CKBot Platform for the ICRA 2010 Planetary
Challenge

Shai Revzen, Jimmy Sastra, Nick Eckenstien, Mark Yim

I. INTRODUCTION

The ICRA Planetary Contingency Challenge 2010 will
include 3 teams that will be using the new CKBot module
and software package. This paper will present some of the new
aspects of this hardware, underlying software architecture for
quickly programming the modules and will include a tutorial
for these teams.

II. HARDWARE

The planetary contingency will feature 50 CKBots and 10
CKBot wheel modules. The CKBots are manually reconfig-
urable modular robots that resemble a 6 centimeter cube on
each side.

CKBots are aimed to be robust, using reliable connectors
and high flex life ribbon cable. Cost is kept low by using hobby
servos and making them easy to manufacture using lasercut
ABS. They support a highly versatile range of locomotion as
they can be configured into many shapes and have high torque
capabilities. They are designed to be small enough to crawl
through a 3 inch pipe, while having enough torque to cantilever
7 modules by itself. Capabilities can be improved by a spring
loaded weight compensation mechanism that is easily attached
such that it can create an even longer arm.

TABLE I
CKBOT SPECIFICATIONS.

Size: 60x60x60mm.

Torque: 417 oz.-in.

Speed: 0.17s / 60 degrees

Communication:  CANBus, IrDa (local/remote range)
Weight: 146g.

Configuration: manual with screws

Input Power: 24V

Each module has two micro controllers. One is tasked with
CANbus and servo communication, the other is equipped with
7 independent serial ports and manages IR communication. IR
communication features a local mode where communication
only occurs between modules that are attached as well as
a remote range mode where communication can occur at a
distance of 2 meters if in line of sight. The local mode is useful
for configuration recognition. The remote range mode can
be used between unconnected clusters or modules connected
through passive pieces.

Users can program CKBots using Robotics Bus, a protocol
developed on top of CANbus. This software is written in
Python.

A. Gravity Compensation

There is a new attachment to the ckBot module that can
be used to compensate for gravity. It makes use of a spring
attached to the active arm of the module to compensate for the
weight of one or more modules. It should be noted that due to
technical limitations, it can only be applied to one module in
the vertical plane. However, it still makes certain tasks possible
that were previously not possible. Most notably, use of an
outwardly extended ckBot chain is aided by this attachment,
allowing a longer arm before the motor at the base is not able
to lift the chain. The attachment simply screws onto the side of
the existing ckBot frame, and comes ready to attach. Figure ??
shows one module with a two module load and perfect passive
gravity compensation over the full range of motion (180°).

Fig. 1. The left most module has a passive spring gravity compensation
attachment..

III. SOFTWARE

The CKBot modules are controlled through software com-
prising several layers. At the lowest layer, modules support a
Robotics Bus (RB) protocol layered on top of a CAN bus. RB
defines means for nodes to be queried regarding their settable
and gettable properties.

On top of RB we developed a python library that dynam-
ically discovers and presents a logical view of a cluster of
modules connected to a single CAN bus. The Cluster class can

ICRA 2010 Workshop "Modular Robots: State of the Art" 11



automatically discover properties of the modules and exposes
them to the user via set and get methods in dynamically
generated classes. When the module software version is fa-
miliar, the Cluster instantiates the appropriate Module sub-
class to represent it in addition to the automatically discovered
properties. For interactive use and prototyping we designed
the class structure to facilitate easy use from the Interactive
Python shell which supports features like tab-completion for
set and get methods and module names. For programming use,
the discovered properties, low-level RB addresses and module
sub-class methods are all presented with a combined naming
scheme allowing them to be listed, read and written. The
interface also provide fast communication with the modules
using asynchronous I0. An example of the Cluster API is
shown in Figure 2

# Create a Cluster

c = Cluster()

# Expect 4 modules and name 3 of them as specified
c.populate(4,{ 0x91 'left', Oxb2 : 'head',0x5d :
'right'} )

# cluster.at provides logical alias for a numeric
module ID

assert c.at.head == c[0xb2]

# Set position of a head servo
c.at.head.set_pos (4500)

# cluster.od exposes auto-discovered properties
c[0xb2] .od.set_pos (4500)

Fig. 2. Example of Cluster API use.

On top of the Cluster interface, we developed a GUI based
on the wxPython cross-platform UI library. It presents a tree
view of all properties in current modules, and allows the
property lists to be quickly customized by editing them as
YAML files. The user may select properties to examine and
set via the Ul, and receives visual indication if modules
disconnect.

For high-level programming and interactive operations,
we developed an application framework (JoyApp) based on
pygame’s event driven architecture and sporting an interface
to the Scratch visual programming environment as shown in
Figure 3. We enhanced pygame with new event types repre-
senting robot module position changes and Scratch events and
sensor updates. JoyApp provides a powerful new abstraction:
the Plan. A Plan is a sequentially executing behavior with
its own incoming event queue and event handler. Plans may
be executed sequentially or in parallel using a cooperative
multitasking architecture that obviates the need to worry about
thread safety.

A library of Plan classes is provided, including plans
with the ability to load spreadsheets saved in the commonly
supported CSV format as Gait Tables, Figure 4. A Gait Table
is a spreadsheet whose columns are mapped by each SheetPlan
instance to settable properties in the Cluster and whose rows
represent consecutive times. A value in a cell represents the
operation of setting the property to the specified value at the
specified time. The use of a full-featured spreadsheet program

e b T . T L

Fig. 3. Example of Cluster API use ..

to generate the gait tables makes it particularly easy to edit
gaits and to explore gaits with a mathematical relationship
between the values written in different times and into different
properties.

“t” | “elbow” | “wrist”
0 | 1000

0.5 1000
1 | 500 0
L5| 0

Fig. 4. A “Gait table”.

# .. in JoyApp.onStart()
self.ltPinch=SheetPlan (self,
loadCsV (“gait.csv”) ,
elbow="Nx35/pos”, wrist="Nx55/pos” )
self.rtPinch=8heetPlan (self,
loadCsV (“gait.csv”),
elbow="Nx5A/pos”, wrist="NxA3/pos” )

# .. in JoyApp.onEvent ()

if evt. type==JOYBUTTONDOWN :
if evt.button==0: self.ltPinch.start()
elif evt.button==1: self.rtPinch.start()

Fig. 5. Using the same gait table on two different arms.

ICRA 2010 Workshop "Modular Robots: State of the Art" 12



	preface
	modular-robots-icra2010-workshop
	kernbach
	revzen
	shen
	belisle
	larsen
	lee
	merali
	padir
	rubenstein
	abdi
	garcia
	gonzalez-gomez
	kuo
	lyder
	brener
	herrero-carron
	gilpin
	ko
	larkworthy
	moreno




