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§ 1 Introduction
Most physical phenomena evolve through elaborate and difficult to model dynamical equations. The spectacular success

of the physical sciences can be attributed to the fact that in some cases, simple models exist – complex interactions lead to
simpler solutions. Our particular interest comes from biomechanics, where the notion of “templates” and “anchors” [Full
and Koditschek, 1999] has been in use. A template and anchor are a pair of models such that the template describes the
essential features of a biomechanical behavior – e.g., when running, animals bounce as if the center of mass is on a pogo
stick [Blickhan, 1989] – whereas the anchor is a more complete model that often contains specifics of the individual animal
morphology. One particular way to formalize a mathematical relationship between a template and anchor is to require
“asymptotic equivalence”, whereby the infinite horizon prediction of the template coalesces with that of the anchor. This
convergence onto a specific trajectory of the template is referred to in the dynamics literature as the “asymptotic phase
property” [Fenichel, 1973, 1977; Hale, 1969; Bronstein and Kopanskii, 1994], and is usually associated with “normal
hyperbolicity” of the template. Numerous templates have been proposed by biologists, and these have fueled a flurry of
activity in robotics whereby engineers have tried to design robots to express the self-same templates in their dynamics.
When successful, such attempts have enabled robots to run efficiently with legs [Galloway, 2010], dynamically climb walls
with little to no sensing [Lynch, 2011], and reorient in free-fall to land safely [Libby et al., 2012]. In each of these cases,
a specifically customized approach was used to anchor the template into the robot.

Our contribution below is a general method for anchoring normally hyperbolic templates; furthermore, this method is
universal in the sense that a broad class of normally hyperbolic template-anchor systems can be seen as special cases of
our construction. To express this formally, let (B, f) denote a smooth dynamical system consisting of a smooth manifold
B and a vector field f on B. Let φft (·) denote the flow of f . Suppose that (M̃, g̃) is another smooth dynamical system
with flow φg̃t (·). For simplicity, assume that both vector fields are “complete” in the sense that their respective flows
are respectively defined on all of B × R and M̃ × R. One reasonable criterion for approximation is that there exists a
surjective map P̃ : B → M̃ which plays the role of “model reduction” and satisfies P̃ ◦ φft = φg̃t ◦ P̃ . In other words,
flowing a point x forward by φft followed by reduction by P̃ is the same as flowing P̃ (x) forward by φg̃t . We say that P̃
is a “semi-conjugacy” between the families φft and φg̃t . If P̃ is at least C1, then the following two diagrams commute and
are equivalent1.

B B

M̃ M̃.

φft

P̃ P̃

φg̃t

B TB

M̃ TM̃.

f

P̃ DP̃
g̃

(1)

If P̃ is a smooth submersion, we also say that f is a “lift” of g̃.
Given a dynamical system (B, f) and a surjective submersion P̃ : B → M̃ with connected fibers (level sets), it is

a textbook exercise to show that f is a lift of some vector field g̃ on M̃ if and only if the Lie bracket [h, f ] ∈ ker DP̃
whenever h is a vector field taking values in ker DP̃ (Lee [2013] Exercise 8-18).

It is similarly straightforward to show that given any dynamical system (M̃, g̃) and smooth submersion P̃ : B → M̃,
there exist many vector fields f on B which are lifts of g̃ (Lee [2013] Exercise 8-18). It is easy to give explicit formulas
for such an f ; for example, one may take f(x) := DP̃ †x g̃(P̃ (x)), where (·)† is the Moore-Penrose pseudoinverse of a linear
map discussed in Appendix A.

A less trivial problem concerns the case in which (M̃, g̃) is embedded in B in the sense that there is an embedding
F : M̃ → B so that M := F (M̃) is a properly embedded submanifold of B and so that the vector field g : M → TB
defined by g := DF g̃ is everywhere tangent to M. Given a surjective smooth submersion P̃ : B → M̃, we define the
map P : B → B by P := F ◦ P̃ . Assuming that P̃ |M = F−1, it follows that P , when thought of as a map into M, is
a submersion and retraction (i.e., P (P (x)) = P (x) for every x ∈ B). The goal is to produce a vector field f : B → TB

1To see that commutativity of the left diagram implies commutativity of the right, simply take partial derivatives of the left diagram
with respect to t. To show the opposite implication, just note that DP̃ (f(x)) = g̃(P̃ (x)) implies that both P̃ ◦ φf

t (x) and φg̃
t ◦ P̃ (x) are

the unique solution of the initial value problem ẏ = g̃(P̃ (y)), y(0) = P̃ (x).
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such that f |M = g, f is a lift of g (in the sense that ∀x ∈ B : DPf(x) = g(P (x))), andM is an asymptotically stable
invariant manifold of B. In this case, the naïve solution of the preceding paragraph will no longer work, as DP †xg(P (x))
will generally no longer by tangent toM for x ∈M, soM will not be an invariant manifold of f . The main contribution
of our work (in §3) is to give an explicit formula for constructing a vector field f with flow φt(·) such that f is a lift of g
given B,M̃, g̃, F , and a couple other ingredients, at least in the case that the embeddingM is the level set of a smooth
submersion; i.e., ifM can be expressed as the set of points satisfying some constraints (which must be full rank). In the
case we consider, in which B is an open subset of Rn, this formula for f will involve only standard matrix computations.
Furthermore, f will renderM asymptotically stable and normally hyperbolic for suitable parameter choices.

Our construction works by separately constructing the components of a vector field f := fh + fv, where we refer to
fh as the “horizontal” vector field and to fv as the “vertical” vector field fv. The vertical vector field is responsible for
the stabilization ofM, and the horizontal vector field is responsible for ensuring that f is a lift of g.

SinceM is a subset of B, different language can be used to discuss model reduction and there is further justification
for the value of P as a model reduction tool. Following Fenichel [1973, 1977]; Hale [1969]; Bronstein and Kopanskii
[1994], we make the following definition:

Definition 1. Suppose thatM is asymptotically stable under the flow φt(·) with basin of attraction B. We say that
M has “asymptotic phase” if there exists a map P : B → B with P (B) =M such that for any x ∈ B:

lim
t→∞

‖φt(x)− φt(P (x))‖ = 0.

We refer to P as the “phase map” or simply as “phase”, and say that M has Ck asymptotic phase if the map
P : B → B is Ck.

If M has asymptotic phase as the result of our construction, then not only do trajectories in B approach M; they
approach specific trajectories inM. This is the most important reason that our approach yields a dynamical system on B
for which the dynamics onM are a good approximation. Unlike approximation techniques like linearization, approximation
using our map P on B does not get worse on longer time intervals; if the dynamics are deterministic, the approximation
gets better the longer the time of execution is.

The remainder of this paper is organized as follows. In §2, we first motivate our construction by proving Theorem 1,
which shows that the vector field f on the basin of attraction of a normally hyperbolic invariant manifold always admits
a certain decomposition f = fh + fv. In §3, we then describe our construction, which works by explicitly constructing
vector fields fh and fv, in the case thatM is the regular level set of a submersion G : B → Rn−k. In §4, we prove that
our construction rendersM normally hyperbolic with asymptotic phase, and bothM and its asymptotic phase “persist”
under perturbations of our constructed vector field. In §5 we give a few simple, but hopefully illustrative, examples on how
our results can be applied to physical systems. In §6, we show that Lyapunov functions for the dynamics on M extend
in a natural way to Lyapunov functions on all of B, the basin of attraction ofM under our constructed dynamics. In §7
we discuss topological constraints arising from our assumptions and indicate that our approach might generalize to the
case in which M is not a regular level set. The paper concludes with suggestions for future work and discussion of the
relevance of this work to physical and biological systems of practical interest.

We assume basic familiarity with linear algebra, smooth dynamical systems theory, and point-set and differential
topology. In the appendices, we briefly review relevant notions from these different subjects. We also give a brief overview
of definitions and results from the theory of normally hyperbolic invariant manifolds. In this work, we make some use of
notions from the mathematical framework of “fibered manifolds”, “fiber bundles”, and “connections”; see, e.g., Kolár
et al. [1999]. In an attempt to make our work more self-contained, we briefly summarize relevant aspects of these concepts
in Appendix C, and prove some results on connections in Appendix E which we will have use for in proving some of our
main results.

§ 2 Motivation: decomposition of NHIM-defining vector fields
Normally hyperbolic invariant manifolds (NHIMs) are generalizations of hyperbolic fixed points and periodic orbits.

NHIMs have desirable properties from the perspective of model reduction, as will be discussed in §2.3. We will now discuss
a decomposition of the vector field f on the stability basin B of a k-dimensional NHIMM which lends insight into how
one might construct dynamics on an open set B containingM renderingM exponentially stable and normally hyperbolic
in the case that asymptotic phase is at least C2.

The key idea behind the following Theorem 1 is that f may be decomposed into two parts playing distinct roles:
fv ensures that M is asymptotically stable, and fh ensures that P is the asymptotic phase of M. For stable NHIMs
additionally possessing C2 asymptotic phase, such a natural decomposition of the flow in the stability basin is always
possible, and inverting it provides a design tool for specifying anchor dynamics that produce a desired template dynamic.
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The idea behind this result produced the construction in §3 which, under certain assumptions, allows one to take a vector
field on a compact submanifoldM of an open set B ⊆ Rn together with a phase map P : B → B and explicitly construct
a vector field on B such thatM is a NHIM. Fiber bundles and connections, used below, are defined in Appendix C.

Theorem 1. Let r ≥ 2 and letM be a Cr exponentially stable NHIM of the Cr vector field f with basin of attraction
B ⊆ Rn and additionally possessing Cr asymptotic phase P : B → B. Then there exists a decomposition of f = fh+fv,
with fv taking values in VB := ker DP and with DPfh(x) = f(P (x)) for all x ∈ B. In particular, fh|M = f |M.

Proof. As we will see in Proposition 1, (B,P,M) is a Cr fibered manifold. Lemma 6 in Appendix E shows that
there exists a Cr−1 connection HB for P on B which restricts to TM on M. Letting VB := ker DP , we see that
B = VB ⊕ HB, and we may uniquely write f = fh + fv, with fh taking values in HB and fv taking values in VB.
Lemma 7 in Appendix E shows that fh is Cr−1, and hence fv := f − fh is also Cr−1.

Next, we will informally state some results from the theory of NHIMs which we will use to prove Theorem 2 in §4.
First, in §2.1, we state Proposition 1 describing the structure of the basin of attraction of a NHIM – in particular, this
proposition shows that asymptotically stable NHIMs have unique asymptotic phase. Next, in §2.2, we state Propositions
2 and 3 – Proposition 2 shows that NHIMs and the structure of their stability basins persist under small perturbations
of their defining vector fields, and Proposition 3 shows that every invariant manifold persisting under small perturbations
of its defining vector field is normally hyperbolic. Finally, in §2.3 we discuss the implications of these results for model
reduction.

We will consider only compact, asymptotically stable NHIMs in what follows. All NHIMs we consider are embedded
submanifolds of Rn, and the same is true for all NHIMs in Propositions 1, 2, and 3. Precise definitions and statements of
the following results are given in Appendix F.

2.1. The structure of the basin of attraction of a NHIM — We defined “asymptotic phase” in
Definition 1. x ∈ B has the same asymptotic phase as q ∈M if φt(x) and φt(q) asymptotically coalesce. However, it could
conceivably be the case that for some point x ∈ B, there are multiple points q1, q2 ∈ M such that φt(x) asymptotically
coalesces with both φt(q1) and φt(q2). A more stringent concept that removes this ambiguity is that of “unique asymptotic
phase”. IfM has unique asymptotic phase, it can still be the case that for some x ∈ B, φt(x) can asymptotically coalesce
with multiple points of M – however, there will be a unique point of M that φt(x) asymptotically coalesces with most
rapidly. We will use this terminology in stating results in this section. Following (Hale [1969] p. 217) and §I.E. of Fenichel
[1973], we give the following definition making the notion of “unique asymptotic phase” precise.

Definition 2. We say thatM has “unique asymptotic phase” ifM has asymptotic phase P : B → B and additionally
for any x ∈ B and any q ∈M not equal to P (x),

lim
t→∞

‖φt(x)− φt(P (x))‖
‖φt(x)− φt(q)‖

= 0.

We say thatM has “Ck unique asymptotic phase” ifM has unique asymptotic phase and if the map P : B → B is
Ck.

Next, we use this definition in stating Proposition 1 below which is a combination of results from Fenichel [1973,
1977], and Theorem 4.1 of Hirsch et al. [1977]. Informally, an asymptotically stable invariant manifoldM is “r-normally
hyperbolic” if, to first order, trajectories of f approachM r-times faster than nearby trajectories inM converge together
in positive time. Without further qualification, “normally hyperbolic” and “NHIM” refers to a NHIM which is at least
1-normally hyperbolic. A precise statement of this proposition is given in Appendix F.

Proposition 1. LetM⊆ Rn be a compact Cr k-dimensional asymptotically stable NHIM, invariant under the flow
φt(·) of the vector field f : Q → TQ defined on an open neighborhood Q ⊂ Rn ofM. Then the following holds:

1. The stability basin B ofM is partitioned into codimension-k Cr manifolds (Wq)q∈M permuted under the flow.
Explicitly, φt(Wq) = Wφt(q). Each Wq is Cr diffeomorphic to Rn−k. Each Wq intersects M transversally in
the point q.

2. Let P : B → B be the map that sends x ∈ B to q, where x ∈ Wq. Then P is a continuous map, and (B, P,M)
is a C0 fibered manifold with (n− k)-dimensional Euclidean fibers.

3. M has unique asymptotic phase given by P : B → B.

Kvalheim & Revzen
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4. If the flow satisfies an additional condition related to the rate of expansion of the flow on M2, then the phase
map P is Cr−1. It additionally follows that (B, P,M) is a Cr−1 fibered manifold with (n − k)-dimensional
Euclidean fibers.

2.2. Persistence of this structure under perturbations — Informally, two differentiable functions
are “C1-close” if both the functions and their derivatives are close at all points of their domains. Two embeddings of
a given manifold are “C1-close” if the functions defining the embeddings are C1-close. A precise definition is given in
Definition 6 in Appendix F. We will use this concept in stating Proposition 2, a more precise statement of which is also
given in Appendix F. Proposition 2 is a robustness result; it gives conditions under which M and its unique asymptotic
phase persist under C1-small perturbations by Cr vector fields.

Proposition 2. LetM⊆ Rn be a compact Cr k-dimensional asymptotically stable NHIM, invariant under the flow
φt(·) of the vector field f : Q → TQ defined on an open neighborhood Q ⊂ Rn ofM. Then the following holds:

1. Let g : Q → TQ be another Cr vector field which is sufficiently C1-close to f . Then there is a unique Cr embedded
submanifold M′, Cr diffeomorphic to M, C1-close to M, and a NHIM for the vector field g. Furthermore,
the fibers Wq persist; i.e., there is a unique partition of the stability basin B′ of M′ into codimension-k Cr
manifolds W ′q′ satisfying all of the properties with respect to g and M′ which were satisfied by the manifolds
Wp with respect to f andM. The fibers W ′q′ are C1-close to those of Wq on B ∩B′. M′ has unique asymptotic
phase P ′ whose fibers are W ′q′ , and P ′ : B′ → B′ is a continuous function.

2. If the flow satisfies an additional condition related to the rate of expansion of the flow on M3, then the phase
map P ′ corresponding to the perturbed vector field g is also Cr−1 if g is sufficiently C1-close to f , and (B′, P ′,M′)
is a Cr−1 fibered manifold with (n − k)-dimensional Euclidean fibers. Under these conditions, M′ has unique
Cr−1 asymptotic phase P ′.

Next, without being too precise, we state a result of Mané [1978] stating a partial converse result.

Proposition 3. Let M be a compact invariant manifold of the C1 vector field f which persists under C1-small
perturbations to f . ThenM is normally hyperbolic.

2.3. Implications of NHIM results for model reduction — Propositions 1 and 2 show that normally
hyperbolic invariant manifolds have great utility in model reduction.

If a dynamical system possesses an asymptotically stable NHIM M, Proposition 1 says that not only do trajectories
in the basin of attraction B approachM, but these trajectories actually approach specific trajectories inM. This means
that trajectories in B can be approximated by trajectories in M, justifying an approximation of the dynamics on B by
the dynamics restricted toM. The unique asymptotic phase property implies that corresponding to each trajectory in B,
there is a unique best approximating trajectory inM.

Proposition 2 shows that normally hyperbolic invariant manifolds are robust; they persist under small perturbations
of the vector field. This is important from a physical modeling perspective – since measurements of physical quantities
can only be obtained with finite precision, persistence of NHIMs has the implication that they remain present in models
despite small parameter errors, and thus can actually meaningfully represent features of the physical world.

Proposition 3 shows in a precise sense that every compact invariant manifold persisting under all small perturbations is
normally hyperbolic. This means that every model reduction that produces a robust model on a compact manifold arises
from the class of models we discuss here.

§ 3 Attractors arising as regular level sets
In this section, we present our main contribution: we “reverse-engineer” the results of §2, producing a general algorithm

for anchoring templates in anchors in such a way that the template is an asymptotically stable NHIM. In order to make
our construction more concrete and to increase the accessibility of this work, we only consider Euclidean ambient spaces
in what follows. The reader fluent in Riemannian geometry will recognize that much, if not all, of our construction can
be generalized to the case in which B (used below) is an open subset of a Riemannian manifold.

3.1. The setup — Let M̃ be a compact, connected k-dimensional Cr manifold (r ≥ 1) and g̃ be a Cr vector field on M̃.
The M̃ manifold is an abstracted template, allowing the template dynamics to be described in whatever representation
is most natural. Let B be a connected open subset of Rn, equipped with the standard Euclidean inner product 〈·, ·〉 and

2See the precise statement of this proposition in Appendix F.
3See the precise statement of this proposition in Appendix F.
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norm ‖ · ‖. Let F : M̃ ↪→ B be a proper Cr embedding, and denote M := F (M̃) and g := DF (g̃). Here M is the
concrete instance of the template that appears in the anchor’s state space.

In this section, we describe an approach to defining a vector field on B rendering M asymptotically stable with
unique asymptotic phase and normally hyperbolic, under the primary assumption thatM is the level set of a submersion
G : B → Rn−k. We accomplish this by constructing a specific connection on B and then constructing vector fields fh and
fv as in §2. We now state our assumptions in detail.

3.2. Assumptions —
3.2.1. The attractor as a regular level set — Let G : B → Rn−k be a Cr submersion. This implies that G−1(0) is a
k-dimensional Cr embedded submanifold of B. We require thatM = G−1(0), i.e., we know how to define the attractor
using a set of simultaneous constraints which are never redundant, i.e. all constraints are always active. We make the
additional assumption thatM is compact. We write the i-th component of G as Gi, so that

G(x) = (G1(x), . . . , Gn−k(x)) . (2)

3.2.2. The phase map — We assume there exists a Cr map P̃ : B → M̃ satisfying P̃ |M = F−1. Define the map
P : B → B by P := F ◦ P̃ . It follows that P fixes the set of points inM. Viewed as a map intoM, P is a submersion
and a retraction. Note that for x ∈M, P−1(x) = P̃−1(P̃ (x)).
3.2.3. A specific connection — We assume

∀x ∈ B : TxB = ker DPx ⊕ ker DGx, (3)

so that ker DG is a connection (as defined in Appendix C) for P on B. Note that ker DPx = ker DP̃x since DPx =
DFP̃ (x)DP̃x and DFP̃ (x) is full rank, so we could have written equation (3) using ker DP̃x. Intuitively, this means any two
states that coalesce asymptotically must be distinguishable to first order using the constraint functions.
3.2.4. Completeness — This last assumption will be used to ensure that vector fields we define later are complete,
i.e. the trajectories of these vector fields never leave B and never tend to ∞ in norm in finite time. We assume that
∀x ∈ B : ‖G(x)‖ < supy∈B ‖G(y)‖ and that ‖G(x)‖ → supy∈B ‖G(y)‖ as x approaches any point of ∂B ∪ {∞}.

For later purposes, we define the function V : B → R by

V (x) := ‖G(x)‖2 =
n−k∑
i=1

G2
i (x), (4)

where Gi : B → R is the ith component function of G.
3.3. Consequences of the assumptions — We define the family of projections ΠP : TB → ker DP for each
x ∈ B by

ΠP
x := [I − DP †xDPx]. (5)

where (·)† denotes the Moore-Penrose pseudoinverse relative to the standard inner product on Rn. We will occasionally
suppress the subscript x in the sequel when the notation becomes cumbersome, unless we wish to emphasize the role of
x. Note that ΠP

x : TxB → ker DPx.

Lemma 1. The function V satisfies:

1. V −1(0) =M.

2. ∀x ∈ B \M : V (x) > 0.

3. ∀x ∈ B \M : ΠP
x∇V (x) 6= 0,

Geometrically, the third property says that there always exist vectors tangent to the fibers of P pointing in some
direction along which the value of V changes. Note that the third condition implies that V is a submersion on B \M,
because V : B → R is a submersion if and only if ∇V (x) 6= 0 for all x ∈ B.

Proof. Since V is the square of the Euclidean norm of G, V −1(0) = G−1(0) =M. Also, since G is nonzero off ofM,
the norm of G is strictly positive off of M and hence V is strictly positive on B \M. It remains only to show the
third property.

The fibers of P are (n− k)-dimensional, the codomain of G is (n− k)-dimensional, and the fibers of P intersect
the level sets of G transversally (by equation (3)). These facts together with the inverse function theorem imply
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that the restriction of G to any fiber of P is a local diffeomorphism. If x 6∈ M, then G(x) 6= 0. Since the function
y 7→ ‖y‖2 is a submersion on Rn−k \ {0}, it follows that the restriction V |P−1(P (x)) : P−1(P (x))→ R is a submersion
at x since the composition of submersions is again a submersion. Hence

DVxΠP
x

is nonzero. For any x ∈ B and any w ∈ TxRn with DVxΠP
xw 6= 0, we have DVxΠP

xw = 〈∇V (x),ΠP
xw〉 =

〈ΠP
x∇V (x), w〉 (since orthogonal projections are self-adjoint), so it follows that ΠP

x∇V (x) 6= 0.

Lemma 2. For d < supx∈B V (x), every sublevel set V −1((−∞, d]) is compact.

Proof. Note that by composing V with any diffeomorphism of R onto the interval (−1, 1) we may assume that
supx∈B V (x) < ∞. Then V extends to a continuous function Ṽ : B̄ → R by defining Ṽ to be equal to supx∈B V (x)
everywhere on ∂B. It follows that if d < supx∈B V (x), V −1((−∞, d]) = Ṽ −1((−∞, d]) is a closed subset of the
closed subset B̄, so V −1((−∞, d]) is closed in Rn. Furthermore, V −1((−∞, d]) is bounded since the fact that
V (x)→ supx∈B V (x) as x→∞ implies that there is some bounded set outside of which V (x) > d, so V −1((−∞, d])
must be contained in this bounded set. The Heine-Borel Theorem now implies that V −1((−∞, d]) is compact.

Corollary 1. Level sets of G are compact.

Proof. Given any z ∈ Rn, G−1(z) is closed in B and hence also closed in the compact subset V −1(‖z‖2) ⊆ B.

Lemma 3. If r ≥ 2, then HB := ker DG is a “complete” connection (defined in Appendix C).

Proof. Let γ : [0, 1] → M be any Cr path. Then γ̇ defines a Cr−1 vector field on the closed set γ([0, 1]), which
may be extended to a Cr−1 vector field g : M → TM on all of M (Lee [2013] Chapter 8). Lemma 7 shows that
the horizontal lift g̃ of g is a Cr−1 vector field. The horizontal lift of γ with any initial point q ∈ P−1(γ(0)) is the
solution to the initial value problem ẋ = g̃(x);x(0) = q on the time interval [0, 1]. The theory of ordinary differential
equations ensures that a solution exists on some time interval ([Hirsch and Smale, 1974] p. 162); furthermore, if
it can be guaranteed that the solution is confined to some fixed compact set, then the solution exists for all time
([Hirsch and Smale, 1974] page 171). Since HB = ker DG, the solution of the stated initial value problem is confined
to a single level set of G; by Corollary 1, this level set is compact. It follows that the solution of the initial value
problem exists for all time, and hence the lift of γ is defined on all of [0, 1]. Since γ was arbitrary, this completes the
proof.

Proposition 4. Assume r ≥ 2. The fibers of P are Cr diffeomorphic to Rn−k

Proof. Consider the vector field h : B → TB defined by h(x) := −ΠP
x∇V (x). As will be shown in the proof of

Proposition 6,M is a globally asymptotically stable invariant manifold of h, and each fiber of P is invariant under
the flow of h. Since P |M is the identity, each fiber of P intersectsM in a single point. It follows that the flow of h
restricted to any fiber of P yields a well-defined flow on this fiber with a globally asymptotically stable equilibrium
point. Since h is a Cr−1 vector field, Theorem 2.2 of Wilson [1967] shows that each fiber of P is Cr−1 diffeomorphic
to Rn−k. Theorem 2.10 on page 52 of Hirsch [1976] shows that two Cs manifolds are Cs diffeomorphic if and only if
they are C1 diffeomorphic, where s ≥ 1. Since we assumed r ≥ 2, this completes the proof.

Corollary 2. If r ≥ 2, (B, P̃ ,M̃,Rn−k) is a Cr fiber bundle.

Proof. Lemma 3 showed that if r ≥ 2, then HB := ker DG is a complete connection. It is a standard result that this
implies that P̃ : B → M̃ defines a Cr fiber bundle4 [Kolár et al., 1999; del Hoyo, 2015]. Proposition 4 showed that
the fibers are Cr diffeomorphic to Rn−k, completing the proof.

3.4. Lifting the dynamics on M to B — We will define the vector field fh : B → TB to be the vector field
such that ∀x ∈ B, fh(x) is the unique vector in HxB such that DPxfh(x) = g(P (x)). fh is the “horizontal lift” of g as
defined in Appendix C. It is shown in Lemma 7 in Appendix E that fh exists, is unique, and is Cr−1, but this will also be
clear from the following construction. Given g :M→ TM, we now explicitly construct the lift fh of g in a form amenable
to matrix computation. We use the standard identifications of TxRn with Rn and VxB,HxB as subspaces of Rn. Given
x ∈ B, define the matrix-valued function T : B → L(Rn,Rn) by

Tx :=
[
I − DG†xDGx

]
DP †xDPx + DG†xDGx. (6)

4Though, interestingly, often proved incorrectly [del Hoyo, 2015].
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Lemma 4. For all x ∈ B, Tx is invertible. Tx maps ker DGx isomorphically onto itself and Tx maps ker DPx
isomorphically onto (ker DGx)⊥. In particular, Tx isomorphically maps ker DGx and ker DPx onto subspaces which
are orthogonal with respect to the Euclidean inner product.

Proof. Let x ∈ B and let w ∈ TxB. Equation (3) tells us that w = wP +wG, with wP ∈ ker DPx and wG ∈ ker DGx.
Hence

Txw =
[
I − DG†xDGx

]
DP †xDPxwG + DG†xDGxwP (7)

From equation (7), it follows that Tx maps ker DGx into ker DGx and Tx maps ker DPx maps into (ker DGx)⊥. Equa-
tion (3) implies that ker DGx ∩ ker DPx = ∅. Since ker DGx = ker DG†xDGx, this fact and the rank-nullity theorem
imply that DG†xDGx maps ker DPx isomorphically onto (ker DGx)⊥ (since ker DGx and ker DPx have complimen-
tary dimension). A similar argument shows that

[
I − DG†xDGx

]
DP †xDPx maps ker DGx isomorphically onto itself.

This completes the proof, since invertibility of Tx follows from the algebraic fact that if a linear map splits into
isomorphisms between splittings of its domain and codomain, it is an isomorphism.

We now define the vector field f : B → TB by

fh(x) := T−1
x

[
TP (x)DPxT−1

x

]†
TP (x)g(P (x)) (8)

Proposition 5. fh is a lift of g, and fh|M = g.

Proof. We first prove that fh is a lift. That is, we show that ∀x ∈ B : DPxfh(x) = g(P (x)). The proof is a
computation:

DPxfh(x) = DPxT−1
x

[
TP (x)DPxT−1

x

]†
TP (x)g(P (x))

= T−1
P (x)[TP (x)DPxT−1

x ]Tx . . .

. . . T−1
x

[
TP (x)DPxT−1

x

]†
TP (x)g(P (x))

= g(P (x)),

with the last equality following since
[
TP (x)DPxT−1

x

] [
TP (x)DPxT−1

x

]† is the identity because
[
TP (x)DPxT−1

x

]
is

surjective. This proves fh is a lift of g.
We now show that fh|M = g. Since P |M is the identity, we need to show that ∀x ∈M:

T−1
x

[
TxDPxT−1

x

]†
Txg(x) = g(x).

But for every x ∈M, g(x) is tangent toM by assumption; that is, g(x) ∈ ker DGx. For x ∈M, DPx is the projection
ker DPx⊕ ker DGx → ker DGx = im DPx. Lemma 4 then implies that

[
TxDPxT−1

x

]
is an orthogonal projection map.

But the Moore-Penrose pseudoinverse of an orthogonal projection is the orthogonal projection itself5, and hence

T−1
x

[
TxDPxT−1

x

]†
Tx(g(x)) = T−1

x

[
TxDPxT−1

x

]
Tx(g(x))

= DPxg(x)
= g(x),

since the fact that P |M is the identity implies DPx is the identity on TxM.

3.5. Stabilizing M — We define the Cr−1 vector field fv : B → TB by:

fv(x) = −α(x)ΠP
x∇V (x), (9)

where ΠP is defined in equation (5), α0 > 0, and α : B → R is a Cr−1 function, such that ∀x ∈ B : α(x) ≥ α0.

Proposition 6. The flow of fv is complete. M is asymptotically stable under the flow of fv with basin of attraction
B, and each fiber of P is an invariant manifold of fv.

5In coordinates, an orthogonal projection may be written as UΣUT (where U is a square orthogonal matrix and Σ is diagonal with
diagonal entries equal to 1 or 0, and with rank equal to the dimension of the subspace projected onto), so (UΣUT )† = UΣUT using the
singular value decomposition formula for the pseudoinverse.
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Proof. First, we show that fibers of P are invariant under the flow. By construction, for any x ∈ B we see that fv lies
in the tangent space TxP−1(P (x)) (because ΠP

x is a projection onto ker DPx = TxP−1(P (x)). From this it follows
that the fibers of P are invariant manifolds of fv.

Our definition of V implies that ∀x ∈ M : ∇V (x) = 0. Hence ∀x ∈ M : fv(x) = 0, making M an invariant
manifold of fv. We compute the Lie derivative of V along fv as follows (using the standard inner product on Rn)
for x ∈ B \M:

LfvV (x) = 〈∇V (x), fh(x)〉
= −α(x)

〈
∇V (x),ΠP

x∇V (x)
〉
.

Since ΠP
x = [I −DP †xDPx] is a projection operator and projections are always positive-semidefinite, the assumptions

on V imply that the right side is zero on M and strictly negative off of M. It now follows that the flow of fv is
complete, since the trajectory with initial condition x is confined in positive time to the set V −1(−∞, V (x)] which
is compact by Lemma 2.

Since M is compact, V is zero on M and positive on B \M, V does not attain its supremum on B, and (by
the assumption in §3.2.4) V (x)→ supy∈B V (y) as x tends to any point of ∂B, the Lyapunov theorem (Wilson [1967]
Theorem 3.1) implies thatM is asymptotically stable with basin of attraction B.

3.6. Properties of the resulting vector field — As mentioned earlier, we define

f := fv + fh.

In this section, we prove that f has the desired properties.

Proposition 7. f : B → TB is complete, M is an asymptotically stable invariant manifold of f with basin of
attraction equal to B, and the fibers of P are invariant under the flow of f .

Proof. fv(x) vanishes onM, so for all x ∈M we see that f(x) = fh(x) = g(x) is in TxM = ker DGx. It follows that
M is an invariant manifold of f . Next, a computation shows:

LfV (x) = LfvV (x) + LfhV (x)
= LfvV (x).

LfhV is zero since ∇V (x) = 2(DGx)TG(x)6 and fh(x) ∈ HxB = ker DGx imply that

LfhV (x) = 〈V (x), fh(x)〉 = 〈2(DGx)TG(x), fh(x)〉 = 〈G(x),DGxfh(x)〉 = 〈G(x), 0〉 = 0.

Let x0 ∈ B and let φt(x0) be the solution at time t of the initial value problem ẋ = f(x), x(0) = x0. Since
LfV = LfvV < 0, for any t > 0 with t in the maximal interval of existence of φt(x0), φt(x0) ∈ V −1(−∞, V (x)]. The
assumption in §3.2.4 shows that V −1(−∞, V (x)] is compact, so φt(x0) is defined for all t > 0 and thus f is complete.

As in the proof of Proposition 6: sinceM is compact, V is zero onM and positive on B \M, V does not attain
its supremum on B, and (by the assumption in §3.2.4) V (x) → supy∈B V (y) as x tends to any point of ∂B, the
Lyapunov theorem (Wilson [1967] Theorem 3.1) implies thatM is asymptotically stable with basin of attraction B.

Finally, for every x ∈ B we have DPxf(x) = DPxfh(x) = g(P (x)), using the result of Proposition 5 and the fact
that fv(x) ∈ ker DPx. It follows that the fibers of P are invariant under the flow of f . This completes the proof.

We now set out to prove that M is (locally) exponentially stable, and furthermore that the rate of exponential
convergence can be made arbitrarily large by choosing α0 appropriately.

Lemma 5. Given x ∈ B, let dx := infy∈M ‖x − y‖ denote the distance from x to M. There exists an open
neighborhood UE ofM and positive constants k1, k2, k3 > 0 on which the following holds:

1. ∀x ∈ UE : k1d
2
x ≤ V (x) ≤ k2d

2
x

2. ∀x ∈ UE : 〈∇V (x),ΠP
x∇V (x)〉 ≥ k3d

2
x

6where (·)T is the adjoint or transpose
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Proof. V (x) = ‖G(x)‖2 by definition, so for x ∈ B and y ∈M we have

V (x) =
[
DGy(x− y) +O(‖x− y‖2)

]2
=
〈
x− y,DGTy DGy(x− y)

〉
+O(‖x− y‖3),

since G vanishes on M. Here, O(·) is the standard “big-oh” notation. For any y ∈ M, DGTy DGy maps NyM
isomorphically onto itself.7 From this and compactness ofM it follows that a := miny∈M ‖DGTy DGy|NyM‖ > 0. We
also have A := maxy∈M ‖DGTy DGy‖ < ∞. Using these facts and choosing y ∈ M to minimize the distance from x
toM, we find (since (x− y) ∈ NyM in this case):

a‖x− y‖2 −O(‖x− y‖3) ≤ V (x) ≤ A‖x− y‖2 +O(‖x− y‖3),

or
ad2
x −O(d3

x) ≤ V (x) ≤ Ad2
x +O(d3

x).
Choose U1 so that supx∈U1 dx is sufficiently small so that |O(d3

x)| < a
2d

2
x. Taking k1 := a − a

2 and k2 := A + a
2

completes the first part of the proof.
Since ΠP

x∇V (x) 6= 0 for all x ∈ B, taking U2 to be a precompact neighborhood ofM shows that

b := inf
x∈U2

‖ΠP
x |span{∇V (x)}‖ > 0.

It follows that

〈∇V (x),ΠP
x∇V (x)〉 ≥ b‖∇V (x)‖2.

For x ∈ B and y ∈M we have
V (x) = ∇V (x)(x− y) +O(‖x− y‖2).

Squaring this equation yields

k2
1d

4
x ≤ V 2(x) = 〈∇V (x)(x− y),∇V (x)(x− y)〉+O(‖x− y‖3),

where the first inequality follows from the proof of the first claim. Choosing y ∈M so that ‖x− y‖ = dx and taking
norms, we have

k2
1d

4
x ≤ ‖∇V (x)‖2d2

x +O(d3
x)

Choose U2 to be sufficiently small that supx∈U2 dx < 1 and |O(d3
x)| < k2

1
2 d

2
x for all x ∈ U2. It follows that

〈∇V (x),ΠP
x∇V (x)〉 ≥ b‖V (x)‖2 ≥ k3d

2
x

for x ∈ U2, with k3 := b
(
k2

1
2

)
. Taking UE := U1 ∩ U2 completes the proof.

Proposition 8. M is exponentially stable on an open neighborhood UE ofM. Furthermore, the rate of exponential
convergence can be made arbitrarily large by picking infx∈ŪE α(x) large.

Proof. Let UE , k1, k2, k3, a be as in Lemma 5 and define k4 := infx∈ŪE α(x). For all x ∈ UE , the conclusion of Lemma
5 implies that

d

dt
V (φt(x)) = 〈∇V (φt(x)), fv(φt(x)) + fh(φt(x))〉

= 〈∇V (φt(x)),−α(φt(x))ΠP
φt(x)∇V (φt(x)) + fh(φt(x))〉

= 〈∇V (φt(x)),−α(φt(x))ΠP
φt(x)∇V (φt(x))〉

≤ −α(φt(x))k3

k2
V (φt(x))

≤ −k4k3

k2
V (φt(x)),

7To see this, note that ker DGy = TyM, so TyM ⊆ ker DGT
y DGy . To show the reverse inclusion, if DGT

y DGyv = 0, then
〈DGT

y DGyv, v〉 = 〈DGyv,DGyv〉 = 0, so v ∈ ker DGy = TyM. Hence the rank of DGy is equal to the dimension of NyM. Finally, the
range of DGT

y DGy is contained in NyM, since for any v ∈ TyRn, w ∈ TyM, we have 〈DGT
y DGyv, w〉 = 〈DGyv,DGyw〉 = 〈DGyv, 0〉 = 0,

so the rank-nullity theorem implies that the range of DGT
y DGy is actually all of NyM and hence for y ∈ M, DGT

y DGy maps NyM
isomorphically onto itself.
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with the third equality following since 〈∇V (φt(x)), fh(φt(x)〉 = 0 as explained in the proof of Proposition 7. Again
letting dx denote the distance from x to M, the result of Lemma 5 together with an application of Gronwall’s
inequality together yields

dφt(x) ≤
[
V (φt(x))

k1

] 1
2

≤
[
V (x)
k1

] 1
2

e−
k4k3
2k2

t

≤ Cdxe−µt,

with C =
[
k2
k1

] 1
2
> 0 and µ = k4k3

2k2
. We see that we can make µ arbitrarily large by picking k4 = infx∈ŪE α(x)

sufficiently large. This completes the proof.

§ 4 Normal hyperbolicity of M and robustness of our construction
We have shown that under the flow induced by the vector field f on B, M is asymptotically stable with basin of

attraction equal to B. We have also shown thatM is exponentially stable on the neighborhood UE ⊃M, with exponential
rate µ proportional to minx∈ŪE α(x). In Appendix G, we show that if minx∈ŪE α(x) (and hence µ) is chosen sufficiently
large, M can be made k-normally hyperbolic for any k ∈ N. As a corollary of this fact and other results in Appendix
G, we have the following Theorem 2 showing that our construction in §3 is robust – it persists under perturbations. We
prove this theorem in Appendix G.

Theorem 2. Assume r > 3. Let µ = k4k3
2k2

be as in Proposition 8, where k4 = minx∈ŪE α(x), and choose α : B → R
so that

k4 > r
2k2

k1
L.

Then there exists θ > 0 sufficiently small such that if g : B → TB is another Cr−1 vector field such that

sup
x∈B
‖g(x)− f(x)‖ < θ

sup
x∈B
‖Dg(x)− Df(x)‖ < θ,

then there exists an open set Bg ⊆ B positively invariant under the flow of g and a Cr−1 exponentially stable normally
hyperbolic submanifold Mg Cr−1 diffeomorphic to M and C1-close to M. The stability basin of Mg contains Bg.
Mg has the unique asymptotic phase property with a Cr−2 phase map P g : Bg → Mg making (Bg, P g,Mg) into a
Cr−2 fibered manifold with (n− k)-dimensional Euclidean fibers. The fibers of P g are C1-close to the fibers of P on
Bg.

§ 5 Examples
5.1. Basic examples — In this section we present some simple examples which we hope nonetheless serve as concrete

illustrations of the theory. In all examples, we created plots of trajectories using a NumPy implementation [Revzen, 2014]
of the dopri5 ODE integrator [Hairer et al., 2010] to numerically integrate vector fields.
5.1.1. An equilibrium point — Let Q = B = R2 with the Euclidean inner product and let M = {{0, 0}} and define
g : M → TM by g(0, 0) = [0, 0]T . M is the zero level set of the smooth submersion G : R2 → R2 defined by
G(x, y) = [x, y]T . The function P : R2 → R2 is defined by P (x, y) = [0, 0]T for all (x, y) ∈ R2. It follows that
∀(x, y) ∈ R2, ker DP(x,y) = T(x,y)R2 and ker DG(x,y) = {(0, 0)} ∈ T(x,y)R2. Hence R2 = ker DG ⊕ ker DP , so the
assumption in §3.2.3 is satisfied. Additionally, ‖G‖ tends to ∞ as ‖(x, y)‖ → ∞, so the assumption in §3.2.4 is satisfied.
fh : B → TB as defined in equation (8) is the zero vector field, and we thus have f = fv. ΠP

(x,y) in the definition of fv
in equation (9) is the identity map on T(x,y)R2 and thus (taking the function α to be α ≡ 1/2) f = fv is given by

f(x, y) = −1
2∇‖G(x, y)‖2

= −[x, y]T .
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5.1.2. A limit cycle — Let Q = R2 with the Euclidean inner product, let B = {(x, y) ∈ R2|‖(x, y)‖ ≤ 2} \ {(0, 0)}, and
let M = S1 := {(x, y) ∈ R2|x2 + y2 = 1}. Note that M is the zero level set of the smooth submersion G : B → R
defined by G(x, y) := x2 + y2 − 1, and ‖G‖ tends to the constant value 1 as (x, y) → ∂B from within B in accordance
with the completeness assumption8 in §3.2.4. Define P : B → B by P (x, y) := [x,y]T√

x2+y2
. Define g : M → TM by

g(x, y) := [−y, x]T . We compute

DP(x,y) = 1√
x2 + y2

[
1− x2

x2+y2 − xy
x2+y2

− xy
x2+y2 1− y2

x2+y2

]

By inspection, ker DP(x,y) = span{[x, y]T } and ker DG(x,y) = span{[x, y]T }⊥ = span{[−y, x]T }, so TB = ker DG ⊕
ker DP in accordance with the assumption in §3.2.3. Using the requirements that DP(x,y)fh(x, y) = g(P (x, y)) and
fh(x, y) ∈ ker DG(x,y), we find:

fh(x, y) = [−y, x]T ,

since DP(x,y)[−y, x]T = 1√
x2+y2

[−y, x]T = g

(
x√
x2+y2

, y√
x2+y2

)
= g(P (x, y)).

By the chain rule, ∇V (x, y) = 2DGT(x,y)G(x, y) = 2(x2 + y2 − 1)[2x, 2y]T and ΠP
(x,y) is the identity when restricted

to the subspace span{[x, y]T }. We thus compute fv(x, y) := −α(x, y)ΠP
(x,y)∇V (x, y) as:

fv(x, y) = −4(x2 + y2 − 1)α(x, y) [x, y]T .

We now form the vector field f := fv + fh. We chose α(x, y) ≡ 0.5 and plotted the resulting the vector field f and
multiple trajectories of f in Figure 1.

Next, we illustrate the robustness of the structure of our construction to perturbations of the vector field f . We form
the perturbed vector field fpert as follows:

fpert(x, y) := f(x, y) + ε[η1(x, y), η2(x, y)]T ,

where η1, η2 : B → R are C2 functions and ε > 0 is a small parameter. Theorem 2 says that for ε > 0 sufficiently small,
M and P persist –M is deformed into a C1-close invariant manifold M̃ diffeomorphic toM, and P is deformed into a
C1-close phase map P̃ . We arbitrarily chose to define η1(x, y) := x3 cos(xy) and η2(x, y) := xyexy. Trajectories of fpert

are shown in Figure 2 for ε = 0.5, which illustrates the persistence ofM.
5.1.3. An invariant sphere — Let Q = R3 with the Euclidean inner product, let B = {(x, y, z)|‖(x, y, z) ≤ 2}\{(0, 0, 0)},
and let M = S2 := {(x, y, z) ∈ R3|x2 + y2 + z2 = 1}. Note that M is the zero level set of the smooth submersion
G : B → R defined by G(x, y, z) := x2 + y2 + z2 − 1, and ‖G‖ tends to the constant value 1 as (x, y, z) → ∂B from
within B in accordance with the completeness assumption9 in §3.2.4. Define P : B → B by P (x, y, z) := [x,y,z]T√

x2+y2+z2
.

Define g :M→ TM by g(x, y, z) := [−y, x, 0]T . The choice ofM, P , and G will make the analysis very similar to that
of the example in §5.1.2. We compute

DP(x,y,z) = 1√
x2 + y2 + z2

1− x2

x2+y2+z2 − xy
x2+y2+z2 − xz

x2+y2+z2

− xy
x2+y2+z2 1− y2

x2+y2+z2 − yz
x2+y2+z2

− xz
x2+y2+z2 − yz

x2+y2+z2 1− z2

x2+y2+z2

 .
By inspection, ker DP(x,y,z) = span{[x, y, z]T } and ker DG(x,y,z) = span{[x, y, z]T }⊥, so B = ker DG⊕ ker DP in accor-
dance with the assumption in §3.2.3. Using the requirements that DP(x,y,z)fh(x, y, z) = g(P (x, y, z)) and fh(x, y, z) ∈
ker DG(x,y,z), we find:

fh(x, y) = [−y, x, 0]T ,
8In this example, everything would actually work fine if we took B := R2 \{0, 0}. However, our assumption in 3.2.4 does not guarantee

that this would be the case because then ‖G‖ would not approach a constant value on ∂B ∪ {∞}. Perhaps a better assumption in lieu
of the one in §3.2.4 would eliminate this technical annoyance.

9In this example (similarly to the last example), everything would actually work fine if we took B := R3 \ {0, 0}. However, our
assumption in 3.2.4 does not guarantee that this would be the case because then ‖G‖ would not approach a constant value on ∂B∪{∞}.
Perhaps a better assumption in lieu of the one in §3.2.4 would eliminate this technical annoyance.
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Figure 1: A quiver plot of f := fh + fv from the example in §5.1.2 is shown together with three sample trajectories
of f . The attractor, M , is shown in red.

since DP(x,y)[−y, x, 0]T = 1√
x2+y2+z2

[−y, x, 0]T = g

(
x√

x2+y2+z2
, y√

x2+y2+z2
, z√

x2+y2+z2

)
= g(P (x, y, z)).

By the chain rule, ∇V (x, y, z) = 2DGT(x,y,z)G(x, y, z) = 2(x2 + y2 + z2 − 1)[2x, 2y, 2z]T and ΠP
(x,y,z) is the identity

for all (x, y, z). We thus compute fv(x, y, z) := −α(x, y, z)ΠP
(x,y,z)∇V (x, y, z) as:

fv(x, y, z) = −4(x2 + y2 + z2 − 1)α(x, y, z) [x, y, z]T .

We now form the vector field f := fv + fh. We chose α(x, y) ≡ 0.5 and plotted the resulting vector field f and
multiple trajectories of f in Figure 3.

Next, we illustrate the robustness of the structure of our construction to perturbations of the vector field f . We form
the perturbed vector field fpert as follows:

fpert(x, y) := f(x, y) + ε[η1(x, y, z), η2(x, y, z), η3(x, y, z)]T ,

where η1, η2, η3 : B → R are C2 functions and ε > 0 is a small parameter. Theorem 2 says that for ε > 0 sufficiently
small,M and P persist –M is deformed into a C1-close invariant manifold M̃ diffeomorphic toM, and P is deformed
into a C1-close phase map P̃ . We arbitrarily chose to define η1(x, y, z) := xex

2y cos(y), η2(x, y, z) := xe−z
2 sin(z), and

η3(x, y, z) := xyz. Trajectories of fpert are shown in Figure 4 for ε = 0.7, which illustrates the persistence ofM.
5.2. An extended example — In this section we use the tools of our theory in a more involved example motivated

from a physical system – the double pendulum. In this extended example, we again created plots of trajectories using a
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Figure 2: A quiver plot of the perturbed f from the example in §5.1.2 is shown together with three sample trajectories
of this perturbed vector field. This plot suggests that the limit cycle M persists under the perturbation to a new
limit cycle M̃, consistent with the conclusion of our Theorem 2.

NumPy implementation [Revzen, 2014] of the dopri5 ODE integrator [Hairer et al., 2010] to numerically integrate vector
fields..
5.2.1. The kinematic double pendulum — Let Q := (−π, π)× (−π, π) ⊂ R2. Let M̃ = [−π, π] with {−π} identified
with {π}, so that M̃ ∼= S1. Note that TM̃ ∼= M̃ × R. Let the vector field g̃ : M̃ → TM̃ be given by g̃(ϕ) = sh, with
sh > 0 (h for “horizontal”), so the dynamics on M̃ are given by ϕ̇ = sh. ϕ should be thought of as the “phase” of
the oscillation of a single energy-conserving pendulum. Let 0 < δ < 2π and 0 < a1, a2 < π and define the embedding
F : M̃ → Q by

F (ϕ) = (θ1(ϕ), θ2(ϕ)) := (a1 sin(ϕ− δ), a2 sin(ϕ+ δ)),

DefineM = F (M̃) ⊆ Q. Using the identity sin(κ+ β) = sin κ cosβ + cosκ sin β, we see that

θ2

a2
− θ1

a1
= 2 sin δ cosϕ

θ2

a2
+ θ1

a1
= 2 cos δ sinϕ.
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Figure 3: Three sample trajectories of f from the example in §5.1.3 are shown. The attractor, M , is shown in red.

It follows thatM is the zero level set of the smooth map G : (−π, π)× (−π, π)→ R defined by

G(θ1, θ2) =
[

1
2 sin δ

(
θ2

a2
− θ1

a1

)]2
+
[

1
2 cos δ

(
θ1

a1
+ θ2

a2

)]2
− 1. (10)

We compute:

DG(θ1,θ2) =
[
− 1

2a1 sin2 δ

(
θ2
a2
− θ1

a1

)
+ 1

2a1 cos2 δ

(
θ2
a2

+ θ1
a1

)
, 1

2a2 sin2 δ

(
θ2
a2
− θ1

a1

)
+ 1

2a2 cos2 δ

(
θ2
a2

+ θ1
a1

)]
, (11)

which is zero if and only if 1
sin2 δ

(
θ2
a2
− θ1

a1

)
= 1

cos2 δ

(
θ2
a2

+ θ1
a1

)
and 1

sin2 δ

(
θ2
a2
− θ1

a1

)
= − 1

cos2 δ

(
θ2
a2

+ θ1
a1

)
, which is

possible if and only if θ1 = θ2 = 0. It follows that G is a submersion on (−π, π) × (−π, π) \ {0, 0}. We define B to be
any open neighborhood ofM contained in (−π, π)× (−π, π) \ {0, 0} ⊂ Q such that ‖G‖ does not attain its supremum
on B and ‖G‖ tends to its supremum as (θ1, θ2) approaches any point of ∂B10. We define the map P̃ : B → M̃ simply
by extending the formula for F−1 :M→ M̃ to all of B. I.e., P̃ is given by

P̃ (θ1, θ2) = atan2
(

1
2 cos δ

(
θ1

a1
+ θ2

a2

)
,

1
2 sin δ

(
θ2

a2
− θ1

a1

))
. (12)

For notational brevity, define

D :=

√
1

4 cos2 δ

(
θ1

a1
+ θ2

a2

)2
+ 1

4 sin2 δ

(
θ2

a2
− θ1

a1

)2

k1 := 1
2a1 cos2 δ

(
θ1

a1
+ θ2

a2

)
− 1

2a1 sin2 δ

(
θ2

a2
− θ1

a1

)
k2 := 1

2a2 cos2 δ

(
θ1

a1
+ θ2

a2

)
+ 1

2a2 sin2 δ

(
θ2

a2
− θ1

a1

)
.

10Many such sets B always exist. We make no effort to explicitly determine a specific B here.
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Figure 4: Three sample trajectories of the perturbed vector field from from the example in §5.1.3 are shown here.
This plot suggests that the invariant sphere persists under the perturbation to a new invariant manifold diffeomorphic
to a sphere, consistent with the conclusion of our Theorem 2.

Using the identity sin(κ+ β) = sin κ cosβ + sin β cosκ, it now follows that P : B → B, P := F ◦ P̃ is given by

P (θ1, θ2) = (θ1, θ2)
D

,

and

DP(θ1,θ2) = 1
D3

[
D − θ1

2Dk1 − θ1
2Dk2

− θ2
2Dk1 D − θ2

2Dk2

]
.

We also compute:

DP̃(θ1,θ2) = 1
D2

[
− 1

2 sin δ

(
θ2
a2
− θ1

a1

)
, 1

2 cos δ

(
θ2
a2

+ θ1
a1

)]
.

We now investigate whether the transversality condition (3) (TB = ker DG ⊕ ker DP ) holds on B. Since F is
an embedding and P = F ◦ P̃ , we see that ker DP̃ = ker DP . It follows that for any (θ1, θ2) ∈ B, T(θ1,θ2)B =
ker DP̃(θ1,θ2) ⊕ ker DG(θ1,θ2) if and only if the determinant of the matrix [DGT |DP̃T ](θ1, θ2) is nonzero:

T(θ1,θ2)B = ker DP̃(θ1,θ2) ⊕ ker DG(θ1,θ2) ⇐⇒ det
[
DG(θ1,θ2)
DP̃(θ1,θ2)

]
6= 0. (13)

Examination of the matrix [DGT |DP̃T ](θ1, θ2) shows that det[DGT |DP̃T ](θ1, θ2) is invariant under nonzero scaling of
(θ1, θ2). I.e.,

∀k 6= 0 : det
[
DG(kθ1,kθ2)
DP̃(kθ1,kθ2)

]
= det

[
DG(θ1,θ2)
DP̃(θ1,θ2)

]
. (14)

In order to show that condition (3) holds on B, it therefore suffices to show that det[DGT |DP̃T ](θ1, θ2) is nonzero
whenever θ2

1 + θ2
2 = 1, or equivalently that

∀0 ≤ τ < 2π : det
[
DG(cos τ,sin τ)
DP̃(cos τ,sin τ)

]
6= 0. (15)
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This is indeed the case, as illustrated by the numerical proof offered in Figure 5. Thus TB = ker DG ⊕ ker DP and
therefore condition (3) holds.
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det[DGT , DP̃T ](cosτ, sinτ) vs. τ

Figure 5: A plot of det[DGT ,DP̃T ] over the set of points (θ1, θ2) for which θ2
1+θ2

2 = 1 is shown. Since this determinant
is nonzero for any values of τ , it follows that TB = ker DG⊕ ker DP .

Denoting ϕ := P̃ (θ1, θ2), the dynamics g : M → TM are given by g(P (θ1, θ2)) = g ◦ F (ϕ) = DF (ϕ) · 1 =
(a1 cos(ϕ− δ), a2 cos(ϕ+ δ)), or

g(P (θ1, θ2)) = sh

[(
θ2
a2
− θ1

a1

)
a1 cos δ
2 sin δ +

(
θ2
a2

+ θ1
a1

)
a1 sin δ
2 cos δ ,

(
θ2
a2
− θ1

a1

)
a2 cos δ
2 sin δ −

(
θ2
a2

+ θ1
a1

)
a2 sin δ
2 cos δ

]T
D

.

We now have all of the ingredients necessary to compute

fh(θ1, θ2) := T−1
(θ1,θ2)

[
TP (θ1,θ2)DP(θ1,θ2)T

−1
(θ1,θ2)

]†
TP (θ1,θ2)g(P (θ1, θ2))

as in equation (8), and
fv(θ1, θ2) = −α(θ1, θ2)ΠP

(θ1,θ2)∇V (θ1, θ2)
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as in equation (9). For the purpose of making Figure 6 easy to interpret, we chose

a1 = 0.5
a2 = 0.3
δ = 0.5
sv := 5× 10−3

R := 10−4

sh := 0.75sv

α(x) := svR

sv + ‖RΠP
x∇V (x)‖ .

Three sample trajectories of f are shown in Figure 6, along with the attractor M and vector fields fh and fv.
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Figure 6: Quiver plots of fh (cyan) and fv (magenta) are shown together with three sample trajectories of f := fh+fv.
The attractor, M , is shown in red.

5.2.2. The dynamic double pendulum — In actual physical systems, one can only directly influence accelerations and not
velocities through the application of force. The vector field f constructed in §5.2.1 is a direct application of the general
construction in this paper, but assumes the ability to directly influence velocities. If the construction in §3 is applied
directly to the phase space of a physical system, it will in general produce a non-physical vector field (one for which the
derivative of position is not velocity). One may therefore justifiably worry that the construction of §3 is not applicable to
physical systems.
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However, there exist a variety of techniques for approximating the dynamics of “first-order” vector fields (in which
velocities are directly influenced) by “second-order” vector fields [Revzen et al., 2012; Koditschek, 1987]. In order to
apply the technique of §3 to obtain physical vector fields on the phase spaces of physical systems, we thus propose the
following general (intentionally vague) strategy. First, define the quantities M ⊆ B, P : B → B, g : M → TM and
construct the vector field f : B → TB as in §3. Second, define a “second-order” vector field whose dynamics approximate
those of f .

We continue the example in §5.2.1 with a specific version of this strategy using a technique inspired by Koditschek
(Koditschek [1987] §3.3). For notational purposes, define θ := (θ1, θ2) and ω := (ω1, ω2). For µ > 0, define the vector
field F : TB → T(TB) by

F (θ, ω) = [ω,Dfθf(θ)− µ(ω − f(θ))]T , (16)
so that dynamics on TB ∼= B × R2 are given by

θ̇ = ω

ω̇ = Dfθf(θ)− µ (ω − f(θ)) .

Ideas from the theory of normal hyperbolicity can likely be used to show that for sufficiently large µ, each trajectory of F
asymptotically approaches approaches a corresponding trajectory in the invariant manifold {(θ, ω)|ω = f(θ)}. However,
noncompactness {(θ, ω)|ω = f(θ)} complicates matters. Such an analysis is outside the scope of this work, so we simply
present numerical results in Figure 7.
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Figure 7: For various values of µ, sample trajectories of F having the same initial values (initial values of ω1, ω2 are
all zero here) projected onto the (θ1, θ2) plane are shown in the first three plots. Trajectories of f , the vector field
defined in the example in §5.2.1, are shown in the bottom-right plot. The attractor, M , is shown in red. These plots
indicate that the dynamics of f can be approximated arbitrarily well by increasing µ.

§ 6 Lyapunov functions on M extend to B
Let η : M → R be any function. Define the “pullback” function P ∗η : B → R by P ∗η := η ◦ P . Then since P

commutes with the flow, we have:
P ∗η ◦ φt = η ◦ P ◦ φt = η ◦ φt ◦ P. (17)

Proposition 9. Let η :M→ R be a Lyapunov function for the dynamics g onM corresponding to some invariant
compact subset K ofM. Then the function P ∗η+V : B → R is a Lyapunov function for K on B, where P ∗η := η◦P
is the pullback of η.
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Proof. It follows from equation (17) that P ∗η(φt(x0)) is strictly decreasing if x0 ∈ B\P−1(K) and is identically zero
if x0 ∈ P−1(K). By assumption, V (φt(x0)) is strictly decreasing for all x0 ∈ B\M and is identically zero if x0 ∈M.
It follows that (P ∗η + V )(φt(x0)) is monotone decreasing for all x0 ∈ B \K

Since V is strictly positive on B \M and zero on M, and P ∗η is strictly positive on B \ P−1(K) and zero on
P−1(K), it follows that P ∗η + V is strictly positive on B \K and is zero on K. Since K is compact, the Lyapunov
theorem (Wilson [1967] Theorem 3.1) implies that K is asymptotically stable (though its basin of attraction might
not be all of B) and P ∗η + V is a Lyapunov function.

§ 7 Further generalizing our methods
7.1.Topological limitations of the construction in §3 — The construction in §3 produces dynamics

on B such thatM is an asymptotically stable invariant manifold with basin of attraction B. However, we assumed that
M was a level set of a submersion G : B → Rn−k. Topological arguments show that this is not true of all embedded
submanifolds, so our construction in §3 is not applicable to all embedded submanifoldsM of Rn. One way to fix this is
to work completely within the abstract framework of fibered manifolds and fiber bundles and replace the function G with
a different connection playing the role of ker DG. We plan to elucidate these ideas in a future publication.

7.2. Non-compact attractors — Our construction in §3 can also be applied in the case thatM is not compact.
However, there are additional technical conditions which must be considered in order to ensure completeness of the resulting
vector field f , as well as asymptotic stability ofM. Indeed, merely defining a notion of asymptotic stability of noncompact
attractors is subtle – it depends, in general, on the choice of distance function on Rn and can not be a purely topological
notion – see, e.g., the discussion following Theorem 3.3 of Wilson [1969]. Additionally, both stating and proving a theorem
like our Theorem 2 for noncompact M becomes more involved. Results on persistence of noncompact NHIMs have
recently been proved by Eldering [2013], but we know of no explicit results in the literature on existence and persistence of
asymptotic phase for noncompactM (however, see the final paragraph on p. 4 of Eldering [2013]). All of these technical
details take us rather far afield from the core ideas of this work; for this reason, we chose not to pursue them further and
restricted ourselves to the case of constructing compact invariant manifolds.

§ 8 Discussion
As a notion of controller design, “anchoring a template” seems to be a particularly powerful one. It expresses the

idea that a controller takes a complex anchor system and reduces its behavior to that of a simpler, better understood
template system. Normal hyperbolicity and the notion of unique asymptotic phase provide one natural way to express the
template-anchor relationship.

What we have shown is that a broad class of NHIM based template-anchor systems can be reverse engineered – i.e.
they can be broken into mathematical building blocks, each of which contributes a clearly defined functionality, and put
back together from those blocks. Furthermore, given such blocks an embedded template manifold can be made normally
hyperbolic and endowed with a nearly arbitrary choice of unique asymptotic phase, producing a system which is robust to
perturbations and modeling errors.

The key insights enabling our construction are the following. First, the explicit formula for constructing fh using
standard matrix computations was the creation of a coordinate change Tx, as defined in Equation (6), under which the
horizontal and vertical components of the flow become orthogonal. Orthogonality in this new coordinate system enables
the lift fh to be constructed via the standard Moore-Penrose pseudoinverse while ensuring thatM is an invariant manifold
of fh. The second insight is that if fv takes values in the vertical bundle ker DP , then fv and fh don’t interfere with each
other. Thus if fv stabilizes M, fh and fv can be combined to give a vector field f rendering M asymptotically stable
with asymptotic phase, anchoring template dynamics, and enabling a broad range of applications.

8.1. Acknowledgements — This work was supported by ARO Morphologically Modulated Dynamics #W911NF-
14-1-0573 to S. Revzen. The authors wish to thank Jessy Grizzle, Ralf Spatzier, Jaap Eldering, and George Council for
helpful conversations.

§ A Moore-Penrose pseudoinverse
Let V and W be real inner product spaces, and let L : V → W be a linear map. Let LT : W → V denote the

“transpose” or “adjoint” of the linear map L; that is, LT is the unique linear map such that for all v ∈ V and w ∈ W ,
〈Lv,w〉 = 〈v, LTw〉. The transpose of a composition of linear maps satisfies (AB)T = BTAT from which it follows that,
e.g., (ABC)T = CTBTAT . If V and W are Euclidean spaces with the Euclidean inner product and L is identified with
its matrix representation with respect to the standard Euclidean bases, then LT is the ordinary matrix transpose.

A “Moore-Penrose pseudoinverse”, or more succinctly “pseudoinverse”, of L is a linear map L† : W → V satisfying
the following four properties
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1. LL†L = L 2. L†LL† = L† 3. (LL†)T = LL† 4. (L†L)T = L†L.

Given any linear map L : V →W , a linear map L† satisfying the above properties exists and is unique [Penrose, 1955].
Note that the definition of the pseudoinverse depends entirely on the choice of inner products for V and W because the
definition of the adjoint depends on the inner products; a different choice of inner products would result in a different
pseudoinverse.

It is useful to think about the pseudoinverse in terms of orthogonal projections. It can be shown that P = LL† : W →
W is orthogonal projection onto L(V ), and Q = L†L : V → V is orthogonal projection onto (kerL)⊥.

We will be concerned with the case in which L is surjective. In this case, it can easily be shown that LLT is invertible.
Combining the first and fourth properties above shows that L = L(L†L)T = LLT (L†)T . Taking the adjoint of this
equation shows that LT = L†LLT , so

L† = LT (LLT )−1 (18)

since LLT is invertible in the case that L is surjective. It follows that, in the case that L is surjective, LL† : W → W is
the identity map.

§ B Differential topology
If F : X → Y is a map between sets and U ⊆ X, then F |U : U → Y denotes the “restriction” of F to U . Given any

subset V ⊆ Y , F−1(V ) := {x ∈ X|F (x) ∈ V } is the “pre-image” of V under F .
If U is any subset of a topological space X, we let Ů denote its interior, Ū denote its closure, and ∂U denote its

boundary.
If M is an m-dimensional Cr manifold (r ≥ 1) and p ∈ M , let TpM denote the tangent space to M at p. We recall

that the tangent bundle TM of M has a natural topology and smooth structure making TM into a Cr−1 manifold of
dimension 2m. If F : M → N is a Cr map between Cr manifolds and x ∈M , we denote by DFx : TxM → TF (x)N the
“differential” of F at x, which is a linear map. We recall that the map DF : TM → TN defined by DF (x, v) = DFxv is
a Cr−1 map. F is an immersion if DFx is injective at each x ∈M . F is a submersion if DFx is surjective at each x ∈M .
F is a Cr local diffeomorphism if for each x ∈ M , there exists a neighborhood U containing x such that F : U → F (U)
is a diffeomorphism. F is a Cr local diffeomorphism if and only if F is Cr and F is both an immersion and submersion.

A Cr submersion F : M → N between m and n-dimensional manifolds has the special property that for any x ∈ M ,
there exist open sets U 3 x and V 3 F (x) together with Cr diffeomorphisms ϕ : U → Û ⊂ Rm and ψ : V → V̂ ⊂ Rn
such that

ψ ◦ F ◦ ϕ−1(x1, . . . , xn, . . . , xm) = (x1, . . . , xn, 0, . . . , 0). (19)

A map F : U → Y between topological spaces is a “topological embedding” if it is a homeomorphism onto its image.
If F : U → Y is a Cr map (r ≥ 1), A Cr map F : U → Y between Cr manifolds is a “Cr embedding” if it is a topological
embedding and an immersion.

If M is any Cr m-dimensional manifold (r ≥ 0), a subspace K of B with the subspace topology is a Cr k-dimensional
“embedded submanifold” if it is a Cr manifold and the inclusion map i : K ↪→ M is a Cr embedding. A “proper map”
between topological spaces is a map for which the pre-image of any compact set is a compact set. A submanifold is
“properly embedded” if it is an embedded submanifold and additionally the inclusion map is a proper map; equivalently, a
submanifold is properly embedded if and only if it is an embedded submanifold which is also a closed subset of the ambient
manifold.

§ C Fibered manifolds, fiber bundles, and connections
A triple (B, P̃ ,M̃), where P̃ is a Cr(r ≥ 1) surjective submersion P̃ : B → M̃ between Cr manifolds B and M̃,

is called a “fibered manifold” (Kolár et al. [1999] §2). B is called the “total space”, and M̃ is called the “base”. We
sometimes simply refer to P̃ : B → M̃ as being a fibered manifold or even more succinctly we may just refer to B as
being a fibered manifold. Because P̃ is a submersion, a fibered manifold has the property that for any x ∈ B, there exist
Cr “fiber charts” (U,ϕ) and (V, ψ) with U 3 x and V 3 P̃ (x) open sets and ϕ : U → Û ⊂ Rn and ψ : V → V̂ ⊂ Rm
diffeomorphisms such that:

ψ ◦ P̃ ◦ ϕ−1(x1, . . . , xn, . . . , xm) = (x1, . . . , xn, 0, . . . , 0). (20)

We define a C0 fibered manifold to be a triple (B, P̃ ,M̃) to be a continuous P̃ : B → M̃ to be a continuous map
between topological manifolds so that given any x ∈ M̃ there exist C0 fiber charts containing x and P̃ (x) as above.
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A Cr(r ≥ 0) “fiber bundle” (Kolár et al. [1999] §9) is a tuple (B, P̃ ,M̃, F ) with F a Cr manifold such that (B, P̃ ,M̃)
is a Cr fibered manifold and additionally for each x ∈ M̃ there exists an open set U ⊆ M̃ containing x such that P̃−1(U)
is Cr diffeomorphic to U × F via a diffeomorphism which respects fibers:

P̃−1(U) U × F

U

ρ

P̃
pr1

(21)

where pr1 : U × F → U is projection onto the first factor. The map ρ is referred to as a “local trivialization”. A fiber
bundle B, P̃ ,M̃, F ) is “trivial” if there exists a local trivializtion ρ : B → M̃×F . A Cr map σ : M̃ → B such that P̃ ◦ σ
is the identity map on M̃ is called a Cr “section” of P̃ . Given an open set U ⊆ M̃, a Cr map σ : U → B such that P̃ ◦ σ
is the identity map on U is called a Cr “local section” of P̃ .

A (real) Cr “vector bundle” of rank k is a Cr fiber bundle such that each fiber of P̃ is endowed with the structure
of a real k-dimensional vector space and such that any x in the base space has a neighborhood U and local trivialization
ρ : P̃−1(U) → U × F such that the restriction of ρ to each fiber of P̃ is a linear vector space isomorphism (Lee [2013]
Chapter 10). Examples of Cr−1 vector bundles include the tangent bundle and normal bundle of a Cr manifold, where
r ≥ 1. The “zero section” of a vector bundle is a section σ sending each point p ∈M to the zero vector in P−1(p). We
will also use the term “zero section′′ to refer the image σ(M̃) of the zero section σ.

Given 0 ≤ j ≤ r, 1 ≤ m ≤ k, a Cj rank m “subbundle” (Bs, P̃s,M̃, Fs) of a Cr rank k vector bundle (B, P̃ ,M̃, F ) is
a Cj rank m vector bundle in which Bs is a Cj embedded submanifold of B, P̃s = P̃ |Bs , each fiber P̃−1

s (x) = P̃−1(x)∩Bs
is a linear subspace of P̃−1(x), and the vector space structure on P̃−1

s (x) is the vector space structure inherited as a
subspace of P̃−1(x). In practice, the following “local frame criterion” is often easier to check: (Bs, P̃s,M̃, Fs) is a Cj
rank m subbundle of (B, P̃ ,M̃, F ) if and only if for every point x ∈ M̃, there is a neighborhood U ⊆ M̃ containing x
and Cj local sections σ1, . . . , σm : U → B of P̃ : B → M̃ such that for all y ∈ U : σ1(y), . . . , σm(y) form a basis for the
vector space P̃−1

s (y) (Lee [2013] Lemma 10.32).
Let r ≥ 1. Given a Cr fibered manifold (B, P̃ ,M̃), for any x ∈ B we define the “vertical space” VxB := ker DPx. The

“vertical bundle” VB ⊆ TB is the union of all of the vertical spaces (i.e., VB :=
⋃
x∈B VxB), endowed with the unique

topology and smooth structure making the vertical bundle into a Cr−1 subbundle of the Cr−1 tangent bundle. A Cr−1

“connection” for P̃ is a Cr−1 subbundle HB of TB such that for each x ∈ B, TxB = HxB⊕VxB. We also refer to HB as
a “horizontal bundle”. To every connection HB corresponds a vertical-valued projection π : TB → VB such that for any
x ∈M, π|TxB is linear projection onto VxB with kernel HxB.

Note that since every fiber bundle (with manifold base and total space) is also a fibered manifold, the definitions of the
preceding paragraph apply to fiber bundles. A Cr−1 connection is “complete” if, given any Cr−1 path γ : [0, 1]→M and
x ∈ P−1(γ(0)), there exists a Cr−1 “lift” γ̃ : [0, 1] → B satisfying P ◦ γ̃ = γ, γ̃(0) = x, and ∀t ∈ [0, 1] : ˙̃γ(t) ∈ Hγ̃(t)B.
For r ≥ 2, using results of [Kolár et al., 1999; del Hoyo, 2015] together with results of approximation theory (Lee [2013]
Chapter 6), it can be shown that a Cr fibered manifold is a fiber bundle if and only if it admits a complete Cr−1 connection.

Let s ≥ r ≥ 0. We will use the phrases “Cr fibered manifold with Cs fiber” and “Cr fiber bundle with Cs fiber” to
refer to Cr fibered manifolds and fiber bundles whose individual fibers are Cs embedded submanifolds.

§ D Dynamical systems theory
Given a Cr (r ≥ 1) manifold M , a Cr−1 map F : M → TM is called a “Cr−1 vector field” if π ◦ F : M → M is the

identity map, where π : TM → M is the natural projection. To use the vocabulary introduced in Appendix C, a Cr−1

vector field F :M→ TM is a Cr−1 section of the vector bundle projection π : TM→M. A “trajectory”, “solution”, or
“integral curve” of F is a Cr curve γ : J → M such that γ̇(t) = F (γ(t)) for every t ∈ J , where J ⊆ R is an interval. A
trajectory is “maximal” if its domain J cannot be extended to any larger interval. Under appropriate conditions, maximal
integral curves exist, are unique, and the vector field F admits an associated “flow” φ : W → M , where the “maximal
flow domain” W ⊆ R ×M is an open set (see, e.g., Chapter 8 of Hirsch and Smale [1974] or Chapter 9 of Lee [2013]).
We sometimes write φt(x) := φ(t, x). For all x ∈ M and t, s ∈ R for which the following expression is defined, the
flow satisfies the “group properties” φt ◦ φs(x) = φt+s(x) and φ0(x) = x. For all (t, x) ∈ W , the flow also satisfies
∂
∂tφt(x) = F (φt(x)), so that for any fixed x ∈M the curve t 7→ φt(x) is an integral curve through x. The maximal flow
domain W is defined so that the restriction of φ to any set of the form W ∩ {p} ×M is a maximal integral curve.

§ E Connection lemmas
We will use the following lemma on existence and regularity of connections on fibered manifolds in which the base

space is an embedded k-dimensional submanifold of the total space, which in turn is an open subset of Rn.
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Lemma 6. Let B be an open subset of Rn and let M ⊆ B be a compact Cr k-dimensional embedded submanifold.
Let P : B → M be a C1 map such that (B, P,M) is a C1 fibered manifold. For x ∈ B, let VB = ker DP be the C0

vertical bundle VB. Then there exists a Cr−1 connection (so that HB TRn = VB ⊕ HB) such that HB|M = TM.

Proof. We first show that we can define such a C0 connection HU on some neighborhood U ofM with the property
that ∀x ∈M : HxB = TxM.
M is a Cr embedded submanifold of B and TM is a Cr−1 subbundle of TB. This implies that for any x ∈ M,

there exists an open neighborhood Ux 3 x and a Cr−1 diffeomorphism ψ : TB|Ux → U1 × U2 ⊆ Rn × Rn such that
ψ(TM|Ux) = {(y1, . . . , yk, . . . , yn, v1, . . . , vk, . . . , vn) ∈ Rk × Rn|yk+1 = . . . = yn = vk+1 = . . . = vn = 0}. Define a
Cr−1 connection HUx by

HyUx := (Dψy)−1 ({ψ(y)} × {(v1, . . . , vk, . . . , vn) ∈ Rn|vk+1 = . . . = vn = 0}) .

Let πUx : TBUx → VB denote the vertical-valued projection with kernel equal to HUx, and note that πUx is a C0 map
since VB is a C0 subbundle of TB11. Let {ϕx}x∈M be a partition of unity subordinate to the open cover {Ux}x∈M,
let U :=

⋃
x∈M Ux, and define the C0 vertical-valued map πU by

πU :=
∑
x∈M

ϕxπUx .

πU is also a vertical-valued projection since for each x ∈ M this sum is a convex combination of the vertical-valued
projections πUx , and projections with common image are closed under convex combinations. Since πU is C0, the
connection HU it defines is also C0. Note that for any x ∈ M with x ∈ Uy ∩ Uz, kerπUyx = kerπUzx = TxM, and
hence πUyx = πUzx . It follows that kerπU |M = TM.

We next define a C0 connection on the open set W := B \M. We simply define the horizontal space HW :=
(VB|W )⊥. Let πW be the corresponding C0 vertical-valued projection.

Next, let ϕW , ϕU be a partition of unity subordinate to W,U . We define π′ := ϕWπW +ϕUπU . Once again using
the fact that convex combination of any two linear projection operators with common image is again a projection
onto the same image, it follows that π′ is a C0 vertical-valued projection on B. Note that, since the support of ϕW
is contained in the complement of B, kerπ′|M = TM. Letting H′B denote the C0 connection corresponding to π′, it
follows that H′|M is Cr−1. Denote by H′B the C0 horizontal bundle corresponding to π′.

To complete the proof, we will use approximation techniques to approximate the C0 connection H′B by a Cr−1

connection. Let Gk be the C∞ Grassmann manifold of k-dimensional linear subspaces of Rn. By the Whitney
Embedding Theorem (Lee [2013] Chapter 6), we may consider Gk to be an embedded submanifold of RN for some
N > 0, so given S1, S2 ∈ Gk we may define ‖S1 − S2‖ to be the distance between S1 and S2 using the Euclidean
norm on RN . We define a C0 map J ′ : B → Gk by J ′(x) = H′xB, where H′xB is viewed as a linear subspace of Rn
after the standard natural identification of TxRn with Rn. Note that J ′|M is Cr−1.

We show that we can define a Cr−1 map J : B → Gk such for each x ∈ B, TRn = J(x)⊕ VxB and such that for
each x ∈ M, J(x) = TxM. For each x ∈ B, define δ(x) := sup{r > 0|‖J ′(x) − S‖ < r =⇒ TxRn = S ⊕ J ′(x)}.
Since VB is a C0 vector bundle, it can be shown that δ is continuous. The Whitney Approximation Theorem (Lee
[2013] Chapter 6) shows that there exists a Cr−1 map J : B → Gk such that J |M = J ′|M and for all x ∈ B,
‖J(x)− J ′(x)‖ ≤ δ(x). It follows that TxRn = J(x)⊕ VxB for each x ∈ B.

Taking HxB = J(x) for each x ∈ B completes the proof.

Lemma 7. Let (B, P,M) be a Cr fibered manifold. The horizontal lift of a Cr−1 vector field on M via a Cr−1

connection is Cr−1.

Proof. Let x ∈ M. Since HB is a Cr−1 subbundle of TM, there exist k pointwise linearly independent Cr−1

vector fields v1, . . . , vk, . . . , vn defined on a neighborhood U of x such that v1(y), . . . , vk(y) span HyB at each y ∈
U , and vk+1(y), . . . , vn(y) span VyB = ker DPy at each y ∈ U . Since DPy is full rank as a map into TyM,
DPyv1(y), . . . ,DPyvk(y) form a basis for TyM. We may complete this to a basis
DPyv1(y), . . . ,DPyvk(y), wk+1(P (y)), . . . wn(P (y)) for TyB. For y ∈ U , the matrix of DPy with respect to the bases
v1(y), . . . , vn(y) of TyB and DPyv1(y), . . . ,DPyvk(y), wk+1(P (y)), . . . wn(P (y)) is of the form

[DPy] =
[
I 0
0 0

]
.

11This follows by, e.g., repeating the proof of (Lee [2013] Theorem 10.34), replacing “smooth” everywhere with “continuous.”

Kvalheim & Revzen



page 24

Since P is a submersion, P (U) is an open set. Any Cr−1 vector field g on M may be written on P (U) as
g(y) =

∑k
i=1 κi(y)DPyvi(y), for some Cr−1 functions κi : P (U) ⊆ M → R. It follows that on U , the lift fh of g is

given by fh(y) =
∑k
i=1 κi(P (y))vi(y). κi ◦ P is a Cr−1 function on U for each i wince κi and P are each at least

Cr−1, and all of the vi are Cr−1 vector fields so it follows that fh is Cr−1 on U . Since we have shown that fh is Cr−1

on a neigborhood of each point, it follows that fh is Cr−1.

§ F Normally hyperbolic invariant manifolds
In this section, we summarize some of the main results on normally hyperbolic invariant manifolds (NHIMs) which served

as the motivation for our construction in §3. For simplicity, we only consider NHIMs which are embedded submanifolds
of Euclidean space.

Normally hyperbolic invariant manifolds (NHIMs) are generalizations of hyperbolic fixed points and periodic orbits.
Much of the theory of compact NHIMs was independently developed in the 1970s by Fenichel [Fenichel, 1973, 1977,
1971] and Hirsch, Pugh, and Shub [Hirsch et al., 1977]. Eldering has recently extended many of these results to the
noncompact setting [Eldering, 2013]. We only need results on compact NHIMs; we choose to follow Fenichel’s treatment
here. Since we are interested only in the case of asymptotically stable invariant manifolds, we will define a special case of
normal hyperbolicity which is suitable for our needs.

LetM be a compact embedded Cr submanifold of Rn, invariant under the flow φt(·) defined on some neighborhood
ofM. Let NM be the normal bundle ofM, and let ΠN : TRn|M → NM be the family of linear projections such that
ΠN
x orthogonally projects each tangent space TxRn onto NxM, for each x ∈ M. We will suppress the subscript x in

much of the sequel when the notation becomes cumbersome unless we wish to emphasize the role of x. We define the
linear maps At(p) : TpM→ Tφ−t(p)M and Bt(p) : Nφ−t(p)M→ NpM:

At(p) := Dφ−t(p)|TpM
Bt(p) := ΠNDφt(φ−t(p))|Nφ−t(p)M

Definition 3. (Generalized Lyapunov type numbers). We define the following “generalized Lyapunov-type numbers”
for each p ∈M:

ν(p) := inf
{
a > 0| lim

t→∞
‖Bt(p)‖/at = 0

}
σ(p) := inf

{
s ∈ R| lim

t→∞
‖At(p)‖‖Bt(p)‖s = 0

}
τ(p) := inf

{
s ∈ R| lim

t→∞
‖A−t(p)‖ (‖Bt(φt(p))‖At(φt(p))‖)s = 0

}
.

While we use the Euclidean norm here, it can be shown that the values of the generalized Lyapunov-type numbers are
independent of the choice of inner product12 (inducing a norm) on Rn.
Definition 4. We say thatM is “stable” if, given any open neighborhood U ⊇M, there exists an open neighborhood
V ⊇ M such that ∀t > 0 : φt(V ) ⊆ V . We say that M is “asymptotically stable” if M is stable and there exists
a neighborhood W ⊇ M such that ∀p ∈ W, t > 0 : dist [(φt(p)),M] = 0. We say that M is “exponentially stable”
if M is asymptotically stable and furthermore there exists C, T, µ > 0 such that (possibly after shrinking W )
∀p ∈W, t > T : dist [(φt(p)),M] ≤ Ce−µt.
Proposition 10. If ν(p) < 1 for every p ∈M, thenM is exponentially stable.
Definition 5. (Asymptotically stable normally hyperbolic invariant manifolds). LetM be a compact invariant Cr
submanifold of Rn, invariant under the Cr flow φt(·) defined on some neighborhood of M. We say that M is “r-
normally hyperbolic” if for all p ∈ M : ν(p) < 1 and σ(p) < 1

r . Without further qualification, “normally hyperbolic”
will be taken to mean 1-normally hyperbolic.
Remark 1. It can be shown that this definition is equivalent to “eventual relative r-normal hyperbolicity” in Hirsch
et al. [1977] in the case that the NHIM is asymptotically stable; this is because M is compact. This definition is
weaker than the often-used “immediate relative r-normal hyperbolicity” found in Hirsch et al. [1977], yet most of the
same main results hold. Because Eldering [2013] considers noncompact NHIMs, the definition of normal hyperbolicity
chosen in Eldering [2013] is equivalent to “eventual absolute r-normal hyperbolicity” as defined in Hirsch et al. [1977],
which is also stronger than our definition.

12in fact, independent of the choice of any Riemannian metric on Rn.
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For convenience, we restate Definition 1 from §1 and Definition 2 from §2 here.

Definition. We say thatM has “asymptotic phase” if for any x ∈ B, there exists a unique P (x) ∈M such that

lim
t→∞

‖φt(x)− φt(P (x))‖ = 0.

We say thatM has “unique asymptotic phase” ifM has the asymptotic phase and additionally for any x ∈ B and
any q ∈M not equal to P (x),

lim
t→∞

‖φt(x)− φt(P (x))‖
‖φt(x)− φt(q)‖

= 0.

We refer to P as the “phase map” or simply as “phase”, and say that M has “Ck unique asymptotic phase” if the
map P : B →M is Ck.

The following restatement of Proposition 1 in §2 is a combination of results from Fenichel [1973, 1977], and Theorem
4.1 of Hirsch et al. [1977].

Proposition 1. LetM⊆ Rn be a compact Cr k-dimensional embedded submanifold of Rn, invariant under the flow
φt(·) of the vector field f : Q → TQ defined on an open neighborhood Q ⊂ Rn of M. Assume that for all p ∈ M,
σ(p) < 1 and ν(p) < 1. Then the following holds:

1. The stability basin B of M is invariantly fibered by Cr manifolds Wq. Explicitly, φt(Wq) = Wφt(q), and
the collection {Wq}q∈M is a partition of B. Each Wq is Cr diffeomorphic to Rn−k. Each Wq intersects M
transversally in the point q.

2. Let P : B →M be the map that sends x ∈ B to q, where x ∈Wq. Then P is a continuous map, and (B, P,M)
is a C0 fibered manifold with (n− k)-dimensional Euclidean fibers.

3. Let 1 ≤ m ≤ r − 1. Assume now that τ(q) < 1
m for all q ∈ M. Then the phase map P : B → B is Cm. It

additionally follows that (B, P,M) is a Cm fibered manifold with (n− k)-dimensional Euclidean fibers.

4. M has unique asymptotic phase P : B → B.

Proposition 1 says that if ν(p) < 1 and σ(p) < 1, for every p ∈ M, thenM has unique asymptotic phase. It further
says that if τ(p) < 1

m , 1 ≤ m ≤ r − 1 also holds for every q ∈M, then the phase map P is Cm.
In stating the next Proposition, we need the following definition.

Definition 6. Let g : M → N ⊆ Rn and f : M → N ⊆ Rn be two C1 maps, where M is a C1 manifold and N is a
C1 submanifold of Rn. Let θ > 0. We say that g and f are “ C1 θ-close” if:

sup
x∈B
‖g(x)− f(x)‖ < θ

sup
x∈B
‖Dgx − Dfx‖ < θ.

We will sometimes say that two C1 maps f and g are “C1-close” to mean that f and g are C1 θ-close for some θ
sufficiently small for the present context. If f and g are C1 θ-close, we will sometimes refer to g as a “C1-small”
perturbation of f . Given two embedded submanifolds M1,M2 ⊆ Rn, we say that M1 and M2 are “C1 θ-close” if
there exist C1 embeddings fi : M → Rn, i = 1, 2, with each fi a C1 diffeomorphism onto Mi, such that f1 and f2 are
C1 θ-close. Similarly to the case of maps, we will also sometimes simply say M1 and M2 are “C1-close”.

The following restatement of Proposition 2 in §2 is a combination of results from Fenichel [1973, 1977, 1971], and
Theorem 4.1 of Hirsch et al. [1977].

Proposition 2. LetM be a compact Cr k-dimensional embedded submanifold of Rn, invariant under the flow φt(·)
of the vector field f : Q → TQ defined on an open neighborhood Q ⊂ Rn ofM. Assume that for all p ∈M, ν(p) < 1
and σ(p) < 1

r . Then for θ sufficiently small, the following holds:

1. Let g : Q → TQ be another Cr vector field which is sufficiently C1 θ-close to f . Then there is a unique
Cr embedded submanifold M′, Cr diffeomorphic to M, C1-close to M, and invariant under the flow of g.
Furthermore, the fibers Wq persist; i.e., there is a unique invariant fibering of the stability basin of M′ by Cr
manifolds W ′q′ satisfying all of the properties with respect to g andM′ which were satisfied by the manifolds Wq

with respect to f andM. The fibers of W ′q′ are C1-close to those of Wq on B ∩ B′. M′ has unique asymptotic
phase P ′ : B′ → B′ whose fibers are W ′q′ , and P ′ : B′ → B′ is a continuous function.
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2. Let 1 ≤ m ≤ r − 1. Assume now that τ(q) < 1
m for all q ∈ M. Then the phase map P ′ : B′ → B′ is

also Ck if g is sufficiently C1-close to f , and also fit together to form a Cm fibered manifold (B′, P ′,M′) with
(n− k)-dimensional Euclidean fibers. Under these conditions,M′ has unique Cm asymptotic phase.

Proposition 2 is a robustness result; it gives conditions under which M and its unique Cm asymptotic phase persist
under C1-small perturbations by Cr vector fields.

We restate Proposition 3 from §2 here. Proposition 3 is due to Mané [1978].

Proposition 3. Let M be a compact C1 invariant manifold of the C1 vector field f which persists under C1-small
perturbations to f . ThenM is normally hyperbolic.

§ G Proofs of §4 results
We have shown that under the flow induced by the vector field f on M, M is asymptotically stable with basin of

attraction equal to B. We have also shown thatM is exponentially stable on a neighborhood UE ⊃M, with exponential
rate µ proportional to minx∈ŪE α(x). We now show that if minx∈ŪE α(x) (and hence µ) is chosen sufficiently large,M
can be made k-normally hyperbolic for any k ∈ N.

Note that notation in this section such as At, Bt,ΠN, ν, σ, and τ is defined in Appendix F.

Lemma 8. Let µ = k4k3
2k2

be as in Proposition 8, where k4 = minx∈ŪE α(x). There exists K̄ > 0 such that for all
t > 0 and all p ∈M:

‖Dφt(p)|ker DPp‖ < K̄e−µt.

Proof. The fibers of P are Cr manifolds transverse toM depending continuously (actually, in a Cr manner) on their
basepoint in M. Since M is compact, it follows that (shrinking UE if necessary) there exists L > 0 such that for
any p ∈M and q ∈ P−1(p),

‖q − p‖ ≤ Ldq, (22)

where dq is the distance from q toM.
Let p ∈ M, v ∈ ker DPp. Identifying TpB with Rn and using the fact that P−1(p) is a Cr manifold with

v ∈ TpP−1(p), there exists q ∈ P−1(p) such that

q = p+ v +O(‖v‖2). (23)

This fact together with the theorem on differentiability of flows (Hirsch and Smale [1974] page 299) shows that

‖φt(q)− φt(p)− D(φt)pv‖ ≤ O(‖v‖2),

from which it follows that
‖D(φt)pv‖ ≤ ‖φt(q)− φt(p)‖+O(‖v‖2). (24)

The continuity of ODE solutions with respect to initial conditions estimate (Hirsch and Smale [1974] page 169) shows
that for any fixed t, O(‖v‖2) = O(‖φt(q)−φt(p)‖2). Since UE is a region of exponential stability and the fibers of P
are invariant under the flow, we have ‖φt(p)−φt(q)‖ → 0 as t→∞ and hence this estimate actually holds uniformly
for t > 0. It follows that if we take UE (and hence ‖v‖ = ‖q − p‖) sufficiently small, we have for all t > 0:

O(‖φt(q)− φt(p)‖2) ≤ A‖φt(q)− φt(p)‖ ≤ ALdφt(q) ≤ ALCdqe
−µt, (25)

for some A > 0 and where C is as in the proof of Proposition 8. This fact, together with the invariance of the fibers
of P under the flow and the result of Proposition 8, shows that

‖D(φt)pv‖ ≤ Ldφt(q) +O(‖v‖2) ≤ [LC +BALC]dqe−µt ≤ [LC +BALC]‖v‖e−µt, (26)

since ‖v‖ ≤ dq, for some B > 0. This completes the proof with K̄ = LC +BALC.

Corollary 3. Let µ = k4k3
2k2

be as in Proposition 8, where k4 = minx∈ŪE α(x). Let NM be the normal bundle ofM,
and let ΠN : TRn|M → NM be the orthogonal projection defined in Appendix F. Then there exists K > 0 such that
for all t > 0 and all p ∈M:

‖ΠNDφt(p)|NpM‖ < Ke−µt.
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Proof. VB and NM are Cr−1 vector bundles overM of equal dimension and each transverse to TM. It follows that
we have a Cr−1 linear operator-valued map Γ :M→ L(VB,TM) such that that NB can be identified with the “graph”
of Γ; precisely, for each p ∈ M : Γ(p) is a linear map Γ(p) : VpB → TpM such that NpB = {v + Γ(p)v|v ∈ VpB}.
Compactness ofM implies ‖Γ‖ := maxp∈M ‖Γ(p)‖ <∞ exists.

Let w ∈ NpM. The preceding paragraph implies that w = v + Γ(p)v for a unique v ∈ ker DPp = VpB. It
follows that ‖w‖ ≤ (1 + ‖Γ‖)‖v‖. Since TM is invariant under Dφt, ΠNDφtΓ(p)v = 0 and hence ‖ΠNDφt(p)w‖ =
‖ΠNDφt(p)v‖ ≤ ‖Dφt(p)v‖ = ‖Dφt(p)|ker DPpv‖ ≤ ‖Dφt(p)|ker DPp‖‖v‖ ≤ (1 + ‖Γ‖)‖Dφt(p)|ker DPp‖‖w‖. It follows
that ‖ΠNDφt(p)|NpM‖ < Ke−µt with K := (1 + ‖Γ‖)K̄, where K̄ is as in Lemma 8.

Lemma 9. Define L := maxp∈M ‖Df(p)‖ = maxp∈M ‖Df0(p)‖. Then

‖D(φt)p|TpM‖ ≤ ‖D(φt)p‖ < eL|t|.

Proof. Note that the first inequality above is trivial since restricting a linear operator always decreases its norm.
Now for any p ∈M, Dφt satisfies the equation (Hirsch and Smale [1974] pages 300-302):

∂

∂t
Dφt(p) = Df(φt(p))Dφt(p).

Integrating this equation, taking norms, and using the fact that Dφ0(p) is the identity shows that

‖Dφt(p)‖ ≤ 1 +
∫ t

0
‖Df(φs(p))‖‖Dφs(p)‖ ds

≤ 1 + L

∫ t

0
‖Dφs(p)‖ ds,

so it follows from Grönwall’s Lemma (Hirsch and Smale [1974] page 169) that ‖Dφt(p)‖ ≤ eLt. Reversing time and
repeating the above analysis shows that

‖Dφt(p)‖ ≤ eL|t|.

Lemma 10. Let µ = k4k3
2k2

be as in Proposition 8, where k4 = minx∈ŪE α(x), and choose α : B → R so that

k4 > r
2k2

k1
L.

Then for every p ∈M :

ν(p) < 1 σ(p) < 1
r

τ(p) < 1
r − 1 .

Proof. It follows immediately from Corollary 3 that ν(p) < e−µ < 1 for every p ∈M.
Next, let any s ∈ R. Our assumption on k4 implies µ > rL. We have

‖At(p)‖‖Bt(p)‖s = ‖Dφ−t(p)|TpM‖‖ΠNDφt(φ−t(p))|Nφ−t(p)M‖
s

≤ AKeLte−sµt

= AKeL(1−sr)t,

which tends to zero for any s > 1
r for any p ∈M, which shows that σ(p) < 1

r for any p ∈M. Similarly,

‖A−t(p)‖ (‖Bt(φt(p))‖At(φt(p))‖)s = ‖Dφt(p)|TpM‖
(
‖ΠNDφt(p)|Nφ−t(p)M‖‖Dφ−t(φt(p))|TpM‖

)s
≤ A1+sKse[L(1+s)−sµ]t

≤ A1+sKse[L(1+s)−srL]t

= A1+sKseL(1+s−sr)t,

which tends to zero if 1+s(1−r) < 0, or for any s such that s > 1
r−1 . It follows that for every p ∈M, τ(p) < 1

r−1 .
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The following theorem is a more precise restatement of Theorem 2 in §4.

Theorem 2. Assume r > 3. Let µ = k4k3
2k2

be as in Proposition 8, where k4 = minx∈ŪE α(x), and choose α : B → R
so that

k4 > r
2k2

k1
L.

Then there exists θ > 0 sufficiently small such that if g : B → TB is another Cr−1 vector field such that

sup
x∈B
‖g(x)− f(x)‖ < θ

sup
x∈B
‖Dg(x)− Df(x)‖ < θ,

then there exists an open set Bg ⊆ B and a Cr−1 exponentially stable normally hyperbolic submanifold Mg Cr−1

diffeomorphic to M and C1 close to M. The stability basin of Mg is Bg. Mg has the unique asymptotic phase
property with a Cr−2 phase map P g : Bg → Mg making (Bg, P g,Mg) into a Cr−2 fibered manifold with (n − k)-
dimensional Euclidean fibers. The fibers of P g are C1 close to the fibers of P on Bg.

Proof. This is an immediate corollary of Lemma 10 and Propositions 1 and 2.
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