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SUMMARY
The fields of modular reconfigurable robotics and
programmable matter study how to compose functionally
useful systems from configurations of modules. In addition
to the external shape of a module configuration, the internal
arrangement of modules and bonds between them can greatly
impact functionally relevant mechanical properties such as
load bearing ability. A fast method to evaluate the mechanical
property aids the search for an arrangement of modules
achieving a desired mechanical property as the space of
possible configurations grows combinatorially. We present a
fast approximate method where the bonds between modules
are represented with stiffness matrices that are general
enough to represent a wide variety of systems and follows the
natural modular decomposition of the system. The method
includes nonlinear modeling such as anisotropic bonds and
properties that vary as components flex. We show that the
arrangement of two types of bonds within a programmable
matter systems enables programming the apparent elasticity
of the structure. We also present a method to experimentally
determine the stiffness matrix for chain style reconfigurable
robots. The efficacy of applying the method is demonstrated
on the CKBot modular robot and two programmable matter
systems: the Rubik’s snake folding chain toy and a right
angle tetrahedron chain called RATChET7mm. By allowing
the design space to be rapidly explored we open the door
to optimizing modular structures for desired mechanical
properties such as enhanced load bearing and robustness.

KEYWORDS: Modular Robotics; Programmable Matter;
Lumped Parameter Stiffness Model.

1. Introduction
The fields of programmable matter and modular robotics
study the development of robotic systems comprising many
simple units. These systems are capable of changing their
form by reconfiguring the units. Reconfigurable form enables
these systems to adapt to unexpected events, tolerate faults
through redundancy, and extend to numerous applications.

In the context of robotics, the term “programmable
matter” refers to systems composed of many active or
passive units capable of being reconfigured to form
different shapes. For example, Goldstein and Mowry present
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the idea of telepario where millions of identical small
rearranging elements called “catoms” form shapes to make
a 3D display, analogous to the telephone and television.16

Shape forming methods include stochastic self-assembly,4, 50

external actuation,53 self-disassembly,15 and folding.17, 21

These systems discretely approximate a shape with a lattice
of units.

Modular robots are similar to programmable matter in that
they comprise many simple repeated units called modules.
However, these modules typically have one or more actuated
degrees of freedom (DOF) making the structure a functional
robot. Modules in modular self-reconfigurable systems56 can
make and break bonds to neighbors and relocate on the
robotic structure to form a new system.

Numerous modular robots have been developed; each
can be classified as a chain, lattice, hybrid, or mobile
style system.56 Chain style systems have demonstrated
numerous robot morphologies by connecting modules in
series to form, for example, a snake, a legged robot, a
rolling track, and a manipulator.19, 40, 44, 54, 55 Lattice style
modular robots, similar to programmable matter, comprise
units occupying discrete positions in two9, 33, 39 or three27, 45, 47

dimensions. Hybrid modular robot systems24, 34, 41 combine
reduced reconfiguration complexity of the lattice style
with articulation abilities of the chain style. A mobile
style modular robot, one of the first modular robot
implementations,14 uses the environment to maneuver and
typically forms larger groups of mobile units like trains.6, 32

This paper is primarily concerned with chain, lattice, and
hybrid systems.

The work cited so far tends to focus on the physical aspects
of designing and manufacturing these systems; however,
planning the motion of the components to achieve a desired
shape is equally important. As the number of modules in
a system increases, the computational time complexity of
module motion coordination typically grows exponentially.36

Shape formation planning approaches include intermediate
structures,38 meta-modules,5, 46, 48 scaffolding,43 gradient
following,42, 58 and hole motion.11

1.1. Structural stiffness
While current programmable matter and modular robotic
research focuses on hardware and shape formation planning,
little research has studied the analysis of mechanical
properties of the formed structures. Depending on the
application, structures formed from these systems must
satisfy stiffness requirements for a given loading.
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104 A general stiffness model for programmable matter and modular robotic structures

For example, research in programmable matter looks
beyond the active shape representation to develop systems
with programmable intrinsic properties such as elasticity. A
programmable matter system comprising small units each
capable of changing the stiffness of its bond to a neighbor
could form a wrench with soft conforming interfaces for
human hands and a rigid core to resist bending moments.
Programmable matter could conform to a victim’s injured
limb as a temporary cast, while programmable stiffness could
create flexible joints where needed while remaining rigid in
critical areas to protect broken bones.

Unlike custom designed robots, a modular robot is not
designed to optimally bear mechanical loads for a specific
set of tasks. Different configurations of the same set
of robot modules may differ substantially in their load
bearing ability. An analysis method is necessary to evaluate
candidate configurations or reconfiguration sequences of a
modular robot bearing a load. For example, in an urban
search and rescue operation, the system could squeeze into
a cluttered rubble pile in a configuration optimized for
locomotion to find a victim. Then a planner could determine
the configuration that best supports the unstable structure
while resisting compressive buckling loads and preventing
collapse.

Designers and planners require a modeling and analysis
methodology to find hardware solutions and configurations
for these systems that suit the task. However, algorithmically
determining the configuration that optimally satisfies
stiffness requirements is challenging. The stiffness of a
structure depends not only on the global shape, but also on the
internal arrangement of modules and bonds as the modules
and bonds often exhibit anisotropic stiffness characteristics.
As in the shape formation problem, the configuration search
space grows exponentially in the number of modules. Thus as
the cost function routine of a configuration optimizer, a static
solver must be able to quickly approximate the deformation
of a configuration under load.

Additionally, the analysis method should be sufficiently
expressive in order to model various current systems and
to aid design of new systems that use different connection
mechanisms. While numerous connection methods have
been explored including magnetic,33, 45 electrostatic,25 and
pressure,49 many systems24, 27, 28, 39, 47 choose mechanical
connections for high rigidity. The mechanics of the
connection between units and a unit’s structural stiffness
determine the stiffness of the overall structure which can vary
widely and typically form nonlinear relationships between
displacement and applied loads.

Finite element analysis (FEA)30 is a standard technique
for analyzing the stiffness of a given structure and would
seem to fit well with this problem as it has an inherent
discretized modular approach. In contrast, the simulator
presented here does not require expertise with or ownership
of an FEA software package. Using the simulator developed
in MATLAB, one can easily express different configurations
and incorporate planning and optimization routines. This
paper presents a parameterized model that does not require
an explicit definition of module geometry, useful early in
the design stage. A parametric model provides an intuitive
design tool enabling users to quickly evaluate possible

solutions. In addition, it allows the experimental roboticist
to characterize a system by fitting data to a model with a
minimal number of parameters. While FEA can achieve a
desired accuracy given a fine enough mesh and sufficient run
time, the computational complexity of programmable matter
or modular robot stiffness optimization requires the use of a
computationally efficient approximation with less focus on
accuracy.

1.2. Methodology
In this paper, we introduce a structural stiffness analysis
method capable of modeling programmable matter and
modular robotic systems composed of mechanically
connected units. The method can express arbitrary elastic
connections within and between modules to first order,
providing a model for approximating structure displacements
under load. The model handles nonlinearities such as
collision and gaps between connection components. Using a
new prototype programmable matter system, RATChET7mm
described in Section 2 as an example, Section 3 presents the
modeling method.

The simulator takes advantage of properties exhibited
by modular systems: (1) lumped compliance within
bonds and/or modules and (2) repetition of a finite set
of module/connector types. Because self-reconfiguration
requires a module capable of attaching and detaching, the
bonding method is reversible, and its significantly greater
compliance typically dominates the system’s behavior under
static load. Other classes of modular systems such as the
CKBot system,37, 40 exhibit compliance within the module.
Lumping the compliance into the connector and module
reduces the number of modeled degrees of freedom while
maintaining the ability to predict displacements. The stiffness
of the modules and the bonds can be precomputed to a desired
level of detail through approximate or thorough mechanical
analysis,3 FEA, or experimentation. Once determined, the
simulator can readily generate arbitrary configurations
comprising copies of modules and bond types and simulate
the behavior. In addition, having a reduced parameter
set provides design intuition and enables experimental
determination of stiffness.

We demonstrate the process and efficacy of the method-
ology through simulation (Section 4) and experimentation
(Section 5) with three systems. Using the Rubik’s Snake, a
toy that has inspired several programmable matter systems,
we demonstrate how to quickly approximate stiffness by
mechanical analysis. With the CKBot system37, 40 we present
a method for experimentally determining the stiffness
parameters of a modular robot and validate the model’s ability
to predict displacement under load (Section 5.3).

Griffith demonstrated that a chain of right angle
tetrahedrons can be folded into arbitrary shapes
superimposed on a dodecahedron lattice.17 The chain is
never broken (consisting of permanent hinges) and, when
folded, the faces of neighboring modules are reversibly
bonded (crosslinked) to retain a shape. Thus, an important
question is: how can one exploit this bond type heterogeneity
to design a structure with a desired stiffness? Using the
RATChET7mm system that forms shapes from a folded right
angle tetrahedron chain, we show that a system with two
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(a)

LatchCable

(b)

Fig. 1. Rendering of a single truncated right angle tetrahedron
shaped RATChET7mm module (a) and two modules connected by
an I-beam shaped latch and threaded with a pair of cables (b).

types of bond methods can exhibit programmable elasticity
(Section 4.1).

2. RATChET7mm
To demonstrate the validity of the modeling method
and provide illustrative examples, we present a prototype
programmable matter system. The Right Angle Tetrahedron
Chain Externally actuated Testbed (RATChET) is a
programmable matter system composed of identical
truncated right angle tetrahedrons (referred to in this paper
as right angle tetrahedrons or simply tetrahedrons) that are
permanently hinged together and connected with reversible
bonds to hold a folded shape.

The RATChET7mm extends previous work on externally
actuated chains of right angle tetrahedrons.51, 52 When
configured into a lattice structure, the distance between
the centroids of neighboring RACThET7 mm modules is
7 mm. While the earlier versions were larger and had
automatically programmed external actuation and latching
states, the RATChET7mm’s main purpose is to provide an
analogous passive system to study the stiffness of assembled
structures and so is made to be manually reconfigurable
to simplify construction. It is sufficiently simple to allow
derivation and verification of an analytical model of the
stiffness of a module connection.

Figure 1(a) shows a rendering of a single truncated
right angle tetrahedron module. Figure 1(b) depicts two
connected RATChET7mm modules. Neighboring modules

(a) (b)

(c)

Fig. 2. (a) Single RATChET7mm module. (b) Unfolded chain
of RATChET7mm modules and (c) 54 RATChET7mm modules
folded and latched to form a 3/8" socket wrench.

in a configuration (e.g., Fig. 2(c)) connect with an I-beam
shaped latch that is press fit into the ‘T’ shaped slot on the
truncated face.

Two circular holes through the module allow steel cables
to route through. A chain is composed of a set of these
tetrahedrons strung along the cable as shown in Fig. 2(b).
The cable acts as the hinge and facilitates the folding process
by allowing the modules to sequentially slide into place.

One hundred modules were manufactured from a
stereolithography (SLA) process using polycarbonate-like
material. The latches are manufactured from laser cut
polycarbonate and the cable is steel rope.

The system begins as a chain such as the one in
Fig. 2(b). Each tetrahedron is attached to a neighboring
tetrahedron by a one degree-of-freedom hinge and the
adjacent hinges are perpendicular. A fold is defined as
bending at this hinge until two tetrahedrons make contact
and can latch. The geometry of the tetrahedron is such that
when it is folded, six tetrahedrons form a hexahedron, and
four of those hexahedrons form a rhombic dodecahedron.
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Fig. 3. Panel (a) shows a beam approximated by 60 tetrahedrons. Panel (b) shows the hexahedrons for each group of six tetrahedrons; lines
and circular nodes indicate hexahedron spanning tree graph. Lines and square nodes in panel (c) show the Hamiltonian path graph defined
by the hexahedron graph in (b).

Figure 3(a) shows an example of a beam that is composed
of 60 tetrahedrons, and Fig. 3(b) shows groupings of six
tetrahedrons into hexahedrons. The rhombic dodecahedron
is well known as a zonohedron that can tile 3D space. It
can be considered the Voronoi tessellation of a face-centered
cubic lattice.10

Configurations are formed by manually folding the chain.
As each module is folded to its neighbor, latches are pressed
into place connecting the folded module to neighboring
modules in the structure.

A routine written in MATLAB automatically voxelates the
desired shape and generates the folding plan51 using an
algorithm by Griffith et al.17, 18 The algorithm constructs a
Hamiltonian path (i.e., chain path) EC ⊂ ET as a subset of
the tetrahedron graph edge set ET by first subdividing the
volume into hexahedrons, then constructing a spanning tree
of the hexahedral lattice, and finally wrapping EC around
the spanning tree. Although we are not aware of a proof that
this method can generate all Hamiltonian paths for a shape
voxelated by hexahedrons, we use foldings generated by this
algorithm in our study of RATChET7mm structures.

Figure 3(b), shows a spanning tree for a hexahedron
graph. This uniquely defines the Hamiltonian path shown
in Fig. 3(c). The module configuration starts as a chain
and each module folds in one of two directions according
to the Hamiltonian path. The Hamiltonian path effectively
defines the path the cable makes through the configuration.
Figure 2(c) depicts an example folded configuration of 54
RATChET7mm modules.

3. Model

3.1. 6 DOF stiffness
We seek to model structures comprising modules
interconnected by arbitrary mechanical links. From a strictly
mathematical standpoint, the configuration of one rigid body
in space relative to another is a 6D quantity consisting of

both translation and rotation. Thus, to first order, any forces
tying two rigid bodies together can be modeled by a linear
function of these six configuration variables. Being linear,
such a function can be represented by a matrix, referred to as
the stiffness matrix that provides (generalized) forces, known
as wrenches, as a function of (generalized) positions, known
as twists.35 A wrench is a generalized force that combines
the three force components with the three torque components
in a single 6D vector. Likewise, the twist is a 6D vector
combining the three linear and three rotational displacement
components. The inverse of the stiffness matrix expresses the
twist as a function of applied wrench, and is known as the
compliance matrix. For brevity, we will refer to rigid bodies
connected by a linear stiffness as being connected by a 6 DOF
spring, which is a generalization of both linear and torsional
springs. While a 6 DOF stiffness matrix can be composed
from conventional linear and torsional springs, Huang and
Schimmels23 showed that they cannot model an arbitrary 6
DOF spring.

A 6 DOF spring can model arbitrary connection methods
to first order. Fasse et al.13, 59 furthered the methods of
Caccavale et al.7, 8 to model elastically coupled rigid bodies.
The model presented in this section uses the quaternion-based
potential function in Zhang et al.59

We use the notation of Fasse et al.12 where pa
b is the

displacement of frame b relative to frame a written in the
coordinates of a. Frames a and b are rigidly attached to
bodies A and B, respectively. The columns of Ra

b are the
basis vectors of frame b written in the coordinates of a. If
no superscript is given, frame a is the global frame. The
configuration of frame b relative to frame a is given by the
homogeneous transformation matrix:

Ha
b =

[
Ra

b pa
b

0 1

]
. (1)

The skew symmetric cross product matrix of p is written as
p̃ and satisfies p̃v = p × v.
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The 6 DOF spring defined by a 6 × 6 stiffness matrix
K maps the change in configuration of frame b relative
to frame a to a wrench that acts equally and oppositely
on bodies B and A. An infinitesimal configuration change
can be represented by an infinitesimal twist displacement
δT a

b = [(δpa
b )T (δθa

b )T]T comprising translational (δpa
b ) and

rotational (δθa
b ) 3D displacement vectors. For an infinitesimal

twist displacement, the wrench wa
b that body B applies to the

elastic connection between A and B is given to the first order
by

wa
b ≈ KδT a

b →
[
f a

b

τ a
b

]
≈

[
Kt Kc

KT
c Ko

][
δpa

b

δθa
b

]
, (2)

where Kt is the translational stiffness matrix, Ko is the
rotational stiffness matrix and Kc is the coupling stiffness
matrix.

To determine the wrench for small, finite displacements,
Zhang and Fasse59 define potential functions based on the
relative translational and rotational displacements of the
two bodies. For the rotational potential energy, they extend
the work of Caccavale et al.7 by developing a quaternion-
based potential function. The relative orientation of frame
b with respect to frame a is expressed by a quaternion
qa

b = [ηa
b (ea

b )T]T with scalar part ηa
b and vector part ea

b . Using
the principle of virtual work, they compute the wrench that
body B applies to the elastic connection with respect to the
global frame as

fb = 1

2
RaKtp

a
b − 1

2
RbKtp

b
a + ηb

a(Ra + Rb)Kce
a
b, (3a)

τb = 1

2
p̃bRaKtp

a
b − 1

2
p̃aRbKtp

b
a

+2Rb

(
Eb

a

)T
Koe

a
bη

b
a(p̃bRa + p̃aRb)Kce

a
b

+1

2
Rb

(
ηb

a

(
Eb

a

)T − ea
b

(
ea
b

)T)
Kc

(
I + Rb

a

)
pa

b,

(3b)

where Eb
a = ηb

aI − ẽb
a .

Fasse et al.12 prove several useful properties of their
potential function. It is sufficiently diverse and therefore
can model arbitrary local stiffness. The potential functions
are frame indifferent (i.e., equal and opposite wrenches are
applied to the elastically connected bodies.) They are also
port indifferent, meaning the choice of body A and B does not
matter. The expression requires only algebraic operations and
remains nonsingular for arbitrary displacements away from
equilibrium. The method is valid for small displacements
between the frames. In programmable matter and modular ro-
bot systems designed to be stiff in use, this assumption is valid
as relative displacements between modules remain small.

In the case of the RATChET7mm system, each module is
considered a rigid body that elastically connects to one or
more neighboring modules. Using Eq. (3), we can compute
the sum of forces and moments acting on each module
due to its relative displacement from its neighbors. Given
the stiffness matrix between each connected RATChET7mm
module and external loading and fixed module boundary
conditions, we can determine the static equilibrium of the
entire structure.

Center of 
Stiffness

Latch

Cable 

A

B h1

l

h2

e1 e2

e3

(a)

Center of 
Stiffness

A

B

Latch

e1 e2

e3

(b)

Fig. 4. Model of two connected tetrahedron modules, A and B.
Modules can either be connected by (a) a latch and a hinge or (b) a
latch only. Latch l and hinge h1, h2 frames are labeled in (a).

We seek a means for determining the stiffness matrix K for
the various links found in the systems we examine. Several
approaches suggest themselves: (1) analytic derivation based
on the the theory of elasticity; (2) experimental derivation
through loading a link with a known wrench and measuring
the resultant twist; and (3) use of approximations for
rapid analysis. The following section presents the analytical
method. Section 4.2 presents an approximation method and
Section 5.3 presents an experimental method.

3.2. Analytical method to determine K
The stiffness matrix between two modules in a
RATChET7mm configuration is a function of the
mechanisms that connect them. There are three types of
intermodule connections. Each pair of adjacent modules in a
RATChET7mm configuration is connected by a plastic latch.
A pair of chain neighbor modules is connected by a pair of
cables running through them. When two modules are loaded
such that they tend to collide, they are also connected by
a mechanism that resists compression. In a RATChET7mm
configuration, modules are connected in one of two ways
(as shown in Fig. 4): (a) by a latch and a pair of cables
or (b) by a latch only. These connections are defined by
corresponding stiffness matrices Klh and Kl , respecitively.
When two modules collide, the stiffness matrix of their
connection incorporates the collision stiffness as discussed
in Section 3.3.
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For the RATChET7mm system, connections between
modules are modeled as elastic beams.3 The stiffness
matrices for each connection type are derived by considering
a fixed-free beam using the theory of elasticity. Appendix
7 presents the analytical models for the (1) latch stiffness
Kl , (2) cable (hinge) stiffness Kh, and (3) face collision
stiffness Kf . Analytical models provide a parameterization
of the stiffness of the connection method. Section 5 validates
the model experimentally. For complex connection methods,
FEA60 or experiment can determine the stiffness matrix.

The stiffness matrix K between two modules must be
defined with respect to a unique coordinate system. For a
pair of elastically coupled bodies, the center of stiffness
is a unique point which maximally decouples K .12 Kt

and Ko are symmetric and thus have principal stiffness
axes. A displacement along a principal translational stiffness
axis applies a pure force to the elastically coupled bodies.
Likewise a displacement about a principal rotational stiffness
axis causes a pure moment. There may not exist a point
between elastically coupled bodies where the coupling Kc

vanishes. However, Lončarić29 showed that the center of
stiffness is located at the unique point that makes the coupling
stiffness Kc symmetric provided tr(Kt ) is not an eigenvalue
of Kt .

The location of the center of stiffness between neighboring
RATChET7mm modules depends on whether they connect
with a latch only or with a latch and a pair of cables. Adjacent
modules that are not chain neighbors connect with a latch
only and have stiffness matrix Kl and center of stiffness at
the centroid of the latch as shown in Fig. 4(b).

The stiffness between modules connected by a latch and a
hinge Klh is given by the sum of the stiffnesses of each beam
shown in Fig. 4(a). In order to sum the stiffnesses, they are
transformed12 to the center of stiffness frame a using

Klh = AdT
Hl

a
KlAdHl

a
+ AdT

Hh1
a

Kh1AdHh1
a

+ AdT
Hh2

a
Kh2AdHh2

a
,

(4)

where the superscript in each transformation H of each
adjoint Ad represents the center of stiffness frame of
the corresponding beam. The center of stiffness between
modules connected by a latch and a hinge is the position of the
frame a that makes the coupling stiffness of Klh symmetric.60

3.3. Collision
The nonlinear equation solver used in the simulation requires
the function it solves to be continuous. We approximate the
transition in stiffness components from collision-free value
to collision value using a continuous analytical function
that smoothly transitions between stiffnesses over a small
distance. Using a sigmoid function of the form

y(x) = 1

em(d−x) + 1
, (5)

the parameters m and d can be tuned to capture the effect
of a gap between the modules. Figure 5 plots the sigmoid
curve used in the RATChET7mm model. The parameter x

is defined by the penetration depth. The coefficient d shifts
the curve along x to define the gap length, and m defines the

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x (penetration depth) [mm]

y
(x

)

Collision switch: 1 = full collision

Fig. 5. Collision sigmoid switch function.

slope of the curve as it passes through y(x) = 0.5. The values
used to tune the simulation to experiment are d = 0.5 mm
and m = 8000. Notice that the sigmoid in Fig. 5 completely
switches to collision stiffness after the penetration depth x

reaches 1 mm which is consistent with the approximate gap
between two modules. In the simulator, when a collision is
detected between two modules, the face collision stiffness
Kf (defined in Appendix 7) is added to the nominal collision
stiffness (Kl or Klh) using the sigmoid function

Klwc = Kl + Kf y(x), (6a)

Klhwc = Klh + Kf y(x), (6b)

where Klwc and Klhwc are the with collision (wc) modified
stiffness matrices for latch only and latch and hinge
connection types, respectively.

4. Simulation
Using the stiffness model described in the previous section,
a mechanical simulator for a modular lattice structure should
be able to determine its behavior given specified boundary
conditions. This simulator, written in MATLAB, finds the
equilibrium position of a statically loaded modular robot
or programmable matter structure loaded with arbitrary
constant wrenches. The rigid bodies can be either modules
or components of modules.

The model of a modular system is represented as a graph
with modules or module components as nodes. Each edge
of the graph links physically connected modules and has
an associated stiffness matrix defined by the type of bond
between the modules. For example, for each pair of adjacent
tetrahedron modules defined by edge eTi

= {xi, xj } (eTi
∈

ET ), the stiffness matrix between xi and xj is Klh if eTi
∈ EC

(i.e., if xi and xj are chain neighbors), otherwise the stiffness
is Kl .

Our algorithm, outlined in Algorithm 1, uses MATLAB’s
nonlinear equation solver fsolve to determine the
equilibrium position and orientation of each tetrahedron
given loading and fixed boundary conditions. We must use a
nonlinear solver due to the finite rotations found in Eq. (3).
Each iteration of the solver computes the force and moment
equilibrium for each module according to Eq. (3). For each
fixed module, the six equilibrium expressions are replaced
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Fig. 6. Deformation for two types of Hamiltonian paths in
a beam (indicated by wireframe rectangle) approximated with
42 tetrahedrons. Black triangles indicate fixed modules; arrows
indicate applied load. In (a) the cable passes through the lower
portion of the structure under compression and allows 8.6% larger
deflection at the free end than (b) where the cable passes through
the portion under tension.

by six constraint equations on the module’s position and
orientation.

Like all gradient search algorithms, fsolve is sensitive to
the initial guess. To minimize residual forces and moments,
our simulator uses “load stepping” in cases of large loads –
it first solves for small loads, and uses the solutions as initial
guesses for larger loads. The simulator checks the residual,
and, if it is too large, the simulator increases the number load
steps by some factor. This method reduces the residual for
cases with large displacements or a large number of modules.

The simulator detects collisions using a triangle-to-triangle
intersection routine.31 The sigmoid function described in
Section 3.3 provides a continuous switch function to
approximate the change in stiffness matrices with and
without collision. Section 5 demonstrates how the parameters
of the sigmoid function can be tuned to characterize the
transition in stiffness due to collision.

4.1. RATChET7mm examples
Figures 6(a) and (b) show two chain paths (each indicated by
Hamiltonian cycle with square markers at module centroids)
through a beam like structure. Each frame shows the side
view of a beam of 42 tetrahedron modules which appear as
triangles in this view. Black triangles indicate fixed modules
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Fig. 7. Side view of configuration in Fig. 3(a) showing deformation
for two types of Hamiltonian paths. Black triangles indicated fixed
modules; arrows indicate applied load.

and arrows indicate the 120N applied load distributed over
six modules.

Intuitively, Fig. 6(a) will have larger displacement since
the less stiff bonds are under tension while Fig. 6(b) has a
configuration where the cables, which are stiff in tension,
will absorb most of the load. Under the loading conditions
shown in Fig. 6, the method finds displacements of 11 mm
and 10 mm respectively.

We can consider the “apparent stiffness” of the full
structure – the stiffness relationship experienced in the
direction of loading. Consider a homogeneous rectangular
cantilever beam of length L, area moment of inertia I and
Young’s modulus E under a transverse load at the free end.
Such a beam, which may undergo large deflections, can be
analyzed using the Pseudo-Rigid-Body (PRB) Model.22 This
model approximates the beam as a rigid link pinned to ground
with a torsion spring. The torsion spring models the beam’s

http://dx.doi.org/10.1017/S0263574710000743
Downloaded from http:/www.cambridge.org/core. Univ of Michigan Law Library, on 18 Oct 2016 at 07:06:59, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0263574710000743
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


110 A general stiffness model for programmable matter and modular robotic structures

Algorithm 1 Static Equilibrium Solver
1: Given:

� Connectivity graph of N elements
� Stiffness matrix between each connected pair of elements
� Set of Fixed elements
� Applied wrench for each element in each column of the 6 × N matrix Wapplied

� Initial twist for each element in each column of the 6 × N matrix T0

2: for i = 1 to NumberOf LoadStepT ries do
3: for j = 1 to NumberOf LoadSteps do
4: Wloadstep ← (j/NumberOf LoadSteps) × Wapplied {Iteratively increase load}
5: Use nonlinear equation solver (e.g., MATLAB’s fsolve) to determine equilibrium twist of each element (in each

column of 6 × N matrix T ) given Fixed, T0, and Wloadstep

6: T0 ← T {Set solution as initial guess for next load step}
7: end for
8: if residual > MaxError then
9: NumberOf LoadSteps ← NumberOf LoadSteps × Factor

10: else {Valid solution found}
11: break
12: end if
13: end for
14: Report equilibrium twist of all modules T

stiffness in bending and has equivalent spring constant (or
apparent stiffness) given by

K = γK�

EI

L
, (7)

where γ and K� are PRB model parameters that remain
constant for constant load direction. Therefore, a difference
in apparent stiffness of two configurations with the same
shape (thus same L and I ) and same loading condition (thus
same γ and K�) is due to a change in the apparent Young’s
modulus. In the two cases in Fig. 6, we get a Young’s modulus
of 75 MPa and 82 MPa, an 8.6% difference.

Figure 3(a) shows an example configuration of 60
RATChET7mm modules. From Kirchhoff’s matrix tree
theorem,20 there are 135 possible spanning trees and hence
135 Hamiltonian paths that can be generated using Griffith’s
expansion of spanning trees technique.17 Exhaustively
testing all of these 135 possibilities shows there can be
a variance in the apparent stiffness of the material if
approximated as a homogeneous material. The path shown
in Fig. 7(a) has a displacement of 12.9 mm which is the least
displacement of any for the loading shown, and Fig. 7(b) has
displacement of 13.0 mm which is the largest displacement.
The apparent Young’s modulus of the two paths would be
4.521 MPa and 4.484 MPa, a 0.8% change.

Thus, the examples in Figs. 6 and 7 demonstrate the ability
to program the apparent Young’s modulus of a programmable
matter system with two types of bonding stiffness (Kl and
Klh). Note a system with a greater disparity in the stiffnesses
of its two types of bonds would exhibit a greater range of
programmable stiffnesses.

The simulator allows for analysis of structures with a large
number of modules. Figure 8 depicts a beam of 120 modules
under a transverse load of 20N. Note this configuration
has more than billions of possible spanning trees. Using
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Fig. 8. Beam of 120 tetrahedrons with fixed modules (marked with
black triangles), load applied to two tetrahedrons and Hamiltonian
path shown.

heuristics to determine a critical region of the structure and
to optimize folding within that region is one possible method
for handling the large search space.

4.2. Rubik’s snake example
The simulator allows quick formulation and simulation
of many different forms of programmable matter. To
demonstrate, we model planar configurations of the Rubik’s
Snake.

The Rubik’s Snake is a widely available toy with a chain
of polyhedron that can be twisted into a variety of shapes that
has served as an inspiration for a variety of programmable
matter. The polyhedron are right angle isosceles triangular
prism modules. When viewed as in Fig. 9(a), we denote
the three faces of a module perpendicular to the page
as the two leg faces and the one hypotenuse face. There
are three module-to-module connection mechanisms: spring
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Fig. 9. Experimental and simulated deformations of two Rubik’s
Snake configurations each with 0.5N load at free end.

bolts, face protrusions, and face to face collision. Figure 9(a)
shows a configuration of 24 Rubik’s Snake modules. Each
leg face of the module connects to a neighboring module
with a spring bolt which passes through the center of the
face. There is no crosslinking between hypotenuse faces.
Thus, for some configurations under certain loadings (e.g.,
Fig. 9(c)) the hypotenuse faces along top of beam tend to
separate as the configuration elastically deforms. All faces
resist collision and have small interlocking protrusions and
pockets which add rigidity in shear.

The center of stiffness is located in the geometric center
of each face. The center of stiffness frame (such as the
example frame shown in Fig. 9(b)) is oriented such that e1

is directed along the outward face normal of the module
and e3 is directed out of the page. To model the system, we
need to determine the leg face stiffness Kleg, hypotenuse face
stiffness Khyp, and the face collision stiffness Kf .

In order to quickly model displacements under load of
the Rubik’s Snake, we define the stiffness components
using rough order of magnitude approximations. Module

bonds are stiffest when modules are compressed together
in collision. Thus, we approximate the face normal stiffness
Kf t11 to the order of magnitude of a beam in uniaxial loading
with characteristic module geometry and material properties.
This stiffness given by AE/L (assuming Young’s modulus
E = 2 × 109 Pa, area A = 400 × 10−6 m2, and length L =
20 × 10−3m) has order of magnitude 107 N/m. We observe
that 10 N acting at characteristic length L = 20 × 10−3m
away from face (giving 0.2 Nm torque) rotates the module
approximately 1◦ (0.017 rad) and thus we model all rotational
stiffness components as 10 Nm.

The collision stiffness matrix is approximated by

Kf t =

⎡
⎢⎣

107 0 0

0 0 0

0 0 0

⎤
⎥⎦ N/m, (8)

Kf o =

⎡
⎢⎣

0 0 0

0 10 0

0 0 10

⎤
⎥⎦ Nm. (9)

We observe the spring bolt to be significantly less rigid than
the face collision stiffness, and we therefore approximate its
stiffness Klegt11 as a factor of 100 less than Kf t11 . Stiffness
along the leg face (Klegt22 and Klegt33 ) appears to be stiffer
than the spring bolt yet more compliant than face collision
stiffness, and we approximate it as a factor of 10 less than
Kf t11 . The stiffness matrix between the leg faces of Rubik’s
Snake modules ignoring collision is approximated by

Klegt =

⎡
⎢⎣

105 0 0

0 106 0

0 0 106

⎤
⎥⎦ N/m, (10)

Klego =

⎡
⎢⎣

10 0 0

0 10 0

0 0 10

⎤
⎥⎦ Nm. (11)

When two Rubik’s Snake modules collide in loading, the
collision stiffness is added to the nominal stiffness. Note that
hypotenuse faces only connect when they are in collision
(i.e., compression.) Thus, in collision the hypotenuse face
stiffness Khyp = Kf .

Figure 9 shows experimental (a) and (c) and simulated
(b) and (d) deformations of two types of Rubik’s Snake
configurations. A vice holds the five modules shown with
black triangles in Figs. 9(b) and (d) fixed. A wire rope loop
supporting a mass applies a load to the configuration. In
each case, the Rubik’s Snake configuration has the same
shape, fixed module (indicated by black triangle) boundary
conditions, and 0.5 N load applied to the free end.

Note the rigidity of the configuration greatly depends on
the folding pattern. In the rigid case shown in Figs. 9(a) and
(b), the modules are folded into a pattern such that there is a
direct path along the top of the configuration from the load to
the fixed boundary. In this configuration, the spring bolts of
the modules near the top are loaded in tension, and the faces
of the modules near the bottom are in compression.
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In contrast, the less rigid case shown in Figs. 9(c) and (d)
uses a fold pattern with a circuitous path from load to fixed
boundary. Vertical gaps form between modules near the top
due to the lack of a crosslinking connection between the
hypotenuse faces which supports tension.

Figures 9(b) and (d) demonstrate our method’s ability to
characterize the relative stiffnesses of two configurations
using a simple inter-module connection stiffness estimation.
The simulation reports deflections of 0.7 mm and 3.4 mm
for the two case Figs. 9(b) and (d), respectively which
would correspond to Young’s modulus of homogeneous
materials of 3.2 MPa and 0.7 MPa. The simulation captures
the heterogeneous and anisotropic nature of the connection
methods. In the early design stage or within a large search
routine, such quick analysis could be used to quickly cull
poor configurations to allow focus on more promising ones.

5. Experiments
We experimentally validate the results of our simulations
of all three modular structures. Keeping in mind that our
goal is to develop a mechanical simulation that converges
rapidly enough to allow it to be used for optimizing
designs by evaluating many thousands of structures, we
aimed for error on the order of 10%. Error results reported
here are valid within the range of the applied loads.
As programmable matter and modular robot systems are
typically stiff, displacements will generally be in the linear
regime.

5.1. Rubik’s snake
In the case of the Rubik’s Snake, a quick check on the
validity of the simulation is the estimated equivalent Young’s
modulus, E, of homogeneous material. Figures 9(a) and (c)
show the deflections (0.8 mm and 2.9 mm, respectively) of
the physical system under the same load and we can estimate
E to be 2.7 MPa and 0.8 MPa, respectively, which agrees
with the simulated values with approximately 15% error.
This error seems reasonable as the stiffness components
are quickly approximated with a rough order of magnitude.
While FEA can provide a solution with higher accuracy, the
simulator allows quick model development and comparison
of apparent stiffness of different configurations.

5.2. RATChET7mm
We explore the stiffness of the RATChET7mm more deeply.
Experimental measurements and analytical models of the
rotational stiffnesses about the e1 and e3 axes of the
center of stiffness frames (Fig. 4) are in agreement. We
proceed to show that the simulator accurately models a beam
configuration of modules.

The first experiment verifies the rotational stiffness of a
module loaded with a moment about the e1 axis. Figure 10
depicts the experimental setup with two modules. One
module is fixed and the other is loaded with a moment by
placing a mass at the end of a moment arm. We measure
the stiffness about e1 for each connection type: latch and
cable (Fig. 10(a)) and latch only (Fig. 10(b)). An image
processing routine written in MATLAB determines the angular

(a) (b) (c)

Fig. 10. Experimental setup for measuring angular displacement
of connected pair of RATChET7mm modules loaded by a moment
about e1. Each case shows displacement with one module loaded
with 50 g on a 50 mm moment arm. The loaded module connected
to fixed module with (a) latch and cable is noticeably stiffer than
with a (b) latch only. Panel (c) shows a side view of unloaded pair
of modules connected by a latch only.
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Fig. 11. Experimental data and linear fits for an e1 moment applied
to one module connected to another. Data show a module pair
connected with a cable and latch is stiffer than one without a cable
by an order of magnitude.

displacement. Figure 11 shows good agreement between
analytical and experimental stiffness terms in both cases.

Note the cable (Fig. 10(a)) increases the stiffness of a latch
only connection (Fig. 10(b)) by an order of magnitude. The
addition of the cable to the latch connection method moves
the center of stiffness from the latch centroid towards the
center of the module face as shown in Fig. 4. The stiffness
about e1 increases in part due to the existence of a moment
arm together with the Klt22 term of the latch translational
stiffness.

The e3 rotational stiffness experiment verifies the Klo33

stiffness term and demonstrates the simulator’s ability to
capture the nonlinear effect of stiffness change due to
collision. Figure 12(a) depicts the experiment consisting of
a fixed module, a loaded module, and an extension arm used
to apply moments about e3. Figure 12(b) shows a close up of
the gap between the connected faces of the modules without
load, and Fig. 12(c) shows the modules in collision when
a 30 Nmm moment is applied to the loaded module. For
moments that do not cause collision, the rotational stiffness
(0.11 Nm) is due to the bending of the latch. As the loaded
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Fixed module

Loaded module

50g mass

(a)

(b) (c)

Fig. 12. (a) Experimental setup to measure Klo33 stiffness term.
In (b), the loaded module has no load and there is a visible gap
between connected faces of the modules. When a 30 Nmm moment
is applied to the loaded module (c), the modules collide.
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Fig. 13. Experimental data and linear fits for an e3 moment applied
to one module connected to another. When angular displacement
(θ ) reaches 0.05 rad (2.9◦), the face of the loaded module collides
with the fixed module and the stiffness increases by an order of
magnitude. Simulation curve plots angular displacement of module
with tuned collision sigmoid.

module begins to collide with the fixed module, the stiffness
increases to 1.35 Nm which includes the compression of the
SLA polycarbonate-like material.

Figure 13 shows experimental and simulated angular
displacement about the e3 axis for a range of applied moments
about e3. The small gap between latched modules (shown
in Fig. 12(b)) allows for some rotation without collision
until θ reaches 0.05 rad (2.9◦). Note that the simulation
curve matches experimental data well where modules are
clearly free of collision or in collision. As described in
Section 3.3, we tune the sigmoid parameters such that
the stiffness transitions properly from without collision to
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Fig. 14. Beam configuration of six RATChET7mm modules
under transverse loading (a) and simulation model view (b). (c)
Experimental and simulated displacement of module 1 in (b).

with collision. The continuous approximation of stiffness
over-predicts in the region near collision. For example, at
θ = 0.041 rad, the approximated stiffness is four times
the experimental collision free stiffness. Note that this
overprediction does not exceed the collision stiffness and
the continuous approximation greatly increases the stability
of the simulator.

5.2.1. Beam simulation.
To demonstrate the accuracy of the model, we applied a
transverse load to a beam of six RATChET7mm modules.
We considered two beam orientations in order apply different
loading conditions at each module to module connection.

Figure 14(a) shows the experimental setup for the first
loading case. The simulation view shown in Fig. 14(b) depicts
the modeled boundary conditions. Two modules (5 and 6) on
the right end of the beam are held fixed by a clamp. We
use a set of masses to apply increasing transverse loads to
module 2.

An image processing script written in MATLAB determines
the displacement of module 1 at the free end. Figure 14(c)
plots the vertical displacement of module 1 for experimental
and simulated data. The simulation data agrees well with
experimental data; the mean absolute error is 9%.

Using the same six module beam configuration, we
measured its deflection under load in a second orientation as
shown in Fig. 15(a). In this experiment, module 1, which is at
the free end of the beam, is loaded in the direction shown in
Fig. 15(b). We load module 1 by hanging increasing amounts
of mass from the steel rope loop shown in Fig. 15.

Figure 15(c) compares simulation and experimental
displacement of module 1. Again the simulation matches
the behavior of the observed data; the mean absolute error
is 13%.
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Fig. 15. Second orientation of beam configuration of six
RATChET7mm modules under transverse loading (a) and
simulation model view (b). (c) Experimental and simulated
displacement of module 1 in (b)

5.3. Experimental method to determine K
This section describes a methodology for experimentally
determining stiffness components. As an example, we
consider the CKBot37, 40 chain style modular robot. The
modeling and experimentation method can be extended to
other lattice, chain, or hybrid modular robot systems.

The first modeling step is to determine how to lump the
compliance. In Section 3.2, we assumed RATChET7mm
modules are significantly more rigid than the links. CKBot
modules, however, are mated with machine screws and the
observed rigidity of the module and links is of the same
order. To account for internal module compliance, we model
each module as four elastically connected faces. Figure 16(b)
depicts the locations of the four internal stiffness matrices
K

ij
int linking faces i and j of the same module. Figure 16(c)

shows the four external stiffness matrices Kext linking faces
of neighboring modules. To minimize the model parameters,
we assume due to symmetry that (1) K12

int = K23
int and (2)

all Kext are the same. Also, we assume diagonal stiffness
matrices yielding a total of 24 model parameters. Thus, a
configuration of CKBot modules can be modeled knowing
the four stiffness matrices: K23

int , K34
int , K14

int , and Kext.
Determining the stiffness components requires subjecting

CKBot modules to different loads and measuring the
displacements. We use a motion capture system (Vicon1)
as it is a commonly available tool to roboticists and easily
provides translational and rotational displacement data.
However, the resolution of the system is insufficient to
directly measure translational stiffness components.

Therefore, to determine the stiffness components we load
a chain of six CKBot modules with a measurement frame
at the end module that undergoes sufficient displacement.
Figure 17(a) shows an example configuration with a mass
at one of the loading points of the load mount. The load
mount supports extensions with Vicon markers used to define
the measurement frame ei . We load the six CKBot chain in
several different joint angle configurations and partition the
data into a fitting set and a validation set.

We observed that the two twist components �p1 and
�θ3 of the frame in Fig. 17(a) exhibit sufficiently high
signal to noise ratio to accurately measure. We therefore
use MATLAB’s lsqcurvefit tool to determine the stiffness
components that best matches the simulated �p1 and �θ3

displacement of the load mount frame to the data. As the
convergence time of the fitting routine is sensitive to initial
guess, we set initial translational stiffness values to 106 N/m
and rotational stiffness values to 500 Nm. These values are
based on analysis in the translation case and preliminary
experiments in the rotation case.

Table I reports the stiffness components determined by the
fitting routine. Note that the translation stiffness components
(K11 − K33) for K12

int and K23
int are all approximately 2 × 107.

This is consistent with the fact that edges of the CKBot
for K12

int and K23
int are epoxied tightly together. Likewise, the

translation components of Kext , the stiffness between faces
fastened with machine screws, has a relatively high value of
6 × 107 to 8 × 107. The translation components of stiffness
matrices K34

int and K14
int have generally lower values because

(a)

1
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4

K
14

intK
12

int

K
23

int K
34

int

e1 e2

e3

(b)

Kext

Kext

Kext
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(c)

Fig. 16. (a) CKBot module. Four face model with (b) faces and internal stiffness matrix frames labeled and (c) external stiffness frames
labeled. Superscripts denote pair of faces linked at given stiffness frame.
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Table I. CKBot stiffness components of frames defined in
Figs. 16(b) and (c).

K12
int /K

23
int K34

int K14
int Kext units

K11 1.6E+7 4.9E+7 3.2E+4 6.1E+7
N/mK22 2.4E+7 2.7E+5 3.1E+6 8.2E+7

K33 2.1E+7 1.0E+4 5.5E+7 6.6E+7
K44 4.0E+1 1.5E+3 2.9E+4 4.3E+2

NmK55 6.4E+4 1.7E+1 1.1E+2 3.5E+3
K66 4.4E+1 9.7E+1 3.2E+4 3.8E+4

(a)

(b) (c)

Fig. 17. (a) shows experiment apparatus with markers for Vicon
motion capture system. Two different CKBot configurations (b)
and (c) (denoted C3 and C4, respectively) that place load mount at
same position and orientation.

they represent the stiffness between the joints connecting
face 4 to faces 1 and 3 (Fig. 16(b)).

Figure 18 compares experimental data with simulation
results for the fitting and validation data sets. Values in
parentheses report the mean absolute value of the relative
error. Figures 18(a) and (b) present four typical loading
conditions used to determine the 24 stiffness parameters. It
shows that the fitting routine determines stiffness components
that fit the simulation to the data with less than 14% error on
average.

To validate the simulator predictions of �p1 and �θ3

displacements in other joint angle configurations, we load
the configurations shown in Figs. 17(b) (C3) and 17(c) (C4)
and compare measured displacement with simulation results.
Figures 18(c) and (d) report the comparison. Note that with
the exception of the C4, τ3 case, the simulator accurately
predicts the displacement with 12% error or less on average. It
is important to note that though the accuracy of the simulator

is approximately 15%, it correctly predicts the slope and
relative magnitude of displacement of the two configurations.

One application for the simulator is to determine the
modular robot configuration that displaces least while
performing a desired task. As an example, consider the
two CKBot configurations C3 and C4 shown in Figs. 17(b)
and (c). Both achieve the same load mount position and
orientation. However, given an applied torque load about
e3 (τ3) or e1 (τ1) the model predicts (Fig. 18(c)) that
configuration C4 displaces (�p1) less in translation relative to
configuration C3. And under the same loads, Fig. 18(d) shows
that configuration C3 rotates less relative to configuration C4.
Thus, a chain style modular robot can exhibit programmable
stiffness by specifying the chain path.

6. Discussion
The primary goal for this work is to develop a fast and
precise method for determining the impact of varying
both bond stiffness characteristics and the bond and
module arrangement in a modular robot or programmable
matter system. We discuss our method in terms of its
programmability, expressibility, computational cost, and
modeling error.

6.1. Programmability
Programmability is the degree to which a method enables one
to design desired properties into a system being constructed.
Simulations of RATChET7mm show how the choice of
Hamiltonian path influences the stiffness of the configuration.
In particular, placing the cables in areas of high tension
increases the apparent stiffness. For applications where
maximum stiffness under a specified load is a priority, the
path of the cable can be optimized to minimize the deflection
of the configuration.

Note that using two types of connection methods provides
the ability to tune the apparent Young’s modulus. The
placement of relatively compliant and rigid bonds throughout
the configuration controls the stiffness at the point of loading.
Though the number of modules in a configuration is finite,
the number of possible configurations is very large as it is
exponential in the number of modules. This allows for a
broad range of achievable material properties from a system
with only two inherent stiffnesses.

In the CKBot case, the choice of path of a chain
of modules (Figs. 17(b) and (c)) results in different
stiffness characteristics for the same end-point location and
orientation. Our simulator allows us to anticipate the tunable
apparent stiffness of the modular robot.

6.2. Expressibility
Expressibility is the degree to which a given model can be
adapted to represent, or express, a large variety of systems.
Our simulator can model modular robot and programmable
matter systems where edges of the module or module
component connectivity graph are assigned 6×6 stiffness
matrices. This paper shows it applies with equal generality
to a Rubik Snake’s triangular prisms linked only by the
chain backbone, to faces of CKBot modules linked by either
permanent intra-module structures or module-to-module
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Fig. 18. Comparison of experiment (Exp, lines with full markers) data with simulation (Sim, empty markers). Values in parentheses report
mean absolute value of relative error. Legend entries indicate CKBot joint configuration Ci and applied load τi . y axis indicates weight
applied to achieve τi . Figures show simulator’s ability to model ((a) and (b)) and predict ((c) and (d)) slopes and relative magnitudes of
displacements for CKBot configurations considered.

bonds, and to a folded chain of RATChET7mm tetrahedrons
threaded on a steel cable backbone and interlinked by inserted
latches.

In each case, the key to successful modeling has been to
identify the dominant compliances in the structure. For the
Rubik’s Snake, these compliances were easy to identify – the
only force between modules (other than the force preventing
inter-penetration) is the force holding adjacent prism faces
on the backbone close to each other, while allowing for
rotation around a face-centered axis. For the RATChET7mm,
compliances are found in backbone hinges and in module
interlinks created with inserts.

For CKBot modules, the dominant compliances were
initially hard to identify, as the “natural” choice of treating
the modules themselves as rigid bodies turned out to be
unreasonable. Instead, module faces became the rigid bodies
of the mechanical simulation, and the dominant compliances
are found between the faces that comprise a single robot
modules in addition to compliances between connected
modules. The CKBot system has an architecture that is

similar to MTRAN II, MTRAN III, Conro, and Superbot
as well as many other systems. Thus a similar modeling
approach may work well for these systems.

The generalized stiffness matrix allows users to quickly
express relative relationships in stiffness. For example, one
could study the effect of a connection method that is stiffer
in shear (e2–e3 plane) relative to axial (e1) loading. Such a
connection method can be approximated by

Kt =

⎡
⎢⎣

kt 0 0

0 10kt 0

0 0 10kt

⎤
⎥⎦, (12)

Ko =

⎡
⎢⎣

ko 0 0

0 ko 0

0 0 ko

⎤
⎥⎦. (13)

The designer could test many different lattice configurations
and later substitute a more accurate stiffness matrix.
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Fig. 19. Average computation time for fixed-free beam of N
modules under six free end load conditions.

6.3. Computational cost
From its inception, our simulator was designed as a survey
tool for automated assessment of modular configurations.
Its computational cost is as low as we believe one could
reasonably expect a fully general mechanical model of
modular structures to have. A key benefit of the 6 DOF
stiffness model is that it lumps together internal degrees
of freedom without degrading its expressive ability. Its use
allows the model to reduce the system to the minimal degrees
of freedom necessary to predict its displacement under load.

The computational cost comes mostly from the MATLAB

fsolve routine which is affected by several parameters of
the configuration and the boundary conditions. The solution
time is directly related to the magnitude of the load and the
number of modules.

For a given acceptable residual, increasing load
magnitudes requires an increasing number of load steps; this
suggests that improvements in the solver are the most direct
way to increase computation rates.

The computational cost is also a function of the number of
modules. Figure 19 plots the computation time as a function
of the number of modules in a beam configuration in seven
different loading cases. In each case, the free end of a
fixed-free beam of modules is loaded with 1mN of force.
Plotting the curves on a log-log plot shows that the empirical
computational cost is O(N1.9) with collision detection and
O(N1.4) without.

6.4. Modeling error
There are several possible sources of error between
experimental data and simulation results. In the
RATChET7mm system, the linear elastic beam model
approximates the stiffness between modules. However, it
does not fully model the complexity of the module-to-module
connections, (e.g., a press fit I-beam latch may slip depending
on its orientation with respect to the load). The gap due to
the cable slip fit through the modules and imperfect tension
in the cable may lead to some additional inaccuracies.

7. Conclusion
Programmable matter and modular robots can form structures
to best suit a functional requirement given short notice.
In many applications, mechanical stiffness is a primary
functional requirement and the system designers must
provide a means to realize the required structural stiffness by

Table II. Geometric and material properties for latch
and cable connection methods.

Property Latch Cable

length mm 3.0 19.0
width/diameter mm 1.0 0.24
height mm 1.6
E GPa 2.3 200
ν 0.35 0.30

a,b
a',b'

e
2

e
3

e
1

e
,

2

e
,

1

e
,

3

Fig. 20. Beam model with center of stiffness frame a and measured
stiffness frame at free end a′. Frames a and a′ are attached to module
A and frames b and b′ are attached to module B. At equilibrium,
frames a and b coincide; likewise frames a′ and b′ coincide.

choosing the arrangement of modules and the arrangement
of bonds among them. One example is finding the stiffest
configuration for building a wrench among the many suitable
shapes or bonding paths of a RATChET7mm chain. In
modular robot structures with heterogeneous and anisotropic
bonding characteristics, the module configuration determines
the stiffness of the structure and can be specified to tune the
apparent stiffness to suit the task.

In this paper, we show that using a generalized 6 × 6
stiffness matrix we can express the stiffness behavior of
arbitrary mechanical bonds and that this is an effective
method for analyzing the apparent stiffness of programmable
matter and modular robots. We offer enhancements to the
6 × 6 stiffness matrix model that handle anisotropies and
nonlinearities such as increased stiffness when in collision.

We demonstrate the ability of the method to model
both programmable matter with the Rubik’s Snake and
RATChET7mm systems and modular robots with the CKBot
system. Our experiments with these physical systems
validate the model. In the modular robot case, we present
an experimental methodology for determining stiffness
components that may be useful to similar modular robots.
In the case of folded chain programmable matter, we
demonstrate an ability to program apparent elasticity of a
constant shape by choice of folding.

There are several potential areas for future work. The
simulator can potentially guide the self-repair process
of self-reconfigurable modular robot. In situations where
portions of the modular robot have failed, the simulator
can determine critical areas that should be repaired first to
maintain sufficient rigidity. As another possible application
of the simulator, one could study the effect of defects in a
programmable matter configuration. The graph of stiffness
matrices can easily be modified to test the effects of poor or
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Fig. 21. Model of latch (a), cable (b) and face collision (c)
connections with dimensions and coordinate frame at beam
centroid. Latch and cable frames are located at their centroids;
face collision frame is located at face centroid.

missing bonds between neighbors and to find configurations
that are robust to localized bond failure.

In general, a simulation of a modular structure may have
many sources of nonlinearities such those that arise from
anisotropic stiffness and nonlinear bond force functions. The
simulator can readily incorporate such arbitrary nonlinear
effects. Reversible module interlinking using magnets26 or
electrostatics25 is one important class of such nonlinearities.
Magnetic interlinking of CKBot module clusters formed the
basis of self-reassembly after explosion,57 and adding such
links to our simulation would allow us to anticipate the
fracture loads for robots constructed of multiple clusters.
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Appendix A. Analytical Stiffness Derivation of
RATChET7mm Connections

A.1. Latch
We model the latch as a linear elastic rectangular cross section
beam. Figure 21(a) defines the latch dimensions and body
frame that is located at the centroid and aligned with the
principal axes. It defines the height (1.6 mm) and width
(1.0 mm) and length (3.0 mm).

The translational, rotational, and coupling stiffness
matrices measured at the free end of a fixed-free beam are,
respectively

K ′
lt =

⎡
⎢⎣

Al El

Ll
0 0

0 12 Cl2 El Il3

Ll
3 0

0 0 12 Cl3 El Il2

Ll
3

⎤
⎥⎦, (14)

K ′
lo =

⎡
⎢⎣

Gl Hl Wl
3 c2

Ll
0 0

0 4 Cl5 El Il2
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0

0 0 4 Cl6 El Il3
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⎤
⎥⎦, (15)

K ′
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⎡
⎢⎣

0 0 0
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2

0 6 Cl3 El Il2

Ll
2 0
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where Al is the cross sectional area of the latch, El is the latch
elastic modulus and Ili is the area moment of inertia about ei .
The K ′

lo11
is determined from the expression for a fixed-free

beam in torsion. The c2 = 0.2 term is the correction factor
for a rectangular beam in torsion.3

The stiffnesses due to transverse loading (along e2 or
e3) are determined using the theory of elasticity.2 Because
the ratio of the length to the height of the beam is
small, the Euler-Bernoulli beam equation does not apply.
The correction factors Cli account for the effect of shear
stress

Cl2 = 5 Ll
2

Wl
2 [49 νl+48]

4 + 5 Ll
2
, (17)

Cl3 = 5 Ll
2

Hl
2 [49 νl+48]

4 + 5 Ll
2
, (18)

Cl5 =
Wl

2 [11 νl+12]
4 + 5 Ll

2

Wl
2 [17 νl+24]

4 + 5 Ll
2
, (19)

Cl6 =
Hl

2 [11 νl+12]
4 + 5 Ll

2

Hl
2 [17 νl+24]

4 + 5 Ll
2
, (20)

where dimensions are defined in Fig. 21(a). Note in the
limit where the length Ll is much larger than the width
Wl or height Hl , the correction factors approach unity and
stiffness terms are the solutions of the Euler-Bernoulli beam
equation.

Fasse et al.12 prove that the adjoint associated with the
transformation Ha′

a given by

AdHa′
a

=
[

Ra′
a p̃a′

a Ra′
a

0 Ra′
a

]
(21)

transforms a stiffness in frame a′ to a by

K = AdT
Ha′

a

K ′AdHa′
a
. (22)

Using Eq. (22) and requiring the coupling stiffness to be
symmetric we compute the position of the center of stiffness.
Indeed the position of the center of stiffness is located at the
centroid of the beam. Further, in the case where modules are
connected by a latch only, the coupling stiffness at the center
of stiffness Klc is zero,

Klt =

⎡
⎢⎣

Al El

Ll
0 0

0 12 Cl2 El Il3

Ll
3 0

0 0 12 Cl3 El Il2

Ll
3

⎤
⎥⎦, (23)

Klo =

⎡
⎢⎣

Gl Hl Wl
3 c2

Ll
0 0

0 Klo22 0

0 0 Klo33

⎤
⎥⎦, (24)

where

Klo22 = 4 Cl5 El Il2

Ll

− 3 Cl3 El Il2

Ll

, (25)

Klo33 = 4 Cl6 El Il3

Ll

− 3 Cl2 El Il3

Ll

. (26)

Thus the stiffness matrix of the latch at the center of
stiffness is given by

Kl =
[

Klt 0

0 Klo

]
. (27)

A.2. Cable
Modeling the cable’s effect on the stiffness is difficult.
The cable must have a loose enough fit for manageable
folding of a configuration. Because the cable is not press
fit into the module, there exists a small gap that can allow
the cable to move radially. The lack of a press fit implies
that the cable can also slip axially with respect to the
module.

Therefore, the cable is approximated by a long cylindrical
beam as shown in Fig. 21(b). The length of the cable beam
model is 19 mm which is the total length of cable from the
point where it enters module A to the point where it exits
module B. The cable depicted in Fig. 4 is not drawn to
proportion; it defines the relative location of the center of
stiffness of the cable.

The derivation of the stiffness matrix of the cable is similar
to that of the latch. Because the length of the cable is much
larger than its diameter, there is no need for the correction
factors. The cable stiffness matrices in its center of stiffness
frame are

Kht =

⎡
⎢⎣

Ah Eh

Lh
0 0

0 12 Eh Ih3

Lh
3 0

0 0 12 Eh Ih2

Lh
3

⎤
⎥⎦, (28)

Kho =

⎡
⎢⎣

Gh Jh

Lh
0 0

0 Eh Ih2
Lh

0

0 0 Eh Ih3
Lh

⎤
⎥⎦, (29)

where for clarity we use the subscript h (for hinge) to denote
the cable stiffness. The complete stiffness matrix for each
cable i is given by

Khi
=

[
Khit 0

0 Khio

]
. (30)

A.3. Face collision
The possibility of collision of two modules under some
loading directions introduces an anisotropy into the system.
The connection between modules is stiffer when modules are
compressed together than when they are pulled apart. When
two modules collide, a face collision stiffness matrix Kf is
added to the general stiffness matrix (Kl or Klh).
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We measure the collision stiffness in the centroid frame
(shown in Fig. 21(c)) of the common face between connected
modules. The collision stiffness matrix is determined from
FEA. The loaded module is assumed to make a point contact
with the fixed module at a point on the face furthest from axis
of rotation. This assumption is valid considering the small
gap between modules allows some collision free rotation
until a point contact is made.

Considering small displacements from the center of
stiffness frame, only displacements that cause a collision
should be considered. Collision only affects the translational
stiffness Kf t11 normal to the face (e1) and the rotational

stiffnesses Kf o22 and Kf o33 about axes lying on the face
(e2 and e3). The Kf t11 term is determined by loading
one module along (e1) and recording the displacement
reported by FEA. Kf o22 is determined by constraining
the module to rotate about e2 and applying a moment
about this axis and recording the angular displacement.
Note that in the case of the latch the direction of rotation
matters. The simulator handles this asymmetry by the
way it detects collision. Kf o33 is determined in a similar
manner.

The measured stiffness is then transformed using Eq. (22)
to the center of stiffness frame between modules.
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