261

can be used to guide CoM control in a humanoid. Following the construction of
the optimal-cost-to-go from Example 5, the whole-body QP (4.5.48) from the
previous subsection could be modified as (Kuindersma et al., 2015)

min
q̈,τ ,Fs

wAL(t,xA, p̈com
A ) +

∑
i

wi‖Ji q̈ + J̇i q̇ − ẍc
i ‖2 (4.5.52)

subject to H q̈ + C q̇ + G = ST
a τ + JT

s Fs , (4.5.53)

Js q̈ + J̇s q̇ = 0, (4.5.54)

Fs ∈ C, (4.5.55)

where again L(t,xA, p̈com
A ) from (4.5.22) (Kuindersma et al., 2015) balances in-

stantaneous template control costs with long-term costs encoded in its optimal-
cost-to-go. The benefit of this formulation over (4.5.48) comes from the fact that
when the optimal template dynamics are not instantaneously feasible, deviations
from the optimal template dynamics are not created equal. Some deviations,
while equal in magnitude, may be more costly than others in the long term. This
subtlety is addressed by the long-term costs encoded in the optimal cost-to-go,
while the error norm penalty in (4.5.48) manages no such long-term trade-off.
A summary of the whole-body control results for the MIT DRC team, which
used this approach in hardware with ATLAS, can be found in Kuindersma et al.
(2015, 2014). In particular, the formulation of minimizing L(t,xA, p̈com

A ) was
cited to provide practical robustness over other methods that simply enforce de-
creasing the template-based optimal-cost-to-go over time.

Overall, these optimization-based control methods guarantee template track-
ing error will asymptotically approach zero when sufficient control authority
exists. If there are unmodeled aspects of the anchor system that affect xA but are
not captured in the template, these unmodeled aspects represent a persistent dis-
turbance to the template-based control system. Otherwise, asymptotic tracking
across these examples is accomplished in (4.5.48) and (4.5.52), through care-
fully selecting joint torques that compensate for nonlinear joint-space dynamics
and replace them with those commanded for the locomotion features. Tracking
performance, as a result, is predicated on the correctness of the dynamic model
itself and thus may exhibit sensitivity to modeling errors. Other less model-
intensive methods are able to overcome these drawbacks but provide a looser
match between template and anchor features.

4.5.4.3 Anchoring the Template Through Less Model-Intensive
Methods

Virtual model control is a less model-intensive method to track locomotion
features over time. Virtual model control (VMC) uses virtual components to
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formulate fictitious forces that govern interaction between real and virtual sys-
tems (Pratt et al., 2001). These fictitious forces are then realized through static
joint torque mappings, often using the Jacobian transpose. Virtual systems may
represent springs and dampers, or other general mechanisms that are designed
to produce virtual interactions and regulate the state of the real system. Thus, in
a sense, virtual model control is a descendant of simple impedance control, yet
more general interaction dynamics may be authored through design of virtual
models. VMC has been applied widely in quadruped robots to stabilize dynamic
locomotion plans (Park and Kim, 2015; Semini et al., 2015; Coros et al., 2011;
Winkler et al., 2014) and in dynamic balance for humanoids (Stephens and Atke-
son, 2010). When physical template models are used in a template controller,
the template itself can often be viewed as a virtual model. When this is the case,
VMC provides a direct method to approximately realize the template dynam-
ics. By only relying on kinematic data from the real system to resolve virtual
template forces, VMC is essentially model-free at a dynamic level. Thus, with-
out compensation for dynamic effects, VMC relies on heuristic gain tuning to
find controller parameters that provide suitable performance at each operating
point. Due to the changes in neglected dynamic forces across operating regimes,
however, performance claims for these controllers can often only be verified em-
pirically.

4.5.4.4 Template-Inspired Mechanical Design

Throughout this section, rigid-body dynamics (4.5.37) have been assumed with
torque sources modeled at the joints. Yet, many modern machines do include
other forms of impedance (compliance and damping) at the joints and more
generally across the body structures. The natural dynamics of these structures
may point toward the selection of a particular template that can significantly re-
duce the burden of imparting a template/anchor relationship through closed-loop
control. For instance, the bipedal-SLIP model was used to develop high-level
template-based controllers for ATRIAS (Rezazadeh et al., 2015). Lower-level
control mechanisms did not explicitly attempt to impart bipedal-SLIP dynamics
to the machine. However, since ATRIAS was designed to exhibit dynamics that
embody the bipedal-SLIP (Ramezani et al., 2014), the robot has been shown
to exhibit qualitative similarity to its template in terms of its ground reaction
forces. A similar success story may be found in Raibert’s early hoppers, whose
control systems where inspired by SLIP-based laws and implemented on phys-
ical SLIP-type robots with air springs (Raibert, 1986). Further intersection of
template-based control and template-inspired design presents interesting future
prospects to simplify closed-loop control of legged machines.
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4.5.5 CONCLUSIONS

This section has described the design process for using template models for con-
trol. We have discussed the three main sub-problems that must be integrated to
realize a template-based control system. First, a template pertinent to the lo-
comotion task must be identified. There is no right or wrong template for a
given task and those from biology need only serve as inspiration. Next, con-
trol methodologies for the template itself must be identified and developed. In
some cases, the template may not provide sufficient control flexibility to achieve
desired controller specifications, requiring modifications to the template under
consideration. Following the solution of a template control problem, controlled
template dynamics must be retargeted to the full system, addressing the co-
ordination of many actuators to achieve low-dimensional specifications. Many
methods exist to realize these target template dynamics, which vary in the de-
gree of replication quality that they impart. The application of template models
for control does require the intuition of a human designer. However, its focus
on the most important characteristics of locomotion has enabled reactive con-
trol architectures in many experimental robots, and may yet play a key role in
unlocking the full potentials of legged machines.
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