
US 2003OO30575A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2003/0030575A1

Frachtenberg et al. (43) Pub. Date: Feb. 13, 2003

(54) LOSSLESS DATA COMPRESSION Publication Classification

(75) Inventors: Eitan Frachtenberg, Mevasseret Zion (51) Int. Cl." .. H03M 7/34
(IL); Shai Revzen, Jerusalem (IL) (52) U.S. Cl. .. 341/51

Correspondence Address: (57) ABSTRACT
G.E. EHRLICH (1995) LTD.
c/o ANTHONY CASTORINA Dictionary based data compression apparatus comprising: a
SUTE 207 library of Static dictionaries each optimized for a different
2001 JEFFERSON DAVIS HIGHWAY data type, a data type determiner operable to Scan incoming
ARLINGTON, VA 22201 (US) data and determine a data type thereof, a Selector for

9 Selecting a Static dictionary corresponding to Said deter
(73) Assignee: Harmonic Data Systems Ltd. mined data type and a compressor for compressing Said

incoming data using Said Selected dictionary. The apparatus
(21) Appl. No.: 09/849,316 is useful in providing efficient compression of relatively

Short data packets having undefined contents as may be
(22) Filed: May 7, 2001 expected in a network Switch.

36
A

3O 37.

(defined - 9 nau Cetermine -
Packes Buffer

US 2003/0030575A1 Patent Application Publication Feb. 13, 2003 Sheet 1 of 5

US 2003/0030575A1

| 7. f)

þess»,

/
9€

Patent Application Publication Feb. 13, 2003 Sheet 2 of 5

US 2003/0030575 A1 Patent Application Publication Feb. 13, 2003 Sheet 3 of 5

US 2003/0030575 A1 Patent Application Publication Feb. 13, 2003 Sheet 4 of 5

US 2003/0030575A1 Patent Application Publication Feb. 13, 2003 Sheet 5 of 5

US 2003/0030575 A1

LOSSLESS DATA COMPRESSION

FIELD OF THE INVENTION

0001. The present invention relates to lossless data com
pression and more particularly but not eXclusively to lossleSS
data compression for Small-sized data units.

BACKGROUND OF THE INVENTION

0002 Data compression is generally divided into two
groups, lossy data compression which permits degradation
of the data and is generally used for image data and lossleSS
data compression which is fully data preserving and which
is generally used for text, program data and the like.
0.003 Relating specifically to lossless data compression
methods, the majority of methods in use are adaptive,
meaning that the method in use adapts to the data that is
being compressed. For example a dictionary of commonly
appearing data fragments or Strings is built up during an
initial pass through the data. The dictionary is usually built
up So that the most common Strings can be referred to using
the shortest references. Disadvantages of this method
include Somehow having to Send Sufficient data to allow
reconstruction of the dictionary at the receiving end and,
more importantly, that it is hard to compress Short extracts
of data Since there is not enough data to permit significant
adaptation. An example of an adaptive dictionary based
compression method is given in U.S. Pat. No. 5,389,922.
0004 Adaptive methods are particularly suitable for
cases when nothing is known beforehand about the input
data, and they provide a generalized one-size-fit-all algo
rithm to build a dictionary which is optimized in each case
for any data currently being compressed. Generally, adaptive
methods place, within the compressed data, information that
enables the decompressing process to build the identical
dictionary from Scratch. This eliminates any need to transfer
the dictionary itself to the decompressing process but still
incurs a certain size overhead in the compressed data packet
Since the Strings making up the dictionary typically need to
be included once in full in the compressed data.
0005. In addition to adaptive methods, there are also
non-adaptive methods. Typically in non-adaptive methods,
instead of using a dictionary built up dynamically during a
pass through the data, a Static or pre-defined dictionary is
used to compreSS the data. This has the advantage that the
Strings comprising the dictionary entries need not be sent
Since a corresponding dictionary can be pre-stored at the
receiving end. Furthermore the method is as suitable for
Short as for long lengths of data Since the dictionary does not
need to adapt.
0006 A further advantage of a static dictionary is that
Since it is created ahead of time, it can be created using large
data Samples or heavy computing resources not generally
available at compression time.
0007. However, the static dictionary is optimal only for
the data Set for which it was created and may not be the
optimal dictionary for data Sets likely to be encountered in
practice in the course of compression. Indeed, in Some cases
the Static dictionary may not be Suitable at all, when for
example there is very little correlation between the dictio
nary entries and the common repeated data Sections of the
data to be compressed. It is likewise not possible to produce

Feb. 13, 2003

a larger Static dictionary optimized for a variety of data types
Since a larger dictionary requires longer reference Strings,
thereby reducing compression efficiency. For both of the
above reasons a general Static dictionary therefore cannot be
used for data about which nothing is known about before
hand.

0008 Digital communications networks handle very
large quantities of data, generally in the form of data
packets. Each of the data packets has to be treated as an
autonomous unit Since the communications network may
not have related packets to hand at any given time. Finding
related packets would involve inspection of packet headers
and comparison of results which would provide a very heavy
load on System resources. Furthermore, decompression reli
ability may be reduced if decompression of one packet relies
upon the availability at the receiver of another packet. Some
of the packets contain data already compressed by the Sender
and otherS may contain uncompressed data. The kinds of
data in the packets varies Since the packets are from uncon
nected Sources and involved in unconnected tasks, although
a relatively Small number of basic data types may be able to
cover the vast majority of packets.
0009. It is desirable to compress individual data packets
at the network Switches for decompression at Subsequent
Switches, thereby to increase network efficiency. AS data
packets are relatively Small, adaptive compression is inef
ficient. Similarly, as different packets contain different types
of data, no single Static dictionary can be used.

SUMMARY OF THE INVENTION

0010. It is an object of the present embodiments to
provide a method and apparatus for efficient data compres
Sion of Small data units whose data type is unknown or
variable.

0011. It is a further object of the present embodiments to
provide a method and apparatus for data compression, which
is applicable to a Switching unit of a digital communication
network.

0012. According to a first aspect of the present invention
there is thus provided a dictionary based data compression
apparatus comprising

0013 a library of static dictionaries, comprising at
least two static dictionaries each optimized for a
different data type,

0014 a data type determiner operable to scan
incoming data and determine a data type thereof,

0015 a selector for selecting a static dictionary
corresponding to Said determined data type and

0016 a compressor for compressing said incoming
data using Said Selected dictionary.

0017 Preferably, the incoming data comprises unrelated
data packets, each data packet being of insufficient length to
permit efficient adaptive compression.
0018 Preferably, the data type determiner is operable to
assign a data type to individual packets.
0019 Preferably, the data types include an unknown type
and wherein Said compressor is operable not to compress a
packet classified as unknown.

US 2003/0030575 A1

0020 Preferably, the data types include at least one text
type.

0021 Preferably, the text type comprises statistically
Spaced text Sub-types.
0022 Preferably, the each dictionary comprises a hash
table to optimize Searching of Said dictionary.
0023) A preferred embodiment is incorporated within an
interface to a high capacity data link.
0024 Preferably, the said data type determiner is oper
able to obtain a Statistical analysis of relative character
frequency from Said data, thereby to determine Said data
type.

0.025 Preferably, the compressor is further operable to
tag compressed packets to indicate Said Selected dictionary.
0.026 Preferably, the data type determiner is operable to
obtain a Sample of the data within the packet for Scanning
and wherein the Sample is taken from a position offset from
a start of the packet by a predetermined offset, thereby to
avoid Selecting a Sample from a packet header.
0.027 According to a second aspect of the present inven
tion there is provided a method of compressing data com
prising:

0028)
type,

0029) selecting, from a library of static dictionaries,
a Static dictionary optimized for Said determined data
type,

0030 and compressing said incoming data using
Said Selected dictionary.

Scanning incoming data to determine a data

0.031 Preferably, the incoming data comprises data char
acters, the method comprising determining a data type by
analyzing relative character content of Said data and com
paring Said relative character content with characteristics of
each data type thereby to determine a closest matching data
type.

0.032 Preferably, the data types comprise a data type for
machine executable data which type is identified by a
preponderance of the Zero character.
0.033 Preferably, the data type for machine executable
data is further classified into data Subtypes for machine
architecture.

0034 Preferably, the data is arranged in data packets and
wherein Scanning of data is carried out on a Sample taken
from a position offset from a packet Start by an offset
Sufficiently large to avoid packet header data.
0035) A preferred embodiment tags the data to indicate
Said Static dictionary Selection.
0.036 Preferably, the data types include an “unknown”
data type and which method is operable to perform a null
compression on data classified as type “unknown'.
0037 Preferably, the dictionaries in said library comprise
hashing tables to enable easy Searching.
0.038 Preferably, the said data types comprise at least one
text data type.

Feb. 13, 2003

0039. According to a third aspect of the present invention
there is provided a dictionary based decompression appara
tus comprising a library of Static dictionaries each optimized
for a different data type,

0040 a dictionary determiner operable to scan
incoming data and determine a data type of a dic
tionary used to compress Said data,

0041 a selector for selecting a static dictionary
corresponding to Said determined data type and

0042 a decompressor for decompressing said
incoming data using Said Selected dictionary.

0043 Preferably, the data is arranged in packets having
packet headers and Said dictionary determiner is operable to
Search a packet header of an incoming packet to find a tag
inserted by a corresponding compression apparatus to indi
cate Said data type.
0044 Preferably, the decompressor is operable to carry
out a null compression operation on any packet identified by
Said tag as not having a Selected data type.
0045 Preferably, a compression performance threshold is
Set, and Said compressor is operable to reidentify any data
type whose compression does not reach said performance
threshold as being of unknown type.
0046 Preferably, the decompressor comprises an LV type
decompression procedure.

0047 Preferably, the data types include at least one text
data type.
0048 Preferably, the data types include at least one
executable data type.
0049. A preferred embodiment comprises a bogus data
identifier operable to Stop a current decompression operation
if a current data packet associated with a given dictionary
appears to contain data out of a range of Said dictionary.
0050. According to a fourth aspect of the present inven
tion there is provided a method of decompressing data
comprising,

0051 receiving data that has been compressed using
one of a plurality of Static dictionaries from a Static
dictionary library,

0052 determining from said received data which
one of Said plurality of dictionaries has been used to
compress Said data, and

0053 decompressing said data using said deter
mined dictionary.

0054 Preferably, the data is in the form of data packets
having headers and wherein Said determining is carried out
by identifying an indication tag within Said packet header.
0055 Preferably, the dictionaries include a dictionary for
machine executable data.

0056 Preferably, the packets further include an
“unknown packet type and which method is operable to
perform a null decompression operation on packets identi
fied as type “unknown”.
0057 Preferably, the data types comprise at least one text
data type.

US 2003/0030575 A1

0.058 Preferably, the decompression includes checking
Said data to ensure that it is within a range of Said Selected
dictionary and aborting Said decompression if it is outside a
range of Said dictionary.
0059. According to a fifth aspect of the present invention
there is provided apparatus for building a library of Static
compression dictionaries, Said apparatus comprising

0060)
types,

0061 an adaptive dictionary builder for building
dictionaries optimized for an input data Set,

0062) an input unit for inputting, to said adaptive
dictionary builder, test data of a Single data type for
each one of a plurality of dictionaries to be built,

0063 and a memory for storing a plurality of dic
tionaries, each built using a different test data type,
thereby to form a library of Static compression
dictionaries.

test data categorized into a plurality of data

0.064 Preferably, the adaptive dictionary builder com
prising LZ type dictionary building functionality.
0065. In a preferred embodiment, the adaptive dictionary
builder further comprises a hash table constructer for con
Structing a hash table for rapid Searching of Said dictionary.
0.066 Preferably, the adaptive dictionary builder com
prises a String evaluation unit for assigning compression
utility values to repeated Strings identified within Said data,
thereby to provide a relative prioritization for incorporation
of Said data Strings into Said respective dictionary.
0067 Preferably, the string evaluation unit is operable to
generate a String utility value by computing a difference
between a length of a given String and a length of a reference
of a position thereof in a dictionary.
0068 Preferably, the string evaluation unit is operable to
order evaluated Strings in an order of respective String utility
values.

0069. A preferred embodiment includes a dictionary opti
mizer for optimizing each respective dictionary by merging
Similar Strings incorporated within Said dictionary.
0070 The dictionary optimizer may optimize each
respective dictionary by merging Strings entered into Said
dictionary using a string merging heuristic.
0071 According to a sixth aspect of the present invention
there is provided a method of building a Static dictionary
library, the method comprising:

0072)
0073 categorizing said test data into a plurality of
data types,

inputting test data,

0074 building an adaptively optimized dictionary
for each one of Said data types, and

0075 storing each adaptively optimized dictionary
together to form Said library.

0.076 Preferably, the building of said dictionary com
prises using an LZ type dictionary building process.
0077. A preferred embodiment includes constructing a
hash table for rapid Searching of Said dictionary.

Feb. 13, 2003

0078. A preferred embodiment preferably includes
assigning compression utility values to repeated Strings
identified within said data, thereby to provide a relative
prioritization for incorporation of Said data Strings into Said
respective dictionary.
0079 A preferred embodiment comprises generating a
String utility value by computing a difference between a
length of a given String and a length of a reference of a
position thereof in a dictionary.
0080 A preferred embodiment comprises ordering evalu
ated Strings in an order of respective String utility values.
0081. A preferred embodiment comprises ordering evalu
ated Strings according to frequency.
0082) A preferred embodiment comprises optimizing
each respective dictionary by merging Similar Strings incor
porated within Said dictionary.
0083) A preferred embodiment comprises optimizing
each respective dictionary by merging Strings entered into
Said dictionary using a String merging heuristic.
0084 Preferably, the categorizing of said data comprises
making character frequency analyses of Said data and asso
ciating together data having a similar character frequency
characteristic.

0085. According to a seventh aspect of the present inven
tion there is provided a method of building a Static dictionary
library, the method comprising:

0086 inputting test data categorized into a plurality
of data types,

0087 building an adaptively optimized dictionary
for each one of Said data types, and

0088 storing each adaptively optimized dictionary
together to form Said library.

0089 Preferably, the building of said dictionary com
prises using an LZ type dictionary building process.
0090. A preferred embodiment comprises constructing a
hash table for rapid Searching of Said dictionary.
0091 A preferred embodiment comprises assigning com
pression utility values to repeated Strings identified within
Said data, thereby to provide a relative prioritization for
incorporation of Said data Strings into Said respective dic
tionary.
0092 A preferred embodiment comprises generating a
String utility value by computing a difference between a
length of a given String and a length of a reference of a
position thereof in a dictionary.
0093. A preferred embodiment comprises ordering evalu
ated Strings in an order of respective String utility values.
0094. A preferred embodiment comprises optimizing
each respective dictionary by merging Similar Strings incor
porated within Said dictionary.
0095) A preferred embodiment comprises optimizing
each respective dictionary by merging Strings entered into
Said dictionary using a String merging heuristic.
0096 Preferably, the adaptively organized dictionaries
are each of different size.

US 2003/0030575 A1

0097 Preferably, the adaptively organized dictionaries
are each usable in incompatible compression procedures.
0098. According to an eighth aspect of the present inven
tion there is provided an apparatus for classifying incoming
data, comprising:

0099 a data Scanner for Scanning incoming data to 9. 9.
provide a Statistical analysis thereof, and

0100 a type associator for using data of said statis
tical analysis to Step through characteristics of pre
determined data types, thereby to associate Said data
with one of Said data types.

0101 According to a ninth aspect of the present invention
there is provided an apparatus for classifying incoming data,
comprising:

0102) a library comprising statistical data sets for
each one of a plurality of data types,

0103 a data Scanner for Scanning incoming data to 9. 9.
provide a Statistical analysis thereof,

0104 a type matcher for finding a closest matched
between Said analyzed data and Said Statistical data
Sets, thereby to determine a most probable data type
of Said incoming data.

0105. According to a tenth aspect of the present invention
there is provided a method of classifying incoming data in
accordance with a library of data types, comprising:

0106 Scanning incoming data to obtain a statistical
analysis thereof,

0107 using said statistical analysis to step through a
Series of data type characteristic Selection rules,

0108) determining a closest match between said
incoming data and Said respective data types from
Said Selection rules,

0109 thereby to obtain a most probable data type of
Said incoming data.

0110. According to an eleventh aspect of the present
invention there is provided a method of classifying incoming
data in accordance with a library of data types, comprising:

0111 Scanning incoming data to obtain a statistical
analysis thereof,

0112 comparing said analysis with each one of a
plurality of Sets of Statistics each corresponding to a
respective data type in Said data type library, and

0113 determining a closest match between said
incoming data and Said respective data types,

0114 thereby obtaining a most probable data type of
Said incoming data.

0115 According to a twelfth aspect of the present inven
tion there is provided a Selective packet compression device
comprising:

0116 a packet classifier for classifying incoming
data packets into precompressed packets and non
compressed packets and

0117 a compressor connected to said packet classi
fier to be switchable by said packet classifier to

Feb. 13, 2003

compress packets classified as non-compressed
packets and not to compress packets classified as
precompressed packets.

0118 Preferably, the incoming data comprises unrelated
data packets, each data packet being of insufficient length to
permit efficient adaptive compression.
0119 Preferably, the data type determiner is operable to
assign a data type to individual packets.
0120 Preferably, the data types include an unknown type
and wherein Said compressor is operable not to compress a
packet classified as unknown.
0121 Preferably, the data types include at least one text
type.

0.122 Preferably, the text type comprises statistically
Spaced text Sub-types.
0123 Preferably, each dictionary comprises a hash table
to optimize Searching.
0.124. A preferred embodiment is incorporated within an
interface to a high capacity data link.
0.125 Preferably, the data type determiner is operable to
obtain a Statistical analysis of relative character frequency
from Said data, thereby to determine Said data type.
0.126 Preferably, the compressor is further operable to
tag compressed packets to indicate Said Selected dictionary.
0127 Preferably, the data type determiner is operable to
obtain a Sample of the data within the packet for Scanning
and wherein the Sample is taken from a position offset from
a start of the packet by a predetermined offset, thereby to
avoid Selecting a Sample from a packet header.
0128. According to a thirteenth aspect of the present
invention there is provided a Selective packet compression
method comprising:

0.129 classifying incoming data packets as com
pressed packets and non-compressed packets,

0.130 compressing those incoming data packets
classified as non-compressed packets, and

0131 not compressing those incoming data packets
classified as compressed packets.

0.132. According to a fourteenth aspect of the present
invention there is provided a Static compression dictionary
library comprising:

0.133 a plurality of individually selectable static
compression dictionaries, each dictionary being opti
mized for compression of data of a predetermined
data type.

0.134. According to a fifteenth aspect of the present
invention there is provided a method of classifying a data
packet into one of a plurality of data types based on
character content of the data of the packet, the method
comprising:

0.135 obtaining a first data string beginning at a 9. g Deg 9.
predetermined offset from the beginning of the
packet,

0.136 analyzing the data string for character distri
bution, and

US 2003/0030575 A1

0.137 classifying the packet based on the character
distribution.

0138 A preferred embodiment comprises obtaining a
Second String at a predetermined offset from Said first String
and analyzing Said Second String for character distribution.

0.139. According to a sixteenth aspect of the present
invention there is provided a compressor for compressing
data by replacing data with a corresponding Start position
and a length of a location of Said data in a data dictionary,
Said replacements giving a Statistical correlation between
length and frequency Such as to provide a progression
between more frequent lengths and less frequent lengths, the
compressor comprising an encoder operable to encode Said
lengths. Such that Said Statistically more frequent lengths are
encoded using Shorter codes than Said Statistically leSS
frequent lengths, a Statistically most frequent length being
encoded with a shortest code.

0140. According to a seventeenth aspect of the present
invention there is provided a method of building a hash table
for a String-based compression dictionary, Said String-based
compression dictionary comprising a String of concatenated
repeating data portions of target compressible data, parts of
the String being referable by a Start position and a length, the
method comprising:

0141 passing through all positions on Said string,
and

0.142 for each position on said string repeating for
all String lengths between a minimum String length
and a maximum String length:

0.143 computing a hash value for the string part at
the current position and having the current String
length,

0144 entering the current position in the hash
table at a position of the computed hash value if
Said position of the computed hash value is empty,
and

0145 entering the current position at a subsidiary
position of Said computed hash value if Said
position of Said computed hash value is already
occupied.

0146 According to an eighteenth aspect of the present
invention there is provided a method of finding a location of
a longest String part within a String based compression
dictionary referenced via a hash table with table entries and
asSociated Sub-entries, and an associated hash function, the
method comprising:

0147 applying Successively incrementally increas
ing lengths of Said String part to Said hash function to
obtain a hash result,

0.148 applying said hash result to said hash table to
obtain a location in Said dictionary,

0149 and when a location is not retrieved from said
hash table then providing a last previous obtained
location as an output if a preceding incrementally
increasing length of Said String yielded a location,
and otherwise indicating a retrieval failure.

Feb. 13, 2003

BRIEF DESCRIPTION OF THE DRAWINGS

0150. For a better understanding of the invention and to
show how the same may be carried into effect, reference will
now be made, purely by way of example, to the accompa
nying drawings.
0151. With specific reference now to the drawings in
detail, it is stressed that the particulars shown are by way of
example and for purposes of illustrative discussion of the
preferred embodiments of the present invention only, and are
presented for providing what is believed to be the most
useful and readily understood description of the principles
and conceptual aspects of the invention. In this regard, no
attempt is made to show Structural details of the invention in
more detail than is necessary for a fundamental understand
ing of the invention, the description taken with the drawings
making apparent to those skilled in the art how the Several
forms of the invention may be embodied in practice. In the
accompanying drawings:
0152 FIG. 1 is a simplified diagram showing a part of a
communications network including a high capacity link,
0153 FIG. 2 is simplified block diagram showing a
compression decompression unit according to a first
embodiment of the present invention,
0154 FIG. 3 is a simplified block diagram of the device
of FIG. 2 in greater detail,
O155 FIG. 4A is a simplified block diagram of the type
determiner of the device of FIG. 3,

0156 FIG. 4B is a variation of the type determiner of
FIG. 4A,
O157 FIG. 5 is a simplified block diagram of a dictionary
creator in accordance with an embodiment of the present
invention, and
0158 FIG. 6 is a simplified block diagram of device for
categorizing test data into data types for use in the dictionary
creator of FIG. 5.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

0159. Before explaining at least one embodiment of the
invention in detail, it is to be understood that the invention
is not limited in its application to the details of construction
and the arrangement of the components Set forth in the
following description or illustrated in the drawings. The
invention is applicable to other embodiments or of being
practiced or carried out in various ways. Also, it is to be
understood that the phraseology and terminology employed
herein is for the purpose of description and should not be
regarded as limiting.

0160 Reference is now made to FIG. 1, which is a
Simplified block diagram showing part of a digital commu
nications network. A first trunking network 10 is connected
via a Switch or router 12 to a high capacity link 14. The high
capacity link may typically be a high capacity optical fiber
link or a microwave or satellite link. The far end of the high
capacity link 14 is connected to a Second Switch or router 16
which is in turn connected to a Second trunking network 18.
The Switches 12 and 16 direct data packets arriving from the
trunking networks to the appropriate high capacity link
according to address information Stored in packet headers.

US 2003/0030575 A1

0.161 The Switches 12 and 16 preferably serve inter alia
as interfaces for the high capacity link in that they carry out
operations on the data that make for more efficient use of the
high Speed data link. A particularly useful operation for
increasing the capacity of the link is compression of the data
packets. However, compression of data packets at the net
work Switch level is problematic because of the short packet
length and the mixture of data types.

0162 More particularly, data packets arriving at the
Switches may be any kind of packet traveling across the
network. Some of the packets may have been compressed by
a Sending application, Some may have been compressed by
other parts of the network and Some may be uncompressed.
In addition to being compressed or uncompressed, different
packets may contain different types of data in terms of
packet content. For example Some packets may contain
audio or Visual data files, others may be text files, the text
itself being in any one of a wide variety of languages. Some
packets may contain run length encoded data, e.g. fax data,
and Some packets may contain executable code. Each of
these data types follows different Statistical patterns and has
different properties Such that a Static compression dictionary
optimized for one type is practically useleSS for any of the
others. Furthermore the packet size is not large enough to
allow an adaptive dictionary to effectively be built up.
Digital communications networks handle very large quan
tities of data, generally in the form of data packets. Each of
the data packets has to be treated as an autonomous unit
Since the communications network may not have related
packets to hand at any given time. Finding related packets
would involve inspection of packet headers and comparison
of results which would provide a very heavy load on system
resources. Furthermore, decompression reliability may be
reduced if decompression of one packet relies upon the
availability at the receiver of another packet.

0163. In prior art systems which compress data packets at
the network Switch level, much effort is expended in com
pressing data packets that have already been compressed
once, So that the benefits of further compression are mini
mal.

0164 Reference is now made to FIG. 2, which is a
Simplified block diagram of a compression/decompression
device according to a first embodiment of the present
invention for use in the Switches 12 and 16 of FIG. 1. In
FIG. 2 the compression/decompression device comprises a
compression path 20 and a decompression path 22. The two
paths share a common library 24 of Static compression
dictionaries. AS will be explained in greater detail below, the
compression path is able to examine incoming packets for
Statistical qualities, thereby to determine a data type of the
packet. The determined data type is then used to Select a
Static compression dictionary from the library 24, corre
sponding to the Selected data type, and then the packet is
compressed using the Selected dictionary in any one of a
Series of techniques known to the skilled man, which tech
niques essentially replace Strings of data with references to
their location in the dictionary. It is noted that whilst most
methods rely on So-called “LZ-based compression', Some
other methods can also be considered under "dictionary
compression'. One example is the well-known, efficient and
mostly unpatented family of So-called "Huffman compres
Sion” techniques.

Feb. 13, 2003

0.165. As will be exemplified below, the statistical exami
nation is additionally able to determine that a data packet
does not fit any of the available data types, in which case the
packet is preferably not compressed. Such an event may
occur for example when the data packet is already com
pressed. A decision not to compress a Seemingly random
packet (i.e. compressed, encrypted, or otherwise random)
however, need not merely be the default case of the type
Selector. It can be an explicit choice for improving overall
compressor performance.
0166 The possible data types may be any one of a
plurality of-predetermined data types, limited only by the
ability of a classification Scheme to be able to classify data
as belonging thereto. There is no other limitation on the
number or kind of data types, and any criteria may be used
in classification, but in order to obtain fast compression
together with a high compression ratio, the classifier pref
erably ascribes the same data type to units of data having
Similar contents in information-theory terms. To each of the
predetermined data types a pre-constructed Specific dictio
nary is assigned, except for data types that it is not desired
to compress using a Static dictionary. Such types may
include already compressed data, and may also include other
data types for which dictionary-based compression is not the
most Suitable method, and they may also include data
packets for which classification Simply has not Succeeded.
0.167 The data packets are then compressed using the
Specific dictionary associated there with. Those packets with
which the classification Scheme has not Succeeded in asso
ciating a dictionary are preferably left uncompressed.
0168 Preferably, the data packet is tagged with an indi
cation as to whether it has been compressed or whether it has
been left alone, and if it has been compressed then it is also
tagged with an indication of the data type that has been used.
It is noted that the tag may include error correction infor
mation. Error correction information added at any earlier
Stage of the compression algorithm would be liable to be
removed by later Stages of the compression.
0169. The tags may also serve to define a compression
method as well as a Static dictionary. Certain data types may
be more Suited to non-dictionary compression methods.
Such data types once identified may be compressed using
the associated compression method rather than a given Static
dictionary and tags may be used to indicate to the receiver
the compression method used.
0170 AS will be explained in more detail below, the
Specific dictionary is any representation of recurring Strings
found to be common in the given data type, the represen
tation being Suitable for efficient use by the compressor or
decompressor, for example an LZ-type compressor/decom
preSSor. The dictionary may be any one of a range of
variations on the LZ type, or may be designed for other
dictionary-based compression methods Such as Huffman
encoding. A preferred embodiment comprises a dictionary
which is simply a long concatenation of recurring data
Strings from the class.
0171 A preferend embodiment of a static dictionary also
has as little redundancy in it as possible, So that it can
contain more data for a fixed size or alternatively, use leSS
Space and shorter references. Reduction in redundancy may
be achieved by what is known as pruning, as will be
described in more detail below.

US 2003/0030575 A1

0172 The decompression path 22 preferably carries out
the complementary operation of the compression path 20 in
that it determines which, if any Static dictionary from the
Static dictionary library 24 has been used to compress a
current incoming data packet. It will be appreciated that the
Static dictionary library at the decompression end is the same
as the library at the compression end
0173 Preferably, in the decompression path such a deter
mination does not involve a Statistical analysis but rather
may be read from the tag information added to the packet
header by the compression path 22 as explained above. The
relevant dictionary is Selected and is used to decompress the
data in a Standard decompression operation in which refer
ence Strings in the compressed data are replaced with the
corresponding Strings in the dictionary. Identification data or
tags are then removed from the data packet, including tags
that indicate that no compression was carried out, and on
which packets no decompression is needed.

0.174. The use of a fixed library of static compression
dictionaries, which can be held independently at both the
compression and decompression ends of the operation, has
the advantage that the dictionary entries do not need to be
Sent along with the compressed data. For Short excerpts of
data Such as typical length data packets there is thus obtained
a considerable advantage in terms of obtained compression
ratio.

0175 Reference is now made to FIG. 3, which is sim
plified block diagram showing the device of FIG. 2 in
greater detail. Parts that are identical to those shown above
are given the Same reference numerals and are not referred
to again except as necessary for an understanding of the
present embodiment. In FIG. 3, a data compression path
comprises an input buffer 30 for receiving undefined data
packets from a network. A type determiner 32 Scans the
incoming data packet to obtain various Statistics of the data
content of the packet. AS will be explained in more detail
below, Statistics for Scanning may be Selected in Such a way
as to permit effective Selection of a Static dictionary from the
Static dictionary library 24 that is best Suited for compres
Sion of the incoming data packet. The type determiner 32 in
one embodiment compares the Statistics it has obtained with
Sets of corresponding Statistics for each one of the data types
available, meaning each data type corresponding to a dic
tionary in the library.

0176). In another embodiment, the type determiner 32
uses the Statistics obtained as the input to a recognition
algorithm, as will be explained below.

0177. Typical data types may include text data, execut
able file data, and unclassified data. In a preferred embodi
ment, text data is further classified into different languages.
Each data type used has its own specialized dictionary.
Executables can also be further classified, for example
according to target architectures. Likewise, text can be
further classified to popular content types which include
HTML, JavaScript, etc.
0.178 The comparison or algorithm preferably leads to
the Selection of a closest possible data type including a type
unknown, and the result is then passed to a Selector 34. The
Selector 34 then Selects a Static dictionary of corresponding
type from the library 24 which may then be used by
compressor 36 to compress the data packet as explained

Feb. 13, 2003

above. If a type of unknown is selected then preferably the
compressor 36 carries out a null operation. Preferably, a
marker or tag is added to the packet header, as explained
above, to indicate which Static dictionary, if any, has been
used and the compressed data packet is then passed on to
output buffer 38 for sending on via the network.

0179. In a further preferred embodiment of the present
invention a mistyping detector is provided at the compres
Sor. Operation of the mistyping detector is as follows: It may
happen that a packet is tagged as a given type, e.g. TEXT,
and an attempt is made by the compressor to compress the
packet. However, the resulting compressed packet size is the
Same as or actually larger than the original packet size. Such
poor compression behavior can arise from wrong type
identification, or an unsuitable dictionary for the packet at
hand. Such packets are best re-tagged as type UNKNOWN,
and Sent over the channel uncompressed, partly to avoid
increasing the packet size and partly to avoid unnecessary
processing on the decompressing Side. Furthermore, it is
pointed out that it is worthwhile to recognize Such uncom
pressible packets as early as possible in the compression
process to avoid wasteful processing at the compressor Side
as well, and thus the mistyping detector may use a threshold
factor to check, during the compression proceSS whether or
not worthwhile compression is being gained and thus
whether the packet is worth continuing working on, or
whether it would be better to tag it as UNKNOWN at this
point and continue. Threshold checking can be carried out
continuously (i.e. compression performance is measured
continously and compression is aborted whenever below the
threshold), or at discrete checkpoints, e.g. every 100 bytes of
processing or So.

0180. The compressor 36 preferably comprises as effi
cient as possible an implementation of a variant of the
Lempel–Ziv (LZ) family of compression algorithms. The
most important difference between the algorithm of the
compressor 36 and conventional LZ-Variants is the use of a
Static dictionary as discussed above. Most conventional
LZ-based coderS construct a data dictionary on the fly, by
analyzing the data as it is being compressed. The analysis
requires a sizeable amount of data in order to obtain a
reasonable compression ratio (at least a few Kbytes), and
also has a Substantial CPU-resource cost as well. When
dealing with packets formed using the Internet Protocol,
which are typically Small (generally having a maximum size
of about 1.5 Kbytes), an adaptive solution does not work on
a packet basis. Attempting to identify associated packets and
carrying out compression acroSS packet boundaries is, how
ever, both complex and unreliable Since packet headers
would have to be read and remembered and decompression
could only be performed if all the packets arrived Success
fully at the destination.

0181. Thus, in the present embodiment, the building of
compression dictionaries is carried out in advance. AS will
be explained below, offline data analysis can be more
thorough, allows a rigorous classification of data to be
carried out and thus permits the creation of “optimal'
dictionaries to an extent unfeasible in real time due to the
prohibitive resource cost.

0182. The use of pre-built dictionaries also has certain
disadvantages: Small dictionaries created adaptively at runt
ime are more context-sensitive, require fewer bits to code,

US 2003/0030575 A1

and can therefore provide better compression ratioS. How
ever, Since the vast majority of data being eXchanged over
networks belongs to a Small number of clearly defined data
types which are statistically quite stable (typically HTTP,
Java, English text, executables.), a set of Static dictionaries
generally provides a fairly adequate representation.
0183 Considering possible compression algorithms in
further detail it may be stated that the task of the compressor
36, given a data buffer to encode, is to produce a Smaller
buffer containing the same data, compressed, or to perform
a null operation if the type determiner has indicated that the
data seems incompressible. Preferably the data has been
labeled with an appropriate type flag by the type determiner
32, as discussed above So that the appropriate dictionary
may be selected by the selector 34. Provided a dictionary is
selected the data is coded by the algorithm in table 1 below
using the Selected type-specific dictionary.
0184. In the algorithm of Table 1 a first byte or character
is Selected. The following byte or character is added and
positions in the dictionary containing the combination are
noted. Further bytes are added as long as a corresponding
String can Still be found, but generally, as the Selection gets
longer the chances of finding a corresponding String in the
dictionary fall. When the longest possible match has been
found then the match is compared to a threshold encoding
length, usually of three bytes or characters. If the match is
Shorter then the match is retained as is in the packet, flagged
in front with a “0”. If the match is longer then a “1” is
inserted indicating a data match and then the match itself is
replaced with a pointer to the first byte of the match in the
dictionary and the match length. A further possibility is no
match at all, which may be considered as a too-short match.
0185. Efficient compression may be obtained using the
above algorithm provided that enough relatively long
matches are found in the dictionary that

TABLE 1.

Compression Algorithm

Loop through bytes in the input buffer
Find the longest string o, in the dictionary that matches the buffer
starting from the current pointer.
If the string o has a length shorter than a predetermined constant:
Output 'O' (one bit)
Output the current data byte (8 bits)
Increment byte counter, and continue with step 2
Otherwise, if a match is found (o having a length equal to or greater than
a constant:

Output 1 (one bit)
Output o’s dictionary position (fixed size per dictionary)
Output o’s length in bytes (variable no. of bits)
Advance byte counter by o’s length and continue with step 2

0186 can be replaced with the shorter encoding of dic
tionary reference pairs Viz <position, length>.
0187. In a preferred embodiment, encoding of a match's
length within compressed output is made more Space-effi
cient by exploiting the fact that match lengths are not
distributed uniformly: Most matches are short, and the
number of matches decreases dramatically with match
length. A method for exploiting this fact was first Suggested
by Friend R. & Monsour R., “IP Payload compression using
LZS", RFC-2395, 1998, also http://www.iets.org/rfc/
rfc2395.txt the contents of which are hereby incorporated by
reference.

Feb. 13, 2003

0188 A preferred embodiment of the encoder 36 uses a
modification of the method of Friend and Monsour as
described below. Table 2 below shows a comparison of
compression ratioS obtained experimentally using three dif
ferent match-length encoding methods (lower ratios indicat
ing better results). Compression ratio may be defined simply
as the total size of the compressor output (including tags and
any other control data) divided by total size of the compres
Sor input. The dictionary size in each case is expressed in
bits (log of the actual dictionary size in bytes). The fixed
encoding method in the experiment used 6 bits to encode the
match length (thus limiting a match to no longer than 64
bytes, a very realistic limit). The LZS variable method in the
experiment involved encoding bits using the variable-length
encoding offered by Friend and Monsour referred to above.
The modified variable method is that of the present embodi
ment which is similar to Friend and Monsour but is biased
towards shorter matches (for example requiring only a single
bit to express a match length of 3-generally the most
common match length).

TABLE 2

Comparative compression Ratios for Different
Length Encoding Schemes

Dictionary Fixed LZS Modified
size encoding variable variable

12 86.28% 82.04% 82.07%
13 79.77% 78.79% 78.85%
14 76.56% 75.32% 75.39%
15 75.81% 74.26% 74.30%
16 75.31% 73.06% 73.01%
17 74.25% 69.83% 69.30%
18 76.25% 64.48% 62.74%
19 76.14% 66.31% 64.39%

0189 Table 3 below depicts an experimentally deter
mined match length distribution. In Table 3, the Length
column denotes the length of the matched Strings in bytes.
The Count column denotes the number of Successful String
matches of the given length. The Frequency column denotes
the appearance rate of match of the given length as a ratio
of total matches. The cumulative 76 column denotes the
percent of all matches of the given length and below as a
percentage of all matches. The Encoding column denotes the
length in bits of the Symbol used to indicate the String length
in the compressed data in the preferred embodiment.

TABLE 3

Experimentally Obtained String Length Frequency Distribution

Length Count Frequency Cumulative 26 Encoding

3 74923 O.783.6888 78.369 1.
4 6167 O.O645063 84.82O 3
5 3355 O.O35093 88.329 3
6 1709 O.O17876 90.116 3
7 1382 O.O144556 91.562 5
8 773 O.O080855 92.371 5
9 92O O.OO96231 93.333 5
1O 932 O.OO974.86 94.3O8 9
11 976 O.O1O2O89 95.329 9
12 981 O.O102612 96.355 9
13 627 O.OO65584 97.011 9
14 368 O.OO38493 97.395 9
15 89 O.OOO9309 97.489 9

US 2003/0030575 A1

TABLE 3-continued

Experimentally Obtained String Length Frequency Distribution

Length Count Frequency Cumulative 26 Encoding

16 131 O.OO13702 97.626 9
17 130 O.OO13598 97.762 9
18 3OO O.OO3138 98.075 9
19 50 O.OOO523 98.128 9
2O 3 O.OOO136 98.141 9
21 218 O.OO228O3 98.369 9
22 62 O.OOO6485 98.434 9
23 108 O.OO11297 98.547 9
24 39 O.OOO4O79 98.588 9
25 48 O.OOOSO21 98.638 3
26 6 6.28 E-05 98.644 3
27 2 2.09 E-05 98.646 3
28 99 O.OO 10355 98.750 3
29 O.OOO1151 98.762 3
3O 1.OSE-OS 98.763 3
31 36 O.OOO3766 98.800 3
32 274 O.OO2866 99.087 3
33 40 OOOO4184 99.129 3
34 7 7.32 E-05 99.136 3
35 105E-05 99.137 3
36 8 O.OOO1883 99.156 3
37 1.OSE-OS 99.157 3
38 124 O.OO1297 99.287 3
39 105 O.OO10983 99.396 3
40 1.OSE-OS 99.398 3
41 153 OOO16004 99.558 7
42 45 O.OOO4707 99.605 7
43 104 O.OO10878 99.713 7
44 9 9.41 E-05 99.723 7
45 35 O.OOO3661 99.759 7
46 1.05 E-05 99.760 7
47 48 O.OOOSO21 99.811 7
48 98 O.OO1O251 99.913 7
49 14 OOOO1464 99.928 7
50 4 4.18 E-05 99.932 7
52 1.OSE-OS 99.933 7
57 6 6.28 E-05 99.939 7
58 17 O.OOO1778 99.957 7
59 4 O.OOO4289 1OO.OOO 7

0.190 Turning to the data decompression path 22 of FIG.
3, a compressed data packet is preferably received from the
network and placed in an input buffer 40. The packet header
is read by a header reader 42 to determine which if any of
the Static dictionaries have been used to compress the data
to allow the corresponding Static compression dictionary to
be selected from the library 24 by a selector 44. A decom
preSSor 46 then decompresses the data packet using the
Selected dictionary. Again, if the data packet was not com
pressed, then the decompressor 46 preferably carries out a
null operation. The packet is then passed to an output buffer
48 for Sending on along the network.

0191 Considering the decompressor 46 in greater detail,
it is responsible for decoding of compressed packets to
restore the original data. Having Selected the appropriate
type specific dictionary from the library 24 the decompres
Sor preferably carries out the algorithm given below in table
4, which is the complementary algorithm of FIG. 3. The
input data is cycled through. If a “0” flag is encountered then
the flag is removed and the following byte is retained as is.
If a “1” is encountered then the flag is again removed and
what follows is taken to be a dictionary reference. The
reference is thus replaced with the String referred to in the
dictionary, thereby to restore the data.

Feb. 13, 2003

0.192 As the skilled person will be aware, implementa
tion of the decompression algorithm of Table 4 may gener
ally be expected to require leSS memory & CPU resources
than the compressor 36, Since data Structures and algorithms
required to find longest-match Strings are not relevant in
decompression. To obtain a dictionary String of a given
position, a Single memory acceSS is required, and calculation
is unnecessary. Thus, decompression is relatively fast com
pared to compression.

0193 The skilled person will be aware that different
compressor/decompressor pairs can use different Sets of
dictionaries, or different data types, for example when
applying the present embodiment to different networks
carrying Statistically different data. However, as will be
readily appreciated, a given data packet can be Successfully
decompressed only with the same dictionary used in its
compression.

TABLE 4

Decompression Algorithm

Loop from beginning of data
Read current bit
If the bits value is “O:

Read 8 more bits and output them as a literal byte
(increment pointer by 8),

Otherwise:
Read the following bits as a table position (fixed size per

dictionary) and increment bit pointer by fixed size),
Read the bits following the table position as a length

(variable size, but uniquely defined) and increment the bit pointer by the
variable size,

Fetch the string of the given position & length from the
dictionary,

Copy the string to the output buffer,
increment the bit pointer,
Continue loop until end of packet.

0194 In a modification of the decompressor 46, a feature
is provided for determining that a packet, for which a
decompression packet has been Selected, has not in fact been
compressed using the Selected dictionary. Such a situation
may arise for example from communication errors (e.g.
channel noise) or from a 3" party's usage of a similar
protocol. Such a feature preferably operates by recognizing
out-of-range dictionary references. Once Such a determina
tion is made then the packet concerned is handled as a
non-coded packet and output in its received form.
0195 Reference is now made to FIG. 4A, which is a
Simplified block diagram showing in greater detail the
operation of the type determiner 32. Parts that are identical
to those shown above are given the same reference numerals
and are not referred to again except as necessary for an
understanding of the present embodiment. A data Scanner 50
Scans data from an incoming data packet to obtain informa
tion about the data content. The information about the data
content is then passed to a Statistical analyzer 52 which then
operates on the data content to obtain a Statistical analysis
thereof to be placed in a buffer 54. The statistical analysis
may typically comprise an analysis of the rate of occurrence
of different characters.

0196. The statistical analysis is then preferably used by
comparator 56 to identify a closest match from a corre
sponding set of stored data type statistics from a library 58
of data type Statistics. The comparator preferably uses

US 2003/0030575 A1

approximate matching techniques to obtain a closest match
from the sets in the library 58. A preferred method of
approximate matching is to compute Hamming distances to
each of the statistical sets in the library. Preferably a
threshold is Set So that if no computed Hamming distances
are within the threshold then a failure to match is declared.

0197) Reference is now made to FIG. 4B which is a
Simplified block diagram showing an alternative embodi
ment of the type determiner 32. In the alternative embodi
ment, the Statistical analyzer 52 does not use a library of data
Sets but rather uses a simple algorithm, represented by
category Selector 62, to distinguish between three basic data
types. The algorithm preferably provides a simple, fast
method for categorizing incoming data packets into any one
of three types or classes. The distinction is based on the
Statistical data preferably gathered in the form of character
appearance histograms for the various file types. The cat
egory Selector 62 is able to recognize data types as follows:

0198 1. Text: data, conventionally Ascii characters:
including English text, most HTML data, etc.

0199 2. Exec: Executable files.
0200 3. Unknown: All other data types.

0201 The analyzer 52 preferably uses a Subset of the data
in the incoming data packet to analyze, generally a fixed size
String Starting at a given offset within the data. An advantage
of Starting at a certain offset from the beginning rather than
at the beginning itself is that generally the first few bytes of
data within the packet are generally part of a packet header,
thus confusing the classifier by not corresponding to the data
type. Typically Such data may consist of packet header
information. It is therefore preferable to take characters from
the middle of a packet, and not from the beginning. It is
possible to vary the offset and/or Select non-consecutive
bytes of the data for analysis.

0202) If a non-ASCII (or 8-bit) character is found within
the Selected String, then the packet is preferably marked as
binary, i.e. it cannot belong to the class Text. A String that is
binary may belong to either of the groups Exec or Unknown.
A preferred method of identifying Exec data is to carry out
a character count on the '0' (zero) character. The method is
based on the finding, from analysis of large numbers of PC
executable files of various types and from different Sources,
that the character '0' dominates the Exec file type, as
illustrated below by Table 5, which shows experimental
results of an analysis of the relative frequency of characters
in executable files averaged over hundreds of PC
executables of Several types. Only characters with a fre
quency of more than 1% are shown. The abundance of the
0 character, that makes the Exec type of file easily recog
nizable (and compressible) is clearly evident.
0203 Using only three data types, a statistical analyzer
according to the present embodiment is able to provide a
Significant overall increase in compression, is simple to
implement and is able to operate very rapidly.
0204. The above-described method leaves large numbers
of packets classified as unknown, namely any binary packet
that does not have a preponderance of the character “0”. It
is generally true of network packets that packets of type
Unknown have little redundancy, typically because they
have already been

Feb. 13, 2003

TABLE 5

Frequency of 8 - bit characters in EXEC files

ASCII Appearance
character frequency

O O.235939
1. O.O13522
4 O.O15911

32 O.O15364
36 O.O14506
116 O.O15649
131 O.O14158
137 O.O11726
139 O.O23O8
232 O.O11634

0205 compressed or encrypted by the sending applica
tion. Such packets are thus preferably not compressed by the
present embodiments, thereby reducing the Strain on the
CPU, but rather are ignored.
0206 Character frequency analysis using a comparison
of character counts with prestored frequency tables may be
used to distinguish different kinds of text (HTML, JavaS
cript, text & classes of text, etc), text in other languages that
use 8- or 16-bit characters (Hebrew, Kanji, and so forth), and
can permit further analysis of the Unknown class as defined
above. It is pointed out that, the more Sophisticated the
analysis, the greater is the quantity of data from the packet
that needs to be Sampled to provide a reliable categorization.

0207. A further preferred embodiment of the analyzer 32
uses any one of a range of classification algorithms from
information theory, including Bayesian Classifiers.

0208. The output of the comparator 56 or selector 62,
indicating a matched Statistical Set or a match failure, is
preferably passed to a match output unit 60 for use in
Selecting the dictionary to be used by the compressor as
discussed above.

0209 AS has been explained above, the compressing
process itself simply refers to an individual dictionary in the
library and does not update or build while compressing.
Appropriate Selection of the best dictionary requires Some
knowledge of the data to be compressed for the dictionaries
to be effective and this is preferably obtained by the statis
tical analysis outlined above. On the other hand, the com
preSSor process does not need to Spend computer resources
on dictionary building & maintenance, and needs to Store no
dictionary building information in the compressed output.
This, combined with a well-suited pre-built dictionary can
yield a better and more rapid compression than conventional
compression methods. There follows a preferred method and
apparatus for building a library of well-Suited dictionaries. It
is of course to be appreciated, as has been mentioned
hereinbefore, that the embodiments are not limited to the use
of Static dictionaries. Rather the embodiments may use
packet type detection to associate any data packet with any
Specific compression type in order to carry out compression
more efficiently.

0210 Reference is now made to FIG. 5, which is a
Simplified block diagram of a Static dictionary creator in

US 2003/0030575 A1

accordance with a preferred embodiment of the present
invention. A Static dictionary creator 70 comprises a first
memory device 72 Storing a Statistically Significant and
representative Sample of data according to a given data type.
In this embodiment it is assumed that the data types are
predefined and that data of each of the predefined types is
readily available. For example the data type may be English
text in which case the Sample is preferably a large quantity
of text in English. The sample may either be randomly
chosen or deliberately Selected to cover a wide range of
Subjects and Styles.

0211. In more detail, a statistically representative set of
data units is gathered to provide Sample data for the given
data type. Since the exact data to be compressed is not
known at the dictionary building Stage, a Statistically large
and representative data Set is preferably obtained. The
obtaining of Such a representative data Set may possibly
involve Statistical analysis of real data to form the Set.

0212. The data sample is then used by an adaptive
dictionary builder 74 to build a dictionary optimized to the
data Sample. Any known adaptive dictionary building tech
nique may be used and, provided the data Sample is Suffi
ciently representative, the dictionary that is produced is
effective for most samples of English text likely to be
encountered.

0213. In an embodiment, the size of the dictionary is not
predefined or prelimited as Such, although it is dependent on
the compression method chosen, resulting compression per
formance and available resources. In the embodiment, the
adaptive dictionary builder 74 scans the entirety of the
categorized test data 72 and finds all occurrence of Sub
Strings in a given length range whose frequency count in the
test data 74 exceed a predetermined threshold. The collec
tion of these Strings provides a basic but usable dictionary.

0214) A further preferred embodiment scans all the
Strings in the test data 74 and uses an evaluation function to
determine the merit of each String as a dictionary String,
Subsequently Selecting the Strings having the highest evalu
ated merits (up to a given limit) for the dictionary. A pre
ferred evaluation function weighs both the length and the
frequency of the String in a formula that predicts how many
bits may be reduced from the data Subset if it were to be
compressed with a dictionary containing this String. For
example, if a certain String has 16 bits and, due to its
frequency it can be ranked at Such a position that it can be
referred to using a reference having 8bits, then the predicted
reduction would be 16-8-8 bits per occurance. Separate
consideration has also to applied to the frequency of occur
ance of the String to obtain an overall benefit. A long String
appearing a Small number of times could could result in
better or worse overall compression than a short String
appearing relatively frequently.

0215 Preferably, the dictionary built by the adaptive
dictionary builder 74 is passed to the dictionary optimizer
76. The dictionary optimizer 76 preferably refines the result
ing String list by merging Strings or Substrings having
common prefixes and Suffixes, thereby to save space (and
thus the length of the referring strings) in the resulting
dictionary. For example, given Strings “abcdef and “ccle',
it is Sufficient to keep the former and remove the latter Since
a pointer to the “c” in the former with a length of 3 renders

Feb. 13, 2003

the latter redundant. Such optimization in turn improves
compression performance and may permit more Strings to be
inserted into the dictionary.
0216. As will be appreciated from the above, the static
dictionary library is built before the compression proceSS is
carried out and thus it is possible to build the library using
much larger and more powerful computing resources than
would typically be available to the individual user.
0217 Reference is now made to FIG. 6, which is a
Simplified diagram showing an apparatus for automatic
categorizing of Sample data into data types for use in the
dictionary creator. In FIG. 6, uncategorized test data 80 is
obtained directly from a data source. Preferably the uncat
egorized test data comprises a Statistically very large Sample,
Sufficiently large that when the data is divided into types or
categories, there will be Sufficient data in each category also
to constitute a Statistically large Sample. An analysis tool 82
analyses the uncategorized test data 80 to find patterns that
repeat themselves acroSS parts of the data and which patterns
can be used to define data types.
0218. The analysis tool 82 preferably comprises statisti
cal and information-theoretic analysis tools to find informa
tion classes within the data, meaning parts of the data that
are Statistically different in terms of character distribution.
One preferred embodiment actually uses various compres
Sion Schemes or dictionaries to find Similarities between data
units and thereby to categorize Such data units as belonging
to a given class. In one Such embodiment the data items are
compressed using a dictionary Set up for a particular char
acter distribution. All data items that are found to have been
compressed efficiently by the same data type specific dic
tionary are categorized in a given data type.

0219. Another preferred embodiment of an analysis tool
counts the frequencies of Special characters, or the abun
dance of Special keywords. Thus a certain frequency order of
characters indicates the presence of English text. A similar
but different order of characters indicates German text. A
completely different distribution of characters with a large
proportion of Zeroes may be characteristic of executable
code and So on.

0220. The analysis tool provides information regarding
patterns found in the data enabling a choice to be made about
data types for inclusion in the library. The choice to be made
depends, however, not only on whether distinctions can be
made between the data types in the analysis tool 82 but also
whether it is feasable to distinguish between the data types
as they may appear in Short length packets in use. In other
words not only is it necessary to find Statistically distinct
data groups, it is also important to take into account the
distance between the groups. Thus for example it may be
possible for the analysis tool to distinguish on the basis of
character frequency between British English and American
English on the basis of the letter “Z” being relatively much
more common in American English. However Such a dif
ference is unlikely to show up in an analysis of a short data
packet and thus it would not be optimal in most cases to
Supply Separate dictionaries for British and American
English. The Selection of data classes may be performed
either manually or automatically.

0221) On the above basis, the data is broken down into
categories 84 for use by the dictionary creator 70.

US 2003/0030575 A1

0222 Considering the process of creating a dictionary in
greater detail, the Static dictionaries are preferably created
by the dictionary creator 70 as described above using the
analysis tool of FIG. 6 to analyze data files into data types
or categories for which representative dictionaries can be
made. The process of dictionary creation may require con
siderable CPU & memory resources if the test data is large,
as it preferably is. However, implementation is relatively
Simple using the So-called Dictmake algorithm given below
in Table 6 which finds repeated Strings in the data, uses an
evaluation function to grade the repeated Strings in terms of
frequency and other parameters and then places the Strings
in the dictionary in order of the grading until the dictionary
is full.

0223) The Success of the algorithm of table 6 is depen
dent on the evaluation grade given to the individual Strings.
A good evaluation function preferentially Selects Strings that
represent good choices for a compression dictionary. The
evaluation function is based on the following principles:
0224 Replacement of a string by a dictionary reference
leads to compression if the String being replaced is frequent
enough and/or is long enough.

0225. On the other hand, a string that is replaced by a
dictionary reference has a cost: the length of the dictionary
reference that replaces it.
0226. A preferred evaluation function is described thus:

g(s)=count(s)x(8-s-refsize)

0227

TABLE 6

Dictmake Algorithm

Count appearances of all data strings of a given length range (e.g. 3
to 64 characters)

Give an evaluation grade to each string above a threshold
appearance frequency

Sort evaluated strings in descending grade order
Starting with an empty dictionary string, begin loop:
Get next string according to sort order
If the next string isn't already contained in the dictionary as a

substring, insert it into the dictionary
Continue loop till the desired dictionary maximum size is reached,

or the strings are exhausted

0228. Where s is a string, count(s) represents its fre
quency count, is represents its length in bytes and refsize is
the length in bits of a dictionary reference. The function g(s)
gives a measure of the number of bits that are gained by
replacing S with its dictionary reference in the data to be
compressed.

0229. The following functions are also feasible for use in
evaluation:

g(s)=count(s)x(8's)
g(s)=(count(s)-1)x(8-s-refsize)

0230. The first of the functions ignores the effect of the
dictionary reference Size and the other considers the Space
the String may occupy in the dictionary.

0231 Considering the structure of the dictionary in fur
ther detail, the Static dictionary is an important factor in
compression and decompression performance The Static

Feb. 13, 2003

dictionary of a preferred embodiment is simply one long
String or buffer, with a Set of operators to retrieve SubStrings
therefrom Its size is generally 2 bytes where P is called the
pointer size. Pranges in the art between values of 7 and 32,
but is preferably chosen from a much Smaller domain, about
15-20 bits: 7-bit dictionaries (128 Bytes) are generally found
to be too small to contain useful Strings for compression.
Beyond about 20, the dictionaries consume large amounts of
memory and take a lot of CPU time to handle without
providing commensurate benefits in terms of improved
compression performance.
0232 A static dictionary, may be provided as part of a
Self-contained module comprising the dictionary itself
together with functionality components as necessary, typi
cally construction, destruction, match Searching and String
fetching. The construction functionality component for
example may correspond to the dictionary creator 70. The
match Searching functionality component is preferably used
as part of on-line compression and is thus the most critical
of the run time components in the module. Construction &
destruction are performed on Setup only, and String fetching
for a given reference is a relatively trivial operation. To
achieve fast match Searching, in one preferred embodiment,
a technique known as chained hashing is used. Chained
hashing involves an open hash table with what are known as
chained buckets. In more detail a hash table is a data
Structure that allows Storage and retrieval of data items in
relatively short, almost constant time. Access to data in the
hash table is achieved by means of a function (hash function)
that computes a table entry number from a given data item.
A perfect hash function would be expected to produce
different hash values (table entries) for different data items.
Many hash functions are not perfect and could for example
produce the same hash value for different data items, result
ing in what are known as hash table conflicts.
0233. There are several techniques to override the prob
lems that arise from hash table conflicts. One Such technique
is called chaining: If one inserts or retrieves data items from
a table entry to which another data item is also inserted (that
is since both compute the same hash value), one creates a
linked list (chain) of data items. The first data item is stored
in the hash table entry, and contains a pointer to the next data
item, typically allocated at a Space outside the hash table.
The next data item in turn includes a pointer to a further
Succeeding item and So forth, until all the data items are
enumerated. A good hash function with a large enough table
would produce an average list length that is short enough to
enable quick Searches into the table. Data objects are usually
of constant size, and that is also the case with the hash table
used in the present embodiments. The (constant) space
reserved for a data item is referred to herein as a bucket.
Thus, reference herein to a hash table with chained buckets
means a hash table that resolves hash conflicts by chaining
an additional bucket for each newly inserted data item to a
table entry that is used by another data item.
0234. In the hash table embodiment using chained buck
ets as described above, an implementation of the dictionary
optimizer 76 comprises adding functionality to the dictmake
algorithm of table 6 to enable it to fine-tune a hash function
to enable more efficient referencing of the Strings in the
dictionary. Optimally, if a minimal hash function is found,
the compressor's performance can be boosted Since all hash
hits and misses, that is to Say each query, can be determined

US 2003/0030575 A1

in a Single hash table access. When bearing in mind that
most of the compressor's time is spent on hash table/
dictionary misses, that is to Say every tested String, even
those that eventually encompass a Successful replacement
with a dictionary reference (and most are not) must by
definition incur one dictionary miss, it will be appreciated
that the use of a hash table can provide a considerable Saving
in resources provided that the hash table is well constructed.
0235. During the dictionary construction process an ini
tialization procedure takes place, typically comprising
memory allocation, variable Setting and calculation of a
required pointer size. Then the dictionary module receives a
Series of Strings to be incorporated into the dictionary, for
example using the dictmake algorithm above. A hash-table
data Structure is then filled in using the algorithm of Table
7 below:

TABLE 7

Building a hash table during dictionary creation

Loop over all dictionary-string's positions pos:
1 set len <- MIN STRING LENGTH (3)
2 find hash value h for string of length len starting at pos
3 If hash table at entry h is empty, put pos at entry h
4. Otherwise if table entry h or any of its buckets does not contain pos (a
collision), add a bucket to h and put pos in bucket.
5 If pos was found in h or its buckets, increment len and continue with
step 2

0236 Referring to table 7, the hash table initially
attempts to Store references to all 3-character length Sub
Strings that appear in a dictionary buffer of Strings that are
being Sent to be incorporated in the dictionary. In the event
of an attempt to give two different Strings an identical hash
value, a Situation known as a normal collision situation, the
collision situation is resolved by linked-list chaining. How
ever, when a String to be inserted already exists in the hash
table, the String is enlarged by one character, namely the next
character to appear in the input buffer, and a further attempt
is made to insert it into the hash table.

0237 Match searching in the compressor 36 generally
consists of finding the longest String in the dictionary that
matches a given input String. A return value is obtained
which comprises a position in the dictionary String, and the
length of the match. Alternatively, the return value may
Simply comprise an indication that no Such match of mini
mal length was found. A preferred matching algorithm for a
given inputString S using the hash table embodiment is given
in table 8 below. The algorithm of table 8 moves character
wise through the input buffer until it has a minimal number
of characters, in this case 3. The three characters are looked
up in the hash table. If they are found then the reference
thereto in the dictionary is retained and a fourth character is
added from the input buffer and that too is searched for.
Characters are continually added until a Search fails to find
the current Set of characters. Upon failure, the previous
result, that is the reference to the place in the dictionary
Storing the last Set of characters, is used to form the
compressed data.
0238 Returning to the subject of dictionary building, and
another preferred embodiment further optimizes the dictio
nary using a String merging heuristic that eliminates dupli
cate Sub-Strings from the dictionary, and “grows' better

Feb. 13, 2003

Strings from String fragments. Two Such String merging
heuristics are described as follows:

TABLE 8

String Matching using a hash table

1 len <- MIN STRING LEN (initailised with value of 3)
2 find location in hash table of the string consisting of the first len
characters of s, using hash function and buckets.
3 if no such location is found, indicate failure & return
4 if found, increment len and retry till failure
5 return the last location and len before failure

0239). The first algorithm for a string merging heuristic is
of a kind referred to in the art as a greedy algorithm. It
attempts to merge every dictionary-inserted String with
every other String that has not yet been inserted. It Selects the
best, i.e. most useful merged Strings, preferably Selected
using an efficiency measuring algorithm of the kind referred
to above.

0240 A Second, more complex, algorithm for a string
merging heuristic represents all candidate Strings as vertices
in a graph. Edges are then constructed to link each combi
nation of Vertices Such that the edges Symbolically represent
the merger of the Strings in the combination, and the edges
are assigned a weight representing Similarity between the
Strings. The algorithm preferably proceeds to merge Strings
(vertices) according to the weights assigned to the respective
edges in an iteration that ends when no more mergers are
possible.
0241 String merging is not restricted to the two algo
rithms described above but the skilled person will be aware
of the possibility of using a wide range of methods of String
merging in an iterative process of dictionary improvement.
0242. In experimental testing, a utility for compressing
packets was written and used. Two data Sets were used for
the measurements, the first being a set of 143 5000-packet
samples, totaling 385,489,253 bytes of sample payload. The
entire data Set was compressed using a prototype of the
present embodiments The data set exhibited high variability
and the dictionaries used in the test were all 18-bit (256 Kb)
dictionaries.

0243 Two sets of performance measurements were
taken. The first test tried to compress all three of the data
types Text, Exec and Unknown, while the Second ignored
class Unknown packets. Both achieved a similar compres
sion ratio: 89.18% and 89.86% respectively (i.e. obtaining
an approximate 10% increase in network bandwidth). The
data processing rate however exhibited a significant gap.
While the first test averaged a 12.27 Mbit/sec data rate, the
Second test that ignored type Unknown packets averaged
54.01 Mbit/sec (A 4.4 fold improvement). The results Sug
gest therefore that compression of type Unknown packets
adds considerably to the time and effort with very little
commensurate advantage in increased compression.
0244 Compression ratios obtained for packets of each
type within the experiment is as follows: Type Text predict
ably obtained the best average ratio viz. 69.01%. Next came
class Exec with 80.54% and class Unknown obtained the
modest ratio of 98.9%.

0245. The second data set was a dump-file of 1000 IP
packets (approx 440 KB) collected, not at random, but from

US 2003/0030575 A1

a single user browsing the Internet. The idea of the experi
ment was to determine how effective the prototype would be
in the face of a Statistical skew of data packets. The Sample
was determined to be Sufficiently unrepresentative to repre
Sent a real world Statistical skew. The compression ratioS and
compression speed (in Mbit per second) are presented
against dictionary size in table 9 below. They should not be
taken as representative due to the Small size of the data Set,
but rather as a demonstration of abilities in more specific
data Sets.

TABLE 9

Compression Ratios for Uncorrelated Data packets

Bits Speed Ratio

1O 18.414 76.61%
11 18.547 74.13%
12 18.026 71.69%
13 17.95 67.97%
14 17.561 65.98%
15 17.292 65.15%
16 18.277 62.85%
17 21.617 58.89%
18 24,557 58.48%
19 24.645 61.00%
2O 24.535 63.63%

0246 There is thus provided a system for categorizing
Small data units and compressing them using an appropriate
Static dictionary, which System is particularly but not exclu
Sively applicable to Switches located in data networks.
0247. It is appreciated that certain features of the inven
tion, which are, for clarity, described in the context of
Separate embodiments, may also be provided in combination
in a single embodiment. Conversely, various features of the
invention which are, for brevity, described in the context of
a single embodiment, may also be provided Separately or in
any Suitable Subcombination.
0248. It will be appreciated by persons skilled in the art
that the present invention is not limited to what has been
particularly shown and described hereinabove. Rather the
Scope of the present invention is defined by the appended
claims and includes both combinations and Subcombinations
of the various features described hereinabove as well as
variations and modifications thereof which would occur to
perSons skilled in the art upon reading the foregoing descrip
tion.

1. Dictionary based data compression apparatus compris
ing

a library of Static dictionaries, comprising at least two
Static dictionaries each optimized for a different data
type,

a data type determiner operable to Scan incoming data and
determine a data type thereof,

a Selector for Selecting a Static dictionary corresponding to
Said determined data type and

a compressor for compressing Said incoming data using
Said Selected dictionary.

2. Dictionary based data compression apparatus according
to claim 1 wherein Said incoming data comprises unrelated

Feb. 13, 2003

data packets, each data packet being of insufficient length to
permit efficient adaptive compression.

3. Dictionary based data compression apparatus according
to claim 2, wherein Said data type determiner is operable to
assign a data type to individual packets.

4. Dictionary based data compression apparatus according
to claim 2 wherein Said data types include an unknown type
and wherein Said compressor is operable not to compress a
packet classified as unknown.

5. Dictionary based data compression apparatus according
to claim 1, wherein Said data types include at least one text
type.

6. Dictionary based data compression apparatus according
to claim 5, wherein Said text type comprises Statistically
Spaced text Sub-types.

7. Dictionary based data compression apparatus according
to claim 1, wherein each dictionary comprises a hash table
to optimize Searching of Said dictionary.

8. Dictionary based data compression apparatus according
to claim 1, incorporated within an interface to a high
capacity data link.

9. Dictionary based data compression apparatus according
to claim 1, wherein Said data type determiner is operable to
obtain a Statistical analysis of relative character frequency
from Said data, thereby to determine Said data type.

10. Dictionary based compression apparatus according to
claim 1, wherein Said compressor is further operable to tag
compressed packets to indicate Said Selected dictionary.

11. Dictionary based compression apparatus according to
claim 2, wherein Said data type determiner is operable to
obtain a Sample of the data within the packet for Scanning
and wherein the Sample is taken from a position offset from
a start of the packet by a predetermined offset, thereby to
avoid Selecting a Sample from a packet header.

12. A method of compressing data comprising:
Scanning incoming data to determine a data type,
Selecting, from a library of Static dictionaries, a Static

dictionary optimized for Said determined data type,
and compressing Said incoming data using Said Selected

dictionary.
13. A method of compressing data according to claim 12,

wherein Said incoming data comprises data characters, the
method comprising determining a data type by analyzing
relative character content of Said data and comparing Said
relative character content with characteristics of each data
type thereby to determine a closest matching data type.

14. A method of compressing data according to claim 13,
wherein Said data types comprise a data type for machine
executable data which type is identified by a preponderance
of the Zero character.

15. A method of compressing data according to claim 14,
wherein Said data type for machine executable data is further
classified into data Subtypes for machine architecture.

16. A method of compressing data according to claim 12,
wherein Said data is arranged in data packets and wherein
Scanning of data is carried out on a Sample taken from a
position offset from a packet start by an offset Sufficiently
large to avoid packet header data.

17. A method of compressing data according to claim 12,
further comprising tagging the data to indicate Said Static
dictionary Selection.

18. A method of compressing data according to claim 12,
wherein Said data types include an “unknown data type and

US 2003/0030575 A1

which method is operable to perform a null compression on
data classified as type “unknown'.

19. A method of compressing data according to claim 12,
wherein Said dictionaries in Said library comprise hashing
tables to enable easy Searching.

20. A method of compressing data according to claim 12
wherein Said data types comprise at least one text data type.

21. Dictionary based decompression apparatus compris
ing a library of Static dictionaries each optimized for a
different data type,

a dictionary determiner operable to Scan incoming data
and determine a data type of a dictionary used to
compress Said data,

a Selector for Selecting a Static dictionary corresponding to
Said determined data type and

a decompressor for decompressing Said incoming data
using Said Selected dictionary.

22. Dictionary based decompression apparatus wherein
Said data is arranged in packets having packet headers and
Said dictionary determiner is operable to Search a packet
header of an incoming packet to find a tag inserted by a
corresponding compression apparatus to indicate Said data
type.

23. Dictionary based decompression apparatus according
to claim 22, wherein Said decompressor is operable to carry
out a null compression operation on any packet identified by
Said tag as not having a Selected data type.

24. Dictionary based decompression apparatus according
to claim 23, wherein a compression performance threshold
is Set, and Said compressor is operable to reidentify any data
type whose compression does not reach said performance
threshold as being of unknown type.

25. Dictionary based decompression apparatus according
to claim 21, wherein Said decompressor comprises an LV
type decompression procedure.

26. Dictionary based decompression apparatus according
to claim 21 wherein Said data types include at least one text
data type.

27. Dictionary based decompression apparatus according
to claim 21, wherein Said data types include at least one
executable data type.

28. Dictionary based decompression apparatus according
to claim 21 further comprising a bogus data identifier
operable to Stop a current decompression operation if a
current data packet associated with a given dictionary
appears to contain data out of a range of Said dictionary.

29. A method of decompressing data comprising,
receiving data that has been compressed using one of a

plurality of Static dictionaries from a Static dictionary
library,

determining from Said received data which one of Said
plurality of dictionaries has been used to compress Said
data, and

decompressing Said data using Said determined dictionary.
30. A method according to claim 29, wherein said data is

in the form of data packets having headers and wherein Said
determining is carried out by identifying an indication tag
within Said packet header.

31. A method of compressing data according to claim 29,
wherein Said dictionaries include a dictionary for machine
executable data.

Feb. 13, 2003

32. A method of compressing data according to claim 30,
wherein Said packets further include an “unknown packet
type and which method is operable to perform a null
decompression operation on packets identified as type
“unknown”.

33. A method of compressing data according to claim 29
wherein Said data types comprise at least one text data type.

34. A method according to claim 29, wherein Said decom
pression includes checking Said data to ensure that it is
within a range of Said Selected dictionary and aborting Said
decompression if it is outside a range of Said dictionary.

35. Apparatus for building a library of Static compression
dictionaries, Said apparatus comprising

test data categorized into a plurality of data types,
an adaptive dictionary builder for building dictionaries

optimized for an input data Set,
an input unit for inputting, to Said adaptive dictionary

builder, test data of a single data type for each one of
a plurality of dictionaries to be built,

and a memory for Storing a plurality of dictionaries, each
built using a different test data type, thereby to form a
library of Static compression dictionaries.

36. Apparatus according to claim 34, Said adaptive dic
tionary builder comprising LZ type dictionary building
functionality.

37. Apparatus according to claim 36, Said adaptive dic
tionary builder further comprising a hash table constructer
for constructing a hash table for rapid searching of Said
dictionary.

38. Apparatus according to claim 35, wherein Said adap
tive dictionary builder comprises a String evaluation unit for
assigning compression utility values to repeated Strings
identified within said data, thereby to provide a relative
prioritization for incorporation of Said data Strings into Said
respective dictionary.

39. Apparatus according to claim 38, wherein Said String
evaluation unit is operable to generate a String utility value
by computing a difference between a length of a given String
and a length of a reference of a position thereof in a
dictionary.

40. Apparatus according to claim 39, wherein Said String
evaluation unit is operable to order evaluated Strings in an
order of respective String utility values.

41. Apparatus according to claim 35, comprising a dic
tionary optimizer for optimizing each respective dictionary
by merging Similar Strings incorporated within Said dictio
nary.

42. Apparatus according to claim 35, comprising a dic
tionary optimizer for optimizing each respective dictionary
by merging Strings entered into Said dictionary using a String
merging heuristic.

43. A method of building a static dictionary library, the
method comprising:

inputting test data,
categorizing Said test data into a plurality of data types,
building an adaptively optimized dictionary for each one

of Said data types, and
Storing each adaptively optimized dictionary together to

form said library.

US 2003/0030575 A1

44. A method according to claim 43, wherein said build
ing of Said dictionary comprises using an LZ type dictionary
building process.

45. A method according to claim 44, further comprising
constructing a hash table for rapid Searching of Said dictio
nary.

46. A method according to claim 45, comprising assigning
compression utility values to repeated Strings identified
within Said data, thereby to provide a relative prioritization
for incorporation of Said data Strings into Said respective
dictionary.

47. A method according to claim 46, comprising gener
ating a String utility value by computing a difference
between a length of a given String and a length of a reference
of a position thereof in a dictionary.

48. A method according to claim 47, further comprising
ordering evaluated Strings in an order of respective String
utility values.

49. A method according to claim 47, further comprising
ordering evaluated Strings according to frequency.

50. A method according to claim 42, comprising optimiz
ing each respective dictionary by merging Similar Strings
incorporated within Said dictionary.

51. A method according to claim 42, comprising optimiz
ing each respective dictionary by merging Strings entered
into Said dictionary using a String merging heuristic.

52. A method according to claim 42 wherein categorizing
Said data comprises making character frequency analyses of
Said data and associating together data having a similar
character frequency characteristic.

53. A method of building a static dictionary library, the
method comprising:

inputting test data categorized into a plurality of data
types,

building an adaptively optimized dictionary for each one
of Said data types, and

Storing each adaptively optimized dictionary together to
form said library.

54. A method according to claim 53, wherein said build
ing of Said dictionary comprises using an LZ type dictionary
building process.

55. A method according to claim 53, further comprising
constructing a hash table for rapid Searching of Said dictio
nary.

56. A method according to claim 53, comprising assigning
compression utility values to repeated Strings identified
within Said data, thereby to provide a relative prioritization
for incorporation of Said data Strings into Said respective
dictionary.

57. A method according to claim 56, comprising gener
ating a String utility value by computing a difference
between a length of a given String and a length of a reference
of a position thereof in a dictionary.

58. A method according to claim 57, further comprising
ordering evaluated Strings in an order of respective String
utility values.

59. A method according to claim 53, comprising optimiz
ing each respective dictionary by merging Similar Strings
incorporated within Said dictionary.

60. A method according to claim 53, comprising optimiz
ing each respective dictionary by merging Strings entered
into Said dictionary using a String merging heuristic.

Feb. 13, 2003

61. A method according to claim 53, wherein Said adap
tively organized dictionaries are each of different size.

62. A method according to claim 54, wherein Said adap
tively organized dictionaries are each usable in incompatible
compression procedures.

63. Apparatus for classifying incoming data, comprising:
a data Scanner for Scanning incoming data to provide a

Statistical analysis thereof, and
a type associator for using data of Said Statistical analysis

to Step through characteristics of predetermined data
types, thereby to associate Said data with one of Said
data types.

64. Apparatus for classifying incoming data, comprising:
a library comprising Statistical data Sets for each one of a

plurality of data types,
a data Scanner for Scanning incoming data to provide a

Statistical analysis thereof,
a type matcher for finding a closest matched between Said

analyzed data and Said Statistical data Sets, thereby to
determine a most probable data type of Said incoming
data.

65. A method of classifying incoming data in accordance
with a library of data types, comprising:

Scanning incoming data to obtain a Statistical analysis
thereof,

using Said Statistical analysis to Step through a Series of
data type characteristic Selection rules,

determining a closest match between Said incoming data
and Said respective data types from Said Selection rules,

thereby to obtain a most probable data type of said
incoming data.

66. A method of classifying incoming data in accordance
with a library of data types, comprising:

Scanning incoming data to obtain a Statistical analysis
thereof,

comparing Said analysis with each one of a plurality of
Sets of Statistics each corresponding to a respective data
type in Said data type library, and

determining a closest match between Said incoming data
and Said respective data types,

thereby obtaining a most probable data type of Said
incoming data.

67. A Selective packet compression device comprising:
a packet classifier for classifying incoming data packets

into precompressed packets and non-compressed pack
ets and

a compressor connected to Said packet classifier to be
Switchable by Said packet classifier to compress packets
classified as non-compressed packets and not to com
preSS packets classified as precompressed packets.

68. A Selective packet compression device according to
claim 67 wherein Said incoming data comprises unrelated
data packets, each data packet being of insufficient length to
permit efficient adaptive compression.

69. A Selective packet compression device according to
claim 68, wherein Said data type determiner is operable to
assign a data type to individual packets.

US 2003/0030575 A1

70. A Selective packet compression device according to
claim 68 wherein Said data types include an unknown type
and wherein Said compressor is operable not to compress a
packet classified as unknown.

71. A Selective packet compression device according to
claim 67, wherein Said data types include at least one text
type.

72. A Selective packet compression device according to
claim 71, wherein Said text type comprises Statistically
Spaced text Sub-types.

73. A Selective packet compression device according to
claim 67, wherein each dictionary comprises a hash table to
optimize Searching.

74. A Selective packet compression device according to
claim 67, incorporated within an interface to a high capacity
data link.

75. A Selective packet compression device according to
claim 67, wherein Said data type determiner is operable to
obtain a Statistical analysis of relative character frequency
from Said data, thereby to determine Said data type.

76. A Selective packet compression device according to
claim 67, wherein Said compressor is further operable to tag
compressed packets to indicate Said Selected dictionary.

77. A Selective packet compression device according to
claim 68, wherein Said data type determiner is operable to
obtain a Sample of the data within the packet for Scanning
and wherein the Sample is taken from a position offset from
a start of the packet by a predetermined offset, thereby to
avoid Selecting a Sample from a packet header.

78. A Selective packet compression method comprising:
classifying incoming data packets as compressed packets

and non-compressed packets,
compressing those incoming data packets classified as

non-compressed packets, and
not compressing those incoming data packets classified as

compressed packets.
79. A Static compression dictionary library comprising:
a plurality of individually Selectable Static compression

dictionaries, each dictionary being optimized for com
pression of data of a predetermined data type.

80. A method of classifying a data packet into one of a
plurality of data types based on character content of the data
of the packet, the method comprising:

obtaining a first data String beginning at a predetermined
offset from the beginning of the packet,

analyzing the data String for character distribution, and
classifying the packet based on the character distribution.

Feb. 13, 2003

81. A method according to claim 80, comprising obtaining
a Second String at a predetermined offset from Said first
String and analyzing Said Second String for character distri
bution.

82. A compressor for compressing data by replacing data
with a corresponding Start position and a length of a location
of Said data in a data dictionary, Said replacements giving a
Statistical correlation between length and frequency Such as
to provide a progression between more frequent lengths and
less frequent lengths, the compressor comprising an encoder
operable to encode Said lengths. Such that Said Statistically
more frequent lengths are encoded using shorter codes than
Said Statistically leSS frequent lengths, a Statistically most
frequent length being encoded with a shortest code.

83. A method of building a hash table for a string-based
compression dictionary, Said String-based compression dic
tionary comprising a String of concatenated repeating data
portions of target compressible data, parts of the String being
referable by a Start position and a length, the method
comprising:

passing through all positions on Said String, and
for each position on Said String repeating for all String

lengths between a minimum String length and a maxi
mum String length:
computing a hash value for the String part at the current

position and having the current String length,
entering the current position in the hash table at a

position of the computed hash value if Said position
of the computed hash value is empty, and

entering the current position at a Subsidiary position of
Said computed hash value if Said position of Said
computed hash value is already occupied.

84. A method of finding a location of a longest String part
within a String based compression dictionary referenced via
a hash table with table entries and associated Sub-entries,
and an associated hash function, the method comprising:

applying Successively incrementally increasing lengths of
Said String part to Said hash function to obtain a hash
result,

applying Said hash result to Said hash table to obtain a
location in Said dictionary,

and when a location is not retrieved from Said hash table
then providing a last previous obtained location as an
output if a preceding incrementally increasing length of
Said String yielded a location, and otherwise indicating
a retrieval failure.

k k k k k

