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Event–Selected Vector Field Discontinuities Yield Piecewise–Differentiable
Flows∗

Samuel A. Burden† , S. Shankar Sastry‡ , Daniel E. Koditschek§ , and Shai Revzen¶

Abstract. We study a class of discontinuous vector fields brought to our attention by multilegged animal
locomotion. Such vector fields arise not only in biomechanics, but also in robotics, neuroscience,
and electrical engineering, to name a few domains of application. Under the conditions that (i)
the vector field’s discontinuities are locally confined to a finite number of smooth submanifolds and
(ii) the vector field is transverse to these surfaces in an appropriate sense, it is known that the
vector field yields a well–defined flow that is Lipschitz continuous. We extend these results by
showing this flow is piecewise–differentiable, so that it admits a first–order approximation (known as
a Bouligand derivative) that is piecewise–linear and continuous at every point. We exploit this first–
order approximation to infer existence of piecewise–differentiable impact maps (including Poincaré
maps for periodic orbits), show that the flow is locally conjugate (via a piecewise–differentiable
homeomorphism) to a flowbox, and assess the effect of perturbations (both infinitesimal and non–
infinitesimal) on the flow. We use these results to give a sufficient condition for the exponential
stability of a periodic orbit passing through a point of multiply intersecting events and apply the
theory in illustrative examples to demonstrate synchronization in first– and second–order phase
oscillator models abstracted from the legged locomotion application domain that motivated our
interest in this class of models.
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1. Introduction. Parsimonious dynamical models for diverse physical phenomena are gov-
erned by vector fields that are smooth except along a finite number of surfaces of disconti-
nuity. Examples include integrate–and–fire neurons that undergo a discontinuous change in
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membrane voltage during a threshold crossing [9,29,32]; electrical power systems that undergo
discontinuous changes in network topology triggered by excessive voltages or currents [26];
legged locomotors that encounter discontinuities in velocities or forces due to intermittent
interaction of viscoelastic limbs with terrain [4, 20, 28]. In each of these examples, behav-
iors of interest—phase locking [32] or local synchronization [29]; voltage collapse phenom-
ena [17] [26, section II-A.2]; simultaneous touchdown of two or more legs [4, 20, 28]—occur at
or near the intersection of multiple surfaces of discontinuity. Although analytical tools exist to
study orbits that pass transversally through nonintersecting switching surfaces (e.g., to assess
stability [3,21], compute first–order variations [27,52], and reduce dimensionality [13]), hybrid
systems that admit simultaneous discrete transitions generally exhibit “branching;” i.e., the
hybrid flow depends discontinuously1 on initial conditions [47, Definition 3.11]. For instance,
in the mechanical setting, the flow of a Lagrangian dynamical system subject to unilateral
constraints is generically discontinuous near simultaneous–impact events [7, section 7]. In the
case where a vector field is discontinuous across two transversally intersecting surfaces, others
have established continuity of the flow and computed first–order approximations [9,15,16,30].
Techniques applicable to arbitrary numbers of surfaces have been derived for the case of pure
phase oscillators with perpendicular transition surfaces [39].

By restricting our attention to a subclass of systems that do not exhibit sliding modes [51]
or branching [47, Definition 3.11], we extend previous work in this area in two ways. First,
we accommodate an arbitrary number of nonlinear transition surfaces that are not required
to be transverse, and we show that the flow admits approximations of order higher than one.
Second, and more significantly, we show that the Lipschitz continuous flows and impact maps
are piecewise–differentiable and leverage this fact to extend a suite of analytical and computa-
tional techniques from classical (smooth) dynamical systems theory to the present (nonsmooth)
setting. The definition of piecewise–differentiability we employ (introduced in [42,43,45]) im-
plies that although the flow is not classically differentiable, nevertheless it admits a first–order
approximation (the so–called Bouligand derivative or B–derivative [45, Chapter 3]) that is
piecewise–linear and continuous at every point. Establishing the existence of this first–order
approximation in the framework of [45] is powerful; we exploit it to infer existence of piecewise–
differentiable impact maps (including Poincaré maps for periodic orbits); demonstrate local
conjugacy (via a piecewise–differentiable homeomorphism) between the flow and a flowbox ;
assess the effect of perturbations on the flow; and derive a straightforward procedure to com-
pute the B–derivative. We use these results to give a sufficient condition for the exponential
stability of a periodic orbit passing through a point of multiply intersecting event surfaces and
apply the theory in illustrative examples to demonstrate synchronization in abstracted first–
and second–order phase oscillator models.

1.1. Relation to prior work. Existence, uniqueness, and Lipschitz continuity of the flow
associated with the class of discontinuous vector fields considered in this paper have been
established previously; see, for instance, [18, Chapter 2, section 8, corollary to Theorem 3].
Furthermore, previous work has established that this flow admits a first–order approximation
that may be computed by introducing discontinuous updates to the classical variational equa-

1We note that hybrid state spaces do not possess a natural metric, and continuity of the flow depends on
the chosen metric; this issue is discussed in detail elsewhere [12, sec. V-A].
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tion via so–called saltation matrices; see section 7.1 for an overview and [3,30] for the original
constructions involving 1 and 2 surfaces of discontinuity, respectively. Our contribution in
Theorem 4 (local flow) is a proof that this flow enjoys a richer piecewise–differentiable struc-
ture than had been previously established. Specifically, we prove that the nonsmooth flow is
piecewise–Cr (PCr) in a sense defined by the nonsmooth analysis community; see section 3.2
for an overview and [2] for the original definition. This result enables us to refine and extend
several results familiar to the nonsmooth dynamics community, and to obtain a new conjugacy
result that, to the best of our knowledge, has not appeared previously.

1.2. Virtues of PCr flow. Since the flow associated with the class of discontinuous vector
fields considered in this paper is Lipschitz continuous, the flow is automatically “piecewise–
differentiable” in a certain sense: Rademacher’s theorem [48, Theorem 5.2] implies that the
flow is differentiable almost everywhere; i.e., the subset of the domain where the flow fails
to be classically differentiable has (Lebesgue) measure zero. The existence of a derivative
almost everywhere has limited value since, for an arbitrary Lipschitz continuous function, this
derivative need not satisfy basic calculus operations like the chain rule. In Theorem 4 (local
flow), we prove that the flow is in fact piecewise–Cr (PCr) [45, section 4.1] and hence admits
a first–order approximation (the B–derivative) that satisfies the chain rule [45, Theorem 3.1.1]
and other operations familiar from calculus. To the best of our knowledge, this paper represents
the first application of PCr calculus to discontinuous dynamical systems. This benefits the
field by introducing new analytical and computational tools that can be employed, for instance,
to assess stability (as in section 7.2), optimality, or controllability [11, section 4.6]. We discuss
the practical implications of introducing these new tools from nonsmooth analysis in section 9.

1.3. Organization. We begin in section 2 by motivating and illustrating the results devel-
oped in this paper using models abstracted from the legged locomotion application domain.
Following a brief review of relevant technical background in section 3, we define the discon-
tinuous but piecewise–smooth vector fields of interest and show that they yield continuous
B–differentiable flows in section 4. In section 5 we demonstrate that such flows are locally con-
jugate (via piecewise–differentiable homeomorphisms) to a classical flowbox, leading to results
in section 6 establishing the persistence of such flows under small perturbations. Section 7
develops stability results, and their application to simple oscillator models is given in section 8.
The paper concludes with a brief summary in section 9 suggesting the relevance of these results
to biological and engineered systems of practical interest.

2. Relevance for legged locomotion. Consider the notional model for legged locomotion
illustrated in Figure 1 near a configuration wherein two limbs impact terrain at or near the same
instant in time. Although simultaneous–impact configurations occupy a measure–zero subset
of state space, they are nevertheless frequently encountered in biomechanics and robotics, since
legged animals and robots with four, six, and more limbs exhibit gaits with near–simultaneous
touchdown of two or more legs [4,20,28]. Away from footfall events, the equations–of–motion
governing the model’s motion are smooth; at footfall events, the equations–of–motion are
generally discontinuous. Thus we are led in this application domain to consider nonsmooth
dynamical systems whose discontinuities are confined to smooth submanifolds of state space,
and to focus our attention on trajectories that pass through points where two or more of these
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surfaces intersect.
We consider concrete models for the dynamics of legged locomotion near the simultaneous–

touchdown configuration illustrated in Figure 1 at two levels of abstraction. First we focus
on the effect of impulses arising from plastic impact between limbs and terrain, arriving in
section 2.1 at a first–order2 model. Subsequently we neglect impulses and focus on the effect
of viscoelasticity in the limbs, arriving in section 2.2 at a second–order model. The first–order
model in section 2.1 is sufficiently simple that we are able to derive a closed–form expression for
the first–order approximation of its flow in section 2.3. In contrast, the second–order model in
section 2.2 is sufficiently complex to preclude an analogous closed–form treatment, motivating
us to develop more general analytical and computational tools in sections 4–7. These new
techniques enable us in section 8 to assess stability in phase oscillator models abstracted from
the locomotion models described below.

2.1. First–order locomotion model. We begin by imposing an instantaneous plastic col-
lision law when either of the limbs illustrated in Figure 1 impact the ground plane. Before
impact, for simplicity, we assume the two limbs remain at their rest length, and hence the
vertical position zj of each limb j ∈ {1, 2} is constrained relative to the vertical position z and
rotation θ of the body, and we neglect the horizontal motion; this reduces the number of me-
chanical degrees of freedom (DOF) from five to two. After impact with the ground, each limb
j ∈ {1, 2} is constrained at height zj = 0, whence there remain two DOF. We choose to analyze
the system’s dynamics in two generalized coordinates that simplify subsequent calculations:

(1) q1 = z − sin θ + z1, q2 = z + sin θ + z2.

For purposes of illustration, we restrict our attention to preimpact initial conditions wherein
the rotational velocity is zero and the vertical velocity is fixed at a particular ż < 0; this
reduces the dimension of the unspecified initial conditions to two (namely, θ and z), enabling
faithful representation in the illustration in Figure 1. When limb height zj reaches zero with
negative velocity żj = ż < 0, plastic impact instantaneously resets the limb velocity żj to zero.
Thus the first–order system dynamics are given by

(2) q̇j =

{
ż + żj , zj > 0,
ż, zj = 0.

Note that the dynamics in (2) are discontinuous across the perpendicular event surfaces Hj =
{zj = 0}, j ∈ {1, 2}, and the trajectory of interest indicated in Figure 1 passes transversely
through the intersection H1 ∩ H2. We will analyze this model’s behavior exhaustively in
section 2.3.

2.2. Second–order locomotion model. We now neglect impulsive effects and focus on
the effect of discontinuous forces in the locomotion model illustrated in Figure 1. When a
limb j ∈ {1, 2} is in contact with the ground, viscoelastic forces developed in the limb are

2Keeping with convention [5, section 15], we refer to a model of a mechanical system as first–order if
the model’s state contains only positions, and second–order if the model’s state contains both positions and
velocities. This sense of “first–/second–order” should not be confused with the sense intended when we discuss
existence of first– and higher–order approximations of piecewise–differentiable functions in what follows.
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applied to the body at the limb attachment point. The second–order equations–of–motion for
the intrinsic generalized coordinates in (1) are3

(3) q̈j =

{ −2g, zj > 0,

−g + 2κ(`j − `)− 2β ˙̀
j , zj = 0,

where `j = z−(−1)j sin θ−zj denotes the length of limb j ∈ {1, 2} and ˙̀
j = ż−(−1)j θ̇ cos θ−

żj = ż < 0 denotes the instantaneous rate of extension/contraction of limb j ∈ {1, 2} after
impact (recall that θ̇ was initialized to zero for purposes of illustration, and żj = 0 after
impact). Note that the dynamics in (3) are discontinuous across the perpendicular event
surfaces Hj = {zj = 0}, j ∈ {1, 2}, and the trajectory of interest passes transversely through
the intersection H1 ∩H2.
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(a) Saggital–plane model for legged locomotion.

−π/8 0 +π/8
θ

0.5

1.0
z

(b) Trajectory undergoing simultaneous footfalls.

Figure 1. Notional model for saggital–plane quadrupedal locomotion (for clarity, only two legs are illus-
trated). (a) The model is comprised of a massive body with three DOF (horizontal position x, height z, and
pitch rotation angle θ) and two limbs joining body hip joints to point–mass feet each with two DOF (horizon-
tal position xj and height zj, j ∈ {1, 2}). (b) A trajectory of interest (representing, e.g., a trot gait for the
quadrupedal model; illustrated by a downward–pointing arrow) passes transversely through the intersection of
surfaces corresponding to configurations where the feet impact the ground. The model’s dynamics are generally
discontinuous across these surfaces, as the velocity and forces change discontinuously during footfalls.

2.3. First–order approximation of a nonsmooth flow. To motivate and illustrate the
results contained in this paper, we begin by studying the first–order locomotion dynamics
from section 2.1, whose flow can be written in closed form. Letting x = (q1, q2) and noting
that z−zj = ` before impact for j ∈ {1, 2}, the time derivative of x is given by a discontinuous
vector field F : Rd → TRd defined by

(4) ∀x ∈ R2 : F (x) = żη(x),

3For simplicity and clarity of the exposition, all masses and moments of inertia are taken to be unity.
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where ż < 0 is a constant and η : R2 → {1, 2} is defined by

(5) ∀x ∈ R2, j ∈ {1, 2} : ηj(x) =

{
2, xj > `,
1, xj ≤ `.

The vector field and some of its integral curves are illustrated in Figure 2a.
Standard results (see, for instance, [18, Chapter 2, section 8, corollary to Theorem 3])

imply that there exists a Lipschitz continuous global flow φ : R×Rd → R2 associated with this
vector field; i.e., for every x ∈ R2 the restriction φ|R×{x} : R → R2 is absolutely continuous
and

(6) φ(t, x) = x+

∫ t

0
F (φ(s, x))ds.

Let χ0, χ
−1
0 : R→ R be the piecewise–linear homeomorphisms defined by

(7) ∀s ∈ R : χ0(s) =

{
s, s > 0,
2s, s ≤ 0,

∀s̃ ∈ R : χ−1
0 (s̃) =

{
s̃, s̃ > 0,
1
2 s̃, s̃ ≤ 0,

and let χ, χ−1 : R2 → R2 be the piecewise–linear homeomorphisms defined by

(8) ∀x ∈ R2 : χ(x) = (χ0(x1), χ0(x2)) , ∀x̃ ∈ R2 : χ−1(x̃) =
(
χ−1

0 (x̃1), χ−1
0 (x̃2)

)
.

Note that χ0◦χ−1
0 = idR and hence χ◦χ−1 = idR2 . Away from points where F is discontinuous

(and hence χ is nonsmooth), there is no ambiguity in the definition of the “pushforward”
F̃ := Dχ ◦ F ◦ χ−1 : R2 → TR2. In fact, the vector field F̃ is constant,

(9) ∀x̃ ∈ R2 : F̃ (x̃) = −2 · 1,

where 1 = [1, 1]T ∈ R2 is the vector of ones, and hence the flow φ̃ : R × R2 → R2 associated
with F̃ has the simple form

(10) ∀(t, x̃) ∈ R× R2 : φ̃(t, x̃) = x̃− 2t1.

Since the homeomorphism χ provides conjugacy between the flows, we have

(11) ∀(t, x) ∈ F : χ ◦ φ(t, x) = φ̃(t, χ(x)) = χ(x)− 2t1;

this relationship is illustrated in Figure 2. If t ∈ R and x,w ∈ R2 are such that x, x+w, x−w
lie in the first quadrant and φ(t, x), φ(t, x + w), φ(t, x − w) lie in the third quadrant as in
Figure 2, the conjugacy in (11) can be used to compute a first–order approximation of the flow
φ, since

(12)

φ(t, x+ sw) = χ−1 (χ(x+ sw)− 2t1)

=
1

2
((x+ sw)− 2t1)

=
1

2
(x+ sw)− t1,
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and hence

(13) lim
s→0+

1

s
(φ(t, x+ sw)− φ(t, x)) =

1

2
w.

Remarkably, the first–order approximation of the flow turns out to be linear, so the nonsmooth
flow φ is C1 with respect to state along the trajectory initialized at x (note that the time
derivative of φ is F , which is discontinuous along this trajectory). Furthermore, the first–
order effect of the flow is a contraction with rate 1/2. These happy accidents will not arise
in general—if F were perturbed in the second or fourth quadrant of Figure 2a, its flow would
no longer be classically differentiable—so we seek a general technique for deriving first– and
higher–order approximations of the flow; the remainder of the paper is devoted to developing
analytical and computational tools suited to this aim.

3. Preliminaries. The mathematical constructions we use are “standard” in the sense that
they are familiar to practitioners of (applied) dynamical systems or optimization theory (or
both). Since this paper represents (to the best of our knowledge) the first application of
some techniques from nonsmooth analysis to the class of discontinuous dynamical systems
introduced in section 2, we briefly review mathematical concepts and introduce notation that
will be used to state and prove results throughout this paper and suggest textbook references
where the interested reader could obtain a complete exposition.

3.1. Notation. To simplify the statement of our definitions and results, we fix notation
of some objects in Rn: +1 ∈ Rn denotes the vector of all ones and −1 its negative; ej is the
jth standard Euclidean basis vector; and Bn = {−1,+1}n ⊂ Rn is the set of corners of the
n-dimensional cube. We let sign : Rn → {−1,+1}n be the vectorized signum function taking
its values in the Euclidean cube’s corners; i.e.,

(14) ∀x ∈ Rn, j ∈ {1, . . . , d} : e>j sign(x) =

{
−1, xj < 0,
+1, xj ≥ 0.

To fix notation, in the following paragraphs we will briefly recapitulate standard con-
structions from topology, differential topology, and dynamical systems theory, and we refer
the reader to [35] for details. If U ⊂ X is a subset of a topological space, then IntU ⊂ X
denotes its interior and ∂U denotes its boundary. Let f : X → Y be a map between topo-
logical spaces. If U ⊂ X, then f |U : U → Y denotes the restriction. If V ⊂ Y , then
f−1(V ) = {x ∈ X : f(x) ∈ V } denotes the preimage of V under f .

Given Cr manifolds D,N , we let Cr(D,N) denote the set of Cr functions from D to N .
H ⊂ D is a Cr codimension–k submanifold of the d–dimensional manifold D if every x ∈ H
has a neighborhood U ⊂ D over which there exists a Cr diffeomorphism h : U → Rd such that

(15) H ∩ U = h−1
({
y ∈ Rd : yk+1 = · · · = yd = 0

})
.

If f ∈ Cr(D,N), then at every x ∈ D there exists an induced linear map Df(x) : TxD →
Tf(x)N called the pushforward (in coordinates, Df(x) is the Jacobian linearization of f at
x ∈ D) where TxD denotes the tangent space to the manifold D at the point x ∈ D. Globally,
the pushforward is a Cr−1 map Df : TD → TN where TD is the tangent bundle associated
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(a) ẋ = F (x)
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(b) ˙̃x = Dχ ◦ F ◦ χ−1(x̃)

Figure 2. (a) Piecewise–constant planar vector field F : R2 → TR2 from (4). (b) Pushforward of F via the
piecewise–linear (“flowbox”) homeomorphism χ : D → D from (8).

with the manifold D; we recall that TD is naturally a 2d–dimensional Cr manifold. When
N = R, we will invoke the standard identification TyN ' R for all y ∈ N and regard Df(x) as
a linear map from TxD (i.e., an element of the cotangent space T ∗xD) into R for every x ∈ D;
we recall that the cotangent bundle T ∗D is naturally a 2d–dimensional Cr manifold. If U ⊂ D
and f : U → N is a map, then a map f̃ : D → N is a Cr extension of f if f̃ is Cr and f̃ |U = f .

Following [35, Chapter 8], a (possibly discontinuous or nondifferentiable) map F : D → TD
is a (rough)4 vector field if π◦F = idD, where π : TD → D is the natural projection and idD is

4We will constrain the class of vector fields under consideration in section 4.1, but for expediency drop the
rough modifier in what follows.
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the identity map on D. A vector field may, under appropriate conditions, yield an associated
flow φ : F → D defined over an open subset F ⊂ R × D called a flow domain; in this case
for every x ∈ D the set Fx = F ∩ (R× {x}) is an open interval containing the origin, the
restriction φ|Fx : Fx → D is absolutely continuous, and the derivative with respect to time is
Dtφ(t, x) = F (φ(t, x)) for almost every t ∈ Fx. A flow is maximal if it cannot be extended to
a larger flow domain. An integral curve for F is an absolutely continuous function ξ : I → D
over an open interval I ⊂ R such that ξ̇(t) = F (ξ(t)) for almost all t ∈ I; it is maximal if it
cannot be extended to an integral curve on a larger open interval.

3.2. Piecewise–differentiable functions and nonsmooth analysis. The notion of piecewise–
differentiability we employ was originally introduced by Robinson [42]; since the recent mono-
graph from Scholtes [45] provides a more comprehensive exposition, we adopt the notational
conventions therein. Let r ∈ N∪{∞} and D ⊂ Rd be open. A continuous function f : D → Rn
is called piecewise–Cr if for every x ∈ D there exists an open set U ⊂ D containing x and a finite
collection {fj : U → Rn}j∈J of Cr–functions such that for all x ∈ U we have f(x) ∈ {fj(x)}j∈J.
The functions {fj}j∈J are called selection functions for f |U , and f is said to be a continuous
selection of {fj}j∈J. A selection function fj is said to be active at x ∈ U if f(x) = fj(x). We let
PCr(D,Rn) denote the set of piecewise–Cr functions from D to Rn. Note that PCr is closed
under composition and pointwise maximum or minimum of a finite collection of functions. Any
f ∈ PCr(D,Rn) is locally Lipschitz continuous, and a Lipschitz constant for f is given by the
supremum of the induced norms of the (Fréchet) derivatives of the set of selection functions
for f . The definition of piecewise–Cr may at first appear unrelated to the intuition that a
function ought to be piecewise–differentiable precisely if its “domain can be partitioned locally
into a finite number of regions relative to which smoothness holds” [43, section 1]. However, as
shown in [43, Theorem 2], piecewise–Cr functions are always piecewise–differentiable in this
intuitive sense.

Piecewise–differentiable functions possess a first–order approximation Df : TD → TRn
called the Bouligand derivative (or B–derivative) [45, Chapter 3]; this is the content of Lemma
4.1.3 in [45]. Significantly, and unlike the directional derivative, this B–derivative supports
generalization of many techniques familiar from calculus, including the chain rule [45, Theo-
rem 3.1.1] (and hence product and quotient rules [45, Corollary 3.1.1]), a fundamental theorem
of calculus [45, Proposition 3.1.1], and an implicit function theorem [41, Corollary 20]. We
let Df(x; v) denote the B–derivative of f evaluated along the tangent vector v ∈ TxD. The
B–derivative is positively homogeneous; i.e., ∀v ∈ TxD,λ ≥ 0 : Df(x;λv) = λDf(x; v).

4. Local and global flow. In this section we rederive in our present nonsmooth setting the
erstwhile familiar fundamental construction associated with a vector field: its flow. We begin
in section 4.1 by introducing the class of vector fields under consideration, namely, event–
selected Cr vector fields. Subsequently, in section 4.2 we construct a candidate flow function
via composition of piecewise–differentiable functions. Finally, in section 4.3 we show that this
candidate function is indeed the flow of the event–selected Cr vector field.

4.1. Event–selected vector fields discontinuities. The flow of a discontinuous vector field
F : D → TD over an open domain D ⊂ Rd can exhibit pathological behaviors ranging from
nondeterminism to discontinuous dependence on initial conditions. We will investigate local
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properties of the flow when the discontinuities are confined to a finite collection of smooth
submanifolds through which the flow passes transversally, as formalized in the following defi-
nitions.

Definition 1. Given a vector field F : D → TD over an open domain D ⊂ Rd and a
function h ∈ Cr(U,R) defined on an open subset U ⊂ D, we say that h is an event function
for F on U if there exists a positive constant f > 0 such that Dh(x)F (x) ≥ f for all x ∈ U . A
codimension–1 embedded submanifold Σ ⊂ U for which h|Σ is constant is referred to as a local
section for F .

Note that if h is an event function for F on a set containing ρ ∈ D, then necessarily
Dh(ρ) 6= 0.

We will show in section 4.3 that vector fields that are differentiable everywhere except a
finite collection of local sections give rise to a well–defined flow that is piecewise–differentiable.
This class of event–selected vector fields is defined formally as follows.

Definition 2. Given a vector field F : D → TD over an open domain D ⊂ Rd, we say that
F is event–selected Cr at ρ ∈ D if there exists an open set U ⊂ D containing ρ and a collection
{hj}nj=1 ⊂ Cr(U,R) such that

1. (event functions) hj is an event function for F on U for all j ∈ {1, . . . , n};
2. (Cr extension) for all b ∈ {−1,+1}n = Bn, with

Db = {x ∈ U : bj(hj(x)− hj(ρ)) ≥ 0} ,

F |IntDb admits a Cr extension Fb : U → TU .
(Note that for any b ∈ Bn such that IntDb = ∅ the latter condition is satisfied vacuously.) We
let ECr(D) denote the set of vector fields that are event–selected Cr at every x ∈ D.

Before proceeding, we digress briefly to comment on the preceding definitions. The first condi-
tion in Definition 2, analogous to [15, equation (7.69)], is imposed to preclude sliding modes [51]
and the branching [12] phenomenon illustrated in SM5; in particular, it ensures that trajecto-
ries progress monotically5 with respect to each event surface. In the second condition, all that
is required for each b ∈ Bn is that F |IntDb admits a Cr extension; note that the flow derived
below is unaffected by the extension chosen. Note as well that the event surfaces are not re-
quired to be transverse; if two event surfaces locally coincided, this redundancy would manifest
by yielding some regions b ∈ Bn for which IntDb = ∅. For illustrations of event–selected Cr

vector fields in the plane D = R2, refer to Figures 3 and 4.

4.2. Construction of the piecewise–differentiable flow. The following constructions will
be used to state and prove results throughout the chapter. Suppose F : D → TD is event–
selected Cr at ρ ∈ D. By definition there exists a neighborhood ρ ∈ U ⊂ D and associated
event functions {hj}nj=1 ⊂ Cr(U,R) that divide U into regions {Db}b∈Bn defined by Db =
{x ∈ U : (hj(x)− hj(ρ))bj ≥ 0}. The boundary of each Db is contained in the collection of
event surfaces {Hj}nj=1 defined for each j ∈ {1, . . . , n} by Hj = {x ∈ U : hj(x) = hj(ρ)}. For
each j ∈ {1, . . . , n} and b ∈ Bn, we refer to the surface Hj as an exit boundary in positive

5Note that if h ∈ Cr(U,R) is such that Dh(x)F (x) ≤ −f for all x ∈ U , then −h is an event function as in
Definition 1, so monotonic positive progress was stipulated without loss of generality.
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time for Db if hj(Db) ⊂ (−∞, 0]; we refer to Hj as an exit boundary in negative time if
hj(Db) ⊂ [0,+∞). In addition, the definition of event–selected Cr implies that there is a
collection of Cr vector fields {Fb : U → TU}b∈Bn ⊂ Cr(U, TU) such that F |IntDb = Fb|IntDb

for all b ∈ Bn.
4.2.1. Budgeted time–to–boundary. For each b ∈ Bn with IntDb 6= ∅, let φb : Fb → U

be a flow for Fb over a flow domain Fb ⊂ R × U containing (0, ρ); recall that φb ∈ Cr(Fb, U)
since Fb ∈ Cr(U, TU). Each H ∈ {Hj}nj=1 is a local section for F , and therefore a local section
for Fb as well. This implies Fb(ρ) is transverse to H (more precisely, Fb(ρ) 6∈ TρH); thus the
implicit function theorem [35, Theorem C.40] implies that there exists a Cr “time–to–impact”
map τHb : UHb → R defined on an open set UHb ⊂ D containing ρ such that

(16) ∀x ∈ UHb : (τHb (x), x) ∈ Fb and φb(τHb (x), x) ∈ H.

The collection of maps
{
τHb
}
b∈Bn is jointly defined over the open set Ub =

⋂n
j=1 U

Hj
b ; note

that Ub is nonempty since ρ ∈ Ub. Any x ∈ Ub can be taken to any H ∈ {Hj}nj=1 by flowing
with the vector field Fb for time τHb (x) ∈ R. A useful fact we will recall in what follows is that
if y = φb(τb(x), x), then

(17) DτHb (x) =
−Dh(y)Dxφb(t, x)

Dh(y)Fb(y)
;

this follows from [25, section 11.2].
We now define functions τ+

b , τ
−
b : R × Ub → R that specify the time required to flow to

the exit boundary of Db in forward or backward time, respectively, without exceeding a given
time budget:

(18)
∀(t, x) ∈ R× Ub : τ+

b (t, x) = max

{
0,min

(
{t} ∪

{
τ
Hj
b (x) : bj < 0

}n
j=1

)}
,

∀(t, x) ∈ R× Ub : τ−b (t, x) = min

{
0,max

(
{t} ∪

{
τ
Hj
b (x) : bj > 0

}n
j=1

)}
.

Since τ+
b , τ

−
b are obtained via pointwise minimum and maximum of a finite collection of Cr

functions, we conclude that τ+
b , τ

−
b ∈ PCr(R× Ub,R). See Figure 3 for an illustration of the

component functions of τ+
b in a planar vector field.

In what follows we will require the derivative of τ+
b with respect to t and x. In general

this can be obtained via the chain rule [45, Theorem 3.1.1]. If we define ν+
b : Ub → R∪ {+∞}

using the convention min ∅ = +∞ by

(19) ∀x ∈ Ub : ν+
b (x) = min

{
τ
Hj
b (x) : bj < 0

}n
j=1

,

then we immediately conclude that for all (t, x) ∈ R × Ub such that ν+
b (x) 6= t 6= 0, the

forward–time budgeted time–to–boundary τ+
b is classically differentiable and

(20) Dτ+
b (t, x) =





[
0, 0>d

]
, t < 0,[

1, 0>d
]
, 0 < t < ν+

b (x),[
0, DτHb (x)

]
, ν+

b (x) < t,
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Figure 3. Illustration of a vector field F : D → TD that is event–selected Cr at ρ ∈ D = R2. The functions
{τHj

[−1,−1]}
2
j=1 specify the time required to flow via the vector field F[−1,−1] to the surface Hj. The pointwise

minimum min{τHj

[−1,−1](x)}2j=1 is used in the definition of τ+[−1,−1] in (18).

where in the third case H ∈ {Hj}nj=1 is such that τHb (x) = ν+
b (x). To compute Dτ−b (t, x), one

may simply use the formula in (20) applied to the vector field −F ; full details are provided in
SM1.1.

4.2.2. Budgeted flow–to–boundary. By composing the flow φb with the budgeted time–
to–boundary functions τ+

b , τ
−
b , we now construct functions that flow points up to the exit

boundary of Db in forward or backward time over domains

(21)
V+
b =

{
(t, x) ∈ R× Ub : (τ+

b (t, x), x) ∈ Fb
}
,

V−b =
{

(t, x) ∈ R× Ub : (τ−b (t, x), x) ∈ Fb
}
.
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(Note that V+
b ,V

−
b are open since τ+

b , τ
−
b are continuous and nonempty since (0, ρ) ∈ V+

b ,V
−
b .)

For each b ∈ Bn define the functions ζ+
b : V+ → D, ζ−b : V− → D by

(22)
∀(t, x) ∈ V+

b : ζ+
b (t, x) = φb

(
τ+
b (t, x), x

)
,

∀(t, x) ∈ V−b : ζ−b (t, x) = φb
(
τ−b (t, x), x

)
.

Clearly ζ+
b ∈ PCr(V+

b , D) and ζ−b ∈ PCr(V−b , D) since they are obtained by composing PCr

functions [45, section 4.1]. Loosely speaking, the function ζ+
b coincides with φb for pairs (t, x)

that do not cross the forward–time exit boundary of Db. Yet unlike φb, it is the identity
(stationary) flow over the remainder of its domain. More precisely, for t < 0 and for values
of t > ν+

b (x) the function τ+
b (t, x) is constant (and hence the derivative with respect to time

Dtζ
+
b (t, x) = 0), while for t ∈ (0, ν+

b (x)) we have ζ+
b (t, x) = φb(t, x) (and hence Dtζ

+
b (t, x) =

Fb(φb(t, x))).
Now fix x ∈ Db, choose a ∈ Bn \ b, and for t ∈ R define

(23) t+a (t) = min
{
τ
Hj
a

(
ζ+
b (t, x)

)
: aj < 0

}n
j=1

.

Applying the conclusions from the preceding paragraph, with t′ ∈ R the composition

(24) ζ+
a (t′, ζ+

b (t, x))

is classically differentiable with respect to both t′ and t almost everywhere. Furthermore,
we can deduce that the derivative of the composition with respect to t is Fb(φb(t, x)) when
t ∈

(
0, ν+

b (x)
)
and zero where it is otherwise defined; similarly, the derivative with respect to t′

is Fa
(
φa(t

′, ζ+
b (t, x))

)
when t′ ∈ (0, t+a (t)) and zero where it is otherwise defined. If we impose

the relationship t′ = t− τ+
b (t, x), we have t′ = 0 for any t ∈ (0, ν+

b (x)). The composition

(25) ζ+
a (t− τ+

b (t, x), ζ+
b (t, x))

follows the flow for Fb from x toward (but never passing) the exit boundary of Db and then
follows the flow of Fa from ζ+

b (t, x) toward the exit boundary of Da.
In what follows we will require the derivative of ζ+

b with respect to t and x. In general,
this can be obtained via the chain rule [45, Theorem 3.1.1]. If we define ν+

b : Ub → R as
in (19), then we immediately conclude that for all (t, x) ∈ R × Ub such that ν+

b (x) 6= t 6= 0,
the forward–time flow–to–boundary ζ+

b is classically differentiable and

(26) Dζ+
b (t, x) =





[0d, 0d×d] , t < 0,
[Fb(φb(t, x)), Dxφb(t, x)] , 0 < t < ν+

b (x),
[0d,Υ(t, x)] , ν+

b (x) < t,

where in the third case Υ(t, x) = Fb(φb(τ
+
b (t, x), x))DτHb (x) +Dxφb(τ

+
b (t, x), x) and H ∈

{Hj}nj=1 is such that τHb (x) = ν+
b (x). To compute Dζ−b (t, x), one may simply use the formula

in (26) applied to the vector field −F ; full details are provided in SM1.2.
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4.2.3. Composite of budgeted time–to– and flow–to–boundary. Define ϕ+
b : V+

b →
R×D, ϕ−b : V−b → R×D by

(27)
∀(t, x) ∈ V+

b : ϕ+
b (t, x) =

(
t− τ+

b (t, x), ζ+
b (t, x)

)
=
(
t− τ+

b (t, x), φb
(
τ+
b (t, x), x

))
,

∀(t, x) ∈ V−b : ϕ−b (t, x) =
(
t− τ−b (t, x), ζ−b (t, x)

)
=
(
t− τ−b (t, x), φb

(
τ−b (t, x), x

))
.

Clearly ϕ+
b ∈ PCr(V+

b ,R×D) and ϕ−b ∈ PCr(V−b ,R×D). Intuitively, the second component of
the ϕ+

b , ϕ
−
b functions flow according to Fb up to exit boundaries of Db in forward or backward

time, respectively, while the first component deducts the flow time t− τ±b (t, x) from the total
time budget t. These functions satisfy an invariance property:

(28)
∀(t, x) ∈

(
V+
b ∩ (−∞, 0]× Ub

)
: ϕ+

b (t, x) = (t, x),

∀(t, x) ∈
(
V−b ∩ [0,+∞)× Ub

)
: ϕ−b (t, x) = (t, x).

We now combine (20) and (26) to obtain the derivative of ϕ+
b for all (t, x) ∈ R× Ub such

that ν+
b (x) 6= t 6= 0:

(29) Dϕ+
b (t, x) =





[
1 0>d
0d Id

]
, t < 0,

[
0 0>d

Fb(φb(t, x)) Dxφb(t, x)

]
, 0 < t < ν+

b (x),
[

1 −DτHb (x)
0d Υ(t, x)

]
, ν+

b (x) < t,

where in the third case Υ(t, x) = Fb(φb(τ
+
b (t, x), x))DτHb (x) +Dxφb(τ

+
b (t, x), x) and H ∈

{Hj}nj=1 is such that τHb (x) = ν+
b (x). To compute Dϕ−b (t, x), one may simply use the formula

in (26) applied to the vector field −F ; full details are provided in SM1.3.

4.2.4. Construction of flow via composition. Consider now the formal composition

(30) φ = π2 ◦
(

+1∏

b=−1
ϕ+
b

)
◦
( −1∏

b=+1

ϕ−b

)
,

where π2 : R×D → D is the canonical projection and
∏+1
b=−1 denotes composition in lexico-

graphic order (similarly
∏−1
b=+1 denotes composition in reverse lexicographic order). The set

φ−1(D) ⊂ R×D is open (since φ is continuous) and nonempty (since combining (28) and (30)
implies φ(0, ρ) = ρ). Therefore there exist open neighborhoods J ⊂ R of 0 and V ⊂ D of ρ
such that F = J × V ⊂ φ−1(D). Clearly φ ∈ PCr(F, D) since it is obtained by composing
PCr functions. Its derivative can be computed by applying the chain rule [45, Theorem 3.1.1];
alternatively, it can be obtained for almost all (t, x) ∈ F as a product of the appropriate ma-
trices given in (29) (SM8). The derivative with respect to time has a particularly simple form
almost everywhere, as we demonstrate in the following lemma.

Lemma 3 (time derivative of flow). If the vector field F : D → TD is event–selected Cr at
ρ ∈ D, then for almost all (t, x) ∈ F the flow φ ∈ PCr(F, D) defined by (30) is differentiable
with respect to time and

(31) Dtφ(t, x) = F (φ(t, x)).
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D[−1,−1]

ẋ = F[−1,−1](x)
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z+
[+1,+1]

φ(+t, z)

ρ

Figure 4. Illustration of a vector field F : D → TD that is event–selected Cr near ρ ∈ D = R2. The
vector field is discontinuous across the Cr codimension–1 submanifolds H1, H2 ⊂ D. For each b ∈ Bn =
{[−1,−1], [+1,−1], [−1,+1], [+1,+1]}, if IntDb 6= ∅, then the vector field restricts as F |IntDb = Fb|IntDb where
Fb : Ub → TUb is a smooth vector field over a neighborhood ρ ∈ Ub ⊂ D. An initial condition z ∈ D[−1,−1] flows
in forward time to φ(+t, y) ∈ D[+1,+1] through z+[+1,+1] ∈ H1 ∩H2. An initial condition y ∈ D[+1,+1] flows in
backward time to φ(−t, y) ∈ D[−1,−1] through y−[−1,+1] ∈ H1 and y−[−1,−1] ∈ H2.

Proof. Choose x ∈ D such that (0, x) ∈ F. We will show that φ|Fx is classically differen-
tiable for almost all times t ∈ Fx. Let t− = inf Fx, t+ = supFx so that 0 ∈ Fx = (t−, t+). We
construct a partition of [0, t+) as follows. For each b ∈ Bn, let (t+b , x

+
b ) =

(∏
a<b ϕ

+
a

)
(t+, x)

where the composition is over all a ∈ Bn that occur before b lexicographically; refer to Figure 4
for an illustration of the sequence {yb}b∈Bn generated by an initial condition y ∈ D−1. Note
that

{
t+ − t+b

}
b∈Bn is (lexicographically) nondecreasing and t++1 = τ+

+1(t++1, x
+
+1). Defining

the interval

(32) Jb = [t+ − t+b , t+ − t+b + τ+
b (t+b , x

+
b )],

we have [0, t+) ⊂ ⋃b∈Bn J
+
b and Int J+

a ∩ Int J+
b = ∅ for all a ∈ Bn \ {b}. Observe that

(33) ∀t ∈ Int J+
b : φ(t, x) = π2 ◦ ϕ+

b (t− (t+ − t+b ), x+
b ) ∈ IntDb,

where the condition is vacuously satisfied if Int J+
b = ∅. Therefore, for all t ∈ Int J+

b , the
piecewise–differentiable function φ is classically differentiable with respect to time at (t, x),
and we have

(34)

Dtφ(t, x) = Dπ2Dtϕ
+
b (t− (t+ − t+b ), x+

b )

= Fb(π2 ◦ ϕ+
b (t− (t+ − t+b ), x+

b ))

= F (π2 ◦ ϕ+
b (t− (t+ − t+b ), x+

b ))

= F (φ(t, x)).

Applying an analogous argument in backward time, we conclude that Dtφ(t, x) = F (φ(t, x))
for almost all t ∈ (t−, t+) = Fx. Since (0, x) ∈ F was arbitrary, the lemma follows.
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4.3. Piecewise–differentiable flow. We now show that the piecewise–differentiable func-
tion φ ∈ PCr(F, D) defined in (30) is in fact a flow for the discontinuous vector field F . See
Figure 4 for an illustration of this flow.

Theorem 4 (local flow). Suppose the vector field F : D → TD is event–selected Cr at
ρ ∈ D. Then there exists a flow φ : F → D for F over a flow domain F ⊂ R ×D containing
(0, ρ) such that φ ∈ PCr(F, D) and

(35) ∀(t, x) ∈ F : φ(t, x) = x+

∫ t

0
F (φ(s, x)) ds.

Proof. We claim that φ ∈ PCr(F, D) from (30) satisfies (35). Applying the fundamen-
tal theorem of calculus [45, Proposition 3.1.1] in conjunction with Lemma 3 and positive–
homogeneity of the derivative (31), we find

φ(t, x) = φ(0, x) +

∫ 1

0
Dφ(tu, x; t, 0)du

= x+

∫ t

0
Dφ(s, x; t, 0)

1

t
ds(36)

= x+

∫ t

0
Dtφ(s, x)ds

= x+

∫ t

0
F (φ(s, x))ds.

If the vector field F : D → TD is event–selected Cr at every point in the domain D, we
may stitch together the local flows obtained from Theorem 4 (local flow) to obtain a global
flow.

Corollary 5 (global flow). If F ∈ ECr(D), then there exists a unique maximal flow φ ∈
PCr(F, D) for F . This flow has the following properties:

(a) For each x ∈ D, the curve φx : Fx → D is the unique maximal integral curve of F
starting at x.

(b) If s ∈ Fx, then Fφ(s,x) = Fx − s = {t− s : t ∈ Fx}.
(c) For each t ∈ R, the set Dt = {x ∈ D : (t, x) ∈ F} is open in D and φt : Dt → D−t is

a piecewise–Cr homeomorphism with inverse φ−t.

Proof. This follows from a straightforward modification of the analogous Theorem 9.12
in [35] (simply replace all occurrences of the word “smooth” with “PCr”). We recapitulate the
argument in SM3 in the supplemental materials.

Remark 1. Existence, uniqueness, and Lipschitz continuity of the flow φ : F → D has been
established previously for a more general class of discontinuous vector fields F : D → TD
than those considered in Definition 2; see, for instance, [18, Chapter 2, section 8, corollary
to Theorem 3]. Our contribution is the observation that, by restricting to event–selected Cr

vector fields, the flow is in fact piecewise–Cr, i.e., φ ∈ PCr(F, D). Although significant labor
was required to construct the candidate flow function in (30) via composition of PCr functions,
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the task in Theorem 4 (local flow) of verifying that this function is the flow of the vector field
F—i.e., ensuring φ from (30) satisfies (35)—required only a straightforward application of
PCr calculus. Similarly, PCr calculus enables the proof of Corollary 5 (global flow) to proceed
wholly analogously to the proof of the corresponding classical result.

We conclude this section with a technical observation that will prove useful in what follows:
if a vector field is event–selected Cr at every point along an integral curve, the following lemma
shows that it is actually Cr at all but a finite number of points along the curve.

Lemma 6 (ECr implies Cr almost everywhere). Suppose the vector field F : D → TD
is event–selected Cr at every point along an integral curve ξ : I → D for F over a compact
interval I ⊂ R. Then there exists a finite subset δ ⊂ ξ(I) such that F is Cr on ξ(I) \ δ.

Proof. Let δ ⊂ ξ(I) be the set of points where F fails to be Cr. If |δ| = ∞, then since
ξ(I) is compact there exists an accumulation point α ∈ ξ(I). Since F is event–selected Cr at
α, there exists ε > 0 such that F is Cr at every point in the set (Bε(α)∩ ξ(I)) \ {α}, but this
violates the existence of an accumulation point α ∈ δ. Therefore, |δ| <∞.

5. Time–to–impact, (Poincaré) impact map, and flowbox. We now leverage the fact
that event–selected Cr vector fields yield piecewise–differentiable flows to obtain useful con-
structions familiar from classical (smooth) dynamical systems theory. Using an inverse func-
tion theorem [41, Corollary 20], we construct piecewise–differentiable time–to–impact maps
for local sections in section 5.1. We then apply this construction to infer the existence of
piecewise–differentiable (Poincaré) impact maps associated with periodic orbits in section 5.2
and piecewise–differentiable flowboxes in section 5.3.

5.1. Piecewise–differentiable time–to–impact. We begin in this section by constructing
piecewise–differentiable time–to–impact maps.

Theorem 7 (time–to–impact). Suppose the vector field F : D → TD is event–selected Cr

at ρ ∈ D. If σ ∈ Cr(U,R) is an event function for F on an open neighborhood U ⊂ D of
ρ, then there exists an open neighborhood V ⊂ D of ρ and piecewise–differentiable function
µ ∈ PCr(V,R) such that

(37) ∀x ∈ V : σ ◦ φ(µ(x), x) = σ(ρ),

where φ ∈ PCr(F, D) is a flow for F and (0, ρ) ∈ F.

Proof. Theorem 4 (local flow) ensures the existence of a flow φ ∈ PCr(F, D) such that
F ⊂ R×D contains (0, ρ). Let α = σ ◦φ, and note that there exist open neighborhoods T ⊂ R
of 0 and W ⊂ D of ρ such that α ∈ PCr(T ×W,R).

We aim to apply an implicit function theorem to show that α(s, x) = σ(ρ) has a unique
piecewise–differentiable solution s = µ(x) near (0, ρ). To do so, we need to establish the
function α is completely coherently oriented with respect to its first argument.

Specializing Definition 16 in [41], a sufficient condition for α to be completely coherently
oriented with respect to its first argument at (0, ρ) is that the (scalar) derivativesDαj(0, ρ; 1, 0)
of all essentially active selection functions {αj : j ∈ Ie(α, (0, ρ))} have the same sign. Lemma 3
implies the time derivatives of all essentially active selection functions for φ at (0, ρ) are
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contained in the collection {Fb(ρ) : b ∈ Bn, Db 6= ∅}, where {Fb : b ∈ Bn} are the Cr vector
fields that define F near ρ. Since σ is an event function for F , there exists f > 0 such that

(38) ∀b ∈ Bn : Dσ(ρ)Fb(ρ) ≥ f > 0.

This implies that α is completely coherently oriented with respect to time at (0, ρ). Therefore,
we may apply Corollary 20 in [41] to obtain an open neighborhood 0 ∈ V ⊂ R and a piecewise–
differentiable function µ ∈ PCr(V,R) such that (37) holds.

Corollary 8 (time–to–impact). Suppose the vector field F : D → TD is event–selected Cr

at every point along an integral curve ξ : [0, t] → D for F . If σ ∈ Cr(U,R) is an event
function for F on an open set U ⊂ D containing ξ(t), then there exists an open neighborhood
ξ(0) ∈ V ⊂ D and piecewise–differentiable function µ ∈ PCr(V,R) that satisfies (37).

Proof. Corollary 5 ensures the existence of a flow φ ∈ PCr(F, D) such that F ⊂ R × D
contains [0, t] × {ξ(0)}. Let µ̃ ∈ PCr(Ṽ ,R) be the impact time function for σ obtained by
applying Corollary 7 at ξ(t) = φ(t, ξ(0)). Then with V = {x ∈ D : φ(t, x) ∈ Ṽ }, noting that
V is nonempty since ξ(0) ∈ V and open since φ is continuous, the function µ : V → R defined
by µ(x) = t+ µ̃ ◦ φ(t, x) is piecewise–Cr and satisfies (37).

Remark 2. We are not the first to observe that vector field discontinuities influence the
time required to flow to a submanifold Σ of state space D; previous authors have computed
the first–order effect these discontinuities exert on the flow time via saltation matrices [3, 30]
and discontinuity mappings [15, 19]. Our contribution is the observation that, by restricting
to event–selected Cr vector fields, the function µ : V → R that computes the time–to–impact
from an open set V ⊂ D to a surface Σ ⊂ D is in fact piecewise–Cr, i.e., µ ∈ PCr(V,R).
In addition to generalizing the time–to–impact construction to apply in the presence of an
arbitrary number of surfaces of discontinuity that are not required to be transverse (the one
surface case is considered in [3,19], while [15,30] consider the case of two transverse surfaces),
this immediately establishes the existence of higher–order approximations of µ. As with the
proof of Theorem 4 (local flow), PCr calculus enabled us to prove Theorem 7 (time–to–impact)
using the same technique as the corresponding classical result, namely, an implicit function
theorem.

5.2. Piecewise–differentiable (Poincaré) impact map. We now apply Theorem 7 (time–
to–impact) in the important case where the integral curve is a periodic orbit to construct a
piecewise–differentiable (Poincaré) impact map.

Definition 9. An integral curve γ : R→ D is a periodic orbit for the vector field F : D →
TD if there exists t > 0 such that γ(t) = γ(0) and Dtγ(s) 6= 0 for all s ∈ [0, t]. The minimal
t > 0 for which γ(t) = γ(0) is referred to as the period of γ, and we say that γ is a t–periodic
orbit for F . We let Γ = γ(R) denote the image of γ.

Suppose the vector field F : D → TD is event–selected Cr at every point along a t–periodic
orbit γ for F . Then given a local section Σ ⊂ D for F that intersects Γ = γ(R) at {ρ} = Γ∩Σ,
Corollary 8 implies there exists a piecewise–differentiable impact time function µ ∈ PCr(V,R)
defined over an open neighborhood V ⊂ D of ρ such that µ(ρ) = t. With V ∩ Σ, we let
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ψ : V → Σ be the piecewise–differentiable impact map defined by

(39) ∀x ∈ V : ψ(x) = φ(µ(x), x).

Theorem 10 (Poincaré map). Suppose the vector field F : D → TD is event–selected Cr

at every point along a periodic orbit γ for F . Then given a local section Σ ⊂ D for F that
intersects Γ = γ(R) at {ρ} = Γ ∩ Σ, there exists an open neighborhood V ⊂ D of ρ such that
the impact map (39) restricts to a piecewise–differentiable (Poincaré) map P ∈ PCr(S,Σ) on
S = V ∩ Σ.

Proof. Without loss of generality assume γ(0) ∈ Σ. Let T be the period of γ, apply
Theorem 7 (time–to–impact) to γ|[0,T ] to obtain an open set V ⊂ D containing γ(0) and a
piecewise–Cr impact time map µ ∈ PCr(V,R), and define ψ : V → Σ as in (39). Then with
S = V ∩ Σ, the restriction P = ψ|S is a piecewise–Cr Poincaré map for γ.

Since the Poincaré map P : S → Σ yielded by Theorem 10 (Poincaré map) is piecewise–
differentiable, it admits a first–order approximation (its Bouligand derivative) DP : TS → TΣ
that can be used to assess the local exponential stability of the fixed point P (ρ) = ρ. This
topic will be investigated in more detail in section 7.2.

5.3. Piecewise–differentiable flowbox. Theorem 7 (time–to–impact) enables us to easily
derive a canonical form for the flow near an event–selected vector field discontinuity.

Theorem 11 (flowbox). Suppose the vector field F : D → TD is event–selected Cr at
ρ ∈ D, and let φ : F → D be the flow obtained from Theorem 4 (local flow). Then there exists
a piecewise–differentiable homeomorphism χ ∈ PCr(V,W ) between neighborhoods V ⊂ D of ρ
and W ⊂ Rd of 0 such that

(40) ∀x ∈ V, t ∈ Fx : χ ◦ φ(t, x) = χ(x) + te1,

where e1 ∈ Rd is the first standard Euclidean basis vector.

Proof. Let σ ∈ Cr(U,R) be an event function for F on a neighborhood ρ ∈ U ⊂ D that
is linear.6 Theorem 7 (time–to–impact) implies that there exists a piecewise–differentiable
time–to–impact map µ ∈ PCr(V,R) on a neighborhood V ⊂ D of ρ such that

(41) ∀x ∈ V : σ ◦ φ(µ(x), x) = σ(ρ),

i.e., φ(µ(x), x) lies in the codimension–1 subspace Σ = σ−1(σ(ρ)). Define χ : V → R× Σ by

(42) ∀x ∈ V : χ(x) = (−µ(x), φ(µ(x), x)).

Clearly χ ∈ PCr(V,R × Σ), and hence χ is continuous. Furthermore, it is clear that χ is
injective since (i) πΣχ(x) = πΣχ(y) implies that x and y lie along the same integral curve,
and (ii) distinct points along an integral curve pass through Σ at distinct times. It follows
from Brouwer’s open mapping theorem [10, 23] that the image W = χ(V ) is an open subset

6Existence of a linear event function is always guaranteed. For instance, take the linear approximation at
ρ of any nonlinear event function for F .
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of Rd. This implies that χ is a homeomorphism between V and W . With ι : R× Σ→ R×D
denoting the canonical inclusion, the inverse of χ ∈ PCr(V,W ) is φ ◦ ι|W ∈ PCr(W,V ); thus
χ is a PCr homeomorphism. Finally, using the semigroup property of the flow φ and the fact
that µ ◦ φ(t, x) = µ(x)− t for all x ∈ V, t ∈ Fx,

(43)

∀x ∈ V, t ∈ Fx : χ ◦ φ(t, x) = (−µ ◦ φ(t, x), φ(µ ◦ φ(t, x), φ(t, x)))

= (t− µ(x), φ(µ(x)− t, φ(t, x)))

= (t− µ(x), φ(µ(x), x))

= χ(x) + te1.

Thus the flow is conjugate via a piecewise–differentiable homeomorphism to a flowbox [25,
section 11.2], [35, Theorem 9.22].

6. Perturbed flow. In this section we study how the flow associated with an event–selected
Cr vector field varies under perturbations to both the smooth vector field components (in
section 6.1) and the event functions (in section 6.2).

6.1. Perturbation of vector fields. Suppose F : D → TD is event–selected Cr at ρ ∈ D
with respect to the components of h ∈ Cr(D,Rn). Then by Definition 2 there exists U ⊂ D
containing ρ such that for each b ∈ Bn either IntDb = ∅ or Db ⊂ U and F |IntDb admits a Cr

extension Fb : U → TU . We note that F is determined on U up to a set of measure zero from
h and the function F̂ ∈ Cr

(∐
b∈Bn U,

∐
b∈Bn TU

)
defined by F̂ |{b}×U = Fb|U . Note that we

regard Cr
(∐

b∈Bn U,
∐
b∈Bn TU

)
as a vector space under pointwise addition of tangent vectors

and the norm

(44)
∥∥∥F̂
∥∥∥
Cr

=
∑

b∈Bn

∥∥∥F̂ |{b}×U
∥∥∥
Cr
.

Thus in what follows we consider perturbations to event–selected Cr vector fields in the space
Cr
(∐

b∈Bn U,
∐
b∈Bn TU

)
.

Theorem 12 (vector field perturbation). Let F ∈ Cr
(∐

b∈Bn D,
∐
b∈Bn TD

)
, h ∈ Cr(D,Rn)

determine an event–selected Cr vector field at ρ ∈ D, r ≥ 1. Then for all ε > 0 there exists
δ > 0 such that for all F̃ ∈ BCr

δ (F )

(a) pairing h with F̃ determines an event–selected Cr vector field at ρ;
(b) the perturbed flow φ̃ : F̃ → D obtained by applying Theorem 4 (local flow) to F̃ satisfies

φ̃ ∈ BC0

ε (φ) on F̃ ∩ F and (0, ρ) ∈ F̃ ∩ F;
(c) there exists a piecewise–differentiable homeomorphism η ∈ PCr(U, Ũ) defined between

neighborhoods U, Ũ ⊂ D of ρ such that η|Bδ(ρ) ∈ BC0

ε (idBδ(ρ)) and

(45) η ◦ φ(t, x) = φ̃(t, η(x))

for all (t, x) ∈ R× Rd such that x ∈ U , t ∈ Fx ∩ F̃η(x), and φ(t, x) ∈ U .
Proof. Since F is event–selected Cr with respect to h at ρ, there exists f > 0 such that for

all x sufficiently close to ρ every component of Dh(x)F (x) is bounded below by f . Then so
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long as 0 < δ < f , every component of Dh(x)F̃ (x) is bounded below by f−δ > 0, establishing
claim (a).

We claim that (b) follows from [18, Theorem 1 in section 8 of Chapter 2], which we
reproduce as Theorem SM3 (differential inclusion perturbation) in SM4 in the supplemental
materials. Indeed, given any G ∈ Cr(∐b∈Bn D,

∐
b∈Bn TD) for which (G, h) determines an

event–selected Cr vector field, define a set–valued map G : D → 2TD as follows:

(46) ∀x ∈ D : G(x) = conv
{
G|{b}×D(x) : b ∈ Bn, x ∈ Db

}
.

At any x ∈ D, it is clear that G(x) is nonempty, bounded, closed, and convex. Furthermore,
it is clear that G is upper semicontinuous at x in the sense defined in SM4 in the supple-
mental materials. Therefore, the map G satisfies Assumption 1 (differential inclusion basic
conditions) over the domain of the flow for G. It is straightforward to verify that solutions to
the differential inclusion ẋ ∈ G(x) coincide with those of the differential equation ẋ = G(x)
since the derivatives of the (absolutely continuous) solution functions agree almost everywhere.
Claim (b) then follows by applying Theorem SM3 (differential inclusion perturbation) to F
determined from F by (46) and F̃ determined from F̃ ∈ BCr

δ (F ) by (46).
For claim (c), apply Theorem 11 (flowbox) to φ and φ̃ to obtain χ ∈ PCr(V,W ) and

χ̃ ∈ PCr(Ṽ , W̃ ) such that

(47) ∀x ∈ V ∩ Ṽ , t ∈ Fx ∩ F̃x : χ ◦ φ(t, x) = χ(x) + t e1, χ̃ ◦ φ̃(t, x) = χ̃(x) + t e1.

Then with U = χ−1(W̃ ), Ũ = χ̃−1 ◦ χ(U) (both sets are nonempty since ρ ∈ U ∩ Ũ and
open since χ and χ̃ are homeomorphisms), the piecewise–differentiable homeomorphism η =
χ̃−1 ◦ χ|U ∈ PCr(U, Ũ) provides conjugacy between φ and φ̃ for all (t, x) ∈ R× Rd such that
x ∈ U , t ∈ Fx ∩ F̃η(x), and φ(t, x) ∈ U :

(48)

η ◦ φ(t, x) = χ̃−1 ◦ χ ◦ φ(t, x)

= χ̃−1 (χ(x) + t e1)

= χ̃−1
(
χ̃ ◦ χ̃−1 ◦ χ(x) + t e1

)

= χ̃−1 (χ̃ ◦ η(x) + t e1)

= φ̃(t, η(x)).

We now wish to choose δ > 0 sufficiently small to ensure η|Bδ(ρ) ∈ BC0

ε (idBδ(ρ)). Recalling
from (42) that

(49) ∀x ∈ V : χ(x) = (−µ(x), φ(µ(x), x)),

where µ ∈ PCr(V,R) is the time–to–impact map for the event surface used to define χ, we
have

(50)

‖χ(x)− χ̃(x)‖ ≤ |µ(x)− µ̃(x)|+
∥∥∥φ(µ(x), x)− φ̃(µ̃(x), x)

∥∥∥
≤ |µ(x)− µ̃(x)|+ ‖φ(µ(x), x)− φ(µ̃(x), x)‖

+
∥∥∥φ(µ̃(x), x)− φ̃(µ̃(x), x)

∥∥∥
≤ (1 + Lφ) |µ(x)− µ̃(x)|+ εφ,
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where Lφ > 0 is a Lipschitz constant for φ on Bδ(0, ρ), claim (b) ensures φ̃ ∈ BC0

εφ
(φ) for

any desired εφ > 0, and we have restricted to x ∈ V ∩ Ṽ ∩ Bδ(ρ) for which (µ̃(x), x) ∈ F and
(µ(x), x) ∈ F̃. Applying [41, Lemma 9, Theorem 11] to µ, we conclude that δ > 0 can be chosen
sufficiently small to ensure µ̃ ∈ BC0

εµ (µ) for any desired εµ > 0. Therefore, (1 + Lφ)εµ + εφ
can be made arbitrarily small in (50); hence we may apply [41, Theorem 11] to choose δ > 0
sufficiently small to ensure χ̃−1 ∈ BC0

ε (χ−1) for any desired ε > 0. Thus δ > 0 may be chosen
sufficiently small to ensure Bδ(ρ) ⊂ U and

(51) ‖η(x)− x‖ =
∥∥χ̃−1 ◦ χ(x)− χ−1 ◦ χ(x)

∥∥ ≤ ε,

whence η|Bδ(ρ) ∈ BC0

ε (idBδ(ρ)). This completes the proof of claim (c).

Remark 3. Persistence and C0–closeness of the flow φ̃ : F̃ → D associated with a perturba-
tion F̃ of a discontinuous vector field F : D → TD has been established previously for a more
general class of vector fields than those considered in Definition 2; see, for instance, [18, Chap-
ter 2, section 8, Theorem 1]. Our contribution is the observation that, by restricting to event–
selected Cr vector fields, the perturbed flow is in fact piecewise–Cr, i.e., φ̃ ∈ PCr(F̃, D), and is
conjugate to the unperturbed flow via a PCr homeomorphism. The existence of a PCr “flow-
box” homeomorphism, provided by Theorem 11 (flowbox), was pivotal in the derivation of this
fact.

6.2. Perturbation of event functions. It is a well–known fact that the solution of n
equations in n unknowns generically varies continuously with variations in the equations. This
observation provides a basis for studying structural stability of the flow associated with event–
selected Cr vector fields when there are exactly n = d = dimD event functions, since for
a collection of event functions {hj}dj=1 ⊂ Cr(D,R) whose composite h ∈ Cr(D,Rd) satisfies
detDh(ρ) 6= 0, the existence of a unique intersection point ρ̃ and the set of possible transition
sequences undertaken by nearby trajectories are unaffected by a sufficiently small perturbation
h̃ of h. We now combine this observation with the previous theorem. Subsequently, we will
present an embedding technique that enables immediate generalization to cases where Dh(ρ)
is not invertible (whether because n < d, n > d, or n = d and detDh(ρ) = 0).

Theorem 13 (event function perturbation). Let F ∈ Cr
(∐

b∈Bn D,
∐
b∈Bn TD

)
, h ∈ Cr(D,Rd)

determine an event–selected Cr vector field at ρ ∈ D and suppose Dh(ρ) is invertible, r ≥ 1.
Then for all ε > 0 sufficiently small there exists δ > 0 such that for all F̃ ∈ BCr

δ (F ),
h̃ ∈ BCr

δ (h):
(a) there exists a unique ρ̃ ∈ Bδ(ρ) such that h̃(ρ̃) = 0 and h̃(x) 6= 0 for all x ∈ Bδ(ρ)\{ρ̃};
(b) pairing h̃ with F̃ determines an event–selected Cr vector field at ρ̃;
(c) the perturbed flow yielded by Theorem 4 (local flow), φ̃ : F̃ → D, satisfies φ̃ ∈ BC0

ε (φ)

on F̃ ∩ F 6= ∅;
(d) there exists a piecewise–differentiable homeomorphism η ∈ PCr(U, Ũ) defined between

neighborhoods U, Ũ ⊂ D containing {ρ, ρ̃} such that η|Bδ(ρ) ∈ BC0

ε (idBδ(ρ)) and

(52) η ◦ φ(t, x) = φ̃(t, η(x))

for all (t, x) ∈ R× Rd such that x ∈ U , t ∈ Fx ∩ F̃η(x), and φ(t, x) ∈ U .
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Proof of Theorem 13 (event function perturbation). Smooth dependence of the intersec-
tion point follows from the implicit function theorem [1, Theorem 2.5.7] since Cr functions over
compact domains comprise a Banach space [24, Chapter 2.1]. Specifically, if h ∈ Cr(D,Rn)
satisfies h(ρ) = 0 for some ρ ∈ D and Dh(ρ) is invertible,7 then there exist α, β > 0 and
ρ̃ ∈ Cr(Bα(h), Bβ(ρ)) such that for all h̃ ∈ Bα(h) the point ρ̃(h̃) is the unique zero of h̃ on
Bβ(ρ); i.e., h̃(ρ̃(h̃)) = 0 and for all x ∈ Bβ(ρ) \ {ρ̃(h̃)} we have h̃(x) 6= 0. This establishes (a);
(b) follows from continuity.

For any δ′ > 0, we can choose δ > 0 sufficiently small to ensure that F̃ ∈ BCr

δ (F ),
h̃ ∈ BCr

δ (h) implies Dh̃−1 ◦ F̃ ∈ BCr

δ′
(
Dh−1 ◦ F

)
; let F̃ ′ = Dh̃−1 ◦ F̃ , F ′ = Dh−1 ◦ F . With

φ̃′ : F̃′ → Rd, φ′ : F′ → Rd denoting the flows for F̃ ′, F ′, Theorem 12 (vector field perturbation)
implies that δ′ > 0 can be chosen sufficiently small to ensure φ̃′ ∈ BC0

ε′ (φ′) for any ε′ > 0.
Since h̃ provides conjugacy between φ̃ and φ̃′, and similarly h provides conjugacy between φ
and φ′, we conclude that δ > 0 can be chosen sufficiently small to ensure φ̃ ∈ BC0

ε (φ) on F̃∩F.
This establishes (c).

Let η′ ∈ PCr(U ′, Ũ ′) be the conjugacy from Theorem 12 (vector field perturbation) relating
φ′ to φ̃′. Then η = h̃ ◦ η′ ◦ h−1 provides conjugacy between φ and φ̃ since

(53)

η ◦ φ(t, x) = h̃ ◦ η′ ◦ h−1 ◦ φ(t, x)

= h̃ ◦ η′ ◦ φ′(t, h−1(x))

= h̃ ◦ φ̃′(t, η′ ◦ h−1(x))

= φ̃(t, h̃ ◦ η′ ◦ h−1(x))

= φ̃(t, η(x))

for all (t, x) ∈ R×Rd such that x ∈ h(U), t ∈ Fx ∩ F̃η(x), and φ(t, x) ∈ U . Furthermore, given
ε > 0 we may choose δ > 0 sufficiently small to ensure h̃−1 ∈ BC0

δ (h−1) and η′ ∈ BC0

δ (id),
whence

(54)

‖η(x)− x‖ =
∥∥∥h̃ ◦ η′ ◦ h−1(x)− x

∥∥∥

≤
∥∥∥h̃ ◦ η′ ◦ h−1(x)− h̃ ◦ h−1(x)

∥∥∥+
∥∥∥h̃ ◦ h−1(x)− x

∥∥∥
≤ L

h̃

∥∥η′(y)− y
∥∥+ δ

≤ (1 + L
h̃
)δ

for all x ∈ Bδ(0). Thus δ < ε/(1 + L
h̃
) ensures η|Bδ(ρ) ∈ BC0

ε (idBδ(ρ)). This completes the
proof of claim (d).

Remark 4. Now consider the case where F : D → TD is event–selected Cr at ρ ∈ D
with respect to the composite event function h ∈ Cr(D,Rn) but Dh(ρ) ∈ Rn×d is not in-
vertible (because either n < d, n > d, or n = d and detDh(ρ) = 0). We will embed this
d–dimensional system into a (d+n)–dimensional system to obtain an event–selected Cr vector
field with respect to an invertible composite event function; this will enable application of the

7Note that necessarily n = dimD.
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preceding theorem to the degenerate system determined by F and h. For each b ∈ Bn, let
Sb =

{
x ∈ R1×d : xFb(ρ) > 0

}
be the open half–space of row vectors that have a positive inner

product with Fb(ρ). The set S = ∩b∈BnSb is open (since each Sb is open) and nonempty (since
in particular Dh1(ρ) ∈ S). Let A ∈ Rd×d be an invertible matrix whose rows are selected from
S; such a matrix always exists since S is open and nonempty. Now let D = D×Rn, and define
F : D → TD and h ∈ Cr(D,Rd+n) as follows:

(55) ∀(x, y) ∈ D × Rn : F (x, y) =

[
F (x)

0

]
, h(x, y) =

[
Ax

h(x) + y

]
.

Clearly F is event–selected Cr at ρ = (ρ, 0), and Dh(ρ) is invertible since

(56) Dh(ρ) =

[
A 0

Dh(x) In

]
∈ R(d+n)×(d+n)

has linearly independent columns. Therefore, Theorem 13 (event function perturbation) may
be applied to study the effect of perturbations on the flow φ : F → D for F ; the conclusions
of the theorem can be specialized to the original flow φ : F → D for F as follows. With
V =

{
(t, x) ∈ F : (t, x, 0) ∈ F

}
let ι : V→ F̃ denote the embedding defined by ι(t, x) = (t, x, 0)

for all (t, x) ∈ V, and let π : D → D denote the projection defined by π(x, y) = x for all
(x, y) ∈ D. With these definitions we have

(57) φ|V =
(
π ◦ φ ◦ ι

)
|V.

7. Computation. In this section, we apply the theoretical results from sections 4, 5, and 6
to derive procedures to compute the B–derivative of the flow and assess stability of a periodic
orbit for an event–selected Cr vector field F . We begin in section 7.1 by developing a con-
crete procedure to compute the B–derivative of the piecewise–differentiable flow yielded by F .
Subsequently, in section 7.2 we provide sufficient conditions ensuring exponential stability of a
periodic orbit that passes through the intersection of multiple surfaces of discontinuity for F .

7.1. Variational equations and saltation matrices. In this section we compute the B–
derivative of the piecewise–differentiable flow by solving a jump–linear time–varying ordinary
differential equation (ODE) along a trajectory. At trajectory points where the vector field
is Cr, we recall in section 7.1.1 that the derivative is obtained by solving a time–varying
ODE (the so–called variational equation) with no “jumps.” At points where the vector field
is discontinuous along one (or two transverse) event surface(s), in section 7.1.2 we note (as
others have before us) that the ODE must be updated discontinuously (via a so–called saltation
matrix ). In the remainder of the section, we exploit properties of the piecewise–differentiable
flow to derive a generalization of this procedure applicable in the presence of an arbitrary
number of surfaces of discontinuity that are not required to be transverse.

7.1.1. Cr vector field. Let D ⊂ Rd be an open domain and F ∈ Cr(D,TD) a smooth
vector field on D. It is a classical result [25, Theorem 1, section 15.2] that the derivative of
the flow φ : F → D associated with F with respect to state can be obtained by solving a linear
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time–varying differential equation, the so–called variational equation, along a trajectory; i.e.,
if (t, x) ∈ F and X : [0, t]→ Rd×d satisfies

(58) ∀u ∈ [0, t] : Ẋ(u) = DxF (φ(u, x))X(u), X(0) = I,

then the derivative of the flow with respect to time and state is given by

(59) Dtφ(t, x) = F (φ(t, x)), Dxφ(t, x) = X(t).

Here and in what follows we assume without loss of generality that t > 0; the t < 0 case can
be addressed by applying the same reasoning to the vector field −F .

7.1.2. Event–selected Cr vector field. If the vector field is instead event–selected Cr,
F ∈ ECr(D), adjustments must be made to (58) wherever a trajectory crosses a surface of
discontinuity. Let φ : F → D denote the global flow of F yielded by Corollary 5 (global flow),
and let (t, x) ∈ F. As shown in [3, equation 1.4] (and subsequently [27, equations 57–60]), if
for some s ∈ (0, t) the vector field F is event–selected Cr at ρ = φ(s, x) with respect to a single
surface of discontinuity, H, then the variational equation (58) must be updated discontinuously
via multiplication by a so–called saltation matrix,

(60) X(s+) =

[
I +

(F+1(ρ)− F−1(ρ))Dh(ρ)

Dh(ρ)F−1(ρ)

]
X(s−),

where X(s+) = limu→s+ X(u), X(s−) = limu→s− X(u), and H ⊂ h−1(0) near ρ.
As claimed in [30, equation 2.4] (and subsequently [15, Theorem 7.5], [16, equation 46],

and [9, equation 27]), if for some s ∈ (0, t) the vector field F is event–selected Cr at ρ = φ(s, x)
with respect to multiple surfaces of discontinuity, then the variational equation (58) must be
updated discontinuously via multiplication by one saltation matrix for each surface. Unlike
the preceding cases, the flow will generally not possess a classical derivative with respect to
state after time s. Previous authors compute the first–order effect of the flow using crossing
times of perturbed trajectories. Due to the combinatorial complexity of this approach, these
authors only derive the first–order approximation for two intersecting surfaces; though they
claim that the approach readily extends to arbitrary numbers of intersecting surfaces, they
leave the details to the reader.

The development in section 4 enables us to apply the PCr calculus to rigorously derive
the derivative of the flow along trajectories passing through an arbitrary collection {Hj}nj=1 of
surfaces across which F is discontinuous using techniques familiar from calculus, namely, the
chain rule. Without loss of generality8 we assume F is Cr at every point in φ([0, t] \ {s} , x),
and we let ρ = φ(s, x) as before.

8Lemma 6 ensures that there are a finite number of discontinuities along any integral curve of a vector field
F ∈ ECr(D) defined over a compact time interval. Therefore, to evaluate the B–derivative of the flow after
any number of discontinuities, one may iteratively apply the procedure described in what follows to a finite
number of trajectory segments and combine the result using the chain rule [45, Theorem 3.1.1].
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7.1.3. Sampled vector field associated with event–selected Cr vector field. We begin
by noting that the B–derivative calculation in (29) depends only on first–order approximations
of the flow and event functions {hj}nj=1. For all b ∈ Bn let

(61) D̃b = {x ∈ D : bj Dhj(ρ)(x− ρ) ≥ 0}

and consider the flow φ̃ : F̃ → D of the piecewise–constant vector field F̃ : D → TD defined
by

(62) ∀b ∈ Bn, x ∈ D̃b : F̃ (x) = Fb(ρ).

Applying (29) together with the chain rule [45, Theorem 3.1.1], we conclude that

(63) ∀(v, w) ∈ T(0,ρ)F : Dφ(0, ρ; v, w) = Dφ̃(0, ρ; v, w).

In other words, by sampling the event–selected Cr vector field F across its tangent planes we
obtain a piecewise–constant event–selected C∞ vector field F̃ whose flow φ̃ agrees with the
flow φ for F to first order. In this sense, we regard the piecewise–constant “sampled” vector
field F̃ as the analogue of the linearization of a smooth vector field in our nonsmooth setting.
Note that, since the flow of the sampled system is obtained in (30) by composing a sequence
of piecewise–affine functions, it is piecewise–affine:

(64) ∀(v, w) ∈ T(0,ρ)F : φ̃(v, ρ+ w) = φ̃(0, ρ) +Dφ̃(0, ρ; v, w).

These observations enable us in the remainder of this section to derive several properties of
the B–derivative that will prove useful in the applications presented in section 8.

7.1.4. Saltation matrix for multiple transition surfaces. Suppose (v, w) ∈ T(t,x)F =

R×Rd is such that9 for all c > 0 sufficiently small the trajectory initialized at x+cw (i) passes
through a unique sequence of m region interiors on its way to φ(t+ cv, x+ cw) ∈ D+1; and (ii)
does not pass through the intersection of nontangent surfaces. Let ω : {1, . . . ,m} → Bn specify
the sequence of region interiors, excluding D+1, and let η : {1, . . . ,m} → {1, . . . , n} specify
the corresponding sequence10 of surfaces crossed. The B–derivative of the flow evaluated in
the (v, w) direction is

(65) Dφ(t, x; v, w) = Dφ(t− s, ρ)



m∏

j=1

Dϕ+
ω(j)(0, ρ)



[

0
Dφ(s, x)

] [
v
w

]
,

where Dφ(t−s, ρ), Dφ(s, x) are obtained as in (59) by solving the classical variational equation
since F is smoothly extendable to a neighborhood of those segments of the trajectory and

9Since the flow φ̃ for the “sampled” vector field (62) is piecewise–affine, the set of tangent vectors that
fail to satisfy the two specified conditions has measure zero. Since (once the base point has been fixed) the
B–derivative is a continuous function of tangent vectors, it is determined by its values on the dense subset of
tangent vectors that satisfy the two conditions.

10If Hj is tangent to Hi at ρ, then either Hj or Hi may be indexed by η; the choice will have no effect on
the subsequent calculation.
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for each j ∈ {1, . . . ,m} the derivative Dϕ+
ω(j)(0, ρ) is given by the matrix in the third case

in (29) with the simplifications τ+
ω(j)(0, ρ) = 0, φω(j)(0, ρ) = ρ. Substituting f = Fω(j)(ρ),

g> = Dhη(j)(ρ) for clarity yields

(66) Dϕ+
ω(j)(0, ρ) =

[
1 1

g>f
g>

0 I − 1
g>f

f g>

]
= I +

1

g>f

[
1
−f

] [
0 g>

]

since (17) simplifies to Dτ
Hη(j)
ω(j) (ρ) = − 1

g>f
g>. Thus, the B–derivative in (65) is obtained by

composing rank–1 updates of the identity with solutions to classical variational equations. In
what follows we will make use of the saltation matrix Ξω ∈ R(d+1)×(d+1) given by

(67) Ξω =
m∏

j=1

Dϕ+
ω(j)(0, ρ).

7.1.5. Flow between tangent transition surfaces. If the surfaces are tangent at the point
ρ = φ(s, x) ∈ ⋂n

j=1Hj 6= ∅ of intersection with the trajectory, a perturbed trajectory is not
affected to first order by flow through the interior of a region between surfaces that are tangent;
this follows from the equality in (63) relating the B–derivative of the original system to that
of its “sampled” version. Indeed, consider the vector field illustrated in Figure 4 where the
surfaces H1 and H2 are tangent at ρ. Evaluating the derivative Dφ(t, z; 0, (0, δ)) for any δ > 0
requires composition of Dϕ−1, Dϕ[+1,−1], and Dϕ+1,

(68) Dφ(t, z; 0, (0, δ)) = Dφ(t− s, ρ)Dϕ+
[+1,−1](0, ρ)Dϕ+

+1(0, ρ)Dφ(s, z)




0[
0
δ

]

 ,

since the perturbed trajectory φ(t, z+ (0, δ)) passes through the interior of D[+1,−1]. Combin-
ing (17), (65), and (66), after some algebra we obtain

(69) Dϕ+
[+1,−1](0, ρ)Dϕ+

−1(0, ρ) = Dϕ+
−1(0, ρ).

In other words, Dφ(t, z; 0, (0, δ)) is unaffected by flow through D[+1,−1]. Intuitively, the time
spent flowing through any region between surfaces that meet at a tangency at ρ ∈ D depends
quadratically on the distance from ρ; therefore it does not affect the first–order approximation
of the flow through ρ. If r > 1 B–derivatives of the flow are desired, then it would be
necessary to take these higher–order effects into account when evaluating the desired higher–
order derivative.

7.1.6. Variational equation for event–selected Cr vector field. By synthesizing the
preceding observations, we now provide a generalization of the variational equation in (58)
applicable to the piecewise–differentiable flow yielded by an event–selected Cr vector field. We
wish to evaluate Dφ(t, x; v, w) where F is event–selected Cr at ρ = φ(s, x) for some s ∈ (0, t)
and F is Cr at every point in φ([0, t]\{s} , x), and where (v, w) ∈ T(t,x)F. By (65), the desired
derivative can be obtained by solving a jump–linear time–varying differential equation. With
ω : {1, . . . ,m} → Bn denoting the word associated with the tangent vector (v, w) from (65)
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and letting Ξω ∈ R(d+1)×(d+1) be the saltation matrix from (67), if (λ, ξ) : [0, t] → R × Rd
satisfies

(70)
∀u ∈ [0, t] \ {s} :

[
λ̇(u)

ξ̇(u)

]
=

[
0

DxF (φ(u, x))ξ(u)

]
,

[
λ(0)
ξ(0)

]
=

[
v
w

]
,

[
λ(s)
ξ(s)

]
= Ξω

[
λ(s−)
ξ(s−)

]
,

then the B–derivative of the flow is given by

(71) Dφ(t, x; v, w) = F (φ(t, x))λ(t) + ξ(t).

More generally, (65) indicates that the selection functions for the piecewise–differentiable flow
φ are indexed by the set of words, i.e., functions from {1, . . . ,m} into Bn that specify the
sequence of regions a perturbed trajectory could pass through when flowing from D−1 to
D+1:

(72) Ω = {ω : {1, . . . ,m} → Bn | m ≤ n, ω is injective and increases from −1 to +1} ;

here the phrase ω increases from −1 to +1 means that ω(1) = −1, ω(m) = +1, and for
each j ∈ {1, . . . ,m− 1} there exists Ij ⊂ {1, . . . , n} such that ω(j + 1) − ω(j) = 2

∑
i∈Ij ei.

To evaluate the (Fréchet) derivative for the selection function φω indexed by ω ∈ Ω, we solve
a matrix–valued jump–linear time–varying differential equation to obtain (Λ>ω , Xω) : [0, t] →
R(d+1)×d via

(73)
∀u ∈ [0, t] \ {s} :

[
Λ̇>ω (u)

Ẋω(u)

]
=

[
0

DxF (φ(u, x))Xω(u)

]
,

[
Λ>ω (0)
Xω(0)

]
=

[
0
Id

]
,

[
Λ>ω (s)
Xω(s)

]
= Ξω

[
Λ>ω (s−)
Xω(s−)

]
.

Then the B–derivative of the selection function φω with respect to state is given by

(74) Dxφω(t, x) = F (φ(t, x))Λ>ω (t) +Xω(t).

As we demonstrate in the following section, evaluating (74) for all words ω ∈ Ω provides a
straightforward computational procedure11 to check contractivity of a Poincaré map associated
with a periodic orbit.

7.2. Stability of a periodic orbit. We assume we are given an event–selected Cr vector
field F ∈ ECr(D) over an open domain D ⊂ Rd containing a periodic orbit γ : R→ D. Theo-
rem 4 (local flow) and Corollary 5 (global flow) together yield a maximal flow φ ∈ PCr(F, D)
for F . Theorem 10 (Poincaré map) yields a Poincaré map P ∈ PCr(S,Σ) over any local section
Σ ⊂ D that intersects Γ = γ(R) at {ρ} = Γ ∩ Σ. The Bouligand derivative DP : TS → TΣ
of this piecewise–differentiable Poincaré map can be used to assess local exponential stability
of the fixed point P (ρ) = ρ, as the following corollary shows; this generalizes Proposition 3
in [30] to stability of fixed points for arbitrary PCr functions.

11Though straightforward, this procedure can be laborious since the number of elements in Ω grows factorially
with the number n of surfaces of discontinuity.
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Proposition 14 (contractivity test for stability of a periodic orbit). Suppose P ∈ PCr(S,Σ)
where S ⊂ Σ has a fixed point P (ρ) = ρ and DP is a contraction over tangent vectors near ρ;
i.e., there exists c ∈ (0, 1), δ > 0, and ‖·‖ : Rd−1 × Rd−1 → R such that

(75) ∀x ∈ Bδ(ρ) ⊂ S ∩ Σ, v ∈ TxΣ : ‖DP (x; v)‖ ≤ c ‖v‖ .

Then γ is an exponentially stable periodic orbit.

Proof. By the fundamental theorem of calculus [45, Proposition 3.1.1],

(76)
∀x, y ∈ Bδ(ρ) : ‖P (x)− P (y)‖ ≤

∫ 1

0
‖DP (y + s(x− y);x− y)‖ ds

≤ c ‖x− y‖ .

We conclude that P is a contraction over the compact ball Bδ(ρ), whence by the Banach
contraction mapping principle [8], [35, Lemma C.35] its unique fixed point P (ρ) = ρ is expo-
nentially stable.

In the remainder of this section we consider the case where P is a Poincaré map asso-
ciated with a periodic orbit in an event–selected Cr vector field and demonstrate how the
B–derivative of P can be obtained from the B–derivative of the flow φ. This provides a
straightforward computational procedure to determine whether the contraction hypothesis in
the above Proposition is satisfied using the variational equation developed in section 7.1.

To simplify the exposition, and since Lemma 6 (ECr implies Cr almost everywhere) ensures
that F is Cr at all but finitely many points in Γ, in the remainder of this section we let ρ ∈ Γ be
such that F is Cr at ρ. Let µ ∈ Cr(V,R) be the time–to–impact map for Σ on a neighborhood
V ⊂ D containing ρ; note that V can be chosen sufficiently small to ensure µ is continuously
(as opposed to piecewise) differentiable since F is Cr at ρ. Let ψ ∈ Cr(V,Σ) be the impact
map given by ψ(x) = φ(µ(x), x) for all x ∈ V ; again note that ψ is continuously differentiable.
By continuity of the flow there exists a neighborhood U ⊂ S ⊂ Σ of ρ sufficiently small to
ensure {φ(t, x) : x ∈ U} ⊂ V , whence we have the equality

(77) ∀x ∈ U : P (x) = ψ ◦ φ(t, x).

Applying the chain rule [45, Theorem 3.1.1] we find that

(78) ∀w ∈ TρΣ : DP (ρ;w) = Dψ(ρ)Dφ(t, ρ; 0, w),

where Dψ(ρ) ∈ R(d−1)×d is the (Fréchet) derivative of ψ. Following the conventions from
section 7.1, let {φω}ω∈Ω denote the set of selection functions for the flow φ. Now satisfying the
contractivity condition (75) from Proposition 14 (contractivity test for periodic orbit stability),
namely that DP is a contraction over tangent vectors near ρ, is clearly equivalent to finding
c ∈ (0, 1) and ‖·‖ : Rd−1 × Rd−1 → R such that

(79) ∀ω ∈ Ω, w ∈ TρΣ : ‖Dψ(ρ)Dxφω(t, ρ)(0, w)‖ ≤ c ‖w‖ .

We emphasize that a single norm must be found relative to which the inequality in (79) is
satisfied for all ω ∈ Ω; it would not suffice, for instance, to merely ensure that all the eigenvalues
of Dψ(ρ)Dxφω(t, ρ) reside in the open unit ball.
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The condition in (79) is equivalent to requiring that the induced norm of the linear operator
Dψ(ρ)Dxφω(t, ρ) satisfy a bound on the induced norm,

(80) ∀ω ∈ Ω : ‖Dψ(ρ)Dxφω(t, ρ)‖i ≤ c.

These observations are summarized formally in the following proposition.

Proposition 15 (induced norm test for periodic orbit stability). Let D be an open domain,
suppose γ : R → D is a t–periodic orbit for F ∈ ECr(D), let φ ∈ PCr(F, D) denote the
maximal flow for F , and let {φω}ω∈Ω denote a set of selection functions for φ. Let Σ ⊂ D be
a local section for F such that F is Cr at {ρ} = Γ ∩ Σ where Γ = γ(R), and let ψ ∈ Cr(V,R)
be the impact map for Σ over a neighborhood V ⊂ D containing ρ such that F |V is Cr. If
there exist c ∈ (0, 1) and ‖·‖ : Rd → Rd such that (80) holds, then γ is an exponentially stable
periodic orbit.

Remark 5. As noted above, (80) is equivalent to stipulating that DP is a contraction over
tangent vectors near ρ, which is the contractivity condition from Proposition 14 (contractivity
test for periodic orbit stability). In [30], Ivanov considered the stability of a fixed point of
a piecewise–defined map. It is clear from his exposition that [30, Proposition 3] is intended
to apply to the Poincaré map P associated with a periodic orbit that passes through multiple
surfaces of discontinuity, but it was not shown in [30] that the Poincaré map in question had the
piecewise–differentiable structure stipulated in [30, Proposition 3]. We demonstrate that P has
the piecewise–defined form assumed in [30, (3.1)] and rigorously derive a stability condition
in Proposition 15 (induced norm test for periodic orbit stability) that is equivalent to that
in [30, Proposition 3].

Remark 6. In Proposition 15 (induced norm test for periodic orbit stability), the problem of
finding the norm that ensures (80) holds is equivalent to that of finding a common Lyapunov
function for a switched linear system, which remains an open problem in the theory of switched
systems. We refer the interested reader to [37, Section II–A] for a survey of state–of–the–art
approaches to this problem.

8. Applications. We now illustrate the applicability of these results by appealing to a
very simple family of event–selected Cr fields that abstractly captures the essential nature
of the discontinuities arising in the physical settings mentioned in section 1. For instance,
integrate–and–fire neuron models consist of a population of n subsystems that undergo a
discontinuous change in membrane voltage and synaptic capacitance triggered by crossing a
voltage threshold [9,29,32]. Since the discontinuities in state are confined to independent “reset”
translations in membrane voltages [32, equation (2)], these transitions can be modeled locally as
a first–order discontinuity in an event–selected Cr vector field. In the context of electrical power
networks, when constituent elements—lines, cables, and transformers—encounter excessive
voltages or currents, they trip fail–safe mechanisms that discontinuously change connectivity
between elements [26, section II-A.2]. As discussed in section 2, legged animals and robots
with four, six, and more limbs exhibit gaits with near–simultaneous touchdown of two or more
legs [4,20,28]; since each touchdown introduces a discontinuity in velocities and/or forces, these
transitions can give rise to first– and/or second–order discontinuities in an event–selected Cr

vector field.
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Motivated by these applications in neuroscience, electrical engineering, and biological and
robotic locomotion, we now apply the results derived in the previous sections to analyze the
effect of flowing near the intersection of multiple surfaces of discontinuity generated by a very
simple but illustrative family of step functions. As noted in section 7.1, to describe this effect
in general one must solve a collection of variational equations that grows factorially with the
number of surfaces of discontinuity. Thus for clarity in sections 8.1 and 8.2 we focus on a
simple family of examples arising from the presence of a generalized signum function. We
demonstrate that populations of phase oscillators in both first– and second–order versions of
this setting can be synchronized via piecewise–constant feedback.

8.1. Synchronization of first–order phase oscillators. In this section we study synchro-
nization in a system consisting of d first–order phase oscillators, i.e., a control system of the
form

(81) q̇ = ν1 + u(q),

where q ∈ Q = (S1)d, ν ∈ R is a constant, and u : Q→ TQ is a state–dependent feedback law.
The state space is the d–dimensional torus Q = (S1)d = Rd/Zd; we let π : Rd → Q denote the
canonical quotient projection, considered as a covering map [35, Appendix A]. In this section,
we propose a piecewise–constant form for u and prove that it renders the synchronized orbit

(82) Γ = {q ∈ Q | ∀i, j ∈ {1, . . . , d} : qi = qj}

locally exponentially stable for (81).

8.1.1. B–derivative of flow in Euclidean covering space via saltation matrices. First,
we work in the Euclidean covering space, considering the vector field F : Rd → TRd defined
by

(83) ∀x ∈ Rd : F (x) = ν1− δ sign(x),

where 0 < δ < ν is a given constant and sign : Rd → Bd is the vectorized signum function
defined as in (14).12 Clearly F is event–selected C∞ on Rd since the event surfaces coincide
with the d standard coordinate planes; for clarity we let 0d ∈ Rd denote the intersection point
(i.e., the origin). Let φ : F → Rd be the global flow for F yielded by Corollary 5.

We aim to compute the B–derivative of the flow with respect to state along the trajectory
passing through 0d. For clarity we outline the computation here and relegate a detailed
derivation to SM2.1. For any word ω ∈ Ω we can obtain the derivative of the selection
function φω with respect to state from (74),

(84) Dxφω(0, 0d) = F (φ(0, x))Λ>ω (0) +Xω(0) = Ξω

[
0d
Id

]
,

12We note that there are three common definitions for the scalar signum function, depending on what value
one chooses to assign to 0 ∈ R, and hence 3d candidate definitions for a vectorized version. Since integral
curves for F spend zero time at the signum’s zero crossing, there is no loss of generality in our choice.
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since Λ>ω (0) = 0d and Xω(0) = Id. The saltation matrix Ξω, given in general by (67), simplifies
in this example to (SM13), whence we conclude as in (SM17) that

(85) ∀ω ∈ Ω : Dxφω(0, 0d) =
ν − δ
ν + δ

Id.

This shows that φ is in fact C1 with respect to state at (0, 0d) ∈ F, and hence

(86) ∀w ∈ T0dR
d : Dφ(0, 0d; 0, w) =

ν − δ
ν + δ

w;

i.e., the first–order effect of the nonsmooth flow associated with this piecewise–constant vector
field is linear contraction at rate ν−δ

ν+δ independent of the direction w ∈ T0dRd.

8.1.2. B–derivative of flow in Euclidean covering space via flowbox. Before continuing
with the task at hand—namely, applying feedback of the form in (83) to demonstrate syn-
chronization of the first–order phase oscillators in (81)—we digress momentarily to provide
an alternate derivation of the result in (86) that yields additional intuition. This alternate
derivation may be seen as a d–dimensional generalization of the construction introduced in
section 2.3 to study the first–order locomotion model of section 2.1.

Let χ0, χ
−1
0 : R→ R be the piecewise–linear homeomorphisms defined by

(87) ∀s ∈ R : χ0(s) =

{
s, s < 0,
ν+δ
ν−δs, s ≥ 0,

∀s̃ ∈ R : χ−1
0 (s̃) =

{
s̃, s̃ < 0,
ν−δ
ν+δ s̃, s̃ ≥ 0,

and let χ, χ−1 : Rd → Rd be the piecewise–linear homeomorphisms defined by

(88) ∀x ∈ Rd : χ(x) = (χ0(x1), . . . , χ0(xd)) , ∀x̃ ∈ Rd : χ−1(x̃) =
(
χ−1

0 (x̃1), . . . , χ−1
0 (x̃d)

)
.

Note that χ0 ◦χ−1
0 = idR and hence χ◦χ−1 = idRd . Since furthermore χ ∈ PCr(Rd,Rd), there

is no ambiguity in the definition of the “pushforward” F̃ = Dχ ◦F ◦ χ−1 : Rd → TRd. In fact,
the vector field F̃ is constant,

(89) ∀x̃ ∈ Rd : F̃ (x̃) = (ν + δ)1,

and hence its flow φ̃ : R× Rd → Rd has the simple form

(90) ∀(t, x̃) ∈ R× Rd : φ̃(t, x̃) = x̃+ t(ν + δ)1.

Since the homeomorphism χ provides conjugacy between the flows, we have

(91) ∀(t, x) ∈ F : χ ◦ φ(t, x) = φ̃(t, χ(x)) = χ(x) + t(ν + δ)1.

If t ∈ R and x,w ∈ Rd are such that x, x+w, x−w ∈ D−1 and φ(t, x), φ(t, x+w), φ(t, x−w) ∈
D+1, the conjugacy in (91) can be used to evaluate the B–derivative of the flow Dφ, since

(92)

φ(t, x+ sw) = χ−1 (χ(x+ sw) + t(ν + δ)1)

=
ν − δ
ν + δ

((x+ sw) + t(ν + δ)1)

=
ν − δ
ν + δ

(x+ sw) + t(ν − δ)1,
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and hence

(93) lim
s→0+

1

s
(φ(t, x+ sw)− φ(t, x)) =

ν − δ
ν + δ

w,

whence (86) follows directly. We emphasize that this outcome—the piecewise–differentiable
flow is C1 with respect to state—will not arise in general, but note that other examples in
this vein can be obtained by applying other piecewise–linear homeomorphisms to a constant
vector field (i.e., a flowbox) so long as the constant vector field is transverse to surfaces of
nonsmoothness for the homeomorphism (needed to ensure the vector field is event–selected
Cr).

We conclude by noting that this approach to computing Dφ required a closed–form expres-
sion for the “flowbox” homeomorphism χ and its inverse χ−1, which is equivalent to possessing
a closed–form expression for the flow φ. Since such expressions are rarely available in appli-
cations of interest, in general we expect to rely on the technique developed in section 7.1 to
compute the B–derivative of the flow.

8.1.3. Synchronization via piecewise–constant feedback. Now, returning to the state
space of interest, let U∆ ⊂ Q be the following open set parameterized by ∆ > 0:

(94) U∆ =

{
q ∈ TQ | ∃x ∈ π−1(q) : ‖x‖1 ≤

∆

d

}
;

for ∆ > 0 sufficiently small, U∆ is “evenly covered” in the sense that π|π−1(U∆) is a homeo-
morphism [35, Appendix A]. Consider the effect of applying feedback of the form

(95) ∀q ∈ Q : u(q) =

{
−δ sign ◦π−1(q), q ∈ U∆,
0, q ∈ Q \ U∆,

to (81). It is straightforward to show (as we do in SM2.1) that the synchronized orbit Γ defined
in (82) is a periodic orbit for (81) under this feedback; we note that the closed–loop dynamics
determine an event–selected C∞ vector field on a neighborhood of Γ.

Now we choose a local section Σ ⊂ Q \ U∆ for the closed–loop dynamics that is perpen-
dicular to Γ and let P ∈ PC∞(S,Σ) denote a Poincaré map for Γ over a neighborhood S ⊂ Σ
containing {ρ} = Γ∩Σ. To compute DP (ρ) we employ (78), which involves solving the jump–
linear time–varying differential equation (73) with the saltation matrix update given by (86).
Note that away from discontinuities introduced by the feedback (95), the vector field in (81)
does not depend on the state. This implies that DxF ≡ 0; hence the continuous–time portion
of the variational dynamics (73) does not alter the derivative computation.

Focusing our attention on the discrete–time (saltation matrix) portion of the variational dy-
namics (73), the closed–loop dynamics are discontinuous at three points in Γ: {−∆1, 0d,+∆1}.
At 0d, the saltation matrix is given by (86). At ±∆1, the update is determined by a single
event surface that we chose to be perpendicular to Γ; although these updates affect Dφ, they
have no effect on DP since they lie in the kernel of Dψ in (78). We conclude that P is C1 and

(96) DP (ρ) =
ν − δ
ν + δ

Id−1.
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Therefore, the induced norm contraction hypothesis of Proposition 15 (induced norm test
for periodic orbit stability) is satisfied with the standard Euclidean norm and c = ν−δ

ν+δ . We
conclude that Γ is exponentially stable, whence the state feedback in (95) synchronizes the
first–order phase oscillators in (81) at an exponential rate.

8.2. Synchronization of second–order phase oscillators. In this section we study syn-
chronization in a system consisting of d second–order phase oscillators, i.e., a control system
of the form

(97) q̈ = α1− βq̇ + u(q, q̇),

where q ∈ Q = Rd/Zd, α, β ∈ R are constants, and u : TQ → T ∗Q is a state–dependent
feedback law. The state space is the tangent bundle TQ of the d–dimensional torusQ = Rd/Zd;
we let π : R2d → TQ denote the canonical quotient projection.

If u ≡ µ1 where µ ∈ R is a constant, then (97) reduces to d decoupled cascades of a pair
of scalar affine time–invariant systems; thus it is clear that q̈ → 0, and hence q̇ → α+µ

β 1 as
t → ∞; this convergence is exponential with rate β. In this section, we propose a piecewise–
constant form for the feedback u and prove that for all β sufficiently large there exists an
exponentially stable periodic orbit that passes near (0, αβ1) ∈ TQ.

8.2.1. B–derivative of flow in Euclidean covering space. First, consider the vector field
F : R2d → TR2d defined by

(98) ∀(x, ẋ) ∈ R2d : F (x, ẋ) =

[
ẋ

α1− βẋ− δ sign(x)

]
,

where 0 < δ < α is a given constant. Clearly F is event–selected C∞ on the open set

(99) D =
{

(x, ẋ) ∈ R2d | ∀j ∈ {1, . . . , d} : ẋj 6= 0
}
⊂ R2d

since the event surfaces coincide with the first d standard coordinate planes in R2d; since F
fails to be event–selected Cr at points with zero velocity, we exclude them from our analysis.
Let φ : F → D denote the global flow for F yielded by Corollary 5.

We begin by computing the B–derivative of the flow with respect to state along the trajec-
tory passing through a point (0, ν1) ∈ D where ν > 0. For clarity we outline the computation
here and relegate a detailed derivation to SM2.2. For any word ω ∈ Ω we can obtain the
derivative of the selection function φω with respect to state from (74),

(100) Dxφω(0, (0, ν1)) = F (φ(0, x))Λ>ω (0) +Xω(0) = Ξω

[
02d

I2d

]
,

since Λ>ω (0) = 02d and Xω(0) = I2d. The saltation matrix Ξω, given in general by (67),
simplifies in this example to (SM26), whence we conclude as in (SM30) that

(101) Dxφω(0, (0, ν1)) =

[
Id 0

−2δ
ν Id Id

]
.
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This shows that φ is in fact C1 with respect to state at (0, (0, ν1)) ∈ F, and hence

(102) ∀(p, ṗ) ∈ T(0,ν1)D : Dφ(0, (0, ν1); 0, (p, ṗ)) =

[
Id 0

−2δ
ν Id Id

] [
p
ṗ

]
=: Ξ

[
p
ṗ

]
,

i.e., the first–order effect of the nonsmooth flow associated with this piecewise–constant vector
field is a change in velocity ṗ 7→ ṗ− 2δ

ν p that is proportional to the error in position p. Solving
the variational equation as in section 7.1, a straightforward calculation (given for completeness
in SM2.2) yields

(103)
[
p(s)
ṗ(s)

]
=

[
Id

1
β

(
1− e−βs

)
Id

0 e−βsId

] [
p(0+)
ṗ(0+)

]
=: X(s)

[
p(0+)
ṗ(0+)

]
,

where (p(0+), ṗ(0+)) is determined from (p(0), ṗ(0)) ∈ T(0,ν1)D by applying (102). Combin-
ing (102) with (103), we conclude that the B–derivative with respect to state at time s is given
by

(104)

[
p(s)
ṗ(s)

]
= Dφ

(
s,

[
x(0)
ẋ(0)

]
; 0,

[
p(0)
ṗ(0)

])

= X(s) Ξ

[
p(0)
ṗ(0)

]

=

[
Id

1
β

(
1− e−βs

)
Id

0 e−βsId

] [
Id 0

−2δ
ν Id Id

] [
p(0)
ṗ(0)

]

=

[
Id − 2δ

βν

(
1− e−βs

)
Id

1
β

(
1− e−βs

)

−2δ
ν e
−βsId e−βsId

] [
p(0)
ṗ(0)

]
.

Taking the limit as s→∞,

(105)
[
p(∞)
ṗ(∞)

]
= lim

s→∞

[
p(s)
ṗ(s)

]
=

[ (
1− 2δ

βν

)
p(0)

0

]
.

In plain language, (105) indicates that, to first order, the nonsmooth flow associated with
the vector field (98) asymptotically (i) drives the initial velocity error ṗ(0) to zero and (ii)
multiplies the initial position error p(0) by a factor of c = (1− 2δ

βν ). If we ensure ν ∈ (αβ ,
α+δ
β ),

then c = (1− 2δ
βν ) ∈ (1− 2δ

α , 1− 2δ
α+δ ) ⊂ (−1,+1), achieving contraction in positions. Finally,

we note that the convergence in (105) is exponential with rate β.

8.2.2. Synchronization via piecewise–constant feedback. We now apply a construction
analogous to that of section 8.1 to define a piecewise–constant feedback law that results in an
exponentially stable periodic orbit that passes near (0, αβ1) ∈ TQ. To that end, consider the
following form for the control neighborhood U∆ ⊂ TQ parameterized by ∆ > 0:

(106)
U∆ =

{
(q, q̇) ∈ TQ |

(
∃(x, ẋ) ∈ π−1(q, q̇) : ‖x‖1 ≤

∆

d

)

∧ (∀j ∈ {1, . . . , d} : q̇j > 0)

}
;
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for ∆ > 0 sufficiently small, U∆ is “evenly covered” in the sense that π|π−1(U∆) is a homeo-
morphism [35, Appendix A]. Furthermore, “synchronized” points of the form (±∆1, ν1) where
ν > 0 are in the boundary ∂U∆. We study the effect of applying feedback of the form

(107) ∀(q, q̇) ∈ TQ : u(q, q̇) =

{
−δ sign ◦π−1(q, q̇), (q, q̇) ∈ U∆,
0, (q, q̇) ∈ TQ \ U∆,

to (97). It is straightforward to show (as we do in SM2.2) that for all β > 0 sufficiently large
there exists νβ ∈ (αβ ,

α+δ
β ) such that the trajectory initialized at (0, νβ1) is periodic for the

dynamics in (97) subject to the piecewise–constant forcing (107). We let Γβ ⊂ TQ denote the
image of the periodic orbit, and let ν−β (resp., ν+

β > 0) denote the speed of the orbit when the
position is equal to −∆1 (resp., +∆1) so that (−∆1, ν−β 1) ∈ Γβ (resp., (+∆1, ν+

β 1) ∈ Γβ).
Note that, by increasing β, ν−β can be made arbitrarily close to α

β and νβ can be made arbitrarily
close to α+δ

β , whence νβ ∈ (αβ ,
α+δ
β ). Further, note that the closed–loop dynamics determine

an event–selected C∞ vector field on a neighborhood of Γβ .
Now we choose a local section Σβ ⊂ TQ \ U∆ for the closed–loop dynamics whose normal

vector is parallel to (1, 0) at the point ρβ = (−∆1, ν−β 1) ∈ Γβ ∩Σβ . Note that by construction
Σβ ∩ ∂U∆ is an open set containing ρβ . Let Pβ ∈ PC∞(Sβ,Σβ) denote a Poincaré map for Γβ
over a neighborhood Sβ ⊂ Σβ containing {ρβ}. To compute DPβ(ρβ) we employ (78), which
involves solving the jump–linear time–varying differential equation (73) with the saltation
matrix update given by (102). Away from discontinuities introduced by the feedback (107),
the state dependence of the vector field in (97) is confined to viscous drag on velocities. This
implies that the continuous–time portion of the variational dynamics (73) is given by (103); i.e.,
the first–order effect of the flow contracts velocity error at an exponential rate and amplifies
position error by an amount proportional to 1/β.

Focusing our attention now on the discrete–time (saltation matrix) portion of the vari-
ational dynamics (73), the closed–loop dynamics are discontinuous at three points in Γ:
(−∆1, ν−β 1), (0, ν1), and (+∆1, ν+

β 1). At (0, ν1), the saltation matrix is given by (102).
At (±∆1, ν±β ), the saltation matrix is determined by a single event surface whose normal vec-
tor is parallel to (1, 0). Although these updates affect Dφ, they have no effect on DPβ since
they lie in the kernel of Dψ in (78). We conclude that Pβ is C1 and

(108) DPβ(ρβ) =

[ (
1− 2δ

βνβ

)
Id−1 0

0 0

]
+ Eβ,

where the induced norm of the error term ‖Eβ‖i decreases exponentially with increasing β.
Therefore, for all β > 0 sufficiently large the induced norm contraction hypothesis of Proposi-
tion 15 (induced norm test for periodic orbit stability) is satisfied with the standard Euclidean
norm and c ≈ (1− 2δ

βνβ
) ∈ (1− 2δ

α , 1− 2δ
α+δ ) ⊂ (−1,+1). We conclude that Γβ is exponentially

stable for all β > 0 sufficiently large, whence the state feedback in (107) synchronizes the
second–order phase oscillators in (97) at an exponential rate.

9. Discussion. In this paper, we studied local properties of the flow generated by vector
fields with “event–selected” discontinuities, that is, vector fields that are (i) smooth except
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along a finite collection of smooth submanifolds and (ii) “transverse” to these submanifolds in
the sense that integral curves intersect them at isolated points in time. Basic properties of
discontinuous vector fields have been studied in a more general setting, for instance yielding
sufficient conditions ensuring existence of a continuous flow (see [18, Chapter 2] generally
and [18, Theorem 3 in section 8] specifically). Our chief contribution is the introduction
of techniques from nonsmooth analysis [45] to show that the flow associated with a vector
field with event–selected discontinuities admits a strong first–order approximation, the (so–
called [42]) Bouligand derivative. We employed this B–derivative to generalize fundamental
constructions familiar from classical (smooth) dynamical systems theory, including impact
maps, flowboxes, and variational equations, and to study the effect of perturbations, both
infinitesimal and noninfinitesimal. In the classical setting, these constructions are obtained
using the classical (alternately called Fréchet [45, section 3.1] or Jacobian [22, section 1.3])
derivative of the smooth flow; our construction of the nonsmooth object proceeded analogously
to that of its smooth counterpart after replacing the classical derivative of the flow with our
B–derivative. In future work, we expect to obtain generalizations of other techniques from
the theories of smooth dynamical and control systems that depend primarily on the existence
of first– or higher–order approximations of the flow, for instance stability analysis via control
Lyapunov functions [6, 49] or infinitesimal contractivity [38, 50]; conditions for controllability
based on the inverse function theorem [36, Theorem 8], [14, section II.C]; or necessary and
sufficient conditions for optimality in nonlinear programs involving dynamical systems [40,
Chapter 4].

More broadly, we believe our results support the study of a class of discontinuous vector
fields that arise in neuroscience [32], electrical engineering [26], and biological and robotic
locomotion [28]. In each of these disparate domains, behaviors of interest occur near the
intersection of surfaces of discontinuity; hence the techniques we developed in this paper may be
brought to bear. Thus we conclude with remarks about the formal applicability and practical
relevance of our results in these applications.

9.1. Neuroscience. Integrate–and–fire neuron models consist of a population of n subsys-
tems that undergo a discontinuous change in membrane voltage triggered by crossing a voltage
threshold [32],

(109)
v̇ = −γv + u,

v(t+) = 0 if v(t−) = v,

where v ∈ R is the membrane voltage; γ ∈ R is a dissipation constant; u ∈ R is an exogenous
input; and v ∈ R is the firing threshold. When driven by a periodic exogenous input, integrate–
and–fire neuron populations can exhibit phase locking [32] or local synchronization [29] behav-
ior, resulting in simultaneous or near–simultaneous firing. Of interest in applications is the
computation of so–called13 “Lyapunov exponents” using variational equations. We showed in
section 7.1 how the variational equation must be supplemented by discontinuous updates via
saltation matrices near such simultaneous–firing events. As noted in [9, section 4.1], neglecting
this nonsmooth effect can result in erroneous conclusions.

13In practice, one computes singular values of finite–time sensitivity matrices, rather than the formal asymp-
totic Lyapunov exponent, as defined, for instance, in [44, section 3.4.1].
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9.2. Electrical engineering. Electrical power systems undergo discontinuous changes in
network topology triggered by excessive voltages or currents, leading to differential–algebraic
models of the form [26, (2)–(4)]

(110)
ẋ = f(x, y, z; p), 0 = g(x, y, z; p),

z(t+) = h(x(t), y(t), z(t−); p) if yj(t−) = 0,

where x ∈ Rd contains dynamic states; y ∈ Rn contains algebraic states; z ∈ Rm contains
discrete states; p ∈ R` contains parameters; f : Rd+n+m+` → Rd is a smooth vector field;
g : Rd+n+m+` → Rk is a smooth constraint function; and h : Rd+n+m+` → Rm is a smooth
reset function. The update z(t+) = h(x(t), y(t), z(t−); p) is applied when one of the algebraic
states yj crosses a prespecified threshold (e.g., a bus voltage limit), causing a discontinuity
in the vector field governing the time evolution of x. In electrical power networks, discrete
switches triggered by overexcitation limits can occur at arbitrary times with respect to one
another. When the switches occur at distinct time instants, the trajectory sensitivity matrix
(i.e., the F–derivative of the flow) computed as in [27] can provide quantitative insights for
design and control. However, as noted in [27, section VIII], these calculations lose accuracy
when event times become coincident; this is due to the fact that the flow is not classically
differentiable along trajectories that undergo simultaneous discrete transitions. The procedure
we developed in section 7.1 can be employed to compute a collection of trajectory sensitivity
matrices (i.e., the B–derivative of the flow) that generalize the approach advocated in [27] to
be applicable in power networks that undergo an arbitrary (but finite) number of simultaneous
discrete transitions.

9.3. Biological and robotic locomotion. Legged locomotion of animals and robots in-
volves intermittent interaction of limbs with terrain; their dynamics are given by [31, section II]

(111)
M(q)q̈ = f(q, q̇) + λ(q, q̇)Da(q),

q̇(t+) = R(q(t))q̇(t−) if aj(t−) = 0,

where q ∈ Q is a vector of generalized coordinates for the body and limbs; M is the inertia
tensor; f is a vector of internal, applied, and Coriolis forces; a : Q→ Rn specifies n unilateral
constraints of the form

(112) ∀j ∈ {1, . . . , n} : aj(q) ≥ 0;

and λ is a vector of reaction forces that ensure (112) are satisfied by (111) for all time. The
update q̇(t+) = R(q(t))q̇(t−) is triggered when one of the unilateral constraints aj would be
violated by a penetrating velocity; it generally causes a discontinuity in both the velocity
and the forces acting on the system. Legged animals and robots with four, six, and more
limbs exhibit gaits with near–simultaneous touchdown of two or more legs [4,20,28]. Steady–
state gaits are commonly modeled as periodic orbits in the body reference frame [33, 34, 46].
In practice, gait stability is assessed using the linearization of the first–return or Poincaré
map, since if this map is smooth and the eigenvalues of the linearization (the so–called Floquet
multipliers [22, section 1.5]) lie within the unit disk, then the gait is exponentially stable [3,21].
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We showed in section 5.2 that the Poincaré map associated with a periodic orbit passing
through the intersection of multiple surfaces of discontinuity is generally nonsmooth. This
implies that it is not possible to assess the stability of such orbits using the F–derivative; this
F–derivative does not exist. In section 7.2, we showed how the B–derivative of the Poincaré
map can be employed instead to assess the stability of such orbits.
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