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Running is an essential mode of human locomotion, during which ballistic

aerial phases alternate with phases when a single foot contacts the ground.

The spring-loaded inverted pendulum (SLIP) provides a starting point for

modelling running, and generates ground reaction forces that resemble

those of the centre of mass (CoM) of a human runner. Here, we show that

while SLIP reproduces within-step kinematics of the CoM in three dimensions,

it fails to reproduce stability and predict future motions. We construct SLIP

control models using data-driven Floquet analysis, and show how these

models may be used to obtain predictive models of human running with six

additional states comprising the position and velocity of the swing-leg

ankle. Our methods are general, and may be applied to any rhythmic physical

system. We provide an approach for identifying an event-driven linear control-

ler that approximates an observed stabilization strategy, and for producing a

reduced-state model which closely recovers the observed dynamics.
1. Introduction
Running is an essential mode of human locomotion, during which ballistic aerial

phases alternate with phases when a single foot contacts the ground. Motion

capture can record the kinematics of running in great detail. Models that quanti-

tatively fit these data have broad significance for prevention of falls, improving

athletic performance, prosthetics, enhancement of human locomotion and the

design of legged robots. The pogo stick, or spring-loaded inverted pendulum

(SLIP) provides a starting point for modelling locomotion: McMahon & Cheng

[1] and Blickhan [2] showed that the dynamics of an SLIP resemble those of the

centre of mass (CoM) of a human runner. Here, we show that SLIP can reproduce

experimental observations of CoM positions and velocities, removing at least the

following fractions of the variance: 98.4% forward position, 95.5% vertical pos-

ition, 75.1% lateral position, 46.9% forward velocity, 93.4% vertical velocity and

41.3% for lateral velocity. We show that at the same time as it so closely recovers

kinematics, SLIP fails to reproduce the stability properties of humans. We then

produce extensions to SLIP which maintain fidelity with the dynamics and also

stabilize in ways that reproduce and predict human observations. Our methods

are general and establish a paradigm for data-driven modelling of rhythmic

phenomena. In particular, we provide an approach for identifying an event-

driven linear controller that approximates an observed stabilization strategy.

A similar linear controller could be used in robots or prosthetic devices that

wish to mimic motion dynamics and control of humans or other study organisms.

We analysed data from individuals running on a treadmill in an attempt to

predict their future motions based on the current state of their body. We quanti-

fied prediction quality using relative remaining variance (rrv)—the variance of

prediction residuals divided by variance of the data. An ideal treadmill runner

produces identical strides (pairs of consecutive steps) returning to exactly the

same position after each. Human runners do not, and some of the variability of

their motions represents corrections used to produce stability. In our analysis,
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we split the deviations from ideal running into parts that corre-

late with future steps and parts that are uncorrelated with future

steps. We analysed the extent and nature of past information

that is used. For example, do humans take account of more

than one previous step in planning the next? Are there body

parts whose movements predict future steps? The dynamics

of the SLIP model itself give some insight into these questions.

Carver et al. [3] studied the ability of SLIP to execute pre-

scribed trajectories: given a desired sequence of plausible

CoM states at apex (the highest point of the ballistic flight

trajectory), can parameters be chosen at each step that will

execute this sequence? They discovered this is not possible,

but that the model can produce all sequences specifying

CoM state every stride (two steps). When we instead consider

reduced apex states—height, forward and lateral velocity of the

CoM at apex—we find that parameters can be found such

that the model shows the same reduced apex states at every

single step [3–5]. Inspired by these results, we hypothesize

that humans running on treadmills correct deviations from

their target trajectory within a single stride. Consequently,

state at an apex should not depend on information more

than one stride in the past.

Improving our understanding of SLIP has broader impli-

cations. Since its appearance in the 1980s, SLIP was shown to

be a successful model for ground-reaction forces produced

by legged animals of all sizes and leg numbers [6]. The suc-

cess of SLIP prompted the formulation of the ‘templates and

anchors hypotheses’ (TAH) [7], which focus on dimensionality

reduction as an underlying principle of locomotion dynamics:

animals restrict the dynamics of their many-degree-of-freedom
bodies [the ‘anchor’] to a low-dimensional sub-manifold of their
state-space upon which the behavior plays out [the ‘template’]. The

low-dimensional template models are hypothesized to capture

the essence of locomotion across diverse species and scales,

even though in each specific animal a more elaborate anchor
model relates the template dynamics to that particular physical

instantiation. The TAH engendered a large body of research in

biomechanics, dynamics and robotics [8].

The mathematical perspective which underlies the TAH

emphasizes asymptotic, long-term dynamics. From this

viewpoint, steady locomotion is described by a limit cycle
oscillator—a dynamical system whose long-term behaviour is

a time periodic trajectory describing the motions an animal

would perform under perfectly deterministic conditions. The

motions we observe seem as those of a limit-cycle oscillator

perturbed by the uncertainties of the body and its environ-

ment. The Floquet theory [9,10] of oscillators suggests that

under such conditions there exist coordinates in which the

dynamics near the limit cycle take a simple linear form,

which can be estimated using data-driven Floquet analysis

(DDFA) techniques [5,11–13]. DDFA plays a central role in

our analysis of running.

A mechanical spring-mass hopper is not a complete SLIP

model: there is no ‘first principles’ law for choosing model

parameters such as leg length, spring stiffness and leg direc-

tion. In the context of running, the changes these parameters

undergo from step to step are the crux of control, whereas in

early SLIP models, the parameters were assumed fixed [6].

Here, we show a collection of models of human running

that address the question of parameter selection for control,

improving prediction of COM state after one step by a

factor of at least 4.3, 5.2 and 23.1 for CoM height, forward

and lateral velocity, respectively, compared with the classical,
fixed-parameter SLIP model. We also show the fixed-

parameter SLIP to be unstable and a poor predictor of

human running over more than a single step in our exper-

imental regime. In seeking an improved model for human

running we applied DDFA, that is, we reconstructed the lin-

earized dynamics around the estimated limit cycle [5,11–13],

and show that this model predicts future motions substan-

tially more accurately than SLIP—unsurprising in the light

of the fact that it gives an upper bound on the predictive

power achievable by any oscillator-like model with smooth

dynamics. We then show a method for distilling predictive

factors and state variables from the DDFA model, allowing

them to be used to extend SLIP. One extended model is

factor-SLIP with five extra states, which by construction repro-

duces the covariance of the prediction residual of the DDFA

full state. We used factor-SLIP to guide the creation of a phys-

ically grounded ankle-SLIP which uses six extra states

corresponding to the state of the swing-leg ankle and yields

at least 44% (apex height), 75% (horizontal velocity) and

86% (vertical velocity) of the variance reduction achieved

by the 94-dimensional full state. In summary, we show the

first model of human running that [14] reproduces dynamics

(forces, velocities, positions); [2] reproduces stability metrics

(return map eigenvalues) and [6] predicts future motion up

to the predicted maximum horizon of a full stride.

Our SLIP model is visualized in figure 1. The flight phase

is ballistic, and the foot (end of the leg) remains stationary on

the ground during stance. Touchdown transitions from flight

to stance occur when the foot contacts the ground, and

lift-off transitions from stance to flight occur when the foot

loses contacts with the ground. Flight and stance are further

broken down into two parts each by apex and nadir events

which occur when the vertical velocity changes sign. Here,

we define a step as the interval between two adjacent

apices. At the apex transition of the flight phase, that is, at

the beginning of a new step, the leg is pointed in a new direc-

tion in preparation for the next touchdown and its rest length

changes. At nadir, the leg undergoes an instantaneous stiffness

change with an accompanying change of rest length such that

the leg force remains unchanged, allowing energy to be added

or removed from the system [4]. In total, our SLIP model has

four continuous domains and four discrete maps that are

applied at the transitions between these. The changes in

energy, leg stiffness and the location of the toe relative to the

CoM in flight (in three dimensions) are five parameters that

are reset at each apex (see figure 1 and Methods).

To complete the description of SLIP as a model of running,

we must specify how the parameters are reset. There are many

variants of these controllers in the literature [3,15–20]. A dis-

tinctive aspect of our analysis compared with previous

studies is that we primarily used empirical data, rather than

simulation, as input for the SLIP controller. For each step of

our human runners, we determined SLIP parameters such

that the model step matches observed minimum height,

energy change, step duration, final apex height and direction

[4]. Consequently, the simulated runner will reproduce the

entire sequence of human running steps, as defined by the

mentioned states, when the corresponding sequence of par-

ameters for all steps and the observed initial apex state for

the first step are provided. Given this set of apex states and

the step parameters of the subsequent step, we searched for a

control law which reliably predicts the observed sequences,

thereby completing the SLIP model.

http://rsif.royalsocietypublishing.org/
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Figure 1. Definition of the spring-mass model we used. Equations of motion are given in blue boxes for flight and stance. The lift-off and landing continuous time
evolution domains follow ballistic equations of motion, and contain a discontinuous parameter resetting transition at apex. Early and late stance follow dynamics of
an SLIP with mass m, leg stiffness k and leg rest length l0. A midstance discontinuity at nadir resets the rest length of the leg and the leg-spring stiffness so as to
introduce a desired total energy change DE while keeping the leg force constant. The touchdown transition from landing to early stance is triggered by the toe,
placed at distance l0, azimuth b and inclination a relative to the treadmill axes, impacting the ground level at y ¼ 0. The take-off transition between late stance
and lift-off occurs when the normal force exerted on the ground becomes zero. (Online version in colour.)
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In §2, we describe the details of the SLIP models we inves-

tigated. We follow with a description of the experiments and

the data reduction techniques, then present our main results

followed by discussion of their significance. The final section

presents technical aspects of our methods. They may be of

interest to investigators who want to perform similar analyses

on other locomotion systems or other physical systems which

exhibit rhythmic behaviour.
2. Methods
2.1. Experimental protocol
Ten subjects participated in the study after giving informed written

consent. Subjects were asked to run on an instrumented tread-

mill at moderate self-selected speed in a consistent manner.

We excluded six of the subjects prior to further analysis, because

of frequent marker loss (3), switching between forefoot and

rearfoot running (1), extreme fatigue (1) and technical failures

of the recording equipment (1). The remaining four subjects

were male students with amateur running experience (weight:

64.2+4.1 kg, age: 26.0+1.8 years (mean+ s.d.)). After a few

minutes of warm-up, subjects ran at self-selected speed on an

instrumented treadmill (speed: 2.8+0.2 ms–1 � 10+0.6 km h–1).

We recorded three-dimensional ground reaction forces at

1000 Hz using an ADAL3D-WR treadmill from TECMACHINE

(HEF groupe), 42 166 Andrieux Boutheon, France, with four

piezoelectric force sensors (type 9051A, Kistler, Winterthur,

Switzerland) mounted below each of two metal plates located
directly under the left and right half of the treadmill belt, and four

three-dimensional piezoelectric force sensors (type 9077B, Kistler,

Winterthur, Switzerland) mounted below the treadmill frame. We

also recorded the motion of 31 reflective markers, placed at identical

prominent anatomical landmarks (see the electronic supplementary

material for details) on the subjects at 250 Hz using v. 10 Qualisys

Oqus cameras (Qualisys, Gothenborg, Sweden). We acquired six

recordings of 4 min duration from each subject, with a gap of

approximately 30 s between them. In total, each subject provided

about 1800 strides. We computed CoM motion using an established

method based on a complementary filter [21]. We estimated apex

times and states by fitting a quadratic model to the CoM height

nearapex. Using the Phaser algorithm [22], we computed an estimate

of the dynamical phase of each data sample, allowing the motions to

be parametrized by phase instead of time.

2.2. Data de-trending
To test stationarity, we computed a 61-stride centred moving aver-

age for kinematic data (marker position and velocities, sampled

once per stride at apex) and SLIP parameters, for right and left

steps. This moving average captures slow trends in the data and

is referred to as ‘baseline’. To test if slow trends can be explained

by a slow component of a (discretized) Floquet model, i.e. the

kind of model we assume throughout our analysis, we compared

the standard deviation of the empirical baselines with the baselines

of 10 000 realizations of surrogate data.

Surrogate data were obtained by first computing a linear model

of the (zero-mean) data at step i þ 1 using the (zero-mean) data at the

previous step i as predictor (see section below), and simulating this

model with dynamical uncorrelated noise as input (i.e. a random

http://rsif.royalsocietypublishing.org/
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process similar to the hypothesized form of the runner’s dynamics).

Next, each output dimension was rescaled such that it has the same

standard deviation as the measured data after subtracting the mean.

Without the presence of unmodelled slow-timescale dynamics,

we would expect that 61-stride centred moving averages of these

surrogate data frequently have larger standard deviation than the

empirical baselines. However, we found that for the majority of kin-

ematic states and SLIP parameters fewer than 10 of 10 000 surrogate

datasets have a baseline with larger standard deviation than the

original baseline, leading us to conclude that a statisticallysignificant

( p � 1023) trend exists in the time series at this timescale.

Because we found significant trends in the majority of

kinematic data and empirical SLIP parameters, we applied a 61

stride centred moving average de-trending for all data prior to

any further analyses.

2.3. Empirical data
From the recorded data of the remaining four subjects, we com-

puted all marker positions and velocities relative to the CoM, and

excluded the absolute position of the runner on the treadmill as

well as some redundant marker information from the state space.

We resampled the data with respect to phase instead of time,

using phase estimates obtained from Revzen & Guckenheimer

[22], allowing strides to be compared with each other as the sets

of 50 samples of 94-dimensional kinematic data. We removed

slow trends in the data (see above). All subsequent analysis was

performed on the detrended data; for further details of the data

preparation and analysis, see primary sources [4,21,22].

Empirical data are available at the Dryad Digital Repository

[23].

We used linear regression to obtain linear mappings from the

state (typically kinematic state of the human runner, or parts

thereof) at some phase to the state at later phases, or to SLIP

parameters of the upcoming step, together with a bootstrap pro-

cedure to estimate the distribution of relative remaining variance

(rrv) following application of the regression.

2.4. Bootstrap confidence intervals
The bootstrap procedure [24] is a parameter-free statistical method to

obtain a distribution of a quantity of interest (e.g. a regression matrix

or an rrv value, see §2.5) from a single dataset. First, a random sub-

sample of the dataset is drawn. Then, the quantity of interest is

computed on this subsample. These steps are repeated until

enough realizations of the quantity of interest are obtained (typically

100–200 repetitions). If the quantity of interest is scalar (e.g. an rrv

value), a confidence interval can be obtained from its distribution.

2.5. Linear regression and prediction
To estimate the relationship of kinematic states, kinematic states

at later phases and SLIP parameters, we built corresponding

linear models. Here, to obtain a linear model for a (possibly)

vector-valued quantity Y (e.g. SLIP parameters, kinematic state

at some phase w2) from a predictor X (e.g. kinematic state at

phase w1 , w2), we used ordinary least-squares linear regression

on a set of corresponding observations of Y and X

Âk ¼ arg min
A
k [Yk1

, . . . , Ykn ]� A[Xk1
, . . . , Xkn ]kF,

where k denotes the kth iteration of the bootstrap procedure, and

ki the ith sample of the kth bootstrapped dataset (which becomes

the ith sample of the original dataset if the bootstrap procedure is

omitted). The subscript ‘F’ denotes the Frobenius norm which

is the square root of the sum of squares of all matrix elements.

In matrix notation, this reads

Âk ¼ arg min
A
k Yk � AXkkF,
with the solution Âk ¼ YkX�k. Here, X�k denotes the Moore–

Penrose (right) pseudo-inverse of Xk, which we obtained by the

scipy.linalg.pinv function from SCIPY [25].

We assessed the quality of this model {Âk} on the out-of-sample

data Y0k, X0k, that is, those pairs of data that were not used for deter-

mining Âk. We used the ratio of variance of Y0k � ÂkX0k to the

variance of Y0k as the ‘relative remaining variance’ (rrv) measure

reported in our results. We performed several (typically 100–

200) bootstrap iterations on the X,Y pairs to obtain confidence

intervals for the rrv numbers reported.

Contrary to naive intuition, an rrv value 1 still indicates some

prediction ability, because finite sample effects affect the pre-

diction matrix and allow some of the predictor noise to add to

the pre-existing uncertainty in the data. rrv values larger than

1 are possible.

For each subject, we performed independent regressions

and predictions.

2.6. Modified spring-loaded inverted pendulum model
The SLIP model we used is a hybrid dynamical system represent-

ing the movements of a point mass in three dimensions. Its

equations of motion are given in figure 1 and were integrated

numerically using a Dormand–Prince ODE integrator [26]. The

model is described by a mass m at position r on top of a massless

telescopic linear spring leg with rest length l0 and stiffness k.

During flight, the leg’s orientation is described by the inclination

angle a and the azimuthal angle b, with a ¼ b ¼ 0 the forward

direction on the treadmill (the x-direction). An auxiliary parameter

DE controls the net work done by the leg while in contact with the

ground. This energy change is introduced at nadir ( _y ¼ 0) by

updating the leg rest length l0 and stiffness k according to

Lþ0 :¼ 2DE
k(l0 � l)

þ l0 and kþ :¼ k
l� l0
l� lþ0

, (2:1)

which leaves the leg force unchanged.

Each subject’s mass was estimated from the measured ground

reaction forces separately for each trial to account for weight

changes owing to sweating and drinking (fluctuations typically

around 0.4 kg � 0.6% body mass). We normalized the leg stiffness

and energy change to the mass for each trial, because the mass

appears only as a constant factor in those terms. That way, varying

subject mass does not directly affect SLIP parameters.

The stance dynamics end when the leg length l reaches lþ0 ,

and transition to flight.

At apex, new values for the parameter vector L :¼ (a, b, k,

l0, DE) are chosen using a specified linear control law. Note,

however, that the changes in (k, l0) are applied at the subsequent

nadir rather than at apex.

2.7. Empirical spring-loaded inverted pendulum
parameter estimation

In our SLIP model, a step is the interval between two adjacent

apices. Using the method of Ludwig et al. [4] on each step of a

human runner, we can find SLIP parameters such that in the simu-

lation model they result in an exact match of the final apex velocity

and height, step duration and nadir height. It is important to note

that the new SLIP parameters, together with initial conditions,

contain all information about the final CoM state at apex.

2.8. Controlled spring-loaded inverted pendulum
models

Controlled SLIP models are hybrid dynamical system models

which propagate the CoM state in continuous time using a for-

ward simulation of SLIP. Non-CoM states are propagated from

apex to apex using discrete linear maps. Initial conditions are

http://rsif.royalsocietypublishing.org/
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taken from experimental data or from the last simulated step,

respectively. For each step i, SLIP parameter pi updates are

performed at initial apex using an affine control law

pi
R=L ¼ p0

R=L þ ÂR=L xi
R=L: (2:2)

The reference parameters p0
R=L (set points of the affine control

law) for right and left steps (subscripts R and L) correspond to

a periodic orbit with the same apex states, step durations and

nadir heights as the average experimental steps for the selected

subject. The parameter prediction matrix Â (the ‘feedback law’)

was obtained via a least-squares regression of the correspond-

ing model state x (CoM states together with non-CoM states off

their respective baselines) against the predictor variables for

that model.

2.9. Return map eigenvalues
To obtain return maps for kinematic data, we performed linear

regression on the difference between the kinematics and the

baseline kinematics, regressing them against the same data two

steps (one stride) ahead.

To test plausibility of the results, we additionally computed

return maps in a different way, using multiple Poincaré sections.

Multiple sections take more empirical data into account, but in

theory, the recovered eigenvalues should not be affected by the

number of Poincaré sections taken into account. In practice,

other groups have reported advantages of this approach [27].

We selected N (N [ {2, 3, 5}) Poincaré sections with equal

phase difference, and computed bootstrapped sets of maps Bi,k

mapping from one Poincaré section i to the next Poincaré section

i þ 1. We computed the return maps Ck as a product of the

maps Bi,k: Ck ¼
Q1

i¼N Bi,k. For each set of return maps—one for

every number of Poincaré sections used—we computed the

corresponding set of eigenvalues and plotted the distribution

of those eigenvalues for each set in figure 9.

Eigenvalues for reduced-state space definitions like ankle-
SLIP were computed in an analogous way, replacing the full

kinematic state with the corresponding reduced-state space.

For controlled SLIP models, the corresponding eigenvalues

are the eigenvalues of the Jacobian around the periodic solution.

To estimate these Jacobians, we used two-sided finite differences

of +0.01 for each model dimension. We verified that the recov-

ered eigenvalues did not depend on the size of the differences,

within the precision we report.
3. Results
The primary goal of the work we present here is to predict CoM

motion in human runners. One of our contributions is provid-

ing a standard against which running models can be tested

by applying the recently developed techniques of DDFA

[9,10,12,13,28] to the dynamics of the CoM, which are pre-

sumed to evolve in the stability basin of a stable limit cycle.

We assume that the small magnitude of deviations from this

hypothetical limit cycle justifies the linear approximations we

used here. We constructed the linearized dynamics of states

near the limit cycle to form a state-evolution model (the full
state model in the sequel), which includes estimates of the lin-

earized return map (stride map; Poincaré map [10]) commonly

used for stability analysis.

The predictive performance of this full state model establishes

a reference ‘gold standard’ for evaluating smaller template

models of running. In the full state model, we applied ordinary

least-squares regression to the complete 94-dimensional state

of motion capture measurements and CoM, using those as pre-

dictors for that state at later phases. Similarly, we computed a
linear map using full state’s state to predict SLIP parameters for

the upcoming step. Because full state has access to the richest col-

lection of predictors of the models we examine, it is expected to

have the best predictive ability.

Our analysis compared two classes of models—simulated

models and linear models. In the simulated models, we took

CoM motions during a step as evolving according to numeri-

cal integration of the SLIP equations from the initial apex

conditions. In the linear models, each future state was com-

puted as the image of a phase-dependent linear map of the

initial apex state.

In the full state SLIP, we assumed that the update law for

SLIP parameters (the controller) is given by a linear map from

the complete set of 93-dimensional kinematic data (excluding

vertical velocity which vanishes at apex) to SLIP parameters.

We determined the coefficients of this discrete linear controller

by regression, minimizing the residual between the predicted

and observed SLIP parameters of the upcoming step. This con-

troller serves as a benchmark upper bound for prediction

performance for other controllers examined in this paper, as

it is free to act with a different linear map at every phase

while having access to the most state information data.

The full state SLIP is not an autonomous system: future

model states are not given purely as a function of past states;

instead, they depend on the totality of measurements we col-

lected. To create a self-contained model of running, we first

examined the simplest alternative—the mean parameter-SLIP
model—which is closest to the traditional SLIP models of the

1990s [8,29,30]. In the mean parameter-SLIP model, we held

the SLIP parameters of left and right steps constant, with

values that correspond to a periodic motion with the same step

durations, nadir heights and apex states as the average empirical

left and right steps. We found the parameter values by solving

for a periodic trajectory were within 0.1 standard deviations of

the mean parameter values for left and right steps, respectively.

We obtained predictions for individual running steps from mean
parameter-SLIP by starting the simulation with initial conditions

(here: CoM state) taken from individual running steps in the

empirical data. We found that mean parameter-SLIP does many

times worse than full state when it comes to prediction of

human responses. It increases the residual of apex height, forward

velocity and lateral velocity by at least a factor of 4.3, 5.2 and 23.1,

respectively, across subjects.

After establishing that a large gap in predictive ability lies

between mean parameter-SLIP and full state SLIP, we set out to

construct autonomous low-dimensional models whose pre-

dictive performance comes close to that of the full state
model. One strategy uses linear maps similar to the full state
model, but first reduces the full state by projection onto a sub-

space. The model’s state on that subspace is then predicted for

the subsequent apex using a (discrete time) linear map. Each

low-dimensional model thus contains a linear map that pre-

dicts SLIP parameters, and another linear map that predicts

the non-CoM states of the model.

The full state map from state to parameters is rank 5, as there

are only five parameters. Inspired by factor analysis computa-

tions in statistical inference, we chose the subspace orthogonal

to the null space of this rank 5 map (the factors) together with

reduced CoM state at apex, giving the factor-SLIP model’s state.

In this model, each set of SLIP parameters close to the periodic

orbit corresponds to a unique linear combination of five compu-

tationallyobtained factors. In addition to predicting the values of

SLIP parameters for the next step, we used factor-SLIP’s state to

http://rsif.royalsocietypublishing.org/


1.0

0.8

0.6

0.4

0.2

0

input for prediction: full state CoM and factors CoM and ankle state

rr
v

predicted coordinate

CoM
y

CoM
vz

CoM
vx

an
k z

an
k x

an
k y

an
k vz

an
k vx

an
k vy

fac
tor

 1

fac
tor

 2

fac
tor

 3

fac
tor

 4

fac
tor

 5

be
tte

r 
pr

ed
ic

tio
n

Figure 2. Self-consistency check of reduced models. We compared the fraction of remaining variance for the states of the reduced models factor-SLIP and ankle-SLIP
at the subsequent apex to a reference which was obtained using the best-informed full state model for prediction. Factor-SLIP contains almost all information to
predict its own state, whereas ankle-SLIP performs slightly worse. The comparatively high remaining variance for non-CoM states for all predictors indicates that
these states can hardly be predicted at the subsequent apex. As these states are necessary for a good prediction of the CoM, we expect that CoM prediction
performance will strongly decrease at the second apex (cf. figure 5). We display confidence intervals obtained from 100 bootstrap samples from a randomly
chosen individual (subject 3; box plots), with the median of other subjects indicated (triangles). (Online version in colour.)

l0

1.0

0.5

–0.5

–1.0

0

CoM
y

CoM
vz

CoM
vx

r. a
nk

le z

r. a
nk

le x

r. a
nk

le y

r. a
nk

le vz

r. a
nk

le vx

r. a
nk

le vy

k

visualization of the factor-SLIP feedback matrix for a right step

state space variable

pa
ra

m
et

er
 to

 p
re

di
ct

a

DE
b

Figure 3. The factors used in factor-SLIP for subject 3 by visualizing the feedback matrix. We show the weight of each state variable in predicting each parameter
(colour coded blue – white – red with saturation normalized so that maximal weight is 1 or 21). We also indicated the importance of each state variable by plotting
the norm of each column (triangles, most important predictor scaled to figure height). The results motivated taking only ankle and CoM states as a reduced model,
leading to the definition of ankle-SLIP. The maps change from subject to subject; maps for all subjects are found in the electronic supplementary material. In our
data, we found that CoM height ( y) and lateral velocity (vz), swing ankle forward and lateral position (x, z) and velocity (vx, vz) have heavy weight in all subjects.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20140899

6

 on November 1, 2015http://rsif.royalsocietypublishing.org/Downloaded from 
predict the factor values at the next apex, thereby allowing for a

self-contained model to be produced if the data support it. By

construction, this reduced-state discrete time linear controller

produces the same output covariance as the original full state con-

trol law for SLIP parameters for the first step (see the electronic

supplementary material for details). It does not necessarily pro-

duce the same output covariance for its own state at next apex,

leading potentially to degraded prediction performance in

subsequent steps. We test the ability of factor-SLIP to predict

its own state at next apex in figure 2, and find that factor-SLIP
can comparatively well predict its own future state compared

with the reference given by the full state model, qualifying

factor-SLIP as a self-contained reduced model.

Figure 3 illustrates the 5 � 93 projection matrix of the

factor-SLIP model. Note that the components of this matrix

that come from ankle position and velocity make the largest

contributions to the prediction of SLIP parameters. This motiv-

ated our second choice of model: ankle-SLIP, whose state

consists of the CoM state and the ankle position and velocity

of the next stance leg. The ankle-SLIP uses the mechanical

state (position and velocity) of the CoM, and the mechani-

cal state of an additional mass—the protracting swing
leg—to generate a prediction for both SLIP parameters and

ankle states at the next apex. Unlike factor-SLIP, the additional

discrete time states added in ankle-SLIP have a direct physical

meaning. We performed the same analysis of autonomy for

ankle-SLIP as we did for factor-SLIP (figure 2), and found that

this subsystem is not fully autonomous, but predicts most of

the change in its own future states.

Our final simplified controller explores the use of

augmentation, whereby parameters of a dynamical system

are turned into state variables. We used the SLIP parameters

themselves as discrete-time state variables and computed

linear control laws for left and right steps, in each of which

the state of the SLIP at apex is augmented with the values

of all SLIP parameters from the previous step. The resulting

augmented-SLIP model takes a linear map of the CoM apex

state and the previous step’s SLIP parameters into a new

set of values for the SLIP parameters. The augmented-SLIP
model gives an upper bound on what a linearized controller

with access only to SLIP state information could accomplish.

We compared the ability of each of these models to predict

the SLIP parameters humans used for the next step (figure 4).

Factor-SLIP performs as well at prediction as the reference
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full state. Ankle-SLIP shows slightly poorer, but comparable

performance, whereas augmented-SLIP has much poorer per-

formance. As these SLIP parameters together with CoM state

constitute the state of augmented-SLIP, the poor performance

implies that no affine feedback on the augmented-SLIP apex

state reproduces the SLIP parameter choices that humans use.

By comparison, full state and even ankle-SLIP perform much

better prediction. We conclude that linear prediction is in fact

possible, but that the necessary information is unavailable

in the augmented-SLIP state. Furthermore, these results

imply that accurate prediction of human CoM state requires

non-CoM state information.

The analysis of Carver et al. [3] suggests that runners should

return to their periodic motions within a stride following dis-

turbances. Consequently, we hypothesized that deviations

from the limit cycle remain predictable (i.e. retain information)

only during a single stride, and tested for the expected loss of

prediction ability as a function of phase. In figure 5, we present

the ability of phase-dependent linear models with the various

predictors to predict state variables over a horizon of one stride

into the future. Our results demonstrate that nearly 80% of the

variance was not predicted one stride into the future in any of

our choices of state variable and prediction algorithm, whereas

for some combinations (e.g. CoM lateral velocity as predicted

by the full state model) 80% of the variance remained pre-

dictable when looking only one step into the future. Overall,

the full state provided a benchmark against which the reduced

models were evaluated. Note that augmented-SLIP does poorly

at prediction across the board, whereas factor-SLIP does nearly

as well as full state. The more physically grounded ankle-SLIP
did only a bit worse than factor-SLIP, except for its greatly

reduced ability to predict CoM height beyond the next

lift-off. Possibly, this was owing to left–right asymmetry.

Ankle-SLIP has a single set of state variables used for both

ankles, with independently determined controllers for left

and right steps. It is possible that an ankle-SLIP-like controller
with separate states for left and right ankles could reduce the

performance gap.

As anticipated by the theoretical predictions of Carver

et al. [3], adding information from previous steps did not

lead to improved prediction performance (figure 6). We

found no evidence in our data that human gait control uses

any form of multi-stride memory, neural or mechanical.

The models presented to this point have been phase-

dependent linear functions, derived by regression to optimize

prediction of SLIP parameters. An alternative approach we

explored consists of using the corresponding SLIP models

in forward simulations for prediction. The models differed

only in the control law which acted at the apex event. In

figure 7, we compared the predictions for linear models

with their simulation counterparts.

SLIP does not exactly reproduce the average CoM motion

during a step (figure 7d–f ), but can reproduce each desired

reduced apex state. This results in a systematic prediction

error during the step, that vanishes at apex. Figure 7b,c
shows that at phases where this systematic error is small,

namely in the flight phase (around the middle of each stride)

for horizontal and lateral velocity, we see good agreement

between the simulated CoM states and the corresponding pre-

dictions from linear models. In fact, the simulated and linear

models have almost the same predictive performance for a

single step at apex, and still perform similarly after a stride

(figure 8). This shows that the choice of the state space is

more important for prediction performance at apex than the

choice of the model type (simulation or linear).

As an additional check for dynamic similarity between differ-

ent models, we compared their return map eigenvalues in the

complex plane. The eigenvalues express how quickly nearby tra-

jectories approach the limit cycle. They are invariant under

smooth coordinate changes, so differences in the eigenvalues

give a measure of the dynamic dissimilarity of two systems.

We computed eigenvalues estimated with different numbers of

Poincaré sections (N¼ 1, 2, 3, 5), and computed the mapping

between subsequent sections via least-squares regression for

the experimental kinematic data, taking the return map as the

product of these maps (see Methods for details). The obser-

ved eigenvalues depended on the number of sections used

(figure 9). It has previously been noted that empirically com-

puted eigenvalues depend on the sections at which they are

computed, an apparent contradiction to their theoretical proper-

ties [11]. A more complete understanding of the limitations of

eigenvalue estimation with one or more sections remains a

topic for further investigation. We then computed the return

maps for our different simulated SLIP models and the corre-

sponding linear models which share the same state space. Our

results show a correspondence in eigenvalues between the simu-

lated SLIP models and their linear counterparts, providing

evidence for the dynamic similarity of SLIP and linear models.

This reinforces our finding that the choice of state space is more

important for prediction of apex states than the choice of the

model type (SLIP or linear). Furthermore, the magnitude of

the reduced models’ eigenvalues is in good agreement with

those of the kinematic data which correspond to the full state SLIP.
4. Discussion
Our analysis leads us to propose that CoM motions of human

running can be modelled by ankle-SLIP, a hybrid dynamical
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model with states comprised of the CoM and the position and

velocity of the swing-leg ankle. The future values of the five

SLIP parameters, and six swing-leg ankle states (three each

of positions and velocities) are approximately predicted by

the current apex state and swing-leg ankle state. The reduction

to ankle-SLIP might in part be attributable to the small number

of subjects, or to the constraints of the experiment—subjects

had to maintain the same average velocity and direction to

stay on the treadmill. A larger subject population or less con-

strained running might yield a different choice of reduced

model. Nevertheless, our methods could still be applied to

produce appropriately reduced models which achieve close

correspondence with the observations.

Note that our model only maintains the state for a single

ankle even though that ankle alternates between the left and

right leg. One interpretation is that during stance any dynamical

state of the stance ankle is lost, being entirely encoded in the CoM
state, thereby admitting a description that has merely one ankle

instead of two. This form of dimensionality reduction is unique

to hybrid oscillators, and was only described recently [31].

Runners are not, generally speaking, bilaterally symmetric.

In our results, this is apparent in that the right apex map of

subjects is not only different from the mirrored left apex

map, abut it also predicts significantly different outcomes

(SLIP parameter, CoM and ankle states); details of our results

regarding gait control asymmetry are relegated to future work.

The fact that we find ankle states to be an important predictor

of CoM control does not imply the existence of an active control-

ler in the nervous system that uses ankle states as input. Ankle

states might merely be an output of some control process that

we do not observe, and this process need not be neural in

nature. For example, leg retraction right before touchdown has

been shown to stabilize SLIP [19] and does not necessarily

require feedback from the nervous system. The dynamics of

the body may modulate the swing ankle mechanically, thereby

modifying the touchdown event and influencing stability.

While swing leg retraction shows the importance of fore–aft

motions of the ankle, our analysis has also shown ankle position

relative to CoM to be an important predictor. Hence, ankle-SLIP
contains the full three-dimensional ankle state.

The choice of using the system’s state at apex for predic-

tion is motivated by literature, not by physiology. The SLIP

model is insensitive to the orientation and length of the leg

during flight: these become relevant only when the foot

contacts the ground. We do not assert that the use of apex

data to compare human runners with our model is optimal

or superior to comparisons made at other phases of the gait

cycle, but SLIP controllers have used apex states as feedback.

Under our experimental conditions with comparatively

slow running speed, a constant parameter SLIP does not

reproduce the qualitative behaviour of the observed pertur-

bation response. We could further show that SLIP needs

an extension of the state space to be able to display human-

like reactions. However, at higher velocities, a constant

parameter SLIP can produce stable periodic gaits [18] which

humans might rely on at faster running speeds. The methods

presented here allow one to readily test such hypotheses,

either directly by comparing eigenvalues and eigenvectors to

model predictions, or through perturbation analysis. Even at

high speeds, the constant parameter SLIP has Floquet multi-

pliers far from zero—it is emphatically not a deadbeat

controller—and thus perturbation recoveries are expected to

persist over multiple strides. In general, measuring transient

responses to stimuli that perturb the periodicity of running

motions is a powerful technique for probing the structure of

running dynamics and control [32–35].
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Our results show that SLIP, as a parametric model of

human CoM trajectories during a step, can be used in conjunc-

tion with a simple discrete time linear control law to obtain a

prediction of human running motions that is nearly as good

as allowed by theoretical predictions [3]. The study of control

exercised at isolated instants, triggered by time or sensory

events, is a quickly burgeoning field in control theory [14,36].

The Poincaré maps of the periodic solutions of SLIP in the

region relevant to our data are smooth, and thus linearizable

at the fixed point. Equipped with an arbitrary linear controller,

it is not surprising that SLIP can be made to match the eigen-

values of observed human dynamics. Our contribution is not

in asserting that such a control law can exist, but in estimating

several such control laws and comparing their predictive ability.

With larger disturbances, control of running may become

notably nonlinear. Our approach can explore and evaluate

the capabilities of several low-dimensional models which

also show nonlinearities, and potentially come up with a

model that captures empirical nonlinearities. Future work

based on our methods has the potential to peer over the

limits of linear predictive models, by using the rich set of

tools available for nonlinear analyses.

The simplicity of the control law we identified suggests

that discrete time robot controllers can create autonomous
human-like runners and improved prosthetic aids to human

locomotion. The question of producing a human-like linear

control law based on some parameters of the individual, pros-

thetic or robot remains largely open. Replication of our work

with additional individuals could help elucidate the factors

governing such differences. In our experimental set-up, we

find that ankle kinematics, which can easily be measured out-

side of laboratory environments using accelerometers, are

particularly important in the control of running. We think

that further investigation of ankle motion and associated sen-

sory feedback could provide important insights into how

humans run. However, under different conditions, other kin-

ematic states might provide better reduced order models

than those obtained with ankle data.

Our computational procedures, based on DDFA, can find

broad application: the study of rhythmic phenomena in the

physical sciences, and the design and control of devices

that operate in periodic rather than steady state regimes.
Funding statement. H.M.M., C.L. and A.S. were partly supported by
German Research Foundation (DFG) under grant nos. SE 1042/6-1
and STR 533/7-1. S.R. was supported by ARO Young Investigator
Programme award W911NF-12-1-0284. J.G. was supported by NSF
grant no. 1006272.
References
1. McMahon TA, Cheng GC. 1990 The mechanics of
running: how does stiffness couple with speed.
J. Biomech. 23, 65 – 78. (doi:10.1016/0021-9290
(90)90042-2)

2. Blickhan R. 1989 The spring mass model for
running and hopping. J. Biomech. 22, 1217 – 1227.
(doi:10.1016/0021-9290(89)90224-8)

3. Carver SG, Cowan NJ, Guckenheimer JM. 2009
Lateral stability of the spring-mass hopper suggests
a two-step control strategy for running. Chaos 19,
026106. (doi:10.1063/1.3127577)

4. Ludwig C, Grimmer S, Seyfarth A, Maus H-M. 2012
Multiple-step model-experiment matching allows
precise definition of dynamical leg parameters in
human running. J. Biomech. 45, 2472 – 2475.
(doi:10.1016/j.jbiomech.2012.06.030)

5. Maus H-M. 2013 Towards understanding human
locomotion. PhD thesis. Technische Universitat
Ilmenau. See http://www.db-thueringen.de/
servlets/DerivateServlet/Derivate-26612/ilm1-
2012000364.pdf.

6. Blickhan R, Full RJ. 1993 Similarity in multilegged
locomotion: bouncing like a monopode. J. Comp.
Physiol. A 173, 509 – 517. (doi:10.1007/
BF00197760)

7. Full RJ, Koditschek DE. 1999 Templates and anchors:
neuromechanical hypotheses of legged locomotion
on land. J. Exp. Biol. 202, 3325 – 3332.
8. Holmes P, Full RJ, Koditschek DE, Guckenheimer JM.
2006 The dynamics of legged locomotion: models,
analyses, and challenges. SIAM Rev. 48, 207 – 304.
(doi:10.1137/S003614450445133)

9. Floquet G. 1883 Sur les équations différentielles
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