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Abstract Instantaneous kinematic phase calculation allows
the development of reduced-order oscillator models useful
in generating hypotheses of neuromechanical control. When
perturbed, changes in instantaneous kinematic phase and fre-
quency of rhythmic movements can provide details of move-
ment and evidence for neural feedback to a system-level
neural oscillator with a time resolution not possible with
traditional approaches. We elicited an escape response in
cockroaches (Blaberus discoidalis) that ran onto a movable
cart accelerated laterally with respect to the animals’ motion
causing a perturbation. The specific impulse imposed on ani-
mals (0.50 ± 0.04 m s−1; mean, SD) was nearly twice their
forward speed (0.25 ± 0.06 m s−1). Instantaneous residual
phase computed from kinematic phase remained constant for
110 ms after the onset of perturbation, but then decreased
representing a decrease in stride frequency. Results from
direct muscle action potential recordings supported kine-
matic phase results in showing that recovery begins with self-
stabilizing mechanical feedback followed by neural feedback
to an abstracted neural oscillator or central pattern generator.
Trials fell into two classes of forward velocity changes, while
exhibiting statistically indistinguishable frequency changes.
Animals pulled away from the side with front and hind legs
of the tripod in stance recovered heading within 300 ms,
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whereas animals that only had a middle leg of the tripod
resisting the pull did not recover within this period. Animals
with eight or more legs might be more robust to lateral per-
turbations than hexapods.
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Abbreviations

Axes Y -axis is positive along the line of platform
translation. Also called lateral axis. Z-axis
is perpendicular to the Y -axis, positive ver-
tical of the platform. X-axis is perpendicular
to both the Y - and Z-axes, and positive in
the direction of cockroach locomotion. Also
called the forward axis

Vx Component of cockroach velocity in track-
way direction

Vy Component of cockroach velocity across
trackway

COM Center of mass
CPG Central pattern generator

EMG Electromyography
IBI Inter-burst interval. The time between two

bursts of muscle action potentials in an elec-
tromyography

ISI Inter-spike interval
LLS Lateral leg spring model

MAP Muscle action potential
PCA Principal component analysis
LLS Lateral leg spring model
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AEP Anterior extreme position. The transition
from swing to stance.

PEP Posterior extreme position. The transition
from stance to swing.

SLIP Spring loaded inverted pendulum model

List of symbols

Φ Phase threshold between classes (one
class has Φ − π < φ0 < Φ, the other
Φ < φ0 < Φ + π )

φ0 Predictor phase
φ, θ Phases

ω Derivative of phase with respect to time,
i.e. instantaneous frequency

�φ Residual phase
x, v Position, velocity time series used to cre-

ate complex phase time series
z Complex phase time series 〈.〉 mean

value; 〈w(t)〉 is the expectation of the
variable w(t)

t1pre Starting time window pre-perturbation
t2pre Ending time window pre-perturbation
tstep Step duration

ton Onset of perturbation
t1post Starting time window post-perturbation
t2post Ending time window post-perturbation

std Standard deviation operator; std[w(t)] is
the standard deviation of the variable
w(t)

exp (Complex) exponential function
arg Complex argument (i.e., polar angle)

function
C0 Class 0, one of the two phase classes (in

red)
C1 Class 1, one of the two phase classes (in

blue)
Vx0 Mean of cockroach velocity in trackway

direction for C0

Vx1 Mean of cockroach velocity in trackway
direction for C1

L1 norm Sum of absolute differences
L2 norm Square root of sum of squared differ-

ences, same as root mean square (RMS)
up to a scale

N Parameter governing the number of boot-
strap trials used for testing classification
significance; N 2 trials for H1 and H0(a)

are compared with a nested bootstrap of
N trials of N nested trials each.

n Number of trials provided by an individ-
ual animal

H1 Statistical hypothesis that classes the C0

and C1 obtained from φ0 and Φ describe
animals that behave differently.

H0(a) Statistical hypothesis that trial classes C0

and C1 are selected at random from the
same distribution of animal motions.

H0(b) Statistical hypothesis that trial classes C0

and C1 are selected to be most dissimi-
lar classes that can be obtained based on
a choice of Φ, while still being selected
at random from the same distribution of
animal motions.

χ2 Statistical distribution and associated test

1 Introduction

Using the rhythmic motion of diverse body structures and
appendages, animals adopt a wide spectrum of locomotor
behaviors to move through every variety of natural environ-
ments. As they move, animals must respond to unexpected
perturbations such as changes in terrain, injury to limbs, and
the behavior of predators, prey, and conspecifics. We pro-
pose that within the kinematic responses to these perturba-
tions reside patterns revealing the interplay between neural
and mechanical stabilization that govern the recovery from
perturbation. Using the instantaneous phase and frequency
of rhythmic limb movements, Revzen et al. [2008] offer a
general framework for identifying which candidate feedback
pathways within neuromechanical control architectures play
the dominant role in coordinating neuromechanical oscilla-
tions (Fig. 1).

1.1 Neuromechanical control architectures

With the simplest neuromechanical control architectures pos-
sible, at least three types of feedback pathways contribute to
stabilization. Figure 1A corresponds to a hypothesis based
primarily on mechanical stabilization, Fig. 1B on time-
invariant (classical) reflex feedback, and Fig. 1C on feed-
back modulation of the entire gait pattern. The overall frame-
work of neuromechanical control in which we ground these
hypotheses assumes that motions are driven by endogenously
produced rhythmic pattern oscillations emitted from a CPG
(Delcomyn 1980; Büschges 2005; Büschges et al. 2011;
Marder et al. 2005; Grillner 1985; MacKay-Lyons 2002). For
the running behavior described here, we use CPG to repre-
sent a reduced-order, system-level model composed of mul-
tiple interacting neural CPG circuits that are phase-locked
(Revzen et al. 2008; Revzen 2009; Fuchs et al. 2011, 2012).
The CPG is coupled to an oscillating mechanical system
composed of appendages, skeleton and the muscles that con-
nect them. In turn, this mechanical system is coupled to the
environment.
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A B C

Fig. 1 Three types of feedback in a neuromechanical control archi-
tectures (Revzen et al. 2008). The “Task Level” control block repre-
sented descending neural signals and physiological state. We assumed
its outputs to be held constant throughout a behavior. A central pattern
generator (CPG, blue circle) contained the self-exciting neural circuitry
that generated the rhythmic pattern for the behavior. Here CPG repre-
sents an abstracted, reduced-order model of a neural oscillator, where
one or more interacting neural CPG circuits are phase-locked, and not
any identified neural circuits. All reflex-based neural modulation of
the CPG signal lay in the “Tracking” blocks. Tracking contained no
persistent state and was not self-exciting. The “Muscles and Skeleton”
(nested circles) contained the mechanical state of the body, which is sub-

ject to manipulation by forces from the environment. The body inter-
acted mechanically with the “Environment” block and also modified
the representation of the environment returned by the “Sensing” block.
Information flow is indicated by arrows. We considered three forms of
feedback (thick arrows): A mechanical feedback, wherein muscle acti-
vation remains unchanged and recovery from perturbation is mediated
by properties of the mechanical interaction with the environment; B
tracking feedback, wherein recovery is the result of reflexes bringing
the motions of the body into line with the reference motions indicated
by the pattern produced from the CPG; C clock or pattern feedback,
wherein feedback changes the pattern of activation produced by the
CPG

At the most rapid speeds, mechanical systems dominate
control because they provide an immediate response to per-
turbations (Fig. 1A), whereas neural feedback may be limited
by signaling bandwidth, computation ability, and the delays
inherent in muscle force recruitment. When a mechanical
system is tuned to its environment, mechanical feedback can
be remarkably effective. (Kubow and Full 1999) showed that
when biologically realistic ground reaction forces are sim-
ulated, a hexapedal morphology could mechanically self-
stabilize. This discovery was corroborated by finding that
running cockroaches begin to recover from a lateral impulse
within 14 ms—a response time that challenges the fastest of
reflexes (Ahn and Full 2002), and would barely provide suffi-
cient time for neural feedback from their tibial campaniform
sensilla (Ridgel et al. 2001) or allow for force development
even if triggered from more rapidly activated femur and coxa
sensillae as in locust. Muscle action potentials of a set of puta-
tive control muscles show no difference between running on
rough terrain and on flat ground. Neither circumoesophageal
lesion (disconnecting the brain from the thoracic nerve
cord; removal of the arrow from “Task Level” to “CPG” in
Fig. 1) nor distal leg denervation (removal of that part of
environmental feedback that is sensed via the leg itself in the
arrow from “Environment” to “Sensing” in Fig. 1) prevent
rapid running in cockroaches (Ridgel and Ritzmann 2005;
Noah et al. 2004). Spiders and cockroaches show no change

in the limb kinematics when running rapidly over a mesh that
removes ninety percent of the ground contact area (Spagna
et al. 2007). Instead of relying on precise stepping informed
by neural feedback, these arthropods use mechanical feed-
back distributed along their legs and enhanced by the passive
mechanics of leg hairs.

There is a sound theoretical basis supporting mechani-
cal self-stabilization in running. Mathematical analysis of
models of running show self-stabilization in both the Spring
Loaded Inverted Pendulum (SLIP) model (Ghigliazza et al.
2005; Altendorfer et al. 2004; Seyfarth et al. 2003) that gov-
erns sagittal plane running dynamics and the Lateral Leg
Spring (LLS) model (Schmitt and Holmes 2000a, b) that
describes horizontal running in sprawl-postured animals.
The simple LLS model of the cockroach and other more
morphologically grounded models exhibit robust stability to
lateral impulse perturbations, despite using little or no sen-
sory feedback (Schmitt and Holmes 2001, 2003; Schmitt et
al. 2002; Kukillaya and Holmes 2009; Proctor and Holmes
2008). Proprioceptive neural feedback, if present, can assist
the feedfoward preflexive dynamics (Proctor and Holmes
2010). More representative models that include legs with
joints, antagonistic Hill-type muscle models and propriocep-
tive neural feedback (Kukillaya and Holmes 2009; Kukillaya
et al. 2009) reveal behavior similar to the simpler models
after phase-reduction (Proctor et al. 2010). Taken together,
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the combination of theoretical plausibility and empirical evi-
dence provides a strong case for mechanical self-stabilization
during high-speed running (Holmes et al. 2006).

At slower speeds and for more precise movements, neural
feedback from sensors (Fig. 1B) is the dominant modality of
control. The important role of neural reflexes in slow loco-
motion is well established in insects. For the slow, quasi-
static locomotion of stick insects, the artificial neural net
“WalkNet” provides an effective representation of control
(Cruse and Schwarze 1988; Cruse and Knauth 1989; Cruse
et al. 2007; Schilling et al. 2007) that includes targeted foot
placement mediated by feedback. The model is largely kine-
matic in nature because inertia and momentum play almost
no role in slow walking (Klavins et al. 2002). Even in
slow running insects, sensors associated with neural reflexes
respond to environmental perturbations by feeding back on
the patterns emitted by a CPG (Ijspeert 2008; Ritzmann
and Büschges 2007; Fig. 1B symbolized by the “Tracking”
block).

A large body of research has shown that the neural reflexes
controlling locomotion are far richer in behavior than our
typical view of a stereotyped, negative feedback loop (e.g.,
Pearson 1995, 2004). For example, load compensating reac-
tions in land mammals and arthropods depend on the type of
sensor (sensing self vs. environment), the preparation stud-
ied (intact vs. isolated), the task (immobile, walking vs. run-
ning), the intensity of muscle contraction, the phase in the
gait (swing vs. stance), and the relative importance of pas-
sive versus reflexive stiffness (Duysens et al. 2000; Zehr and
Stein 1999). Some mammalian reflexes that provide nega-
tive force feedback gains under most circumstances provide
positive gains during locomotion, increasing force produc-
tion during stance (Prochazka et al. 1997a, b; Pearson and
Collins 1993). Sensory information may introduce coordina-
tion and adaptation of locomotor patterns that would other-
wise be independent and unmodulated (Grillner and Wallén
2002), or it may be critically necessary for oscillations to
appear at all (Pearson 1993, 1995, 2004).

We place locomotor neural reflexes regardless of whether
they were triggered by proprioceptive or exteroceptive sens-
ing into two broad categories—one that affects the output
of the CPG (Tracking; Fig. 1B) and the other that alters the
rhythm of the CPG itself (Fig. 1C). One may envision track-
ing feedback to be a means of matching a limb’s motion
to an implied reference motion generated by the CPG and
can be characterized as following an equilibrium-point tra-
jectory (Jaric and Latash 2000). Mathematically, tracking
is time-invariant, stateless (has no memory of past inputs),
and functions by comparing the actual state of the body to
the reference provided by the CPG, then generating force
activation in muscles. Tracking contains no persistent state
and is not self-exciting. Feedback via such tracking reflexes
(Fig. 1B) does not modulate the rhythm emitted by the CPG.

In the Fig. 1C category, we define neural feedback that does
alter the rhythm from the CPG. Neural feedback in this cat-
egory could result in changes in the frequency output by the
CPG.

1.2 Kinematic phase can reflect feedback to the
systems-level CPG

In Revzen et al. [2008], we proposed methods for identify-
ing the interplay of neural and mechanical feedback by prob-
ing rhythmic behaviors through computing phase estimates
derived from kinematic observations—a “kinematic phase”.
Examination of kinematic phase can illuminate the coupling
between the mechanical oscillator—the body, muscle, and
skeleton—and the neural oscillator(s) (CPG(s)) that drives it
(Fig. 1). When an animal is engaged in a rhythmic behav-
ior, all the subsystems involved in producing that behavior
and all observable quantities describing those subsystems
will oscillate rhythmically. The implication for experimen-
tal biomechanics is that the kinematics of the body and its
subsystems must reflect the underlying oscillator state.

The advantage of the kinematic phase method (Revzen and
Guckenheimer 2008) is that for animal locomotion with sta-
ble oscillations, phase provides a quantitative and predictive
model of movement. When given the readily measured kine-
matic state of the animal in as little as two consecutive frames
of video, one can compute the phase and frequency, extrap-
olate the linear relationship of phase to time, and predict the
kinematic states at all future times. In practice, because ani-
mals are continuously perturbed from the idealized dynamics
of the template (Full and Koditschek 1999), the accuracy of
prediction diminishes over time and requires frequency esti-
mates over more than just a pair of frames. Nevertheless, the
ability to take a dataset only a fraction of a step long, obtain
phase and frequency, and project anticipated kinematics sev-
eral strides into the future provides a powerful means for test-
ing perturbation recovery against an unperturbed alternative.

For constant frequency locomotion such as running, the
animal’s motions will over time settle to a constant phase rel-
ative to the timing of the signal emitted by the systems-level,
synchronized CPG. This phenomenon is known as “phase
locking” or “entrainment”. We may thus postulate that the
pre-perturbation animal is an entrained neural and mechani-
cal oscillator. Relative to time, the kinematic phase of such an
animal would follow a linear model with running frequency
being the slope of a phase versus time plot. Due to entrain-
ment, the kinematic phase must be at a constant phase offset
relative to the phase of the systems-level CPG.

When the animal is perturbed, some transient response
appears and decays, and the animal resumes running at a con-
stant, but possibly different, frequency. We propose to detect
changes in phase by fitting a linear regression model to pre-
perturbation phase data and extrapolating an expected phase
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past the perturbation and into the recovery phase. Subtract-
ing that estimate from the post-perturbation kinematic phase,
we will provide a “residual phase” succinctly expressing any
changes in the animal’s rhythm and timing of movement.

Figure 2A–D, derived from (Revzen et al. 2008), shows
the procedure of going from leg kinematics to residual phase
using experimental data from a hexapedal runner experienc-
ing a perturbation. The position data represent the fore-aft leg
motions relative to the body as a function of time. Theoret-
ically possible outcomes of the perturbation experiment are
represented with simulated data in Fig. 2E–G. In Fig. 2F, we
show the linear model extrapolations for position and resid-
ual phase post-perturbation (i.e., gray lines). Differences in
the slope of the linear models (Fig. 2G) indicate changes in
running frequency, and can only persist if the neural signal
driving the muscles changes frequency as well. Thus, if we
see no residual phase change after a perturbation (Fig. 2E),
we hypothesize that the most parsimonious neural control
architecture characterizing the response is one that involves
mechanical feedback (Fig. 1A). If the perturbation causes
a change in the systems-level CPG frequency, as seen in
Fig. 2G, we reject the possibility of the mechanical feedback
pathway (Fig. 1A) and the tracking neural feedback pathway
(Fig. 1B) in favor of the control architecture sending neural
feedback to the systems-level CPG (Fig. 1C). Phase change
outcomes (Fig. 2F) can appear in all three feedback archi-
tectures (Fig. 1), but can be further analyzed based on their
sensitivity to perturbation magnitudes.

1.3 Model system testing the utility of kinematic phase

The best candidates to test neuromechanical control hypothe-
ses using kinematic phase are animals whose anchored mor-
phology expresses the rhythmic motions of the template
with many easily measurable appendages. These animals
would expose a great deal of phase information through their
kinematics, making kinematic phase a reliable estimate of
their overall phase. Here, we test these hypotheses using a
hexapedal runner, the cockroach Blaberus discoidalis, not
only because of the phase data offered by six oscillating legs,
but because few species have as extensive a biomechanical
(Kram et al. 1997; Full et al. 1991; Full and Tu 1990; Ting
et al. 1994; Jindrich and Full 1999; Ahn et al. 2006; Ahn
and Full 2002) and neurophysiological (Watson and Ritz-
mann 1998a, b; Watson et al. 2002a, b; Zill et al. 1981, 2004,
2009) characterization.

In this study, we used kinematic phase (Revzen and Guck-
enheimer 2008) to investigate the time-course of cockroach
recovery from a lateral impulse perturbation. The perturba-
tions occurred when the animals were running at interme-
diate speeds, where the likelihood of viewing the interplay
between neural and mechanical feedback was the greatest.
By comparing instantaneous residual phase before and after

the perturbation (Fig. 2), we could propose when mechanical
feedback was sufficient, neural feedback must be used, or a
sensory signal was sent to modulate the abstracted, systems-
level CPG (Fig. 1). Because we measured leg kinematics, we
could explore the relationship of an animal’s posture and its
mechanical response to its control strategy.

To test whether instantaneous kinematic phase at the sys-
tems level reflects neuromechanical feedback in well-studied
leg control muscles (Sponberg et al. 2011a, b, Sponberg
and Full 2008; Ahn and Full 2002; Ahn et al. 2006; Full
et al. 1998), we recorded muscle action potentials (MAPs)
from femoral extensors 178 and 179. We selected these mus-
cles because their single fast motor neuron innervation (Df)

allows the simplest possible characterization of activation
(Pearson and Iles 1971). Moreover, Sponberg and Full [2008]
found no significant difference in the inter-spike interval,
burst phase or inter-burst period between flat and very rough
terrain suggesting a greater contribution of mechanical feed-
back. By contrast, during the largest perturbations, neural
feedback was detectable as a phase shift of the central rhythm.
In this key control muscle, we hypothesize that the lack of
change in instantaneous kinematic phase will be associated
with no change in MAP inter-burst periods, supporting a
possible greater reliance on mechanical feedback, whereas a
change in kinematic phase will coincide with a concomitant
change in MAP inter-burst periods reflecting neural feedback

2 Lateral perturbation experiment

We ran cockroaches onto a perturbation device consisting
of a rail-mounted cart that was accelerated horizontally by
a manually keyed mechanism. In the reference frame of the
cart, the cockroach center-of-mass received a large lateral
impulse perpendicular to its heading. We recorded the trials
using an overhead high-speed video camera and digitized the
motions of the cockroach feet (tarsi). By applying methods
developed in Revzen et al. [2008] and Revzen and Guck-
enheimer [2008] and used in Revzen [2009] Chapter 2, we
used the tarsal trajectories in the body frame of reference to
estimate the kinematic phase of the animals, and then fit a
constant frequency model to the pre-perturbation phase data
using linear regression. We used the residual phases derived
from these regression models to test our neuromechanical
hypotheses.

2.1 Lateral perturbation kinematics

2.1.1 Animals

We obtained the fifteen B. discoidalis cockroaches used in
this study from a commercial supplier (Carolina Biological
Supply Co., Gladstone, OR, USA) and kept them in large,
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Fig. 2 From kinematics to kinematic phase. (A–D from typical
animal trial) A Foot or tarsus trajectories over 1.1 s, in body
coordinates, and fore-aft tarsus positions plotted over time (B).
Lower plot in B indicates cart lateral acceleration (1 g scale bar
shown at t = 0), with vertical lines indicating peak (thick line,
0.5 g thin lines) of perturbation which starts at t = 0. The complex-
valued phase of the left hind leg (leg 3, red in A, B) is shown (C,
dashed blue) together with the swing-only complex-valued phase, in
which stances are linearly interpolated in complex argument and mag-
nitude (C, solid red). The resulting residual phase for times–100 to
300 ms is shown in D, with corresponding times indicated by vertical
lines in B. Theoretically plausible residual phase outcomes for per-
turbation experiments showing both (simulated) fore-aft leg positions
over time on the left (E–G), next to the corresponding residual phase
plot on the right. In E, we show an animal that slowed down dur-

ing perturbation, but fully recovered to motions matching the motions
extrapolated from pre-perturbation motion (solid red fitting region for
regression model, dashed red line extrapolated model, solid green post-
perturbation regression); this can be interpreted as the perturbation hav-
ing broken the entrainment of body to system-level neural CPG, and
that entrainment re-establishing itself post-perturbation. It is compati-
ble with both Fig. 1A, B feedback alternatives. In F, we show an animal
that recovers the same frequency at a phase offset; this can be inter-
preted as the re-entrainment locking on to a different stable relation-
ship between the neural and mechanical oscillations, and is similarly
compatible with Fig. 1A, B. In G, we show an animal whose frequency
changes, as expressed by the non-zero slope of the residual phase trend-
line; such a change requires the system-level CPG to change frequency,
and is therefore only compatible with the Fig. 1C feedback to the system-
level CPG
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open containers in a room with elevated moisture and tem-
perature. They had access to dried dog food, fruit, vegetables,
and water. We conducted trials at an ambient temperature of
27 ± 2 ◦C (mean, SD). Before each trial, we examined the
cockroach for damage to its tarsi and carapace. Each animal
was used in multiple trials. While downloading the videos
between one trial and the next (typically 2 min in duration),
we allowed the animals to rest by covering them with a dark
cup.

2.1.2 Moving cart as a perturbation device

We induced lateral perturbations by having the animals run
onto a cart that we then accelerated at a right angle to the
direction of motion using a pre-loaded elastic pulley held fast
by a magnetic lock (Fig. 3). When released, the cart translated
with an acceleration of 1.5 ± 0.2 g over a duration of 100 ms
and continued with a constant velocity until it hit breaking
pads at the end of its track. The acceleration generated a
specific impulse of 0.50 ± 0.04 ms−1 in the lateral direction.
Cart travel distance was nearly 1 m—sufficiently long so that
in all analyzed trials the animal finished running the length
of the cart before the final braking deceleration.

We marked the top of the cart with high-contrast circu-
lar markers (see Fig. 3D; circles of black paper with retro-
reflective stickers in their centers) at known locations encom-
passing the area occupied by the running animals and level
with the surface on which they ran. We used these markers
to track the cart, computing its acceleration using a Kalman
smoother with a constant acceleration model (also known as
a Rauch–Tung–Striebel smoother; Kalman 1960, Rauch et
al. 1965; we used scalar covariance matrices, position 10−3

m, velocity 10−4 ms−1, acceleration 10−5 ms−2, observa-
tion noise 10−2 m). We also used the markers to compute
a projective transformation that corrected for the changes in
animal image due to changes in viewing angle and distance
as the cart moved, giving what was effectively the view from
a camera translating in parallel with the cart.

2.1.3 Protocol

We prodded the animals to run along the trackway shown in
Fig. 3 and onto the cart. Careful adjustment ensured that the
gap between the top of the cart and the trackway was only
a few millimeters wide. We spanned this gap with a paper
flap that was pushed aside when the cart moved, so the ani-
mals experienced neither any noticeable step nor break in the
ground. We examined the animals’ running for speed changes
when crossing the trackway-cart gap, but found no signifi-
cant differences. We found the same kinematic response at all
positions along the cart, decreasing the plausibility that sen-
sory information not associated with the perturbation affected
the response patterns. In an additional set of control trials,

speeds of blinded and/or antennal-ablated control animals
(mean ± SD = 33.5 ± 7.6 cm s−1) showed no significant dif-
ferences to intact animal running speeds (36.2 ± 7.0 cm s−1).

As soon as the animal was perceived to be on the cart, the
operator released the cart by breaking the circuit powering the
magnetic lock holding it in place. Taking into account human
reaction times, animals were at least a body length from the
cart edge by the time the cart began moving laterally. We
ended trials when the cockroach touched any wall of the cart,
or when the cart moved out of view. We rejected trials if the
cockroach did not adopt a tripod gait for at least three strides
prior to perturbation and three strides following perturbation,
or if the cockroach antennae or feet came into contact with
the side walls at any point during these requisite six strides.

2.1.4 Processing video data into residual phases

After we tracked the cart markers in each video frame, we
projectively transformed the frames to a standard reference
position, thereby canceling any warping and size changes due
to changes in viewing angle. We then analyzed the corrected
videos using a custom built video processing tool described
more fully in (Revzen 2009) and briefly described below.

First, we auto-tracked the bodies of the animals by find-
ing the axis of symmetry of their body silhouettes, thereby
obtaining their position and orientation over time. We rotated
the translated images to a registered position and orientation.
We tracked the positions of the animals’ tarsal claws (distal
tips of the feet) on the registered videos using an additional
custom tool. Both tools were written in MatLab version 6.5
(The MathWorks, Inc., Natick, MA, USA).

In our analysis, we used kinematic phases of individ-
ual legs, a global kinematic phase of the entire animal, and
stance-leg-only and swing-leg-only global kinematic phase
estimates (Revzen et al. 2008). We argue that the swing-
leg-only global kinematic phase is the best proxy for the
phase of a systems-level, reduced-order neural oscillator in
the current experiment, as it combines all available sources
of kinematic phase less affected by direct mechanical manip-
ulation. The differences between swing-leg and stance-leg
phase estimates reveals any biases that may be introduced to
the global phase estimate by direct mechanical manipulation
of the stance tarsi positions.

We constructed all phase estimates from motions of tarsi
in the body frame of reference (Fig. 2A), taking only the
fore-aft direction (Fig. 2B). To estimate instantaneous phase
from a scalar-valued position time series with corresponding
velocity, we first formed a complex-valued time series

z(t) = x(t) + iv(t) (1)

with real part equal to the studentized (i.e., mean subtracted
and scaled to variance one) position and the imaginary part
equal to the studentized velocity,
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A B C

D

Fig. 3 Schematic of moving cart apparatus from lateral (A), oblique
(B), and frontal (C) viewing directions (not drawn to scale). We placed
the cart as the final section of a trackway (white rectangles). It ran on a
rail orthogonal to the trackway direction (light gray strip). On one side,
we held the cart fast with a magnetic lock (shown in B, C next to cart).
On the other side of the cart, we tied it to a steel cable (black line running
from cart to ground) that we ran through a pulley (dark gray oval in
B, C), rectangle in A) and pulled taught using an adjustable elastic (col-
lection of rubber bands, indicated schematically by zigzag on cable) and
a mass (white box on cable below pulley). When the operator released
the magnetic lock, the elastic accelerated the cart until it fully contracted
to rest length. The cart continued to move at uniform speed, as we chose
the mass to compensate for friction between rail and cart. The direction
of motion of the animals was along the trackway (thick arrow labeled
“animal motion” in A, B) and orthogonal to cart motion (thick arrow
labeled “cart motion” in B, C). We filmed the motion with a high-speed

video camera (camera seen in A, B; viewing animal along dot-dashed
lines) that we mounted at a fixed position looking down on the trackway
through a mirror (rectangle with thick dashed lines). We illuminated the
trackway by bouncing a spotlight off a diffuser plate surrounding the
camera lens (thin-lined rectangle with rectangular hole shown in all
views), so that scene was illuminated from direction of camera, pre-
venting shadows from appearing under the animal. D Photograph of an
animal running on the moving cart. The cart had high-contrast markers
near the corners on its surface. We constructed the cart from foam-core
plates attached on top of a metal plate. The vertical metal plate on the
left of the cart locked on to the magnetic lock, whereas the cart itself ran
on a rail (metal strip running across the photograph and under the animal
with dark top and bottom edges). A steel cable pulled the cart, provid-
ing the lateral accelerations. In the position shown, the cart has nearly
moved an entire trackway-width to the left from its starting position.
The edge of the trackway is visible at the bottom right of the image

x(t) = x(t) − 〈x(t)〉
std[x(t)] , v(t) = v(t) − 〈v(t)〉

std[v(t)] . (2)

Here, 〈w(t)〉 is the mean value, and std[w(t)] is the stan-
dard deviation of the random variable w(t). For brevity, we
refer to z(t) as the “complex phase” time series (Fig. 2C).

Velocity was computed using first-order finite differences of
position. Since the complex phase series for the right-leading
tripod (consisting of right-front, left-middle, and right-rear
feet) fluctuated approximately one half-cycle out of phase
with the series for the symmetric tripod, we multiplied them
by −1 so that all complex phase series rotated around the
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origin approximately in phase. We took the argument (polar
angle) of the complex phase series as our instantaneous phase
estimates for individual legs,1

φ(t) = arg(z(t)). (3)

To construct a continuous phase variable from discrete tem-
poral events that occur at known phase increments (e.g., pos-
terior extreme position (PEP) events), we linearly interpo-
lated phase in time.

We manually identified the start and end of the perturba-
tion from the cart acceleration. Using a window starting 150
ms (t1pre) and ending 40 ms (t2pre) prior to onset of pertur-
bation, we fit a linear (constant frequency) model to phase.
We subtracted this model from each trial’s phase then offset
these data so as to have zero mean during the fitting window
to obtain residual phase (Fig. 2D),

�φ(t) = φ(t) − 〈
φ(t)| t ∈ [−t1pre,−t2pre]

〉

− 〈
φ̇(t)

∣∣ t ∈[−t1pre,−t2pre]
〉 (

t − t1pre + t2pre

2

)
,

(4)

where 〈w(t)| t ∈ [a, b]〉 is the mean value of w(t) over the
time interval [a, b]. We used this residual kinematic phase
to test for changes in the animals’ rhythm, as follows. When
the residual phase was a horizontal line (slope of zero) with
an intercept of zero (Fig. 2E), it represented animals that
continued running at the same frequency and phase as they
did prior to perturbation. A horizontal line with non-zero
intercept (Fig. 2F) implied a phase change, and any non-zero
slope (Fig. 2G) represented a frequency change.

2.1.5 Kinematic outcome classes

The kinematic state of an animal following a periodic gait
is fully represented by its kinematic phase. This implies that
whenever some outcome is hypothesized to depend on pos-
ture at perturbation, one may operationalize this hypothesis
as a statistical test for phase at perturbation φ0 being a sta-
tistically significant predictor of the outcome.

In our experiment, we partitioned kinematic responses to
lateral perturbation into two classes—C0 and C1—based on
φ0 values predicting two different velocity profiles during
recovery. Animals perturbed in one half-cycle of the stride
responded differently from animals perturbed in the other
half-cycle. It is reasonable, from a physical standpoint, for
multiple responses to occur because an animal with two legs
of a tripod in contact with the substratum on one side may not
respond to a lateral impulse in the same manner asan animal

1 When the series all have the same amplitude this is precisely the
circular average (Fisher 1993) of their phase angles.

with only its middle leg in contact with the substratum on
that same side.

2.1.6 Improving the phase estimates

Since the perturbation we consider here directly manipulated
the foot positions in the animal body reference frame, we sus-
pected that data from the stance feet would give a phase esti-
mate that is inconsistent with the system-level phase of the
animal. To determine whether this effect appeared in our data,
we compared the residual from our global kinematic phase
to that of “swing-only” and “stance-only” phases. To esti-
mate swing-only phase, we computed complex phase time
series for each individual tarsus, then for each stance period,
we linearly interpolated the argument and amplitude of the
complex phase from its touchdown value to its lift-off value,
which is equivalent to imposing a constant frequency model
(Fig. 2C, dashed is leg 3 complex phase for all times; solid is
with stances interpolated). We then took the argument of the
mean of the six corrected complex phase time series as the
global instantaneous swing-only phase. We computed global
instantaneous stance-only phase similarly, except that com-
plex phase was interpolated during swing instead of stance.
Noticeable differences between stance-only and swing-only
residual phase estimates appeared 50 ms after onset of per-
turbation and lasted for almost a step. During this time, the
average stance residual showed a small increase or decrease
depending on which tripod was in stance during the onset of
perturbation (differences between C0 and C1 class means).
This effect was also evident in the global phase, but not in
the residual obtained from swing data. Since the unloaded
swing feet should better reflect any change in timing of
motor commands to the legs within 16 ms (Dudek and Full
2007), the most parsimonious explanation is that this effect
arose from a mechanical perturbation. Consequently, we take
the swing-only residual as the most representative kinematic
estimate of the system-level state of the animal under these
perturbation conditions. In the sequel, use of the term “(kine-
matic) phase” refers to swing-only phase, unless otherwise
specified.

2.1.7 A statistical test for significance of velocity outcome
classes

There is no obvious choice of a parametric test for the statis-
tical significance of the ability of an angle variable—the pre-
dictor phase φ0 taken before onset of perturbation—to predict
the difference between two classes of real time series—the
velocity of the animals over time. We therefore used a boot-
strap analysis and validated our inference using surrogate
data (Politis 1995, 1998).

We computed a predictor phase φ0 by taking the circular
mean (Fisher 1993) of a phase time series in a half-step-long
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(22 ms; 1/2 tstep) window ending at onset of perturbation
(ton),

φ0 = arg

(〈
exp(iφ(t))| t ∈ [ton − 1

2
tstep, ton]

〉)
, (5)

where exp(iφ) is the complex exponential of the imaginary
quantity iφ. Our prediction classified trials into one of two
classes C0 and C1based on the sign of sin( φ0 −Φ) for some
optimally selected choice of Φ, thereby partitioning the cir-
cle of possible phase values into halves with the transition
between classes occurring at phases Φ and Φ + π .

We assessed the quality of a classification of trials into C0

and C1 using the root mean squared (or L2 norm) difference
between the class means of the forward velocity time series
(Vx) in a time interval starting 50 ms (t1post) and ending 150
ms (t2post) after onset of perturbation. That is, with Vx0 and
denoting Vx1 the mean forward velocity of C0 and C1, the
quality of classification is given by

‖ V x0 − V x1‖ =
⎛

⎜
⎝

t2post∫

t1post

|V x0(t) − V x1(t)|2 dt

⎞

⎟
⎠

1/2

. (6)

This provided a statistic measuring class separation and thus
prediction quality using a kinematic variable that was not
directly manipulated by the perturbation because it is derived
from velocities in a direction orthogonal to the perturbation.
Our algorithm selected the Φ producing the best classifica-
tion with respect to this quality measure. We then tested this
classification for statistical significance using all available
kinematic data.

We formulated a test of statistical significance by com-
paring the classification quality measure of the real data with
the classification quality measure of surrogate (randomized)
data for which the relationship between the predictor φ0 and
the outcome (velocity time series) was rendered insignificant
by adding a uniformly distributed random phase to φ0. We
calculated the fraction of surrogate datasets that produced a
classification of comparable quality to that of the animal data;
this fraction is the probability of a false positive under the
null hypothesis of no predictive ability. The approach is also
known as using “percentile confidence intervals generated
from a bootstrap” (Politis 1995, 1998).

We examined the distribution of classification quality
obtainable by choosing Φ where this selection was applied to
ensembles of trials generated from the following processes:

H1 animal data: comprising N 2 bootstrap samples of the
actual experimental trials.

H0(a) simple surrogates: comprising N 2 bootstrap samples
with an added (uniformly distributed) random offset to the
phases in each trial. This randomizesφ0 in each sample, while
maintaining all internal correlations within each trial.

H0(b) bootstrapped surrogates: comprising N randomized
trials as per H0(a). Instead of using each bootstrap collec-
tion of trials once, taking the best classification quality for
N bootstraps of the surrogate data. This controls for bias
introduced by picking the best classification, as differences
between H0(a) and H0(b) distributions reflect this selection
bias.

When the classification quality generated by the H1

process fell well outside the distributions generated in the
two H0 processes, we concluded that the choice of Φ did
partition the trials using their predictor phases φ0 into statis-
tically significant classes C0 and C1 of velocity outcome.

2.1.8 Controlling for individual variation in the predictor
phases

One potential cause for the appearance of classes in the resid-
ual phase time series could be individual variation in pre-
dictor phases. We tested the hypothesis that the classes C0

and C1 were an outcome of inter-individual variation where
some individuals could be biased toward being in C0 and
other individuals biased toward being in C1.

If an individual falls preferentially in any one class, this
implies that the φ0 values for this individual’s trials are biased
toward appearing in this class. We developed a test for com-
paring the hypotheses: H0(φ)—the φ0 angles of individual
animals are drawn from uniform distributions; H1(φ)—each
animal has a (possibly different) preferred phase angle θ such
that φ0 values for trials of this animal are more likely to be
close to θ than far from θ .

The uniform distribution on angles has the property that
if angles θi are uniformly distributed, their differences are
also uniformly distributed (This is not true of uniform distri-
butions on a real interval. The property for uniform circular
distributions follows from the rotational invariance of the dis-
tribution implying rotational invariance of the differences).
However, if there is any sort of preferred angle θ for each
individual the differences are more likely to be closer to zero
than to other angles. We combined the differences of φ0 val-
ues of random pairings of same-individual trials in a single
pool and used the Rayleigh Test (Fisher 1993) for circular
uniformity—effectively testing H0(φ) against an H1(φ) con-
sisting of a unimodal Von-Mises distribution for the phase
differences.

2.2 MAP measurements

To examine whether the activation of key leg control muscles
follow predictions from instantaneous kinematic phase, we
measured the MAPs from muscles 178 and 179 (Carbonell
1947) in the metathoracic leg before, during and after the lat-
eral cart perturbation. This muscle is a coxa-femur extensor
recruited during running and shares the same excitatory (Df )
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motor neuron as muscle 178, located dorsally. Because this
muscle is innervated by a single motor neuron that gener-
ates stereotyped bursts of MAPs during free running, under-
standing its contribution to generating rhythmic movement
is greatly simplified.

2.2.1 Animals

Animals used for this experiment were obtained and raised
under similar conditions to those used in the kinematic exper-
iments. To prepare specimens, we followed commonly used
EMG procedures for cockroaches (see Ahn and Full 2002;
Sponberg and Full 2008; Watson and Ritzmann 1998a, b).
First, we cold-anesthetized animals for 30 min or until move-
ment stopped. We removed both pairs of dorsal wings using
dissection scissors. We then mounted animals ventral side up
to expose the coxa and made two small holes in the cuticle
with size 0 insect pins along the axis of the muscle. After
stripping the insulation of 50 µm silver wires (California
Fine Wire Company, Grover Beach, CA, USA) and creating
small balls at the end of the wires with heat, we carefully
inserted the tips under the exoskeleton. These wires were
used for bipolar recordings of muscle action potentials. We
covered the area with a few drops of cyanoacrylate, being
careful to avoid the joints. We placed a third wire on the dor-
sal side of the first abdominal segment to serve as a reference
electrode. Finally, the three wires were braided together to
form a tether and glued onto the pronotum. We then placed
the animals in a dish and gave them at least 1.5 h to recover
at room temperature (25 ◦C).

2.2.2 Protocol

We connected the electrodes to an AC amplifier (Model P511,
Grass Technologies, West Warkwick, RI, USA) that ampli-
fied the signal 5,000-fold. To monitor the acceleration of the
cart, we used a three-axis MEMs accelerometer (MMA7260,
Freescale Semiconductor, Austin, TX, USA) with a dynamic
range of ±2 g mounted directly onto the metal base of the
cart. The accelerometer was calibrated using a two-point cal-
ibration method (Spence et al. 2010). We acquired data on
all channels at 10 KHz. During the experiments, we kept
the room temperature between 27 and 30 ◦C. We elicited
an escape response in cockroaches by probing the posterior
abdominal segment and cerci. The animals ran onto the cart,
at which point we triggered its release. We used the same
trial acceptance criteria as the kinematic phase experiments
(Sect. 2.1.3).

EMG recordings and accelerometer signals were synchro-
nized with the video data using an external trigger switch. All
data processing was performed using custom MatLab scripts
(MathWorks, Natick, MA, USA). For analyzing EMG sig-
nals and determining spike times, we digitally filtered the

signals using a band-pass filter between 100 and 1,500 Hz
and a notch filter at 60 Hz. Spike times were determined
by computing local minima of spikes identified at a fixed
threshold. We filtered the accelerometer data using a low-
pass second-order Butterworth filter with cut-off frequency
of 30 Hz.

2.2.3 Data processing

We performed statistical hypothesis testing on the EMG data
using Minitab (Minitab, State College, PA, USA) to test for
the effect of our perturbation on the clock-like signal from
muscles 178 and 179. For multiple regression analysis in the
presence of co-variates, we used an ANCOVA for contin-
uous variables (inter-burst and inter-spike intervals) and a
Cochran–Mantel–Haenszel (CMH) test for categorical vari-
able (number of spikes per burst).

To compute the residual phase of the MAP data, we com-
puted the average inter-burst interval (IBI) prior to pertur-
bation to create a constant frequency linear oscillator model
and subtracted this model from each trial’s measured burst
times. We represent the notion of phase as a fraction of the
time between burst events by linearly interpolating the phase
between the residual phase values.

3 Results

3.1 Collective kinematic outcomes

We used a total of 15 animals and 41 trials. The animals ran
at 0.26 ± 0.03 ms−1 (mean, SD, across trials) at a frequency
of 11.0 ± 0.2 Hz. Lateral perturbation velocities 0.50 ± 0.04
ms−1 were typically of a magnitude double that of the for-
ward velocity.

The overall outcomes of lateral perturbation are shown in
Fig. 4 with 1 and 99 % confidence intervals obtained from
a bootstrap. Frequency decreased by 0.6 Hz as expressed
by the negative slope of the Fig. 4A. Forward velocity (Vx)
decreased from 26.1 ± 0.3 to 20.2 ± 0.8 cm s−1 found in
the mean shift of Fig. 4C. Lateral velocity (Vy) decreased
to −34.5 ± 0.9 cm s−1 followed by a return to zero and
overshoot to 17.0 ± 0.3 cm s−1 before returning to zero
(Fig. 4D). Ground speed showed a transient increase to
45.5±0.9 cm s−1 from the initial speed of 27.3±0.4 cm s−1

(Fig. 4E). Yaw, the direction of the body axis with respect to
the cart, changed at its peak by 28.6◦ ± 0.7◦ (Fig. 4F).

Changes appeared at a delay from onset of perturbation.
The earliest change manifests in lateral velocity (Fig. 4D)
which became significant within less than 25 ms. This was
followed by ground speed and yaw angle at 40 ms (Fig. 4E, F).
Forward velocity showed a change in trend at 70 ms. By 250
ms, mean yaw angle was between −5◦ and 10◦, and by 300
ms the confidence interval for lateral velocities included zero.
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Fig. 4 Response of residual
phase and center of mass
kinematics to a lateral
perturbation as a function of
time. A Residual phases
obtained by subtracting from the
phase estimate a linear
regression model fitted to the
phase at times −0.100 to 0 s as
in (4). Time 0 indicates onset of
perturbation, vertical thick black
line indicates peak acceleration,
as can be seen from the cart
acceleration plot (B; thick line is
mean; thin dashed lines
represent 1 and 99 % confidence
intervals of bootstrap mean).
C Animal velocity in direction
of trackway axis, Vx; D lateral
velocity across trackway, Vy;
E total speed of the animal; and
F yaw angle of body axis
relative to the trackway axis
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3.2 Phase predicted two classes of outcomes

We found that the population of trials can be partitioned into
two classes of outcomes based on the animals’ phase at onset
of perturbation φ0. We partitioned the circle of possible phase
values φ0 into two halves, choosing the partition that induced
the maximal separation between forward velocity (Vx) time-
courses of the two classes. We computed φ0 as the (circular)
average of the phases in a 0.022 s (half-step long) window
ending at onset time of perturbation. Since the choice of
which phase to label 0 is arbitrary, we chose our phase of
0 so that the trials with 0 < φ0 < π form class C0, and the
trials with—π < φ0 < 0 form class C1 (red and blue colors
in Fig. 5). At peak perturbation, animals in class C1 were in
a stance of what we designated as a “left tripod” (left front,
right middle, left hind), whereas animals in class C0 were

in a stance of a “right tripod” (right front, left middle, right
hind).

We tested the statistical significance of the classification
based on φ0 values by examining the bootstrap distribution
of class lateral velocity separation and comparing this to dis-
tributions generated from randomized (surrogate) null mod-
els. We estimated the quality distributions by executing 2,500
bootstrap replications each of surrogate and unmodified data.
The distributions of the results are in Fig. 6. The P values, we
found were 0.023 for simple surrogates H0(a) and 0.028 for
bootstrapped surrogates H0(b), rejecting both null hypothe-
ses. These results showed that the separation computed for
our dataset was typical of the bootstraps of the data (i.e., it is
a robust outcome), and atypical (P < 0.05) of both H0(a) and
H0(b) null hypotheses. For data that do not truly comprise two
classes (such as our surrogates), selecting the partition of φ0
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A F

B G

C H

D I

E J

Fig. 5 Outcomes of lateral perturbation as a function of time and class.
Trials were grouped into two classes (C0 “right tripod” and C1 “left tri-
pod”). Time 0 indicates onset of perturbation, vertical thick black line
indicates peak cart acceleration. A Residual phases; B animal veloc-
ity in direction of trackway axis, Vx; C animal lateral velocity across
trackway, Vy; D total speed of the animal; E yaw angle of animal body
axis relative to the trackway axis. Trials were classified into C0 or C1
based on their phase in the window spanning −0.022 to 0s (half-step
prior to onset of perturbation). Trials fell into two classes of outcome:
C0 (thick dense dashed red line showing mean; thin red line showing 1
and 99 % of the bootstrap means) and C1 (thick blue line show show-

ing mean; dashed thin blue line showing 1 and 99 % of the bootstrap
means). C0 had a “right tripod” in stance where the right front, left
middle, right hind legs were in stance phase during perturbation. C1
had a “left tripod” where the left front, right middle, left hind legs were
in stance phase during perturbation. F–J Same as A–E, but with clas-
sification computed using phase estimate derived from discrete events
using the PEP of the legs as done routinely. Differences between classes
that appeared clearly with the instantaneous kinematic phase computa-
tion used in A–E are not observed. This likely results from the larger
uncertainty about phase that prevents the separation of a large fraction
of trials

20 40 60 80 100 120

H0(a)

H1

H0(b)

L2 norm of separation in Vx

← L2 norm of separation in Vx

(P=0.023, N=2500) 

(P=0.028, N=50×50)

Fig. 6 Bootstrap test results for significance of outcome classification.
Each of the three Tukey box-plots showed a distribution containing
2,500 bootstrap replicates. The H1 plot represents a distribution created
by simple bootstrapping—trials re-sampled with replacement. H0(a) is
similar, except that we added (independently and identically distributed
uniform) random phase offsets to each trial in each replication creating
surrogate data. H0(b) consisted of 50 bootstraps, each of which we ran-
domized in phase similarly to H0(a) and then bootstrapped to create 50
samples from each randomization instead of just one as in H0(a). Each
Tukey box-plot shows a box for the inter-quartile range, with a narrow

neck indicating the 95 % confidence interval of the median. Wicks go
out to the first data point outside the 10th and 90th percentiles, with
points outside that range marked as dots. The ordinate of the plot is
the RMS difference between class means of Vy (Fig. 5D shows actual
classes; value indicated here by thick black line). We used the bootstrap
distributions to estimate P values with respect to the null (values on
right edge of plot). The experimental value is closer to the mode of the
null hypotheses than the mean bootstrap value of H1, therefore our P
values are conservative. Results showed that classes C0 and C1 were a
statistically significant feature of the data
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values that induces the greatest class separation is more than
95 % likely to induce less separation than we observed in
our data and in a large majority of randomly selected resam-
ples from our data. This indicates that the classification we
extracted is a reliable feature of the data rather than an artifact
of data analysis. We performed this same analysis using the
phase estimate derived from the PEPs of the legs (Fig. 5F–J).
In this case, the distribution obtained for class forward veloc-
ity separation (Fig. 5G) under the H1 hypothesis was statis-
tically indistinguishable from the surrogates H0(a) and H0(b)

(P > 0.1 in both cases). We attribute this loss of significance
to the lower temporal resolution afforded by a phase estimate
derived from discrete events (i.e., a non-instantaneous phase
estimate).

The classes C0 and C1 were divided with 25 trials in C0

and to 16 trials in C1, giving a χ2 = 1.98 with P = 0.16. The
trials thus fell into classes with probabilities indistinguish-
able from random. The Rayleigh test applied to bootstrap
samples of the 32 trials which came from animals that ran
more than one trial gave Rayleigh test statistics with 10 and
90 % quantiles of 0.09 and 1.87, respectively, and a mean of
0.8, corresponding to P values all of which are larger than
0.1, and thus robustly (for nearly all bootstraps) failed to
reject the null hypothesis of uniformly distributed φ0 values
per individual. We conclude that our classification was not
produced by individual variation in animal responses, or in
other words that no individual experienced the perturbation
in any class (i.e., “left tripod” or “right tripod”) more often
than expected at random.

3.3 Kinematic differences between the classes

Comparing the results in Figs. 4 and 5, the structure generat-
ing outcome variability in Fig. 4 becomes evident. Whereas
Fig. 4C–F showed changes in variability around the mean at
different delays from onset of perturbation, the correspond-
ing plots in Fig. 5B–E showed that each class has uniform
within-class variability over time. Thus, the large changes
in variability in Fig. 4 are accounted for by distributing out-
comes into two classes. Furthermore, Fig. 5F–J contains the
kinematic outcomes arising from the classification obtained
from the PEP phase estimate. The lack of statistical signifi-
cance for this classification is manifest in the indistinguish-
able kinematic outcomes of the two classes.

The C1 trials (left tripod down) showed initial statistically
significant, but small in magnitude increases in phase and for-
ward speed from zero at approximately 0.045 s after onset of
perturbation (Fig. 5A, B; solid blue) relative to C0 trials. We
suspected that this change might not be due to neural clock
changes and is instead due to direct mechanical effects of
body yaw on the stance legs. As our phase estimate uses the
swing tarsi in the body frame of reference, it is partially iso-
lated from mechanical influence on the stance tarsi. However,

at the moment of lift-off, because stance tarsi are attached
to the ground, yaw might induce a systematic structure in
the velocities of tarsi which carries through into swing and
could appear as a change in phase. To inform our understand-
ing of how much of the C1 class-specific phase increase is
due to this effect, we introduced a simulated pattern of unper-
turbed tarsus positions into a body frame of reference derived
from experimental data, then clamped the stance legs to the
world frame at touchdown, and relaxed them back to their
unperturbed body frame position within 16 ms—the rate of
mechanical relaxation identified by Dudek and Full [2007].
The goal of this simulation of “feed-forward” tarsus motions
attached to experimentally derived center of mass (COM) tra-
jectories is to reproduce a plausible model for the motions of
the tarsi of an animal which is activating its legs without any
feedback modulation. These simulated animals exhibited a
class-specific phase change similar to that seen in the exper-
imental data in the 0.045s region under discussion. If that
phase change is taken into account, the confidence intervals
for C1 in Fig. 5A would include zero. We conclude that the
small increase we observed is likely due to this mechanism.

C1 trials lateral velocity recovered and overshot faster
(Fig. 5C, solid blue). They reached the peak overshoot value
0.050 s before C0 trials (Fig. 5A, B, dashed red). Yaw of
C1trials fully recovered within less than 0.30 s (Fig. 5E,
solid blue), whereas animals represented in C0 trials (Fig. 5E,
dashed red) never recovered their original yaw angle within
the period measured.

3.4 Residual phase change represents a frequency change

Starting with onset of perturbation (time = 0), animals
showed no significant change in kinematic phase for 0.030
s—nearly the duration of an entire step. After that time, fre-
quency increased (see Fig. 4A mean), but this increase was
statistically significant for less that 0.025 s in the first half of
the perturbation, and only in the C1 class of trials (Fig. 5A,
solid blue). Within the next 0.050 s, residual phase changed
to follow a new trend-line, corresponding to a >5 % decrease
in the frequency of animal tarsus cycling, decreasing from
11.0 ± 0.2 Hz by 0.6 Hz.

We conclude that kinematic evidence for neural feedback,
in the form of a persistent frequency change, appeared in the
recovery of cockroaches from lateral perturbation. Frequency
decrease appeared at a delay, and the delay was not a function
of the animal’s posture (i.e., C0 vs. C1), although the actual
change in kinematics —differences in COM velocity—was
posture (class) dependent.

3.5 Muscle action potentials

We collected 37 trials from 7 male cockroaches with a mass
2.32 ± 0.32 g. Animals ran at a speed of 0.362 ± 0.070
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Fig. 7 Muscle action potential
phase response to lateral
perturbation. A Muscle action
potentials from muscle 178 and
179 for single, representative
trial. MAPs are shown in gray.
The magenta spikes represent
the onset of the burst. One burst
occurred per stride. Black curve
shows cart acceleration.
Intervals represent two strides
before the perturbation (Pre-2),
one stride before (Pre), during
(Intra), one stride after (Post),
two strides after (Post-2) and 3
strides after the perturbation
(Post-3). B Mean relative change
in MAP IBI as a function of
perturbation state. IBI increased
two and three strides after the
perturbation representing a
decrease in stride frequency.
Bar represent ±1 SE
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ms−1. MAP recording allowed easy discrimination of spikes
(Fig. 7A) as in Sponberg and Full [2008]. MAP IBIs during
and one stride after the perturbation showed no significant
change compared to pre-perturbation intervals (Fig. 7B). Two
strides after the perturbation (Post + 2; Fig. 7B), we found
a significant median period change in IBIs relative to the
pre-perturbation strides of 4.9 ms (t test for relative mean,
P ≤ 0.001). Results suggest neural feedback to control mus-
cles 178 and 179 occurs approximately 100 ms after pertur-
bation. The increased IBI duration remained three strides
after the perturbation (Post + 3; Fig. 7B) indicating a persis-
tent decrease in frequency. Analysis of inter-spike intervals
(ISI) revealed no changes when comparing pre- and post-
perturbation strides (t test, P = 0.16). Since speed and ISI
were correlated, we tested for the effect of speed (F test
regression DF = 1,361, P ≤ 0.001) and found no statisti-
cally significant difference (F test DF = 1, 361, P = 0.29).
A non-parametric test to control for non-normal distributions
did not change the statistical outcome (Kruskal Wallis test,
P = 0.23). Likewise, we found no statistically significant
changes in the number of spikes per burst when comparing
the number of spikes pre- and post-perturbation (Pearson χ2

test, P = 0.74) even after correcting for the possible effect
of individuals (CMH test, P = 0.32). Thus, neither ISI nor
the number of spikes per burst changed when comparing pre-
and post-perturbations strides suggesting that a change in fre-
quency of the clock-like signal to this putative control muscle
is the dominant source of neural feedback.

We subjected the linearly interpolated MAP residual phase
time series to the same bootstrap analysis method used to
derive confidence intervals for the kinematic phases. Post-
perturbation changes in MAPs were consistent with the pre-
dictions made by measurements of instantaneous leg kine-
matic phase and frequency (Figs. 4A, 10). Specifically, the
decrease in frequency as measured by the increase in IBIs
and the qualitative structures of the interpolated MAP resid-
ual phase estimate compared to the kinematic phase estimate
with overlapping 98 % confidence intervals are consistent
with neural feedback occurring near 100 ms corresponding
to one or more strides after perturbation.

4 Discussion

4.1 Kinematic phase reflects neural feedback
to a system-level oscillator

Instantaneous estimates of kinematic phase and frequency
can serve an important tool to propose neuromechanical con-
trol hypotheses that would otherwise have been difficult to
identify. By using more readily collectable motion data, the
response to complex perturbations can be compared quan-
titatively to that behavior projected into the future without
perturbation. The high temporal resolution can lead to the
discovery of new kinematic patterns not observed by tradi-
tional approaches. Kinematic phase analysis can lead to tests
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Fig. 8 Summary of experimental results showing the mechanical dif-
ferences between classes C0 and C1. Average animal positions for each
class are shown from a top view (X and Y indicated to match Fig. 3)
with a series of symbols plotted at positions sampled from the data at
50 ms intervals. Stance tarsus positions indicated by empty circles, ani-
mal COM trajectories are traced with a solid line, COM indicated by a
large dot, and body axis orientation indicated by a line passing through
the COM symbol. Cart impulse is shown in black. Animals in C0 trials
(right; red) experienced the brunt of the perturbation while in stance
on the right tripod (i.e., front right, middle left and hind right). As the
cart accelerated to the left, the animals’ inertia pulled their bodies to
the right. In this posture only one tarsus had claws that can engage to
exert a counter-force (circles around middle leg foot). In contrast to
C0, in C1 trials (left; blue; left tripod—front left, middle right and hind
left) animals had two tarsi whose claws can engage, providing more
corrective force, and the ability to correct torque independently from
force by trading off front and hind leg lateral forces. The larger mechan-
ical disturbance experienced by C0 manifests as an increase (at 90 ms
snapshot) followed by a decrease (at 190 ms snapshot) in COM speed
(a complete comparison of COM speed by class in Fig. 5D)

of reduced-order, system-level hypotheses not possible with
reductionist approaches focusing on the details of a single
subsystem.

Here, we used lateral perturbation in cockroaches to
highlight the utility of using kinematic phase to examine the
relationship of multiple oscillating units, be they found in
neurons, muscles, appendages or whole bodies. Using instan-
taneous kinematic phase on a complex perturbation with six
rhythmically oscillating legs, we discovered neural feedback

to the system-level neural oscillator or CPG (Fig. 1C). We
resolved this feedback to the duration of a single step or stride
(Fig. 4A). Our results are consistent with the first efforts
(Grillner 1972; Wilson 1961) to demonstrate sensory feed-
back to the CPG period. However, here we focus on a system
with many oscillating subsystems and their coupling to the
mechanical system in a freely moving animal and not on the
response of a specific sensor or local feedback pathway. Our
kinematic phase approach permits quantitative exploration
of what Marder et al. [2005] describe as “a network of mul-
tiple higher order neurons” and Büschges et al. [2011] refer
to as “descending inputs from higher centers which initiate
CPG activity, regulate CPG frequency, and alter CPG output
to maintain whole body equilibrium (posture) and produce
appropriate goal-directed behaviour.”

Our kinematic phase results reflected proposed control
architectures that couple feed-forward and feedback systems
comprised of both neural and mechanical elements (Fig. 1).
The lack of change in kinematic phase early in recovery
(Fig. 4A) can be most parsimoniously explained by mechan-
ical self-stabilization (Fig. 1A). Between two to three steps
later, a significant change in kinematic phase of the mechan-
ically unconstrained swing legs indicates the appearance of
neural feedback to the system-level CPG (Fig. 1C). For the
first 50 ms from onset of lateral perturbation to well beyond
the peak of perturbation, running cockroaches followed the
pre-perturbation feed-forward motion model. Neither the
residual phase (thick dark line, Fig. 4A) nor velocity and yaw
(thick dark lines, Fig. 4C–F) were changed relative to their
pre-perturbation ranges. The most likely interpretation of
these results is a reliance on mechanical feedback (Fig. 1A).
Schmitt and Holmes (2000a, b) found that a horizontal plane
mass-spring model (Lateral Leg Spring, LLS) that moves
forward by bouncing side-to-side can self-stabilize to lateral
perturbations with little or no neural feedback and recover
rapidly in body orientation and rotational velocity (Schmitt
et al. 2002). Experimental perturbations fit these mechan-
ical self-stabilizing models with additional assumptions of
specific feedback pathways (Jindrich and Full 2002). More
anchored hexapedal models with various forms of simu-
lated proprioceptive feedback and heading control (Kukillaya
and Holmes 2007, 2009; Kukillaya et al. 2009) affirm that
feed-forward neural activation patterns can provide recovery
from lateral impulses such as the perturbation we applied
here.

Kinematic phase data alone are insufficient to reject track-
ing feedback (Fig. 1B) when no change in residual phase is
observed. Direct measurement of sensory or motor pathways
are required. Sponberg and Full [2008] showed no change in
the MAPs feed-forward pattern for the same control mus-
cle measured here, when cockroaches ran over flat versus
rough terrain with obstacles three times their hip height. In
this study, we discovered that the same leg control muscle
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did not alter its feed-forward IBI until 100 ms after peak
perturbation and 140 ms after perturbation onset that corre-
sponds to one or more strides after the maximum perturbation
(Fig. 7). Yet, our kinematic data show a nearly-complete
recovery of lateral velocity (Fig. 4D) before the MAP inter-
burst duration change (Fig. 7B) or the residual kinematic
phase changes (Fig. 4A). Certainly, one cannot rule out the
possibility that another feature of the MAP pattern includes
earlier feedback information, that the next muscle we mea-
sure might demonstrate neural feedback, or that extraordi-
narily rapid reflexes (Holtje and Hustert 2003) are coupled to
muscles with extremely rapid force development acting with
little delay when played through a viscoelastic mechanical
system. However, for dynamic locomotion where bandwidth
limitations become important, the more the initial response
to perturbation data are explained by mechanical feedback
using feed-forward signals, the more the burden of proof
shifts to finding a neural, sensory or muscle activation pat-
tern whose change demonstrably affects the dynamics of the
whole body in the observed time course of the perturbation
and recovery (Holmes et al. 2006).

Kinematic phase data do support neural feedback to the
system-level CPG following the perturbation. After a step,
the mean residual phase established a new trend (thick dark
line, Fig. 4A) with its slope corresponding to an average
decrease in frequency by 0.6 Hz from the pre-perturbation
values of 11.0±0.2 Hz. The frequency change corresponded
to an outcome of the form shown in Fig. 2G, and rejected
both purely mechanical feedback (Fig. 1A) and tracking feed-
back (Fig. 1B) in favor of feedback to the system-level CPG
(Fig. 1C). The increase in MAP IBIs of a key leg control
muscle (Fig. 7B) paralleled the decrease in residual phase
(Fig. 4A) and therefore stride frequency both in magnitude
and stride-by-stride timing.

Further supporting evidence for system-level CPG feed-
back comes from the same species for six of the 150
steps analyzed for rough terrain running (Sponberg and Full
2008). In these few steps, the animal failed to make ground
contact during its normal gait cycle, resulting in very large
perturbations that presumably drove the animal out of its pas-
sive basin of stability. Despite the lack of stance initiation,
the rhythmic activation of control muscles persisted for one
step, suggesting a continuation of the feed-forward, CPG sig-
nal (Fig. 7b, c in Sponberg and Full 2008). Examination of
the next stride showed that neural feedback acted to delay
stance initiation. During these very large perturbations, the
dorsal/ventral femoral extensors did not use sensory infor-
mation to adjust this muscle within a stride, but acted to shift
the phase of the system-level CPG’s clock-like signal in the
subsequent stride.

Most recently, in middle leg muscles homologous to the
control muscle measured in this study, Sponberg et al. (2011a,
b) manipulated a freely running animal by reading each neu-

rally produced MAP to trigger additional artificially pro-
duced voltage spikes mimicking a modified neural feedback
while capturing limb and body dynamics through high-speed
videography and a microaccelerometer backpack. Despite
changes in timing of the stride where stimulation was intro-
duced, the next stride acted to re-synchronize the alternating
tripod such that future strides were indistinguishable from
before the added feedback-like signal. This suggested that
there was no change to the system-level CPG timing of the
alternating tripod gait. Their results are consistent with a
system-level CPG acting to establish steady-state running
dynamics and neural feedback impinging on these activa-
tion patterns below the level where system-level CPG timing
occurs.

Our kinematic phase results and MAP recordings during
a lateral perturbation of a rapid running animal add to the
developing picture of the control of locomotion based on
animals in which the dynamics of locomotion play a lesser
role (Büschges et al. 2011; Büschges 2005). Büschges et al.
[2011] argue that motor signaling in stick insects is generated
by neural CPGs (each of which typically generates signaling
to a single antagonistic set of muscles) located in a segment
proximal to the muscles they control, and whose function
is modulated by descending signals. Our results are consis-
tent with this architecture, but we suggest three nested control
loops acting at substantially separated time constants (Fig. 1).
The outermost, slowest loop involves modulation of the
CPGs by descending higher brain centers or high order neural
networks. The mid-range loop, reacting at time constants of
single strides, interlocks the neural CPGs into a single, some-
what higher system-level CPG. The inner, fastest loop, which
handles within-stride stabilization in time constants of a frac-
tional step, is most often implemented mechanically, but does
not preclude the possibility of an extremely fast “support
reflex” such as been proposed in locust (Holtje and Hustert
2003).

Support for a nested, hierarchical neuromechanical con-
trol architecture continues to emerge (Revzen et al. 2008).
Fuchs et al. [2011] state for the neural system in cock-
roaches, “In the absence of sensory feedback, we observed
a coordination pattern with consistent phase relationship
that shares similarities with a double-tripod gait, suggesting
central, feed-forward control.” Kukillaya et al. [2009] char-
acterizing the mechanical system conclude that, “the feedfor-
ward CPG-driven system is marginally stable, with a weakly
stable mode and a neutral mode, making it act as a low-
pass filter that yields fairly easily correctable and steerable
dynamics.”

We hypothesize that the passive mechanical system is suf-
ficiently stable to recover from small perturbations, but not
so stable as to obviate the contribution of neural feedback at
several levels to recover from large perturbations as delivered
in the present experiments.
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4.2 Classes of kinematic outcome—effect of leg number
and position on lateral stability

Velocity of COM evolved in two different ways depending
on pre-perturbation phase leg pose (Fig. 5B, C). The two
classes represented statistically significant differences in out-
come (Fig. 6), pointing to the power of kinematic phase as
a succinct representation of animal state, and thus a pre-
dictor of future outcomes. The fact that a phase estimate
derived from discrete (PEP) events did not yield a statisti-
cally significant kinematic classification in our experiment
(Fig. 5G, H) indicates that the increased temporal resolution
afforded by instantaneous estimates of kinematic phase pro-
vides a more accurate description of an animal’s state. From
a dynamical systems perspective, the success of phase at pre-
dicting future outcomes is not surprising—any stable nonlin-
ear oscillator (such as running animals) can be modeled as
a periodic function of phase using Floquet theory (Floquet
1883; Guckenheimer and Holmes 1983), a fact that may make
kinematic phase-based methods invaluable to future biome-
chanical studies.

We hypothesize that the differences in COM velocity and
yaw rate between the two outcome classes (Fig. 5B–E) are the
consequence of differences in passive mechanical stability
with respect to the perturbation. As the cart accelerated to
the animals’ left, they experienced a force to their right with
respect to the cart frame of reference. In C1 trials, animals
were mostly in a left tripod stance with the front left, middle
right, and hind left legs on the cart during peak perturbation
(Fig. 8, blue). In C0 trials, animals were in right stance with
the front right, middle left and hind right on the cart during
peak perturbation (Fig. 8, red). As the animal began to be
pulled laterally, the claws of the two feet on its left side could
engage the substrate to exert considerable lateral force. For
C0 trials, only the middle leg claws were available on its left
side. The animal also experienced a torque when the claws
on the middle leg engaged, as the middle leg was typically in
front of the center of mass. For C1 trials, the two sets of claws
were located anterior and posterior to the COM. This could
allow for a larger lateral force and for the forces to be paired,
thus minimizing the torque and facilitating recovery while
better preserving orientation and heading. In this manner,
animals in the C1 trials could rely on the mechanical feedback
pathway (Fig. 1A) to compensate for a greater part of the
perturbation than animals in the C0 trials, and experienced
faster recovery to their final lateral velocity (Vy, Fig. 5C,
blue) and more rapid recovery of yaw angle (Fig. 5E, blue).

Kinematic phase allowed us to reduce posture to a univari-
ate time series, so we were able to attribute the difference in
perturbation recovery of class C0 versus C1 trials to a spe-
cific animal pose (Fig. 8). While it is commonly assumed
that hexapedal designs are the most stable of legged run-
ners because of their ability to maintain a static stability

margin throughout the gait cycle or dynamically move the
COM into the next tripod of support (Ting et al. 1994), our
results from lateral perturbations expose a limitation of the
hexapods’ alternating tripod gait. As illustrated in Fig. 8, the
C0 class (red) is constrained in its ability to exert restora-
tive forces and torques, because only one leg is available on
that side of the animal’s body. We hypothesize that sprawled
morphologies with at least two legs in stance on each side
of the body will have a significant advantage in recovering
from lateral perturbations, and thus may be a useful design
target for legged robots. Perhaps animals and robots with
eight or more legs would be more robust to lateral pertur-
bations. Initial performance evaluations of a new 8-legged
robot (OctoRoaACH) are consistent with these predictions
(Pullin et al. 2012).

4.3 Kinematic phase as a tool for neuromechanical and
neuroethological studies

We compared the residual from our instantaneous kine-
matic phase to the residual from phase computed from the
timing of posterior extreme positions (PEP) of a selected
leg, as commonly used in the biomechanics literature
(Cruse et al. 1998; Bender et al. 2010; Maes et al. 2008).
Depending on which leg we chose, we observed qualitatively
different residual phase outcomes: from no change when
using the left front leg (Fig. 9C), to a frequency increase
when using the right middle leg (Fig. 9D). Averaging (circu-
lar average, Fisher 1993) the PEP phase estimates from all six
legs (Fig. 9B) gave a residual phase that most closely resem-
bled our own (Fig. 9A), suggesting that the present method
provides a reliable representation of the global phase. We
assert that our approach—estimating a phase from the instan-
taneous state at every sample—resolves true phase (in the
dynamical systems sense) much more accurately than meth-
ods based on events such as PEP, foot touchdown, EMG IBIs,
and other similar events. In those cases where the investigator
hypothesizes there to be multiple interacting clocks, such as
independent clocks for separate legs, each clock’s kinematic
phase estimate can be generated from the multiple kinematic
measurements that it drives (Revzen et al. 2008), and the cou-
pling between these clocks can then be explored (Kralemann
et al. 2007).

Though the phase estimates we derive from PEP events
and from instantaneous kinematic data are qualitatively simi-
lar (compare Fig. 9A, B), the high temporal resolution intrin-
sic to instantaneous estimates of phase provide greater insight
into the mechanical state of the animal. Specifically, our
instantaneous estimate of kinematic phase enabled the iden-
tification of a significant difference in kinematic response to
a large lateral perturbation based on the mechanical config-
uration of the animal immediately prior to onset of the per-
turbation. This result was obscured when using less resolved
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Fig. 9 Comparison of residual phase result from the instantaneous
kinematic phase estimation method (A) with PEP calculations (B–D).
We plotted the mean of the phase estimate for all trials (thick black line,
with 1 and 99 % of bootstrap means in thin black lines). The vertical
thick line at time 0 indicates onset of perturbation. Plots show residual
phase obtained from different phase estimation methods: for A, we used
our instantaneous kinematic phase estimate; in B, we estimated phase

individually for each leg by taking the transition from stance to swing
(PEP) to indicate the start of a new cycle, linearly interpolating between
these points and averaging over all 6 legs, to obtain a result similar to
A; C uses the front left leg PEP; D uses the right middle leg PEP. C, D
produce results that do not resemble A or B, nor do they resemble each
other

phase estimates derived from discrete events (PEP; compare
A–E with F–J in Fig. 5). The capability of revealing kine-
matic rhythm changes at high temporal resolutions could
provide significant benefits to related neuromechanical and
neuroethological studies, while providing a convenient proxy
for technically difficult neural measurements (Fig. 10). One
benefit is that classical analyses such as the “coordination
influences” of the WalkNet model of the stick insect Carau-
sius morosus (Cruse et al. 1998; Cruse and Schwarze 1988;
Cruse and Knauth 1989) can be re-expressed as dynamical
models of coupled clocks using quantitative methods for esti-

mation of phase coupling between kinematic phases of legs
(Kralemann et al. 2007; Revzen and Guckenheimer 2008),
making the generation and analysis of such models a simpler
task.

4.4 Dynamical systems bridge bio-inspired simulation and
robotics

We found that the delay in appearance of a neurally mediated
kinematic response in our system was comparable to at least
one stride or step duration. One interpretation of this result
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Fig. 10 Plot of residual phase, similar to Fig. 6A, comparing the resid-
ual kinematic phase results of Fig. 6A (dot-dashed and dashed colored
lines for the two outcome classes, with a solid line between them for
the overall mean; dotted line for the first and last percentile confidence
intervals around the mean), with a residual phase computed from neural
(EMG; thick dark line mean; thin solid lines for the first and last per-

centile confidence intervals around the mean). We conclude that the
neural measurement are consistent with the kinematic phase outcomes,
showing the same qualitative structure despite the running speed differ-
ences, and failing to reject the better resolved kinematic phase response
over the entire duration of measurement

is that neural modulation of gait is applied at step intervals
rather than as continuous feedback, expressing a limitation
of control ability. Developments in control theory suggest
that replacing high rate periodic feedback (which emulates
continuous feedback) with control decisions applied at an
opportune moment can be an effective strategy, and has the
added advantage of decreasing the computational load on
the controller (Tabuada 2007; Mazo and Tabuada 2009). We
hypothesize that such approaches are particularly beneficial
when applied to self-stabilizing systems, such as those that
govern cockroach running dynamics, and that the theory of
“Self Triggered Control” may prove valuable for the study
of gait generation in animals.

In addition, new types of biologically inspired controllers
may lead to more effective terrain awareness in legged robots
(Spenko et al. 2008; Kim et al. 2006; Webb 2002; Quinn and
Ritzmann 1998; Altendorfer et al. 2001; Bachmann et al.
2009). Kinematic phase-based studies are equally applicable
to animals, robots, and simulated models. These and other
approaches that build on the shared mathematical language
of dynamical systems allow for parallel paths of investigation
in animal research, robot design, and applied mathematics,
to the benefit of all three fields.
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