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We consider a network in which every node has a value that it wishes to disseminate to all other nodes,
despite an attack by an adversary that can falsify messages on a number of the links. To achieve this
objective, we study a class of linear iterative strategies in which, at each time-step, each node in the
network broadcasts a value to its neighbors that is a linear combination of its previous value and the values
received from its neighbors. We take the number of unreliable links to be bounded, in that the number of
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is no greater than some nonnegative integer f. We show that the linear iterative strategy will be resilient
to the unreliable links if and only if the vertex connectivity is at least 2f + 1. If this condition is satisfied,
we show that almost any choice of weights in the linear combinations will suffice to provide resilience.
We further show that each node can identify the exact set of unreliable links that directly enter that node,
and can communicate this information to the other nodes via the linear strategy.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The problems of information dissemination (Giridhar & Kumar,
2005; Hromkovic, Klasing, Pelc, Ruzicka, & Unger, 2005; Lynch,
1996) and distributed consensus (Lynch, 1996; Olfati-Saber, Fax,
& Murray, 2007) in networks have received considerable attention
from researchers from a variety of disciplines, and, in recent
years, linear strategies have gained prominence as a mechanism
to achieve these tasks. In the communications community, these
strategies (under the moniker of network coding ) have been shown
to maximize the rate at which information can be transmitted
from source to sink nodes in the network (Koetter & Medard,
2003; Yeung, Li, Cai, & Zhang, 2005), and to be resilient to a fixed
number of malicious links (or nodes) provided that the minimum
cut between the source and sink nodes is sufficiently high (Jaggi
et al., 2008; Koetter & Kschischang, 2008). The control community
has focused on the case in which all nodes in the network have a
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single value to disseminate.? In this case, it has been shown that,
if each node in the network updates its value to an appropriate
weighted linear combination of its previous value and those of
its neighbors, given certain conditions on the network topology,
all of the nodes will asymptotically converge to the same value
(e.g., see Olfati-Saber et al., 2007 and Ren, Beard, & Atkins, 2005
and the references therein). More generally, it was shown in Deb,
Médard, and Choute (2006), Mosk-Aoyama and Shah (2006), and
Sundaram and Hadjicostis (2008) that this linear iterative strategy
will allow any node in the network to obtain all of the node values
in a finite number of time-steps. Furthermore, it was shown in
Sundaram and Hadjicostis (2011) that linear strategies are resilient
to up to f malicious (and potentially colluding) nodes, provided
that the network graph has (vertex) connectivity of at least 2f + 1.
This result was extended in Pasqualetti, Bicchi, and Bullo (2012)
to analyze linear iterative strategies for asymptotic consensus in
the presence of faulty agents (in addition to malicious agents), and
Teixeira, Sandberg, and Johansson (2010) studied the problem of
detecting attacks in networks of linear continuous-time systems.
The underlying network model for the linear iterations studied
in the control literature is one in which each node can broadcast
identical messages to all its neighbors. When technically feasible,

2 For example, these values could represent measurements of the environment
in a sensor network (Abdelzaher, He, & Stankovic, 2004), or optimization variables
in a multi-agent system (Tsitsiklis, Bertsekas, & Athans, 1986).
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these local broadcasts offer considerable bandwidth advantages
over schemes that require different messages to be sent to
each neighbor. Regardless of the network technology, it is likely
that random network faults manifest themselves as intermittent
communication (link) failures between specific transmitters and
receivers, rather than the complete malfunction of a transmitter
or receiver (a node failure). In the case of a concerted attack by
an adversary, interception and corruption of messages - be they
wireless radio packets or laser pulses on a fiber-optic cable - may
be far easier to achieve than subversion of a network node. Thus, a
distributed information dissemination algorithm that can tolerate
and isolate faulty or malicious links would be of particular value in
the design of reliable mesh networks.

The main contribution of this paper is to extend the analysis
of linear iterative strategies with malicious nodes (studied in
Pasqualetti et al. (2012) and Sundaram and Hadjicostis (2011)) to
the case in which network links are malicious. While there are
strong parallels between the two scenarios, some care must be
taken to prove that nodes that have incoming malicious links can,
in fact, recover the correct initial values of the other nodes. Our
contribution introduces the notion of an “f-wise safe set” which is
shown to characterize all malicious links that can be overcome by
the linear iterative strategy.

Our analysis extends the discussion in Teixeira et al. (2010) to
the case in which the malicious links can be arbitrarily placed in
the network, as opposed to only on the outgoing links of a single
node. The setting in this paper also differs from that traditionally
considered in network coding (Jaggi et al., 2008), in which a set of
sources wish to transmit a stream of information reliably to a set of
sinks; our work considers the problem in which every node in the
network has a single value to disseminate. As in Jaggi et al. (2008),
our algorithm is capable of resisting “Byzantine failures”, in which
links are subverted to execute a coordinated worst-case attack.
While this assumption may seem overly pessimistic, Internet
Protocol networks are routinely attacked in a coordinated fashion
by “bot-nets” that communicate with each other via a command-
and-control channel to share a global state (Bailey, Cooke, Jahanian,
Xu, & Karir, 2009)—an attack scenario not far removed from the one
we propose.

2. Background

2.1. Notation

We use bold-face uppercase letters (A) to indicate matrices, and
bold-face lowercase letters (a) to indicate vectors (the orientation
will be clear from the context). The symbol Iy denotes the N x N
identity matrix, A" indicates the transpose of matrix A, and e;
denotes the column vector of appropriate size with a 1 in its ith
position and zeros elsewhere. We denote the cardinality of a set 4§
by |$|. For a pair of sets § and 7, § \ 7 denotes the set of elements
of & that are not in 7. The set of nonnegative integers is denoted
by N, the set of reals by R, and the set of complex numbers by C.

2.2. Concepts from graph theory

We will follow the graph terminology from West (2001). A
graph is an ordered pair § = {X, &}, where the vertex set X =
{v1, ..., vy} represents the network nodes, and the (directed) edge
set & contains ordered pairs of different vertices, representing
(directed) network links. The vertices &; = {u|(u, v;) € &} are
neighbors of v;, and the in-degree of v; is deg(v;) £ |-Vi|. A path P
from vertex vg to vertex v, is a sequence of vertices vg, v1, ..., U
such that v; is a neighbor of v;y4,i € {0, 1,...,t — 1}. Agraphis
strongly connected if, for every two vertices v, u € X, v # u, there
is a path between v and u. If there exist v, u € X such that there

is no path from v to u, the graph is disconnected. A vertex cut is a
set 8 C X such that removing the vertices of § (and the associated
edges) causes the graph to be disconnected. The connectivity of a
graph is the smallest size of a vertex cut.

2.3. Linear iterative strategies for information dissemination

Unidirectional communication links in a network can be
conveniently modeled via a directed graph §. Suppose that each
node v; has some initial value, given by x;[0] € R, and the goal
is to broadcast all these values to some (or all) of the nodes in
the network. The linear iterative strategy discussed in Section 1
operates as follows: at each time-step k, each node updates its
value x;[k] to a weighted sum of the values of itself and its
neighbors. A node is said to be malicious if it updates its value
arbitrarily at each time-step (i.e., it does not necessarily follow the
linear iterative strategy). As discussed in Sundaram and Hadjicostis
(2011), the linear update for any node v; can be modeled by

xilk+ 1] = (wiixi[k] + Z wijxj[k]> + u;[k], (1)

JEN;

where u;[k] is an arbitrary additive error (it is zero if node v;
operates as expected at time-step k). The following result from
Sundaram and Hadjicostis (2011) reveals that the connectivity of
the network completely characterizes the resiliency of the linear
iterative strategy to malicious behavior by a certain number of
nodes.

Theorem 1. Let the graph of network § = {X, €} have connectivity
k. If k < 2f, then, regardless of the choice of weights and the number
of time-steps for which the linear strategy is run, there is a choice of f
malicious nodes that can update their values to prevent some correctly
functioning node from obtaining the initial values of certain other
nodes. If k > 2f+1, then, for almost any choice of weights, every node
in the network can correctly determine all initial values after running
the linear iteration for at most | X| time-steps, even when there are up
to f malicious nodes that update their values arbitrarily (and possibly
in a coordinated manner) at each time-step.

3. Networks with malicious links

We wish to extend the paradigm of resilient networks based
on linear iterative strategies to networks in which links may be
subverted by an adversary. Suppose that link (v, v;) in the network
modifies the value that node v; receives from node v; at time-step
k to be x;[k] + z;[k], where z;[k] is an (arbitrary) additive error.
Similarly to (1), the value of node v; at time-step k + 1 is

Xilk+ 1] = (wiixi[k] + Z wijxj[k]> + wizy[k]. (2)

JeNi

Definition 1. Suppose that all nodes run the linear iteration for T
time-steps in order to disseminate information (for some T € N).
Link (v;, v;) is said to be unreliable if z;[ k] is nonzero for at least one
time-stepk,0 <k <T — 1.

When there are multiple unreliable links entering a node, there
is the possibility that the errors that they introduce cancel each
other out in expression (2). This motivates the following definition.

Definition 2. A set of unreliable links £ into the same node v; is
malicious if Zle ¢ wizii[k] is nonzero for at least one time-step k,
0<k<T-1.
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Comparing (2) to (1), we note that a malicious error introduced
by a link into node v; reduces mathematically to a malicious error
introduced by v; itself, with u;[k] = wjyz;[k]. This leads to the
following corollary of Theorem 1.

Corollary 1. If k < 2f, then, regardless of the choice of weights and
the number of time-steps for which the linear strategy is run, there is
a choice of f malicious links that can modify their values to prevent
some correctly functioning node from obtaining the initial values of
certain other nodes.

The proof follows by selecting f nodes whose malicious behav-
ior would disrupt the network (as guaranteed by Theorem 1), then
choosing one link into each of these nodes to be malicious, with ad-
ditive errors chosen so as to mimic the appropriate malicious node
behavior (see Pasqualetti et al., 2012 and Sundaram & Hadjicostis,
2011 for an explicit strategy for the values u;[k]).

Remark 1. This model for unreliable links is quite general, and
allows each such link (v, v;) to arbitrarily affect the value that node
v; receives from node v; via appropriate choices of the error z;[k]
at each time-step. In fact, we will assume that the adversary is
strong in that he/she is aware of the state of the entire network
and can use that information to decide what errors to inject on
the unreliable links. Viewed as a set of colluding malicious links,
such “Byzantine” adversaries are common in the literature on
fault-tolerant distributed algorithms (Lynch, 1996). The reason
for considering such strong adversaries is to enforce worst-case
guarantees—if the distributed algorithm can tolerate a Byzantine
adversary, it can tolerate less powerful adversaries as well. Having
said this, it was shown in Sundaram and Hadjicostis (2011) that
the strategy for the f malicious nodes specified by Theorem 1 does
not require them to have knowledge of the global state in order to
disrupt networks of connectivity less than 2f + 1; they only have
to coordinate their actions between themselves. This fact holds for
the setting considered in this paper as well, by the translation of
attack strategies from the malicious node case to the malicious link
case described above. However, we will also show in what follows
that the proposed algorithm is resilient to at least f Byzantine links
if the connectivity is 2f + 1 or more. In summary, even worst-
case attackers cannot disrupt the network if the connectivity is
sufficiently high, whereas non-worst-case attackers can disrupt
the network if the connectivity is low.

3.1. Afirst attempt to handle link failures

A reasonable first attempt to directly show resilience to
unreliable links via the framework in Sundaram and Hadjicostis
(2011) would be to replace each link of the form (v;, v;) in the
network with a new node v; and two new edges (v;, v;) and
(v, vj), and then translate malicious link behavior on (v;, vj) to
malicious node behavior on v;. While intuitive, this approach
presents some complications. First, adding these additional nodes
automatically drops the connectivity of the new network down
to 1 (since each new node has only one incoming edge), which
violates the connectivity requirements presented in Sundaram and
Hadjicostis (2011), and prevents those results from being directly
applied to the new network. One could then argue that the new
nodes do not contribute any initial values of their own, and can
thus be disregarded in the analysis. However, the graph-theoretic
tools used in Sundaram and Hadjicostis (2011) would first have
to be significantly extended to handle such situations. A second
complication is that each new node v; imposes an additional
‘delay’ of one time-step in the transfer of information between v;
and v; if modeled in the same way as all other nodes in the network.

To avoid these difficulties, we will work with unreliable links
directly; we will show that, after some appropriate manipulations,

some of the key tools developed for the malicious node case
in Sundaram and Hadjicostis (2011) can be adapted to identify
unreliable links as well. After we develop the model further, we will
discuss some of the additional technical complications that arise in
the translation. We will also show that the class of unreliable links
that can be overcome in a graph of 2f 4+ 1 connectivity is richer
than the class of malicious nodes that can be overcome; we will
introduce the notion of an f -wise safe set to capture this richer class.

3.1.1. Nodes cannot distinguish remote link failures

There are certain link failures that cannot be distinguished
by each node using only the linear iteration values it receives.
Specifically, consider a node v; with incoming links from nodes
vj and v,. From (2), we see that the value of x;[k 4+ 1] would
be the same when (i) (v, v;) is malicious and introduces error
Zpilk], or (ii) (vj, v;) is malicious and introduces error %";,’zn,-[k].
Note that only node v; experiences any difference between case
(i) and case (ii). Consider some other node v,: since node v;
only transmits its current value at each time-step, and since the
above discussion shows that malicious errors introduced by one
link will be indistinguishable from malicious errors caused by a
different link, it is impossible for node v, to identify which link was
malicious based purely on the values that it receives from the linear
iteration.

For all intents and purposes, the above discussion reveals that,
from the perspective of any given node, all errors entering into any
other node can be aggregated into a single injected error. To make
this more formal, let @ C & be any set of links in the network.
Define the sets £;(Q) C € and x;(@Q) C X:

Li(@) ={(u,v) € @ |v =y},

xi(@Q)={veX|v#AvAdu: (uv) € Q}. (3)

The set .£;(@) contains all links in @ that end at node v;, and the set
xi(Q) contains all nodes except v; that have incoming links in Q.
For notational brevity we will omit the (@) parameter whenever it
can be understood from the context. We will also find it convenient
to work with the following definition.

Definition 3. For any positive integer f, a set of links @ C €& is
f-wise safe if, for all v; € X, the inequality | x;(Q)| + |L£i(Q)| < f
holds.

The definition is motivated by the observation that, for a set
F of unreliable links, and a node v;, all unreliable links entering
into any node in x;(#) will be indistinguishable based on the
information that node v; receives.

3.2. Linear system model for linear iterative strategies with unreliable
links

At each time-step of the linear iteration, node v; has access to its
own value, as well as the values of its neighbors, possibly corrupted
by the unreliable links #. Let us denote jo £ i, and let jq, ..., jix
be some enumeration of ;. Let z;[k] denote the |£;(F)| column
vector of errors injected by links in £;(#) at time-step k, and let
X[k] = [x1[k], x2[K], . .., xy[k] ] denote the vector of values at all
nodes. The values seen by node v; can then be represented by the
deg(v;) + 1 vector y;[k] given by

Vilk] = Cix[k] + E ;) Zi[ K], (4)

where C; is a (deg(v;)+1) x N binary matrix with a single ‘1’ in each
row denoting the entries of the state-vector x[k] that are available
to node v;. The matrix E, (omitting the # from .£;(¥) for brevity)
isa (deg(v;)+1) x |L;| binary matrix. A ‘1’ inrow j and column m of
E, indicates that element j of y;[k] is affected by element m of z;[k],
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i.e., the mth unreliable link in £;(F) affects the value received by
v; from its jth neighbor.

Let w; denote the 1 x (deg(v;) + 1) row vector containing all of
the weights that node v; uses to multiply the values of its neighbors
(and itself). With these weights, the value of node v; at time-step
k + 1is given by

xilk + 1] = wyyi[k] = w;Cx[k] + WiE ;,Z;[k].

The Ith element of the row vector w;C; is zero if node v is not a
neighbor of node v;, and w; otherwise. The vector wiE,, selects
those weights in w; that multiply the values received on unreliable
links. Defining g; £ wiE_,, we write the evolution of the values of
all nodes in the system as

X[k + 1] = WX[k] + G(F)z[k]. (5)

The vector z[k] is the stacked vector [Z;, Z;, ..., 2zy ] of all link
errors; its dimension is || = Z}Vﬂ |£;|. The matrix G(F) £
diag(g1, g, ..., gn) is block structured, of size N x |F |, with the
1 x |£;] row vectors g; placed diagonally and zeros elsewhere. The
entries of G(¥) map a vector of link errors to the state changes
it induces in the nodes that receive these link errors. Entry w;; of
matrix W satisfies w;; = 0 whenever v; & ; U {v;}.

We will also find it convenient to work with a modified form of
Gz[k] that captures a node-centric view from some given node v;.
For convenience, we will take i = 1, but the same analysis holds
for any other node. Letting x1(¥) = {vj,, vj,, ..., v}, (5) can be

written as
X[k + 1] = Wx[k] + [B,, | B,, | ui(F)[K], (6)
—
2B1(F)
a g1 2 [a. .
B£1 N I:O(Nl)x|£1|:| ’ BX] B [e“ ejr] ' (7)
u (F)[k] £ [Zl’[kL 8.2, [kl. ..., 8.z, [k]] " (8)

The vector u;(F)[k] consists of the link errors on .£(¥) and
the aggregate errors at all vertices with one or more incoming
unreliable links. The matrix B; takes the error values in u; and
applies them to the appropriate elements of x[k]. The link errors
z[k] of £ are multiplied by g;, and the vertex errors g;,z; [k] are
added to the appropriate element of x[k] via the jith column of
the identity matrix—the vector e;,. The form of the vector u;[k]
captures the fact that node v; only sees only the aggregate effect
of errors entering into other nodes, but is directly affected by the
errors entering into itself (via the values that it receives from its
neighbors). We will later show how each node can determine
the identities of the unreliable links entering into other nodes
(i.e., eliminate the uncertainty due to the aggregation) by applying
a slight variant of the linear iterative strategy.

Consider again (4), which models the values seen by node v;
at each time-step. We may rewrite this equation with respect to
u[k] as

yilk] = Cix[k] 4+ D1 (F)uy[k], (9)
Di(F) 2 [Ez () | Odeg(or) x|~y ] -

Egs. (6) and (9) together define a linear system that captures the
linear iterative strategy with unreliable links #. We will also find
it helpful to discuss systems of this form for arbitrary subsets of
links @ C &. We extend the notation B{(Q@), D;(@) to indicate
matrices analogous to B;(¥) and D{(¥) of (6) and (9).

Remark 2. Modeling linear iterative strategies with malicious
nodes as linear systems was also the starting point of the analysis
in Sundaram and Hadjicostis (2011). A branch of control theory
known as structured system theory (Dion, Commault, & van der
Woude, 2003) was then applied to analyze the resulting system

and relate the topology of the network to system properties.
Structured system theory deals with linear systems in which each
entry of the system matrices is either fixed at zero or taken to be
an independent free parameter. Unfortunately, the linear system
given by (6) and (9) does not satisfy these conditions, since each
nonzero entry in the matrices B, , C; and D, is set to 1(and thus are
not free parameters), and each nonzero entry in B, is the same as
some nonzero entry in W. Thus, standard results from structured
system theory cannot be directly applied to analyze this system,
as was done in Sundaram and Hadjicostis (2011)—we will have to
first manipulate the given system into a form that is amenable to
analysis.

3.3. Data dissemination despite unreliable links

Hereafter, we will use the notation ® = (A, B, C, D) to denote
the discrete time linear system given by

X[k + 1] = Ax[k] + Bu[k]
y[k] = Cx[k] + D u[k],

with state x € RV, input u € R™, and output y € RP. The following
property of linear systems will prove to be key to our analysis.

Definition 4 (Hautus, 1983, Rappaport & Silverman, 1971 and
Silverman, 1976). The linear system & = (A, B, C, D) is said to
be strongly observable if there exists a positive integer T < dimx
such that the outputs y[0],y[1],...,y[T — 1] are sufficient to
recover the initial state x[0], regardless of the unknown inputs
u[0], u[1],...,u[T —1].

Theorem 2. Suppose that there exists a weight matrix W such that,
for all possible 2f-wise safe sets @ < &, the system @(Q) =
(W, B1(@), C{, D1(Q)) is strongly observable. Then, there exists an
integer T < N such that, if the nodes run the linear iteration for T
time-steps with the weight matrix W, node v, can correctly obtain
the initial values x[0], despite the actions of any f-wise safe set ¥ of
unreliable links.

Proof. The proof of this result is very similar to the proof of
robustness in the malicious node case presented in Pasqualetti et al.
(2012) and Sundaram and Hadjicostis (2011). Specifically, note that
any 2f-wise safe set @ essentially defines a system ©® (@) with
2f inputs. Similarly, for an f-wise safe set £, ®(¥) has f inputs.
Consider two (possibly different) f-wise safe sets #; and %5, with
corresponding systems © (¥7) and © (¥;) having different initial
states x'[0] and x?[0], respectively. By linearity, the difference
in the outputs of the two systems over any T time-steps can be
generated by another system © (#; U %), with initial state x'[0] —
x%[0]. Noting that the set #; U %, is 2f-wise safe, we see that
the outputs generated by the two systems with different initial
states must be different; otherwise, the system ® (¥; U %), with
initial state x'[0] — x?[0], produces the all-zero output with a
nonzero initial state, which contradicts the assumption of strong
observability. Thus, for any f-wise safe set #, the output of system
(6) and (9) uniquely specifies the initial state x[0], despite the
actions of the unreliable links in #. O

A specific procedure was provided in Sundaram and Hadjicostis
(2011) to recover all of the initial values (in finite time) despite
malicious nodes, and that can be adapted in a straightforward
manner to the case in which the links are unreliable.>

3 The procedure described in Sundaram and Hadjicostis (2011) assumes that all
nodes know the weight matrix W; this assumption of full knowledge of the network
topology is standard in the literature on Byzantine fault-tolerant systems, due to
the strong adversarial model. There have been some investigations of fault-tolerant
consensus and broadcast algorithms that are agnostic of the network topology, but,
as expected, such algorithms require more stringent conditions on the network
topology than simply having a connectivity of 2f + 1 (e.g., see Koo, 2004, LeBlanc,
Zhang, Sundaram, & Koutsoukos, 2012, and Zhang & Sundaram, 2012).
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3.4. Strong observability and invariant zeros

Theorem 2 requires that the system ® (@) be strongly observ-
able for any 2f-wise safe set @; here, we will show that, when
k > 2f+1,one can find a weight matrix W such that this condition
is satisfied. First, we recall some classical definitions and results.

Definition 5. The matrix P(z) = [
matrix pencil of ©(Q).

W —zly B @ | .
c D, (@)] is called the

Definition 6 (Schrader & Sain, 1989). The complex number z; € C
is an invariant zero of ® if rank (P(zp)) < max,cc rank(P(z)).

Theorem 3 (Hautus, 1983, Rappaport & Silverman, 1971 and
Silverman, 1976). The system © is strongly observable if and only if
it has no invariant zeros.

To prove robustness of the linear iterative strategy to any f-
wise safe set of unreliable links, we see from Theorems 2 and 3 that
we should choose W such that the system @ (@) has no invariant
zeros for all possible 2f-wise safe sets @. To this end, for any set
Q@ of links, assume (without loss of generality) that the output
values available to node v; (given by (9)) are arranged such that
the outputs corresponding to links in «£1(Q) are at the bottom of
y(k]. Define £§ £ € \ £;. This means that the C;(Q) and D;(@)
matrices in (9) can be written as

c1:[gﬂ, D1:[lgﬂ g]. (10)

The matrix H{ corresponds to all neighbors of node v (including
itself) that are not involved in links in £1.

Next, define the matrix W £85 which is obtained from W by
setting the entries corresponding to links in /£ to zero (i.e., this
zeroes out |L£4]| entries in the first row of W). Thus, Woe is the
weight matrix for a graph Guoe = {X, L3}

Lemma 1. For any set @ of links, the invariant zeros of ®(Q) =
(W, By, Cq, Dy) are exactly the invariant zeros of ©®1(Q) = (W,Cg,
B,,, HS, 0) (where B, is defined in (7)).

Proof. Using (6) and (10), the matrix pencil for the set ®(Q) is
given by

W —zI B B
P(2) — [W—le 31] 3 [ i N 4 61}
T i :
: : H; ey O

Now, note that W — B, Hy = W — [%1] H, = Wiﬁ, because
each row of the matrix H; has a single 1, and these are located in
the columns corresponding to neighbors of v; that are involved in
links in .£4. Furthermore, the vector g; contains all of the weights
associated with those links. Thus, subtracting B, times the last
block-row of P(z) from the first block-row, we obtain

Wi —zly 0 B,

rank P(z) = rank H{ 0 0
H; I 0
B Wy —zly By,

= |°C1|+rank|: 1H§ o |-

The values of z for which this last matrix loses rank are exactly the
invariant zeros of ®:(@). 0O

It is instructive to consider a graph-theoretic interpretation of
the set (qu @> By, @), Hj (@), 0); this set of matrices corresponds

to graph Ge2@ (i.e., the graph ¢ with edges in .£1(Q@) removed),
and with inputs affecting only the nodes in x;(@). This is exactly
the model considered in Sundaram and Hadjicostis (2011) (which
studied the issue of linear iterative strategies with malicious
nodes), and the following result was proved in Lemmas 2 and 3
of that paper.*

Lemma 2. Let the graph of network § have connectivity «, and
let 8 = {vj, v, ..., vy} be any set of nodes. Let By =
[e;, e e, |, and let C; be the (deg(v;) + 1) x 1 matrix
with a single 1 in each row indicating the neighbors of node v; (and v;
itself). If k > |8| + 1, then, for almost any choice of weights, the set
(W, By, C;, 0) will have no invariant zeros.

The term almost any in the above lemma means that the set
of weights for which the result does not hold lies on an algebraic
variety, and thus has measure zero in the space of all possible
weights. Using the above lemma, we obtain the following result.

Lemma 3. Let the graph of network § have connectivity «, and let @
be any set of links. If k > |L£1(Q)| + |x1(Q)| + 1, then, for almost
any choice of weights, the system ® (Q) will have no invariant zeros.

Proof. From Lemma 1, the invariant zeros of ® (@) are the invari-
ant zeros of @1(Q). Recall that the set (Wxg(@), B, (), H}(@),0)
corresponds to a graph § ££(@) which was obtained by removing
|£1(Q)| links from §. Let the connectivity of Gr2@ be denoted by
k°; since removing an edge decreases the connectivity by at most
1 (e.g., see West, 2001), we have

K=k = [L1(@] = [L1(Q)] + [x1(Q)] + T — [L1(Q)]
= x@]+1.

Thus, system @;(Q) satisfies all of the conditions in Lemma 2 (with
Ges@ — G x1(@) — 4, H{(Q) — C), which proves the
lemma. O

v

We now come to the following theorem.

Theorem 4. Let the graph of the given network § have connectivity
k. If k > 2f 4 1, then there exists a positive integer T < N such
that, for almost any choice of weights, every node in the network can
correctly determine X[0] after running the linear iteration for at most
T time-steps, despite any errors introduced by any f-wise safe set of
unreliable links.

Proof. From Lemma 3, we see that, for almost any choice of weight
matrix W, the set ®(Q) = (W, B;(Q), G, D;(@)) will have no
invariant zeros, for any particular 2f-wise safe set @. The set of
weights for which this property does not hold has measure zero,
and thus it will hold generically and simultaneously for all possible
2f-wise safe sets Q. From Theorems 2 and 3, node v; can correctly
obtain all of the initial values after running the linear iteration for
atmost N time-steps, despite the actions of any f -wise safe set ¥ of
unreliable links. The same analysis holds simultaneously for every
node from the generic nature of the property. Thus every node can
obtain all of the initial values after at most N time-steps of the
linear iteration. O

Remark 3. As discussed in Sundaram and Hadjicostis (2011), the
connectivity bound « > 2f 4+ 1 is fundamental in order to
tolerate up to f Byzantine nodes; in other words, there are
no algorithms that can overcome f carefully chosen Byzantine

4 While the exact statement provided in Sundaram and Hadjicostis (2011)
focuses on the case |8| = 2f, the proof extends directly to the more general
statement provided in Lemma 2.
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nodes if the connectivity is 2f or less. The result in Sundaram
and Hadjicostis (2011) showed that linear iterative strategies are
capable of achieving this bound, under the wireless broadcast
model of communication. Theorem 4 shows that this is also true
for Byzantine links. Specifically, as long as a link error is able to
induce arbitrary changes in the incident node value, no algorithm
can tolerate a carefully chosen f-wise safe set of Byzantine links if
the connectivity is 2f or less. On the other hand, the linear strategy
is able to overcome any f-wise safe set of Byzantine links if x >
2f + 1.

3.5. Identifying local unreliable links

Each node v; only sees the aggregate effect of links entering
into other nodes (see Section 3), and thus the linear iteration
does not allow v; to uniquely identify such links as malicious or
even unreliable. However, each node can uniquely identify the
unreliable links that are directly incident to it, as shown by the
following results.

Corollary 2 (To Theorem 4). Let the graph of network 4 have
connectivity k> 2f + 1, and let T be the integer specified
in Theorem 4. Assume that the set of unreliable links during any T
contiguous time-steps is f-wise safe. Then, for almost any choice of
weights, every node in the network can correctly determine X[k], k €
N, after running the linear iteration for at most T + k time-steps.

Proof. From Theorem 4, note that each node can recover x[0] after
running the linear iteration for at most T time-steps. This also
means that each node can recover x[k] after running the linear
iteration for T + k time-steps, simply by viewing x[k] as the initial
values of a linear iteration starting at time-step k. O

Let #[k] denote the set of all links that are unreliable during the
first k time-steps of the linear iteration. Thus, .£;(¥ [k]) is the set
of incoming links to v; that are unreliable during the first k time-
steps.

Theorem 5. Let the graph of the given network  have connectivity
k > 2f + 1, and let T be the positive integer specified in Theorem 4.
Assume that the set of unreliable links during any T contiguous time-
steps is f -wise safe. Then, for almost any choice of weights, each node
v; in the network can determine £;(¥ [k]) after running the linear
iteration for at most T + k time-steps, despite any errors injected by
the links in [T + k].

Proof. Note from Corollary 2 that each node v; can determine x[k]
after running the linear iteration for at most T + k time-steps.
Rearranging (4) (the model of values seen by node v;), we obtain
yilk] — Cix[k] = E,z][k]. The left-hand side of this equality is
known to v; after T + k time-steps: it is the difference between the
actual values of node v;’s neighbors and the values that v; received.
Thus, if component [ of y;[k] — C;x[k] is nonzero, this indicates a
discrepancy in the received and actual values from that neighbor,
and v; can conclude that link [ is unreliable (thereby obtaining
Li(FIkD)). O

Remark 4. It is worth noting that each node can also use (6) to
calculate x[k + 1] — Wx[k] = B;(F)u;(¥)[k], and any nonzero
element on the left-hand side indicates a node with incident
malicious links.

Note that Theorem 5 and Corollary 2 allow the set of unreliable
links F[k] to violate the property of being f-wise safe for k >
T; as long as the set of unreliable links during any T contiguous
time-steps is f-wise safe, the initial values and the set of locally
unreliable links can be identified.

3.6. Identifying unreliable links incident on other nodes

Given that nodes can communicate reliably using the linear
iterative strategy, we now show that each node can inform the
other nodes about any incoming unreliable links by sending
additional information via the linear strategy.’

Consider p phases of the linear iteration (p € N), each of which
consists of T time-steps. In each phase, the linear iterative strategy
is used by the network to disseminate a new set of values to all the
nodes. However, after the first phase, we allow the nodes to append
information about any incoming unreliable links from previous
phases to their values. Specifically, at the start of phase p+1 (i.e., at
time-step (p + 1)T), each node will have been able to identify all
incoming unreliable links up to time-step pT (from Theorem 5).
The following result provides a means for each node v; to encode
information about .£;(F[pT]) in the value it transmits in the T
steps of phase p + 1.

Theorem 6. Let the graph of the given network § have connectivity
k > 2f + 1, and let T be the positive integer specified in Theorem 4.
Assume that the set of unreliable links during any T contiguous time-
steps is f-wise safe. At the beginning of phase p + 1, we assume
that all errors have been corrected and that all nodes have identified
their incoming unreliable links up to time pT. Let ¥’ denote the set
of unreliable links during phase p — 1. The additional information
providing all nodes with the exact identity of all links ' can be

deg(v)
f
nodes no later than the end of phase p + 1.

encodedin )" . log, ( ) bits, and can be made available to all

Proof. All nodes are aware of the structure of graph 4 in its
entirety, and each node knows the degrees of all other nodes. The
number of unreliable links |.£;| coming into any node during phase
p — 1 (time steps (p — 1)T to pT — 1) is at most f, because the
set of unreliable links is f-wise safe. Each node therefore knows a

priori the value of (de?(”)

incoming unreliable links can now encode which of this collection

of possible sets of unreliable links was actually found via a bit

deg(v)
f

) for each node v € X. Each node with

vector of length log, ( ) and append this vector to its initial

value in phase (p + 1). This information can then be reliably
recovered (along with the initial values) by the other nodes at the
end of the phase. O

4. Discussion of other failure models

We now briefly discuss some common fault cases captured by
our model.

4.1. Permanent failure

One special case that is often used in theoretical analyses
(Koo, 2004) is that of permanent failures—the set ¥ of nodes
or links under control of the adversary is constant. In this case,
our approach provides a means to recover from the interference
injected by the adversary after T steps, and to disseminate ¥ to all
nodes after an additional T steps.

5 If the network has a combination of malicious links and nodes, it will be
impossible for any node v; to differentiate between a malicious node changing its
own state, and a malicious link inducing a state change in that node (since that node
is the only one that sees the value incoming on that link). In such cases, v; would
have to settle for simply recovering the set of nodes that had their states changed
(i.e., as described in Remark 4), without further delving into the cause of the state
change (i.e., node induced or link induced).
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4.2. Stochastic failure

At the other extreme, the subset of failed links may be
stochastically random. If the failure probability of a link at each
time-step is g and links fail independently of each other and over
time, then the probability of a link having a failure in a phase of T
stepsis § = 1 — (1 — q)7. The expected number of links failing in
a phase is mq, with m the total number of links in the network.
The probability of having more than f links fail is a binomially
distributed variable which can be bounded (e.g., using Hoeffding’s
inequality), providing a level of confidence that the number of
failures will not exceed a given value in a given interval.

4.3. Spatio-temporal models

Physical networks often have link failures associated with
some local disturbances. These include local weather conditions
(in large networks), interference caused by people or equipment
moving around, encryption key compromise in secured networks,
narrow-band noise in frequency multiplexed networks, and
synchronization failures in frequency-hopping networks. Our
algorithm would preserve system-wide communication integrity
as long as the disturbance was local enough to harm only a few
links at a time. If the disturbance moves around slowly enough that
f or fewer links are adversely affected within a time window of
T steps, our algorithm would correct the errors—even if the total
number of failed links over the system lifetime is arbitrarily high.

4.4. Subversive attack

Consider networks with links that can be subverted by an
adversary - for example by installing malware on a poorly
protected machine and intercepting link traffic—and at some later
time be subjected to a process that reclaims them to function
correctly again - for example by running a virus scanning and
removal tool. As long as link reclamation is rapid enough to ensure
that the collection of malicious links remains f-wise safe in every
window of T time-steps, our algorithm will correct all errors
injected by the adversary.

5. Summary

We have shown that, in networks that use local broadcasts and
have sufficient connectivity, a linear iterative strategy can be used
to counteract and identify link failures. We proved resilience to
a strong adversary: malfunctioning links may be malicious and
collude, potentially using information about the network that the
nodes themselves do not possess—yet the network will prevail.
The phase-by-phase approach taken by our algorithm allows the
failure model to be extended to cases of stochastic link failures and
spatio-temporally correlated failures. Our approach extends work
in resilient distributed function calculation to wireless networks,
showing that, with little communication overhead, networks can
resist both link failures and active attacks.
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