Summary

Event-selected C^r vector fields yield piecewise-differentiable flows [Burden et al., 2016], which possess a continuous and piecewise-linear Bouligand (or B-)derivative [Scholtes, 2012, Prop. 4.1.3]; here we provide an algorithm for computing this B-derivative. The number of "pieces" of the piecewise-linear B-derivative is factorial (d!) in the dimension (d) of the space, precluding a polynomial-time algorithm. We show how an exponential number (2^d) of points can be used to represent the B-derivative as a piecewise-linear homeomorphism in such a way that evaluating the derivative reduces to linear algebra computations involving a matrix constructed from d of these points.

Computing the Bouligand derivative of a class of piecewise–differentiable flows

Burden & Revzen

December 9, 2016

		Conten	ts
1	Background		1
2	Normal forms 2.1 Piecewise-constant sampled systems		2 2
3	The structure of corner limit flows 3.1 The standard cone 3.2 Constructing \mathcal{K} as cone span 3.3 Bypassing the need for the map $\tau(\cdot)$ 3.4 Computing the derivative of the flow	 	2 3 3 4 5
4 §	Acknoledgement 1 Ba	ickgrour	6 1d

This brief note serves as an addendum to [Burden et al., 2016] that provides a compact representation of a nonclassical derivative operator, namely, the *Bouligand* (or *B*-)derivative of the piecewise-differentiable flow associated with a class of vector fields with discontinuous right-hand-sides, termed (in [Burden et al., 2016]) event-selected C^r . This B-derivative is a piecewise-linear map. In [Burden et al., 2016, Sec. 7] we provided the means to evaluate the B-derivative in a chosen direction (i.e. on a given tangent vector). In this note we construct a triangulation for the B-derivative, thus representing it as a piecewise-linear homeomorphism using the techniques from [Groff et al., 2003, Sec. 2].

Before proceeding, we informally recapitulate definitions and results from [Burden et al., 2016] to provide notational and conceptual context for what follows. Given an open subset $D \subset \mathbb{R}^d$ and order of differentiability $r \in \mathbb{N}$, the vector field $f: D \to TD$ is termed event-selected \mathcal{C}^r at $\rho \in D$ if there exists an open set $U \subset D$ containing ρ and a collection of event functions $\{h_k\}_{k=1}^n \subset \mathcal{C}^r(U, \mathbb{R})$ for f [Burden et al., 2016, Def. 1] such that for all $b \in \mathcal{B} = \{-1, +1\}^n$, with

 $D_b = \{ x \in \mathbb{R}^d \mid \forall k \in \{1, \dots, n\} : b_k(h_k(x) - h_k(\rho)) \ge 0 \},\$

 $f|_{\operatorname{Int} D_b}$ admits a \mathcal{C}^r extension $f_b: U \to TU$ [Burden et al., 2016, Def. 2]. Note that f is allowed to be discontinuous along each *event surface* $\mathcal{E}_k = h_k^{-1}(h_k(\rho))$, but is \mathcal{C}^r elsewhere.

If f is event-selected C^r at $\rho \in D$, then [Burden et al., 2016, Thm. 4] ensures there exists a piecewise– C^r flow $\Phi : \mathcal{F} \to D$ for f defined on an open subset $\mathcal{F} \subset \mathbb{R} \times D$ containing $(0, \rho)$. The notion of piecewise–differentiablity used in [Burden et al., 2016] and in what follows is due to Robinson [Robinson, 1987]; for a highly–readable exposition of piecewise– C^r functions and their properties, we refer the interested reader to [Scholtes, 2012]. In short, a continuous function is piecewise– C^r (or $\mathcal{P}C^r$) if its graph is everywhere locally covered by the graphs of a finite number of C^r functions (termed selection functions). Piecewise– C^r functions always possess a continuous first–order approximation termed a Bouligand (or B–)derivative [Scholtes, 2012, Prop. 4.1.3]; due to the local finiteness of selection functions, the B–derivative of $\mathcal{P}C^r$ functions is piecewise–linear. The remainder of this note will be devoted to constructing a triangulation for the piecewise–linear B–derivative of the $\mathcal{P}C^r$ flow Φ .

§ 2

Normal forms

Let $f: U \to TU$ be an event-selected C^r vector field at $\rho \in \mathbb{R}^n$ with respect to $h: U \to \mathbb{R}^d$ where U is a neighborhood of ρ . By assumption, f is C^r everywhere except (perhaps) $h^{-1}(h(\rho)) = \{x \in U \mid \exists k : h_k(x) = h_k(\rho)\}$, the "transition surfaces". Also by assumption, $h_k(\rho)$ is a regular value for event function h_k and $\mathbf{D}h_k \cdot f > \varepsilon$ everywhere in U for some $\varepsilon > 0$. If $n \neq d$, the system can be embedded via the technique in [Burden et al., 2016, Remark 4] in a higher-dimensional system where the dimension of the state space equals the number of event surfaces, and the matrix $Dh(\rho)$ is invertible.

2.1. PIECEWISE-CONSTANT SAMPLED SYSTEMS — Let $f : D \to TU$ be \mathcal{PC}^r with respect to $h : U \to \mathbb{R}^n$ at ρ . From the previous section, we assume without loss of generality that U is *n*-dimensional. We refer to the zero level sets of the components of h, $\mathcal{E}_k := \{x \in U \mid h_k(x) = 0\}$ as *local sections* [Burden et al., 2016, Def. 1]. Since f is \mathcal{PC}^r , zero is a regular value of each of the $h_k(\cdot)$ functions, and thus \mathcal{E}_k are embedded codimension–1 submanifolds.

Let $b \in \mathcal{B} = \{-1, +1\}^n$ be a corner of the hypercube $\{-1, +1\}^n$. Define $F_b := \lim_{\alpha \to 0^+} f(h^{-1}(\alpha b))$ the corner value of f at the corner b. Note that by construction, all coordinates of F_b are positive and larger than ε . Extend (by slight abuse of notation) to $F(x) := F_\rho(\operatorname{sign} \mathbf{D}h(\rho) \cdot (x - \rho))$. The flow $\hat{\Phi}^t(\cdot)$ of $F(\cdot)$ near ρ , has transition manifolds which are affine subspaces of co-dimension 1, tangent to the transition manifolds of the original system at ρ . Furthermore, [Burden et al., 2016, Eqn. (63)] shows that the sampled system's flow provides a first–order approximation for that of the original system at ρ .

§ 3

The structure of corner limit flows

We recall from [Burden et al., 2016, Thm. 7] that the time-to-impact any local section of an event-selected C^r vector field is a piecewise- C^r function. For each surface index $k \in \{1, \ldots, n\}$, let $\tau_k : V_k \to \mathbb{R}$ denote the time-to-impact map for the event surface $\mathcal{E}_k = h_k^{-1}(\mathbb{R})$ defined over a neighborhood V_k containing ρ . Letting $\tau = (\tau_1, \ldots, \tau_n) : V \to \mathbb{R}^n$ denote the composite function defined over $V = \bigcap_{k=1}^n V_k^{-1}$, it follows that for any point $x \in V$ and index $k \in \{1, \ldots, n\}$, $e_k^T \tau(x) = \tau_k(x)$ is the time required for x to flow to surface \mathcal{E}_k , i.e. $h_k(\Phi(\tau_k(x), x)) = 0$ for the flow $\Phi : \mathcal{F} \to D$ of the vector field f. Furthermore, it is clear that τ is injective and its image is an open set, whence Brouwer's Open Mapping Theorem [Brouwer, 1911; Hatcher, 2002] implies τ is a homeomorphism onto its image.

Lemma 3.1. Time-to-impact maps (τ in the preceding paragraph) have the following properties:

- 1. they are C^r on any submanifold that encounters events in the same order;
- 2. they take the zero level sets of the event functions (h_k) to the standard arrangement;
- 3. they take the vector field (f) to the constant vector field 1 (referred to as the diagonal flow hereon);
- 4. for the diagonal flow, the time-to-impact is $x \mapsto -x$;
- 5. for sampled systems, the time-to-impact map is piecewise-linear.

Proof. Properties 1–4 are direct; property 5 follows from [Burden et al., 2016, Remark 4]

¹We note that V is open since each V_k is open and nonempty since $\rho \in V$.

From lemma 3.1 we conclude that the flow $\Phi^t(\cdot)$ in a neighborhood of ρ is \mathcal{PC}^r conjugate through $\tau(\cdot)$ to the diagonal flow. By the definition of τ , an event $h_k(\cdot)$ occurs in the original coordinates at x if, and only if, $e_k^T \tau(x) = 0$.

It remains to analyze the structure of the diagonal flow.

3.1. THE STANDARD CONE — The *cone span* of a set of vectors $X \subseteq \mathbb{R}^n$ is given by Cone $X := \{y \in \mathbb{R}^n \mid \sum_{i=1}^m \alpha_i x_i, \alpha_i \in \mathbb{R}^+\}$. In this section we show that the diagonal flow in \mathbb{R}^n comprises *n* identical cones, whose form we make computationally explicit. The interior of each of these cones consists of all the points whose transitions happen in a specific order, as specified by a permutation $\sigma \in S^n$.

Assume hereon that $\dot{y} = 1$ is the diagonal flow, conjugate through $\tau(\cdot)$ to $\dot{x} = f(x)$, i.e. $\mathbf{D}\tau(x) \cdot f(x) = 1$ everywhere. For any $y \in \tau(U)$, let $\sigma_y \in S^n$ be a permutation that sorts the elements of y. This permutation can be represented by a permutation matrix Z_{σ} such that $z := Z_{\sigma}y$ satisfies:

$$\forall 0 < i < j \le \dim U : (i < j) \to \left(e_i^\mathsf{T} z \le e_j^\mathsf{T} z\right) \tag{1}$$

We define the group of permutation matrices $\mathcal{G} := \{Z_{\sigma} | \sigma \in S^n\}$; this is a representation of S^n which is valid over all fields.

We define the sets

$$\mathcal{K}_{\sigma} := \left\{ Z_{\sigma}^{-1} z \, \big| \, z \in \mathbb{R}^n, z_1 \le z_2 \le \ldots \le z_{n-1} \le z_n \right\}$$

$$\tag{2}$$

and denote by $\ensuremath{\mathcal{K}}$ the set associated with the identity permutation.

By construction, \mathcal{K}_{σ} are exactly the points whose impact times are (weakly) in the order specified by σ . If impact times are different, i.e. strongly in the order specified by σ , the inequalities in 2 are strong, and the corresponding point is an interior point of \mathcal{K}_{σ} .

3.2. CONSTRUCTING \mathcal{K} AS CONE SPAN — In this section we will use addition and scalar multiplication in a setwise sense, i.e. AB is the set of all products of elements of A and of B, A + B is the Minkowski sum – the set of all possible sums comprising an element of A and an element of B.

We define the vectors that form the columns of a lower triangular matrix M^U with elements zero to be $s_k := \frac{n}{n+1-k} \sum_{i=k}^{n} e_k$, as follows:

$$M^{U} := \begin{bmatrix} 1 & \cdots & \cdots & 1 & 1 \\ 0 & n/(n-1) & n/(n-1) & \ddots & n/(n-1) \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & n/2 & n/2 \\ 0 & \cdots & \cdots & 0 & n \end{bmatrix} \quad \Delta^{U} := \frac{1}{n} \begin{bmatrix} n & -(n-1) & 0 & \cdots & 0 \\ 0 & (n-1) & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & -2 & 0 \\ \vdots & & \ddots & 2 & -1 \\ 0 & \cdots & \cdots & 0 & 1 \end{bmatrix}$$
(3)

Note that $1 \cdot s_k = n$ for all $k, s_1 = 1$.

 \mathcal{K} is a cone – all positive multiples of z will satisfy the same inequality as z in 2, i.e. $\mathbb{R}^+\mathcal{K} = \mathcal{K}$. \mathcal{K} is also invariant under the diagonal flow, i.e. $\mathcal{K} = \mathbb{R}\mathbb{1} + \mathcal{K}$. Using the s_k vectors we note that $\mathcal{K} = \mathbb{R}s_n + \sum_{k=1}^{n-1} \mathbb{R}^+s_k$.

Define \mathcal{D}_b for $b \in \mathbb{R}^n$ as $\mathcal{D}_b = \{x \in \mathbb{R}^b \mid \operatorname{sign} x = \operatorname{sign} b\}$. For the diagonal flow, the points of a set \mathcal{D}_b are all points that have the same events as for b happen to them in the past (in whatever order), the same events will happen to them as for b (in whatever order) in the future, and the same set of events are currently happening to them as are happening to b.

Let us define the *anti-diagonal* as $\mathcal{A}_0 := \{p \in \mathbb{R}^n \mid \mathbb{1}\dot{p} = 0\}$, and similarly define two affine subspaces parallel to \mathcal{A}_0 by $\mathcal{A}_{\pm} := \mathcal{A}_0 \pm \mathbb{1}$.

Lemma 3.2. The following set-wise equality holds

$$\mathcal{A}_{+} \cap \mathcal{D}_{1} \cap \mathcal{K} = \operatorname{conv}\{s_{1}, \dots, s_{n}\}$$

$$\tag{4}$$

and describes a simplex of dimension n-1.

Proof. We use some facts from convexity: (1) for a convex set A, when $B \subseteq A$ then $(\operatorname{conv} B) \subseteq A$; (2) for convex A, B the intersection $A \cap B$ is also convex; (3) convex closure preserves linear constraints: if points B meet a constraint $\forall b \in B : w \cdot b = c$, then so does their convex closure $\forall x \in \operatorname{conv} b : w \cdot x = c$. Note that the sets \mathcal{A}_+ , \mathcal{K} and \mathcal{D}_1 are convex.

First we show the inclusion of the RHS in the LHS of 4. For all corners s_k , $s_k \in \mathcal{D}_1$ because they have non-negative coordinates; they satisfy $1 \cdot s_k = 1$; and $s_k \in \mathcal{K}$ because the coordinates of s_k are non-decreasing. From the convexity properties mentioned, the inclusion of the RHS in the LHS follows.

It remains to demonstrate the inclusion of the LHS of 4 in the RHS. Let z be a point in the intersection in the LHS. From $z \in \mathcal{A}_+ \cap \mathcal{D}_1$ it follows that $z \cdot 1 = n$, and $\forall k : z_k \ge 0$. Given $z = z\Delta^U M^U$ we have that for $a := z\Delta^U$ we need to show $\sum_{k=1}^n a_k$ is one, and $a_k \ge 0$. By examining the columns of Δ^U we can see that $a_1 = z_1$, and for k > 1 we have $a_k = \frac{n+1-k}{n} (z_k - z_{k-1})$.

By examining the columns of Δ^U we can see that $a_1 = z_1$, and for k > 1 we have $a_k = \frac{n+1-k}{n} (z_k - z_{k-1})$. From $z \in \mathcal{K}$, we know $z_k \ge z_{k-1}$, giving us that $a_k \ge 0$. Note that $\mathbb{1}$ is (by direct examination) a right eigenvector of Δ^U with eigenvalue n^{-1} , giving

$$\sum_{k=1}^{n} a_k = z\Delta^U \cdot \mathbb{1} = \frac{1}{n} z \cdot \mathbb{1} = 1$$
(5)

proving the inclusion of the LHS in the RHS, and thus the desired equality.

This allows us to state a more general theorem

Theorem 3.3.

$$\mathcal{A}_{+} \cap \mathcal{D}_{1} \cap \mathcal{K}_{\sigma} = \operatorname{conv}\{Z_{\sigma}s_{1}, \dots, Z_{\sigma}s_{n}\}$$

$$\tag{6}$$

Proof. Convex closure commutes with all linear maps, in particular the Z_{σ} maps that give $\mathcal{K}_{\sigma} = \mathbb{Z}_{\sigma}\mathcal{K}$. We obtain $\mathcal{K}_{\sigma} = \operatorname{conv} \{Z_{\sigma}s_k\}_{k=1}^n$. Furthermore $Z_{\sigma}\mathcal{A}_+ = \mathcal{A}_+$ and $Z_{\sigma}\mathcal{D}_1 = \mathcal{D}_1$, allowing us to conclude the desired result.

By construction $\{\mathcal{K}_{\sigma}\}_{\sigma\in S_n}$ are a cover of \mathbb{R}^n . We conclude that by knowing how the corners in 6 map through the flow we may deduce the values at all other points by barycentric (convex) interpolation.

3.2.1. The sampling points $\{Z_{\sigma}s_k\}_{k=1}^n$ — The set of simplex corner points $\mathcal{P} := \{Z_{\sigma}s_k\}_{k=1}^n$ is smaller than may appear at first. This is due to the fact that the cardinality $\#\{Z_{\sigma}s_k\}_{\sigma\in S_n} = \binom{n}{k}$ – there are only as many of them as there are ways of choosing k of the n coordinates to be zero. Overall we obtain $\#\mathcal{P} = 2^n$, the number of ways to select which entries will be zero out of n possibilities. Thus by flowing forward all 2^n points of \mathcal{P} from \mathcal{A}_- until they impact \mathcal{A}_+ , we obtain all the necessary information for computing all n! affine transformations that comprise the first order approximation of the flow near the origin.

3.3. BYPASSING THE NEED FOR THE MAP $\tau(\cdot)$ — The trajectories going through points of \mathcal{P} other than 1 have a unique property: each of them has only two times at which events will occur. For $Z_{\sigma}s_k$, a set of events occurs simultaneously at time 0, and all other events occurs simultaneously at time $\frac{-n}{n+1-k}$.

We will now show how to compute $\tau^{-1}(\mathcal{P})$ for corner limit flows. Let $p \in \mathcal{P}$ such that $p = Z_{\sigma}s_k$, and $p_i \neq 0$ if and only if $i \in S \subseteq \{1, \ldots, n\}$ (i.e. S is the support of p). Let $b \in \mathcal{B}$ such that $b_i = -1$ for $i \in S$ and $b_i = 1$ otherwise (for $i \in \overline{S}$). In the diagonal flow, \mathcal{D}_b is the set of points for which the events of S have already happened, and the remaining events \overline{S} are yet to occur.

Let us construct a trajectory which at time 0 goes through $q(0) := \tau^{-1}p$. The state q(0) is on the event surfaces of h_i for $i \in \overline{S}$, i.e. $\forall i \in \overline{S} : \nabla h_i(\rho) \cdot q(0) = 0$. For any positive time $t_+ > 0$, we have $q(t_+) = q(0) + F(1)t_+$.

The remaining events for this trajectory occurred at time $-t := \frac{-n}{n+1-k}$, and in the time interval (-t, 0) the trajectory was moving under the influence of F(b). Thus q(-t) = q(0) - tF(b) is on the remaining event surfaces, i.e. $\forall i \in S : \nabla h_i(\rho) \cdot q(0) = t \nabla h_i(\rho) \cdot F(b)$. For time $st_- < -t$ the trajectory moved under the influence of F(-1), i.e. $q(t_-) = q(0) - tF(b) + (t_- + t)F(-1)$, completing the description of the trajectory.

Figure 1: A corner limit flow [left] is mapped by $\tau(\cdot)$ into impact time coordinates [right]. In impact times coordinates, we define triangulation \mathcal{X}_+ which comprises simplices that go through known transition sequences (id and σ in this 2D case; black lines). The differential we seek is given by the piecewise linear homeomorphism produced by carrying this triangulation through the flow [left] from the initial locations $q_k(-T)$ (green) to the final locations $q_k(0)$.

Note that the vector whose S coordinates are of value t, and whose \bar{S} coordinates are 0 is

$$s(b) := \frac{(b+1)n}{2n+2-1\cdot(b+1)} = Z_{\sigma}s_k \tag{7}$$

Thus we obtain a simplified equation

$$\mathbf{D}h(\rho)q(0) = \operatorname{diag}(s(b))\,\mathbf{D}h(\rho)\cdot F(b) \tag{8}$$

which allows q(0) to be solved for in the original (fully non-linear) coordinates for all $b \in \mathcal{B}$, provided the corner limits F_b and event Jacobian $\mathbf{D}h$ can be computed.

Note also that $\mathbf{D}h$ is never inverted, allowing this computation to be used with event surfaces that are not transverse.

3.4. COMPUTING THE DERIVATIVE OF THE FLOW — Denote the $q(\cdot)$ of 8 and the previous section by $q_b(\cdot)$ to highlight its dependence on b. In addition, define $q_0(0) = \rho$ and for $t_+ > 0$ take $q_0(t_+) = F(\mathbb{1})t_+$ and $q_0(-t_+) = -F(-1)t_+$ – the trajectory of the origin.

We will now define a set of simplexes surrounding the point $q_0(1)$. The vertices of these simplexes will be

$$\mathcal{V} := \{q_0(0), q_0(1), q_0(2)\} \cup \{q_b(0)\}_{b \in \mathcal{B}}$$
(9)

For every permutation $\sigma \in S_n$ we will have a n-1 dimensional face

$$Y_{\sigma} := \operatorname{conv}\left(\{q_0(1)\} \cup \{q_b(0) \mid b_{\sigma(1)}, \dots, b_{\sigma(k)} = -1, b_{\sigma(k+1)}, \dots, b_{\sigma(n)} = 1, \text{ for } 0 < k < n\}\right)$$
(10)

These faces cover a neighborhood of $q_0(1)$ in the affine subspace $\tau^{-1}(\mathcal{A}_+)$.

For each face Y_{σ} we will define two simplices $X_{-\sigma}$ and $X_{+\sigma}$ by $X_{-\sigma} = \operatorname{conv}(\{q_0(0)\} \cup Y_{\sigma})$ and $X_{+\sigma} = \operatorname{conv}(\{q_0(2)\} \cup Y_{\sigma})$. Let $\mathcal{X}_+ := \{X_{-\sigma}, X_{+\sigma}\}_{\sigma \in S_n}$ be the set of all these simplices. By construction: (1) \mathcal{X}_+ covers a neighborhood of $q_0(1)$; (2) All points of each simplex $X_{\pm\sigma} \in \mathcal{X}_+$ experience events in the same order – the order designated by σ .

At any time -T < -n no events have occurred for any of trajectories $q_b(\cdot)$, i.e. $\forall b \in \mathcal{B} : h(q_b(-T)) < 0$ and furthermore $h(q_0(2-T)) < 0$. We can conclude this because the event times are known for each $q_b(\cdot)$ and take on the values 0 and $\frac{-n}{n\pm 1-k}$ for $1 \le k \le n$.

Let $\mathcal{X}_{-} := \{\operatorname{conv}\{q_k(-T)\} \mid \operatorname{conv}\{q_k(0)\} \in \mathcal{X}_+\}$, i.e. \mathcal{X}_- are the simplices created by taking the convex closure of the corners of simplices of \mathcal{X}_+ after carrying them back to time -T. All that remains is to construct the piecewise linear homeomorphism mapping \mathcal{X}_- to \mathcal{X}_+ using the techniques of [Groff et al., 2003, Sec. 2]. In the parlance of that reference, our $q_k(0)$ are the set of q points; our $q_k(-T)$ points are the set of p points; the simplicial complex structure Σ is given by equation 10. Figure 1 shows a example 2-dimensional case.

```
Acknoledgement
```

```
This work was supported by ARO W911NF1410573
```

ξ4.

References

- L E J Brouwer. Beweis der invarianz desn-dimensionalen gebiets. *Mathematische Annalen*, 71(3):305–313, 1911. ISSN 0025-5831. DOI 10.1007/BF01456846. URL http://dx.doi.org/10.1007/BF01456846.
- S A Burden, S S Sastry, D E Koditschek, and S Revzen. Event-selected vector field discontinuities yield piecewise-differentiable flows. *SIAM Journal of Applied Dynamical Systems*, 15(2):1227–1267, 2016. DOI 10.1137/15M1016588.
- R E Groff, P P Khargonekar, and D E Koditschek. A local convergence proof for the minvar algorithm for computing continuous piecewise linear approximations. *SIAM journal on numerical analysis*, 41(3):983–1007, 2003. ISSN 0036-1429. DOI 10.1137/S0036142902402213.
- A Hatcher. Algebraic topology. Cambridge University Press, 2002.
- S M Robinson. Local structure of feasible sets in nonlinear programming, part III: Stability and sensitivity. In Nonlinear Analysis and Optimization, volume 30 of Mathematical Programming Studies, pages 45–66. Springer Berlin Heidelberg, 1987. ISBN 9783642009303. DOI 10.1007/BFb0121154. URL http://dx.doi.org/10. 1007/BFb0121154.
- S Scholtes. *Introduction to Piecewise Differentiable Equations*. SpringerBriefs in Optimization. Springer New York, 2012. ISBN 978-1-4614-4340-7. DOI 10.1007/978-1-4614-4340-7.