Summary

Event–selected C^r vector fields yield piecewise–differentiable flows [\[Burden et al.,](#page-5-0) [2016\]](#page-5-0), which possess a continuous and piecewise–linear Bouligand (or B–)derivative [\[Scholtes,](#page-5-1) [2012,](#page-5-1) Prop. 4.1.3]; here we provide an algorithm for computing this B–derivative. The number of "pieces" of the piecewise–linear B–derivative is factorial $(d!)$ in the dimension (d) of the space, precluding a polynomial–time algorithm. We show how an exponential number (2^d) of points can be used to represent the B–derivative as a piecewise–linear homeomorphism in such a way that evaluating the derivative reduces to linear algebra computations involving a matrix constructed from d of these points.

Computing the Bouligand derivative of a class of piecewise–differentiable flows

Burden & Revzen

December 9, 2016

This brief note serves as an addendum to [\[Burden et al.,](#page-5-0) [2016\]](#page-5-0) that provides a compact representation of a nonclassical derivative operator, namely, the Bouligand (or B –)derivative of the piecewise–differentiable flow associated with a class of vector fields with discontinuous right–hand–sides, termed (in [\[Burden et al.,](#page-5-0) [2016\]](#page-5-0)) event–selected C^r . This B–derivative is a piecewise–linear map. In [\[Burden et al.,](#page-5-0) [2016,](#page-5-0) Sec. 7] we provided the means to evaluate the B–derivative in a chosen direction (i.e. on a given tangent vector). In this note we construct a triangulation for the B–derivative, thus representing it as a piecewise–linear homeomorphism using the techniques from [\[Groff et al.,](#page-5-3) [2003,](#page-5-3) Sec. 2].

Before proceeding, we informally recapitulate definitions and results from [\[Burden et al.,](#page-5-0) [2016\]](#page-5-0) to provide notational and conceptual context for what follows. Given an open subset $D\subset \mathbb{R}^d$ and order of differentiability $r\in\mathbb{N},$ the vector field $f:D\to \mathsf{T} D$ is termed *event–selected* \mathcal{C}^r *at* $\rho\in D$ if there exists an open set $U\subset \overline{D}$ containing ρ and a collection of *event functions* $\{h_k\}_{k=1}^n\subset\mathcal{C}^r(U,\mathbb{R})$ *for* f *[\[Burden et al.,](#page-5-0) [2016,](#page-5-0) Def. 1] such* that for all $b \in \mathcal{B} = \{-1, +1\}^n$, with

 $D_b = \{x \in \mathbb{R}^d \mid \forall k \in \{1, ..., n\} : b_k(h_k(x) - h_k(\rho)) \geq 0\},\$

 $f|_{\text{Int }D_b}$ admits a \mathcal{C}^r extension $f_b: U \to TU$ [\[Burden et al.,](#page-5-0) [2016,](#page-5-0) Def. 2]. Note that f is allowed to be discontinuous along each *event surface* $\mathcal{E}_k = h_k^{-1}(h_k(\rho))$, but is \mathcal{C}^r elsewhere.

If f is event–selected C^r at $\rho \in D$, then [\[Burden et al.,](#page-5-0) [2016,](#page-5-0) Thm. 4] ensures there exists a piecewise– C^r flow $\Phi: \mathcal{F}\to D$ for f defined on an open subset $\mathcal{F}\subset \mathbb{R}\times D$ containing $(0,\rho).$ The notion of piecewise–differentiablity used in [\[Burden et al.,](#page-5-0) [2016\]](#page-5-0) and in what follows is due to Robinson [\[Robinson,](#page-5-4) [1987\]](#page-5-4); for a highly–readable exposition of piecewise– \mathcal{C}^r functions and their properties, we refer the interested reader to [\[Scholtes,](#page-5-1) [2012\]](#page-5-1). In short, a continuous function is piecewise– \mathcal{C}^r (or \mathcal{PC}^r) if its graph is everywhere locally covered by the graphs of a finite number of C^r functions (termed selection functions). Piecewise– C^r functions always possess a continuous first–order approximation termed a Bouligand (or B –)derivative [\[Scholtes,](#page-5-1) [2012,](#page-5-1) Prop. 4.1.3]; due to the local finiteness of selection functions, the B–derivative of \mathcal{PC}^r functions is piecewise–linear. The remainder of this note will be devoted to constructing a triangulation for the piecewise–linear B–derivative of the \mathcal{PC}^r flow Φ .

§ ² Normal forms

 \Box

Let $f:\;U\to \mathsf{T} U$ be an event–selected \mathcal{C}^r vector field at $\rho\,\in\,\mathbb{R}^n$ with respect to $h:\;U\to\mathbb{R}^d$ where U is a neighborhood of ρ . By assumption, f is \mathcal{C}^r everywhere except (perhaps) $h^{-1}(h(\rho))=\{x\in U\mid \exists k: x\in V\mid \exists$ $h_k(x) = h_k(\rho)$, the "transition surfaces". Also by assumption, $h_k(\rho)$ is a regular value for event function h_k and $\mathbf{D}h_k \cdot f > \varepsilon$ everywhere in U for some $\varepsilon > 0$. If $n \neq d$, the system can be embedded via the technique in [\[Burden et al.,](#page-5-0) [2016,](#page-5-0) Remark 4] in a higher–dimensional system where the dimension of the state space equals the number of event surfaces, and the matrix $Dh(\rho)$ is invertible.

2.1. PIECEWISE–CONSTANT SAMPLED SYSTEMS — Let $f : D \to TU$ be PC^r with respect to $h: U \to \mathbb{R}^n$ at ρ . From the previous section, we assume without loss of generality that U is *n*-dimensional. We refer to the zero level sets of the components of h, $\mathcal{E}_k := \{x \in U \mid h_k(x) = 0\}$ as local sections [\[Burden](#page-5-0) [et al.,](#page-5-0) [2016,](#page-5-0) Def. 1]. Since f is \mathcal{PC}^r , zero is a regular value of each of the $h_k(\cdot)$ functions, and thus \mathcal{E}_k are embedded codimension–1 submanifolds.

Let $b \in B = \{-1,+1\}^n$ be a corner of the *hypercube* $\{-1,+1\}^n$. Define $F_b := \lim_{\alpha \to 0^+} f(h^{-1}(\alpha b))$ the corner value of f at the corner b. Note that by construction, all coordinates of F_b are positive and larger than ε . Extend (by slight abuse of notation) to $F(x):=F_\rho\,(\text{sign}\,\mathbf{D} h(\rho)\cdot(x-\rho)).$ The flow $\hat{\Phi}^t(\cdot)$ of $F(\cdot)$ near $\rho,$ has transition manifolds which are affine subspaces of co-dimension 1, tangent to the transition manifolds of the original system at ρ . Furthermore, [\[Burden et al.,](#page-5-0) [2016,](#page-5-0) Eqn. (63)] shows that the sampled system's flow provides a first–order approximation for that of the original system at ρ .

 \S 3 $\overline{\hspace{1cm}}$ The structure of corner limit flows

We recall from [\[Burden et al.,](#page-5-0) [2016,](#page-5-0) Thm. 7] that the time-to-impact any local section of an event-selected C^r vector field is a piecewise– C^r function. For each surface index $k\in\{1,\ldots,n\}$, let $\tau_k:V_k\to\mathbb{R}$ denote the time–to–impact map for the event surface $\mathcal{E}_k=h_k^{-1}(\R)$ defined over a neighborhood V_k containing ρ . Letting $\tau=(\tau_1,\ldots,\tau_n):V\to\R^n$ $\tau=(\tau_1,\ldots,\tau_n):V\to\R^n$ $\tau=(\tau_1,\ldots,\tau_n):V\to\R^n$ denote the composite function defined over $V=\cap_{k=1}^n V_k{}^1$, it follows that for any point $x \in V$ and index $k \in \{1,\ldots,n\}$, $e_k^{\sf T}\tau(x) = \tau_k(x)$ is the time required for x to flow to surface \mathcal{E}_k , i.e. $h_k(\Phi(\tau_k(x), x)) = 0$ for the flow $\Phi : \mathcal{F} \to D$ of the vector field f. Furthermore, it is clear that τ is injective and its image is an open set, whence Brouwer's Open Mapping Theorem [\[Brouwer,](#page-5-5) [1911;](#page-5-5) [Hatcher,](#page-5-6) [2002\]](#page-5-6) implies τ is a homeomorphism onto its image.

Lemma 3.1. Time–to–impact maps (τ in the preceding paragraph) have the following properties:

- 1. they are \mathcal{C}^r on any submanifold that encounters events in the same order;
- 2. they take the zero level sets of the event functions (h_k) to the standard arrangement;
- 3. they take the vector field (f) to the constant vector field $\mathbb{1}$ (referred to as the diagonal flow hereon);
- 4. for the diagonal flow, the time–to–impact is $x \mapsto -x$;
- 5. for sampled systems, the time–to–impact map is piecewise–linear.

Proof. Properties 1–4 are direct; property 5 follows from [\[Burden et al.,](#page-5-0) [2016,](#page-5-0) Remark 4]

¹We note that V is open since each V_k is open and nonempty since $\rho \in V$.

From lemma [3.1](#page-1-4) we conclude that the flow $\Phi^t(\cdot)$ in a neighborhood of ρ is \mathcal{PC}^r conjugate through $\tau(\cdot)$ to the diagonal flow. By the definition of τ , an event $h_k(\cdot)$ occurs in the original coordinates at x if, and only if, $e_k^{\mathsf{T}} \tau(x) = 0.$

It remains to analyze the structure of the diagonal flow.

3.1. THE STANDARD CONE — The *cone span* of a set of vectors $X \subseteq \mathbb{R}^n$ is given by $\text{Cone } X := \{y \in X : y \in X\}$ $\mathbb{R}^n\,|\, \sum_{i=1}^m \alpha_i x_i,\, \alpha_i\, \in\, \mathbb{R}^+\}$. In this section we show that the diagonal flow in \mathbb{R}^n comprises n identical cones, whose form we make computationally explicit. The interior of each of these cones consists of all the points whose transitions happen in a specific order, as specified by a permutation $\sigma \in S^n.$

Assume hereon that $\dot{y} = 1$ is the diagonal flow, conjugate through $\tau(\cdot)$ to $\dot{x} = f(x)$, i.e. $\mathbf{D}\tau(x) \cdot f(x) = 1$ everywhere. For any $y\in \tau(U)$, let $\sigma_y\in S^n$ be a permutation that sorts the elements of $y.$ This permutation can be represented by a permutation matrix Z_{σ} such that $z:=Z_{\sigma}y$ satisfies:

$$
\forall 0 < i < j \le \dim U : (i < j) \to (e_i^{\mathsf{T}} z \le e_j^{\mathsf{T}} z)
$$
\n
$$
(1)
$$

We define the group of permutation matrices $\mathcal{G}:=\{Z_\sigma\,|\,\sigma\in S^n\};$ this is a representation of S^n which is valid over all fields.

We define the sets

$$
\mathcal{K}_{\sigma} := \left\{ Z_{\sigma}^{-1} z \mid z \in \mathbb{R}^n, z_1 \le z_2 \le \ldots \le z_{n-1} \le z_n \right\} \tag{2}
$$

and denote by K the set associated with the identity permutation.

By construction, K_{σ} are exactly the points whose impact times are (weakly) in the order specified by σ . If impact times are different, i.e. strongly in the order specified by σ , the inequalities in [2](#page-2-2) are strong, and the corresponding point is an interior point of \mathcal{K}_{σ} .

3.2. CONSTRUCTING K AS CONE SPAN — In this section we will use addition and scalar multiplication in a setwise sense, i.e. AB is the set of all products of elements of A and of B, $A + B$ is the Minkowski sum – the set of all possible sums comprising an element of A and an element of B .

We define the vectors that form the columns of a lower triangular matrix M^U with elements zero to be $s_k := \frac{n}{n+1-k} \sum_{i=k}^n e_k$, as follows:

$$
M^{U} := \begin{bmatrix} 1 & \cdots & \cdots & 1 & 1 \\ 0 & n/(n-1) & n/(n-1) & \ddots & n/(n-1) \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & n \end{bmatrix} \quad \Delta^{U} := \frac{1}{n} \begin{bmatrix} n & -(n-1) & 0 & \cdots & 0 \\ 0 & (n-1) & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & -2 & 0 \\ 0 & \cdots & \cdots & 0 & 1 \end{bmatrix} \quad (3)
$$

Note that $1 \cdot s_k = n$ for all $k, s_1 = 1$.

 $\cal K$ is a cone – all positive multiples of z will satisfy the same inequality as z in [2,](#page-2-2) i.e. $\mathbb R^+ \cal K = \cal K$. $\cal K$ is also invariant under the diagonal flow, i.e. $K = \R1 + K$. Using the s_k vectors we note that $K = \R s_n + \sum_{k=1}^{n-1} \R^+ s_k$.

Define \mathcal{D}_b for $b \in \mathbb{R}^n$ as $\mathcal{D}_b = \{x \in \mathbb{R}^b \mid \operatorname{sign} x = \operatorname{sign} b\}$. For the diagonal flow, the points of a set \mathcal{D}_b are all points that have the same events as for b happen to them in the past (in whatever order), the same events will happen to them as for b (in whatever order) in the future, and the same set of events are currently happening to them as are happening to b .

Let us define the *anti-diagonal* as $A_0 := \{p \in R^n \mid \mathbb{1}p = 0\}$, and similarly define two affine subspaces parallel to \mathcal{A}_0 by $\mathcal{A}_\pm := \mathcal{A}_0 \pm \mathbb{1}$.

Lemma 3.2. The following set-wise equality holds

$$
\mathcal{A}_+ \cap \mathcal{D}_1 \cap \mathcal{K} = \text{conv}\{s_1, \dots, s_n\} \tag{4}
$$

and describes a simplex of dimension $n-1$.

Proof. We use some facts from convexity: (1) for a convex set A, when $B \subseteq A$ then $(\text{conv } B) \subseteq A$; (2) for convex A, B the intersection $A \cap B$ is also convex; (3) convex closure preserves linear constraints: if points B meet a constraint $\forall b \in B : w \cdot b = c$, then so does their convex closure $\forall x \in \text{conv } b : w \cdot x = c$. Note that the sets \mathcal{A}_+ , \mathcal{K} and \mathcal{D}_1 are convex.

First we show the inclusion of the RHS in the LHS of [4.](#page-2-3) For all corners s_k , $s_k \in \mathcal{D}_1$ because they have non-negative coordinates; they satisfy $1 \cdot s_k = 1$; and $s_k \in \mathcal{K}$ because the coordinates of s_k are non-decreasing. From the convexity properties mentioned, the inclusion of the RHS in the LHS follows.

It remains to demonstrate the inclusion of the LHS of [4](#page-2-3) in the RHS. Let z be a point in the intersection in the LHS. From $z \in A_+ \cap \mathcal{D}_1$ it follows that $z \cdot \mathbb{1} = n$, and $\forall k : z_k \geq 0$. Given $z = z\Delta^U M^U$ we have that for $a := z\Delta^U$ we need to show $\sum_{k=1}^n a_k$ is one, and $a_k \geq 0$.

By examining the columns of $\tilde{\Delta}^U$ we can see that $a_1 = z_1$, and for $k > 1$ we have $a_k = \frac{n+1-k}{n} (z_k - z_{k-1})$. From $z \in \mathcal{K}$, we know $z_k \geq z_{k-1}$, giving us that $a_k \geq 0$. Note that 1 is (by direct examination) a right eigenvector of Δ^U with eigenvalue n^{-1} , giving

$$
\sum_{k=1}^{n} a_k = z\Delta^U \cdot \mathbb{1} = \frac{1}{n}z \cdot \mathbb{1} = 1
$$
\n⁽⁵⁾

 \Box

proving the inclusion of the LHS in the RHS, and thus the desired equality.

This allows us to state a more general theorem

Theorem 3.3.

$$
\mathcal{A}_{+} \cap \mathcal{D}_{1} \cap \mathcal{K}_{\sigma} = \text{conv}\{Z_{\sigma}s_{1}, \dots, Z_{\sigma}s_{n}\}\tag{6}
$$

Proof. Convex closure commutes with all linear maps, in particular the Z_{σ} maps that give $\mathcal{K}_{\sigma} = \mathbb{Z}_{\sigma}\mathcal{K}$. We obtain $\mathcal{K}_{\sigma} = \text{conv} \left\{ Z_{\sigma} s_k \right\}_{k=1}^n$. Furthermore $Z_{\sigma} \mathcal{A}_+ = \mathcal{A}_+$ and $Z_{\sigma} \mathcal{D}_1 = \mathcal{D}_1$, allowing us to conclude the desired result. \Box

By construction $\{\mathcal{K}_\sigma\}_{\sigma\in\mathsf{S}_n}$ are a cover of \mathbb{R}^n . We conclude that by knowing how the corners in [6](#page-3-1) map through the flow we may deduce the values at all other points by barycentric (convex) interpolation.

3.2.1. The sampling points $\{Z_\sigma s_k\}_{k=1}^n$ — The set of simplex corner points $\mathcal{P}:=\{Z_\sigma s_k\}_{k=1}^n$ is smaller than may appear at first. This is due to the fact that the cardinality $\#\{Z_\sigma s_k\}_{\sigma\in\mathsf{S}_n}=\binom{n}{k}$ – there are only as many of them as there are ways of choosing k of the n coordinates to be zero. Overall we obtain $\#P = 2^n$, the number of ways to select which entries will be zero out of n possibilities. Thus by flowing forward all 2^n points of ${\cal P}$ from A_+ until they impact A_+ , we obtain all the necessary information for computing all n! affine transformations that comprise the first order approximation of the flow near the origin.

3.3. BYPASSING THE NEED FOR THE MAP $\tau(\cdot)$ — The trajectories going through points of P other than 1 have a unique property: each of them has only two times at which events will occur. For $Z_{\sigma}s_k$, a set of events occurs simultaneously at time 0 , and all other events occurs simultaneously at time $\frac{-n}{n+1-k}$.

We will now show how to compute $\tau^{-1}({\cal P})$ for corner limit flows. Let $p\in {\cal P}$ such that $p=Z_\sigma s_k$, and $p_i\neq 0$ if and only if $i \in S \subseteq \{1, ..., n\}$ (i.e. S is the support of p). Let $b \in B$ such that $b_i = -1$ for $i \in S$ and $b_i = 1$ otherwise (for $i \in \bar{S}$). In the diagonal flow, \mathcal{D}_b is the set of points for which the events of S have already happened, and the remaining events \overline{S} are yet to occur.

Let us construct a trajectory which at time 0 goes through $q(0):=\tau^{-1}p.$ The state $q(0)$ is on the event surfaces of h_i for $i \in S$, i.e. $\forall i \in S$: $\nabla h_i(\rho) \cdot q(0) = 0$. For any positive time $t_+ > 0$, we have $q(t_+) = q(0) + F(1)t_+$.

The remaining events for this trajectory occurred at time $-t := \frac{-n}{n+1-k}$, and in the time interval $(-t,0)$ the trajectory was moving under the influence of $F(b)$. Thus $q(-t) = q(0) - tF(b)$ is on the remaining event surfaces, i.e. $\forall i \in S : \nabla h_i(\rho) \cdot q(0) = t \nabla h_i(\rho) \cdot F(b)$. For time st_ < -t the trajectory moved under the influence of $F(-1)$, i.e. $q(t_{-}) = q(0) - tF(b) + (t_{-} + t)F(-1)$, completing the description of the trajectory.

Figure 1: A corner limit flow [left] is mapped by $\tau(\cdot)$ into impact time coordinates [right]. In impact times coordinates, we define triangulation \mathcal{X}_+ which comprises simplices that go through known transition sequences (id and σ in this 2D case; black lines). The differential we seek is given by the piecewise linear homeomorphism produced by carrying this triangulation through the flow [left] from the initial locations $q_k(-T)$ (green) to the final locations $q_k(0)$.

Note that the vector whose S coordinates are of value t, and whose \overline{S} coordinates are 0 is

$$
s(b) := \frac{(b+1)n}{2n+2-1 \cdot (b+1)} = Z_{\sigma} s_k \tag{7}
$$

Thus we obtain a simplified equation

$$
\mathbf{D}h(\rho)q(0) = \text{diag}(s(b))\,\mathbf{D}h(\rho)\cdot F(b) \tag{8}
$$

which allows $q(0)$ to be solved for in the original (fully non-linear) coordinates for all $b \in \mathcal{B}$, provided the corner limits F_b and event Jacobian $\mathbf{D}h$ can be computed.

Note also that Dh is never inverted, allowing this computation to be used with event surfaces that are not transverse.

3.4. COMPUTING THE DERIVATIVE OF THE FLOW — Denote the $q(\cdot)$ of [8](#page-4-1) and the previous section by $q_b(\cdot)$ to highlight its dependence on b. In addition, define $q_0(0) = \rho$ and for $t_+ > 0$ take $q_0(t_+) = F(1)t_+$ and $q_0(-t_+) = -F(-1)t_+$ – the trajectory of the origin.

We will now define a set of simplexes surrounding the point $q_0(1)$. The vertices of these simplexes will be

$$
\mathcal{V} := \{q_0(0), q_0(1), q_0(2)\} \cup \{q_b(0)\}_{b \in \mathcal{B}}
$$
\n(9)

For every permutation $\sigma \in \mathsf{S}_n$ we will have a $n-1$ dimensional face

$$
Y_{\sigma} := \text{conv}\left(\{q_0(1)\} \cup \{q_b(0) \mid b_{\sigma(1)}, \dots, b_{\sigma(k)} = -1, b_{\sigma(k+1)}, \dots, b_{\sigma(n)} = 1, \text{for } 0 < k < n\}\right) \tag{10}
$$

These faces cover a neighborhood of $q_0(1)$ in the affine subspace $\tau^{-1}(\mathcal{A}_+).$

For each face Y_{σ} we will define two simplices $X_{-\sigma}$ and $X_{+\sigma}$ by $X_{-\sigma} = \text{conv}(\{q_0(0)\} \cup Y_{\sigma})$ and $X_{+\sigma} =$ $\mathrm{conv}\left(\{q_0(2)\}\cup Y_\sigma\right)$. Let $\mathcal{X}_+:=\{X_{-\sigma},X_{+\sigma}\}_{\sigma\in\mathsf{S}_n}$ be the set of all these simplices. By construction: (1) \mathcal{X}_+ covers a neighborhood of $q_0(1)$; (2) All points of each simplex $X_{\pm\sigma}\in\mathcal{X}_+$ experience events in the same order – the order designated by σ .

At any time $-T < -n$ no events have occurred for any of trajectories $q_b(\cdot)$, i.e. $\forall b \in \mathcal{B} : h(q_b(-T)) < 0$ and furthermore $h(q_0(2-T)) < 0$. We can conclude this because the event times are known for each $q_b(\cdot)$ and take on the values 0 and $\frac{-n}{n+1-k}$ for $1 \leq k \leq n$.

Let $\mathcal{X}_- := \{\text{conv}\{\overline{q}_k(-T)\}\}\cup \text{conv}\{q_k(0)\}\in \mathcal{X}_+\}$, i.e. \mathcal{X}_- are the simplices created by taking the convex closure of the corners of simplices of \mathcal{X}_+ after carrying them back to time $-T$. All that remains is to construct the piecewise linear homeomorphism mapping \mathcal{X}_- to \mathcal{X}_+ using the techniques of [\[Groff et al.,](#page-5-3) [2003,](#page-5-3) Sec. 2]. In the parlance of that reference, our $q_k(0)$ are the set of q points; our $q_k(-T)$ points are the set of p points; the simplicial complex structure Σ is given by equation [10.](#page-4-2) Figure [1](#page-4-3) shows a example 2-dimensional case.


```
This work was supported by ARO W911NF1410573
```
References

- L E J Brouwer. Beweis der invarianz desn-dimensionalen gebiets. Mathematische Annalen, 71(3):305–313, 1911. ISSN 0025-5831. DOI [10.1007/BF01456846.](http://dx.doi.org/10.1007/BF01456846) URL <http://dx.doi.org/10.1007/BF01456846>.
- S A Burden, S S Sastry, D E Koditschek, and S Revzen. Event-selected vector field discontinuities yield piecewise-differentiable flows. SIAM Journal of Applied Dynamical Systems, 15(2):1227–1267, 2016. DOI [10.1137/15M1016588.](http://dx.doi.org/10.1137/15M1016588)
- R E Groff, P P Khargonekar, and D E Koditschek. A local convergence proof for the minvar algorithm for computing continuous piecewise linear approximations. SIAM journal on numerical analysis, 41(3):983–1007, 2003. ISSN 0036-1429. DOI [10.1137/S0036142902402213.](http://dx.doi.org/10.1137/S0036142902402213)
- A Hatcher. Algebraic topology. Cambridge University Press, 2002.
- S M Robinson. Local structure of feasible sets in nonlinear programming, part III: Stability and sensitivity. In Nonlinear Analysis and Optimization, volume 30 of Mathematical Programming Studies, pages 45–66. Springer Berlin Heidelberg, 1987. ISBN 9783642009303. DOI [10.1007/BFb0121154.](http://dx.doi.org/10.1007/BFb0121154) URL [http://dx.doi.org/10.](http://dx.doi.org/10.1007/BFb0121154) [1007/BFb0121154](http://dx.doi.org/10.1007/BFb0121154).
- S Scholtes. Introduction to Piecewise Differentiable Equations. SpringerBriefs in Optimization. Springer New York, 2012. ISBN 978-1-4614-4340-7. DOI [10.1007/978-1-4614-4340-7.](http://dx.doi.org/10.1007/978-1-4614-4340-7)